
Integration of change and evolution in the
lifecycle of SMEs information systems

Alexandre Métrailler

Information System Institute, Faculty of Business and Economics, University of
Lausanne,

1015 Lausanne, Switzerland,
Alexandre.Metrailler@unil.ch,

WWW home page: http://www.hec.unil.ch/isi/home

Abstract. Today’s software enterprise systems continue to suffer from
symptoms like aging and the lack of evolution capabilities. One of the
major reasons for this problem is that the future maintenance and evo-
lutions are undervalued during traditional software systems implemen-
tation. The best way to overcome the problem of software aging and
the misalignment with business is by placing the change in the center of
software system lifecycle.
This thesis proposal presents the main activities required to create a
method allowing the integration of change in the lifecycle of SMEs in-
formation systems (IS). By following a design science approach in IS,
this study will explore the main challenges faced by small and medium
enterprises (SMEs) regarding the evolutions of their IS, and the benefits
of an agile approach to integrate change throughout the IS lifecycle.

1 Introduction

Small and medium enterprises (SMEs) represent a sector with one of the largest
growth in the economy. Following a long term and well known trend of large com-
panies, SMEs become increasingly dependent on information systems to support
their operations (Premkumar, 2003). While there has been extensive research
concerning the lifecycle and the evolution of information systems (IS) in large
companies, only few research has explored the topic of lifecycle and evolution of
IS in SMEs.

Nowadays, business environments progress and change rapidly to move with
evolving markets. Those evolutions lead to a considerable amount of changes
in business processes. Some of those are supported by IS and since the business
processes change or new market opportunities appear, the IS needs to be adapted
in order to continue to support the business. Regarding this context, the need
of IS evolution is intrinsic.

Currently, if SMEs want to compete effectively within their market, the adop-
tion of a sustainable enterprise IS is necessary. In terms of information system
needs, SMEs tend to adopt a kind of incremental approach to problem resolu-
tion. Namely, when they need an application to manage accounting, they buy



(or develop) it; when they need an application to manage stocks, they buy (or
develop) it, etc. (Equey, 2006). Thus, SMEs incrementally construct their IS
infrastructure.

IS undergo several distinguish stages during its life. According to Bennett and
Rajlich (2000), the first stage is initial development, where the first functioning
version of the software is developed. Then it goes through evolution, where the
capacities are extended, afterwards comes the stage servicing during which the
software is used and maintained. The two last stages are phase out and close
down, during them, no more servicing is being undertaken, the system is used
as long as possible until it is withdrawn from business. Here is the traditional
description of an IS lifecycle. Bennett and Rajlich (2000) propose a versioned
model of this traditional staged lifecycle model. The versioned model consists
in the creation of versions of the system and to apply to them the traditional
lifecycle stages. This research proposes to extend Bennett versioned model by
integrating a continuous evolution perspective inside the lifecycle of IS.

To integrate change in the software development, a typical approach is to
follow an iterative and incremental process. These development methodologies
are also known as agile software development methodologies (Beck et al., 2001).
They have been developed as a reaction to the waterfall-like bureaucratic project
management methods ending with a big rollout (big bang). One of the principles
of agile methodologies is to welcome change and to consider it as an opportunity
(Fowler, 2001).

According to Alleman (2002), such a methodology allows the ERP projects
to adapt to the SME context. Moreover, the work of Stender (2002) points
out that the increasing complexity of ERP deployment projects has led to the
recommendation of encouraging incremental over big-bang approaches. Agile
methodologies promote collaborations, interactions, user involvement, working
software and high response to change (Beck et al., 2001).

Based on these aspects, during preliminary research work, we addressed the
following research question : “How to apply agile principle to the deployment of
an open source ERP in SMEs”. The output of this previous part was an agile
and incremental methodology for ERP deployment. We published a first paper
in the proceedings of the AIM 2009 Conference (Métrailler and Estier, 2009),
and an extended version of our research is currently under review (Métrailler
and Estier, 2011).

By comparison with traditional (waterfall) methodologies, this approach al-
lows, among others, an improvement of flexibility and of project priorities in
planning, a reduction of the ERP complexity through several rollouts and a bet-
ter distribution of the extra workload among stakeholders. This methodology
has been developed in collaboration with business partners who are currently
using it and obtain good results.

Our agile deployment methodology progress in an incremental manner, which
means that between two rollouts, the system is used in production. Since each
rollout provides new features, there is an evolution of the system in production.
Consequently, this approach helps SMEs to integrate a continuous evolutional



perspective in their ERP lifecycle. Therefore, the continuation of this research
focuses on identifying challenges relative to IS evolution in SMEs and on the
opportunities concerning the use of an agile approach for evolution.

This paper is structured as follows. In next section, we expose the research
questions. In section 3, we present an overview of previous research in systems
evolution. In Section 4, the research methodology used to conduct this study is
described, namely design science in IS. Section 5 presents the current state of
our work and the required stages to carry out this research. In addition, Section
5 presents the research activities for each stage of the research methodology.
Finally, the expected contributions and the limitations of this research are pre-
sented in Sect. 6.

2 Research questions

Regarding the fact that to support business activities the IS must evolve, and
the fact that an agile, iterative and incremental process allows the integration
of change, the general research question is as follows:

Are agile principles beneficial to SME’s information systems evolu-
tion?

To answer this question, we aim to design an agile method to conduct IS evolu-
tion in SMEs and to evaluate its impact on IS evolution. In order to accomplish
this, additional research questions also need answers:

Concerning SMEs IS in general:

– How do SMEs deal with the changes of their IS? Are there differences between
in-house developed software systems and commercial off-the-shelf (COTS)
systems?

– What are the advantages and disadvantages of both in-house developed sys-
tems and COTS systems regarding system evolution?

– Do known laws of software evolution apply to SMEs information systems
evolution?

Concerning agile priciples and SMEs IS:

– In the first stage of IS lifecycle, is an iterative and agile implementation
methodology more efficient regarding the incoming evolutions of IS?

– How can we enhance such iterative and agile implementation methodology to
integrate an evolutional perspective?

3 Literature review

In this section, we present a brief overview of previous research on which we
refer and on which we will rely to design our artifact to conduct evolution in
SMEs IS.



3.1 Information systems evolution

The term evolution is elusive to define. Dictionaries and common sense refer
to the following definition: “Evolution is a process of gradual development in a
particular situation or thing over a period of time1”.

When it comes to software systems, the term evolution has many different
interpretations depending on the role of stakeholder. To define evolution in a
way that is independent of subjective interpretations and that captures charac-
teristics of evolution in software systems, Lehman (cited in Cook et al. (2006))
proposed the following general statement:

‘a . . . process of discrete, progressive, change over time in the character-
istics, attributes, [or] properties of some material or abstract, natural or
artificial, entity or system or of a sequence of these [changes]’.2

One of the principal researchers in the field of software evolution is Professor
M.M. Lehman. He is the principal developer of the laws of software evolution.
These laws have been developed for more than 30 years with the first version
published in 1974. They are the basis for the elaboration of a theory of software
evolution (Lehman and Ramil, 2000, 2001a; Madhavji et al., 2006). Lehman
uses the term law to describe general principles of how software systems change
over time. The laws describe phenomena such as continual adaptation, complex-
ity increases, self regulating capabilities, stability and familiarity conservation,
feedback loop system, as well as how these principles vary by increasing, decreas-
ing, remaining constant or by being organized in multiple (Lehman and Ramil,
2001b; Cook et al., 2006).

Lehman made a fundamental distinction between three types of programs.
Those written to satisfy a fixed specification (S-type, S for specification), those
developed to satisfy a need in the real world (E-type, E for Evolving), and a third
type of programs the P-type (P for Problem). This third type always satisfies
the definition of either S- or E-type, thus, in his subsequent research Lehman
ignored the type P. This distinction is known as the SPE taxonomy (Cook et al.,
2006).

Several researchers described the evolution of E-type softwares. To compare
and categorize evolutions of such systems, three decades ago, Lientz and Swanson
(1980) proposed a software maintenance typology that distinguishes among per-
fective, adaptive and corrective maintenance activities. More recently, Chapin
et al. (2001) refined this typology into 12 different types of software changes:
enhancive, corrective, reductive, adaptive, performance, preventive, groomative,
updative, reformative, evaluative, consultive, and training. Moreover they dis-
tinguished whether these changes are categorized as software maintenance or

1 Collins Cobuild English Dictionary for Advanced Learners 4th edition published in
2003 c© HarperCollins Publishers 1987, 1995, 2001, 2003 and Collins A-Z Thesaurus
1st edition first published in 1995 c© HarperCollins Publishers 1995

2 The ‘Software Evolution and Evolutionary Computation Symposium’ (EPSRC Net-
work on Evolvability in Biology and Software Systems), Hatfield, U.K., 7–8 February
2002.



evolution. This work categorizes software changes on the basis of their purpose
(i.e. the why of software change). On an other side, Buckley et al. (2005) take a
complementary view of the domain; indeed, they focus on the technical aspects
of software change by creating a taxonomy of software change (i.e. the when,
where, what and how of software change). These results provide a strong basis
to classify software evolution according to each dimension cited above. Conse-
quently, we will use this typology and this taxonomy to investigate the evolutions
of SMEs enterprise IS.

3.2 SMEs and information systems

A significant amount of research has been completed on what distinguish SMEs
from larger firms, it points out that the principal distinctions are the limited
resources and the limited knowledge base of SMEs (Fuller and McLaren, 2010;
Kugel, 2007; Loh and Koh, 2004). These two distinctions can impact the choice of
enterprise IS. Therefore, the system should be affordable and easy to implement
(Fuller and Mclaren, 2010).

SMEs information systems can be grouped in two main categories: enterprise
systems developed by the company (in-house developed software systems) and
enterprise systems purchased by the company (COTS) like ERP or SaaS (Soft-
ware as a Service) and BoB (Best of Breed) approaches. Based on the fact that
all these solutions will eventually evolve according to the business context of
the company, our interest is to determine the advantages and inconvenients of
each category and whether a solution is more able to evolve in SMEs business
context.

A recent study of Fuller and McLaren (2010) points out that ERP systems
are better aligned with SMEs than SaaS and BoB. Moreover, ERP systems have
a higher potential for long-term growth. However, SMEs are not yet familiar with
ERP. Indeed, many of them are still in the process of adopting these tools. For
example, the percentage of Swiss SMEs using an ERP is low, between 17% and
19% (Equey, 2006). Consequently, in the years to come, a considerable number
of SMEs may need to seek an enterprise information system. Thus, consider-
ing the dynamics of business environments, the integration of an evolutionary
perspective in the early stages of IS seeking should not be underestimate.

3.3 Conclusion

We believe that the existing research has missed to explore the evolution of
SMEs information system.

The research concerning the laws of software evolution is based on the evo-
lution of large E-type software. Lehman’s Evolution laws are originally based on
observations regarding the evolution of IBM’s OS/360 and OS/370.

Empirical research on the evolution of open source software point out that
the evolution of such software breaks some of Lehman’s laws. One way among
others to explain these results is the decentralized manner by which such software
are developed and the loosely-coupled community of developers (Scacchi, 2003).



Another study concerning the evolution of Eclipse plug-ins (Businge et al., 2010)
identifies two Lehman’s laws that cannot be validated. Consequently, Lehman’s
laws do not seem to be applicable to all software systems. Moreover, it is not
clear whether they are applicable to medium sized systems like SMEs IS or to
systems incorporating COTS components.

When it comes to the taxonomy of software evolution or the typology of
software change, there is no application of them to SMEs context. The fact of
carrying out such a research could point out interesting elements concerning
namely the temporal properties, the object, the system properties or the chal-
lenges relative to software changes in SME.

On another side, there is no research concerning the evolution challenges
relative to in house developed or COTS systems in SME, is there an approach
which is more able to evolve than the other?

4 Methodology

To carry out this research, we use a design science approach in IS. According to
(Hevner et al., 2004), design science “creates and evaluates IT artifacts intended
to solve identified organizational problems”.

Peffers et al. (2007) propose a Design Science Research Methodology (DSRM)
process model which is composed by six steps (1. Identify problem and motivate,
2. Define objectives of a solution, 3. Design and development, 4. Demonstration,
5. Evaluation, 6. Communication). This process is structured in a nominally
sequential order. However, it is not expected that researcher should always pro-
ceed in order from activity one to six. Peffers et al. (2007) describe four “entry
points” through which the researcher can start (from 1 to 4).

During the preliminary research work, we followed a problem-centered ap-
proach by starting with step 1. We identified some issues that emanate from
SMEs, namely the problem of flexibility in the traditional (waterfall) ERP de-
ployment approach, difficulties related to the workload, the limited resources of
SMEs, and the complexity of appropriating the tool. Using an iterative approach
we performed each step to create our agile deployment methodology.

The sequel of our research will follow a Design- and Development-Centered
approach as described by Peffers et al. (2007) and illustrated in Fig. 1. Indeed,
based on the agile deployment methodology we developed previously, we want
to build a model of evolution management integrated throughout the lifecycle of
SMEs IS. Obviously, new questions arise concerning the evolution of SMEs IS:
their nature, the causes which trigger them, the applicability of our methodology
to other type of IS, etc.

Our research activities for each stage of the DSRM process model (see Fig.1)
are described in the next section.



Identify 
Problem 

& Motivate

Define 
Objectives of a 

Solution

Design & 
Development

Demonstration Evaluation Communication

Conduct SMEs 
IS evolution 
with an agile 

approach

Encompass 
evolution in IS 

lifecycle
Improve 

sustainabiliy

Method 
inspired by 
common 

evolutions and 
agile principles

Case studies to 
refine the 

artifact and its 
use

Implementation 
of the artifact in 
a pilot project

MIS journals 
and 

conferences 

In
fe

re
nc

e

Th
eo

ry

H
ow

 to
 K

no
w

le
dg

e

M
et

ric
s,

 A
na

ly
si

s
Kn

ow
le

dg
e

D
is

ci
pl

in
ar

y
Kn

ow
le

dg
e

Process Iteration

Possible Research Entry Points

Design & 
Development-

Centered 
Approach

Nominal process 
sequence

Fig. 1. The DSRM process model applied to this research which starts in the third
“entry point” (Design- and Development-Centered approach)(Peffers et al., 2007)

5 Description of the current state of the work

This section gives a brief description of the current state of our research and
introduces the ideas we are currently working on. The stages of the research
follow the DSRM process model described in Sect. 4.

As mentionned before, the sequel of this research will follow a Design- and
Development- Centered approach (Peffers et al., 2007). In our case, the entry
point of the research is the reuse of our agile methodology concepts to build the
artifact of this research, namely a method to conduct IS evolution in SMEs.

5.1 Problem identification and motivations

After having identified the entry point of the research, the next activity in Peffers
DSRM (Fig. 1) is to define the research problem and to justify the value of
the solution. The global research problem has already been defined in Sect. 1.
Today’s software enterprise systems continue to suffer from symptoms like aging
and the lack of evolution capabilities. One of major reasons of this problem is
that the future maintenance and evolutions are undervalued during traditional
software systems implementation. The best way to overcome the problem of
software aging and misalignment is to center the software system lifecycle on
change management (Mens et al., 2005).

5.2 Objectives of the artifact

The objective of our artifact is to conduct SMEs IS evolution by applying prin-
ciples of agile software development methodologies to the management of IS
evolutions. Our previous work points out that an agile approach for ERP deploy-
ment is more aligned with SMEs context than traditional waterfall approaches.
Moreover, it is well known that agile development methodologies enable the



integration of change throughout software development. We believe that such
approach enables the simplification of IS evolutions, an improvement of IS re-
activity towards business adjustments and an expansion of the IS lifecycle by
maintaining an evolution stage instead of going through servicing and phase-out
stages. The IS should be designed for evolution from the earliest stage of its
lifecycle, by having the evolution integrated in its conception and deployment.

5.3 Design and development of the artifact

Despite these facts, the design and the development of such an artifact require
investigations regarding the evolutions of SMEs system. As mentioned in the
literature review (see Sect. 3), it is not clear whether general E-type software
evolution laws are applicable to medium sized systems or to systems that in-
corporate software applications from different vendors. In order to address IS
evolution issues, it is essential to identify these issues. In the literature, there is
no research identifying software evolutions in SMEs and their context. Neverthe-
less, the literature provides tools to undertake such research, that are typology
and taxonomy of software evolution (Chapin et al., 2001; Buckley et al., 2005).
In section 3, it is mentioned that SMEs information systems can be grouped into
two main categories that are in-house developed or purchased. There is no re-
search concerning the evolution challenges relative to each categories of systems,
what are the pros and cons of each categories regarding evolution capabilities?
Interviews with software developers and software project managers will be used
to answer these interrogations and to identify the challenges they face with evo-
lution. This research and the literature review will provide useful foundation to
start the development of the artifact.

After having shed light on these interrogations, we would have the basis to
start the development of our artifact. The design and development activities will
be an iterative process around small case studies to refine and demonstrate the
use of the artifact. When our artifact seems to be mature enough, we would
apply it to conduct real SME’s IS evolutions.

5.4 Evaluation of the artifact

After the development of the artifact, it is necessary to evaluate the artifact
to determinate how well it works (Hevner et al., 2004). The evaluation of this
research artifact will be qualitative, principally based on stakeholders’ feedback
and satisfaction surveys. The appreciation of how well our artifact achieved
his objectives must be collected from experts dealing with maintenance and
evolutions of SMEs IS. We will examine whether IS managers, or integrators are
willing to adopt the artifact, whether they perceive a higher evolution potential
of the IS and if they predict a better sustainability of the system.



6 Expected contributions and conclusion

In this section we discuss about limitations and contributions of our study.

Our study has limitations. The first limitation we distinguish is relating to
the iterative and agile approach uses by our artifact to manage IS evolution.
Our previous work is based on an open source system, consequently, we have
a complete access to its architecture and to its data model. This transparency
allows us to master the technical dependencies among components which permits
us to uncouple them if necessary. We do not apply yet our previous work to a
proprietary system, but we guess the IS’s flexibility will be reduced to the editor’s
choices.

The second limitation to the adoption of our artifact results from the iterative
approach and the integration of the evolution perspective in the IS lifecycle. In
fact, the IS will be in continuous evolution and those who have to manage it
may need to provide an extra effort.

Moreover, we assume that the evolution perspective should be integrated
since the beginning of the system implementation. If elements of the systems are
strongly interconnected since its implementation, it is possible that our artifact
could not be integrally used.

Although this study has limitations, it offers several contributions to practice
as well as research. In terms of research, this work will extend the knowledge
on evolution of SMEs software systems. The exploratory, qualitative research
has a primary contribution of identifying the strong and weak points of both
in-house developed and COTS systems regarding their evolution capabilities. Its
secondary contribution lies in the identification of the main reasons why software
evolves in SMEs and of what types are these evolutions. Moreover, these results
will allow us to evaluate how the evolution of small-medium software systems
conforms to the laws of software evolution.

By describing and understanding the evolutions of SMEs software systems
and the main activities generated by these evolutions, one then has the potential
to suggest improvements. The contribution of the design and development phase
of a design science research is to determine how to more sustainably conduct the
lifecycle of SMEs software systems. To these ends, this study delivers a method to
integrate an evolutional perspective into the lifecycle of such software systems.



References

Alleman, G. B. (2002). Agile project management methods for ERP: how to
apply agile processes to complex cots projects and live to tell about it. Lecture
Notes in Computer Science, pages 70–88.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., and Others
(2001). Manifesto for agile software development. The Agile Alliance, pages
2002–2004.

Bennett, K. H. and Rajlich, V. T. (2000). The staged model of the software
lifecycle : A new perspective on software evolution. Evolution, pages 1–14.

Buckley, J., Mens, T., Zenger, M., Rashid, A., and Kniesel, G. (2005). Towards a
taxonomy of software change. Journal of Software Maintenance and Evolution:
Research and Practice, 17(5):309–332.

Businge, J., Serebrenik, A., and Brand, M. V. D. (2010). An Empirical Study
of the Evolution of Eclipse Third-party. In Science And Technology, volume
2009, pages 63–72.

Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F., and Tan, W.-G. (2001).
Types of software evolution and software maintenance. Journal of Software
Maintenance and Evolution: Research and Practice, 13(1):3–30.

Cook, S., Harrison, R., Lehman, M. M., and Wernick, P. (2006). Evolution in
software systems: foundations of the SPE classification scheme. Journal of
Software Maintenance and Evolution: Research and Practice, 18(1):1–35.

Equey, C. (2006). Etude du comportement des PME/PMI suisses en matière
d’adoption de système de gestion intégré. Entre méconnaissance et satisfac-
tion.

Fowler, M. (2001). The new methodology. Wuhan University Journal of Natural
Sciences, 6(1):12–24.

Fuller, S. and McLaren, T. (2010). Analyzing Enterprise Systems Delivery Modes
for Small and Medium Enterprises. AMCIS 2010 Proceedings.

Fuller, S. and Mclaren, T. (2010). Analyzing Enterprise Systems Delivery Modes
for Small and Medium Enterprises for Small and Medium Enterprises. Infor-
mation Systems.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in
information systems research. Management information systems quarterly,
28(1):75–106.

Kugel, R. (2007). The Big Midsize Challenge. Business Finance.
Lehman, M. M. and Ramil, J. F. (2000). Towards a theory of software evolution-

and its practical impact. invited talk, Proceedings ISPSE, pages 2–11.
Lehman, M. M. and Ramil, J. F. (2001a). An approach to a theory of software

evolution. In Proceedings of the 4th international workshop on Principles of
software evolution, pages 70–74. ACM.

Lehman, M. M. and Ramil, J. F. (2001b). Rules and tools for software evolution
planning and management. Annals of Software Engineering, 11(1):15–44.



Lientz, B. P. and Swanson, E. B. (1980). Software maintenance management:
a study of the maintenance of computer application software in 487 data pro-
cessing organizations, volume 4. Addison-Wesley Reading MA.

Loh, T. C. and Koh, S. C. L. (2004). Critical elements for a successful enterprise
resource planning implementation in small-and medium-sized enterprises. In-
ternational Journal of Production Research, 42(17):3433–3455.

Madhavji, N. H., Lehman, M., Perry, D., and Ramil, J. F. (2006). Software
evolution and feedback. Wiley Online Library.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld, R., and Jazay-
eri, M. (2005). Challenges in Software Evolution. Eighth International Work-
shop on Principles of Software Evolution (IWPSE’05), pages 13–22.

Métrailler, A. and Estier, T. (2009). Déploiement agile d’ERP open source en
PME. In Actes du Colloque AIM 2009.

Métrailler, A. and Estier, T. (2011). Agile Deployment Methodology for
Open Source ERP in SME. Submited for publication to ”Revue Systèmes
d’Information et Management”, under review.

Peffers, K., Tuunanen, T., Rothenberger, M. a., and Chatterjee, S. (2007). A De-
sign Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3):45–77.

Premkumar, G. (2003). A meta-analysis of research on information technology
implementation in small business. Journal of Organizational Computing and
Electronic Commerce, 13(2):91–121.

Scacchi, W. (2003). Understanding Open Source Software Evolution : Applying
, Breaking , and Rethinking the Laws of Software Evolution. Artificial Life.

Stender, M. (2002). Outline of an Agile Incremental Implementation Methodol-
ogy for Enterprise Systems. In Proceedings of the Eighth Americas Conference
on Information Systems, pages 907–917.


