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ABSTRACT
The ever increasing amount of linked open data results in a
demand for high performance graph databases. In this pa-
per we therefore introduce a memory layout which is tailored
to the storage of large RDF data sets in main memory. We
present the memory layout SpiderStore. This layout features
a node centric design which is in contrast to the prevailing
systems using triple focused approaches. The benefit of this
design is a native mapping between the nodes of a graph
onto memory locations connected to each other. Based on
this native mapping an addressing schema which facilitates
relative addressing together with a snapshot mechanism is
presented. Finally a performance evaluation, which demon-
strates the capabilities, of the SpiderStore memory layout
is performed using an RDF-data set consisting of about 190
mio triples.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design; H.3.2
[Information Storage and Retrieval]: Information Stor-
age; H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval

General Terms
Performance, Algorithms, Design, Experimentation

Keywords
RDF, Main Memory, Database, RDF Store, Triple Store,
SPARQL, Addressing Scheme

1. INTRODUCTION
Due to the increasing significance of linked open data and

publicly available SPARQL-endpoints, the need for high per-
formance graph databases has increased. To meet those
requirements several approaches for storing and retrieving
large RDF (Resource Description Framework) graphs have
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been developed. Despite the highly connected nature of
these graphs, the main approaches proposed in this con-
text are facilitating technologies originating from relational
databases. Even though these represent major and robust
technologies, they were not tailored for the scenario of stor-
ing graph based structures. At the same time the ever in-
creasing capacities of main memory and the increasing num-
bers of cores have lead to an architectural shift in the de-
velopment of databases and information systems by mov-
ing from hard disk to main memory as the primary stor-
age device. Whereas these architectural changes lead to
enormous performance improvements, when implementing
graph-operations like graph traversals they still have to be
implemented through costly self join operations. Despite the
possibility of supporting these operations with appropriate
index structures they still take O(log(n)) where n denotes
the number of index entries. Therefore we present the Spi-
derStore storage concept as an in-memory storage approach,
which allow to process edges in O(1). In contrast to previ-
ous work [3] the storage layout and space estimations are
captured in more detail. In addition, a new relative ad-
dressing scheme is introduced. The successive sections are
structured as follows. Chapter 2 deals with the memory lay-
out and space estimations. Chapter 3 explains the relative
addressing scheme used for faster restarts and for snapshot
generation. In chapter 4 we present an evaluation of the pre-
sented technology using the YAGO2 [8] data set. Chapter
5 discusses the related work in the field of RDF-databases.
Finally Chapter 6 draws a conclusion and makes forecasts
for possible future work.

2. MEMORY LAYOUT
This section represents a detailed description over the Spi-

derStore memory layout. The aim of this memory layout
is to provide an in-memory storage of graphs, where the
basic operation of navigating between two vertices can be
done in O(1). Therefore, the node is the core component
of the layout. This is in contrast to the concept favored by
most triple stores where the the triple represent the atomic
building block. To realize this concept of a node centric
layout, two factors have to be fulfilled. The first is that
all edges belonging to a node need to be stored in a sin-
gle place, which allows to navigate back and forth along all
edges. The second factor is that there need to be a direct
connection between those nodes that can be resolved within
a single operation. These requirements can be fulfilled by
an in-memory storage layout, which is designed as follows.
Each node has to be located at a unique location within
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memory. At each of these locations the information about
ingoing and outgoing edges is stored and grouped by the re-
spective edge label. The information about edges itself is not
stored directly but implicitly through pointers. Therefore,
the traditional pointer structures, which themselves can be
seen as graphs connecting different memory locations are
used to represent arbitrary graphs.

Each node contains a set of ingoing and a set of outgoing
edges (pointers). These pointers are grouped by the predi-
cates labeling the corresponding edges. Grouping is done by
the address of the predicates. This address is equal to the
address of the property within the predicate index, which
stores a list of all subjects occuring together with a specific
property.
Beside the raw pointer data, implicit statistical information
is stored. This is the case for the number of nodes, the num-
ber of predicates and the number of strings. Furthermore,
for each subject the number of predicates and for each sub-
ject/predicate combination the number of objects is stored.
The same information is stored the other way around (the
number of predicates for an object and the number of pred-
icate/subject combinations for an object).

To illustrate this layout, Figure 1 visualizes the memory lay-
out of a short example. The main node emphasized in this
example represents the category of a wordnet_scientist.
It can be seen from this example that two different types of
edges exist: ingoing and outgoing edges. Both types them-
selves group their destination pointers by the predicate node.
In Figue 1, an outgoing edge with the property 〈hasLabel〉
and an incoming edge with the property 〈type〉 is featured.
To simplify matters, URIs are abbreviated and marked with
angle bracket while literals are put in quotes. As it can
be seen in the example, all nodes independent of their type
(URI, literals, . . .) share a uniform node layout. For example
the node "scientist" has the same structure as the node
〈wordner_scientist〉. The facts described in this example
are that 〈Einstein〉 is of 〈type〉 〈wordner_scientist〉 and
that this category has a label with the name "scientist".
The triple notation of the example in Figure 1 is shown in
the listing below:

...

〈Einstein〉 〈type〉 〈wordner_scientist〉
〈wordner_scientist〉 〈hasLabel〉 "scientist"
...

2.1 Space Estimations
Given that SpiderStore is a main memory based graph

store, space consumption becomes a crucial factor. There-
fore we introduce and discuss a formula that can be used
to calculate the expected amount of memory needed for a
specific set of data. To describe a specific data set we use
the following variables. The variable #nodes represents the
total number of distinct nodes within a graph. A node can
either be a URL or a character string and can be be used
as subject, predicate or object. The second variable used
for calculating the expected space consumption is the total
number of triples or facts #notriples. The space consump-
tion is then calculated as follows:

wordnet_scientist

outgoing

ingoing

<hasLabel>

.....

"scientist"

.....

Einstein

.....

predica
te

object

subject

predicate <type>

.....

Figure 1: Memory Layout - Example

m = (#nodes ∗ (5 + degree ∗ 2) + #edges ∗ 3)

∗ sizeof(pointer) + sizeof(dictionary)

This formula consists of three parts, i.e. the size of the
data dictionary, the fraction influenced by the number of
nodes and the fraction influenced by the number of edges.
The part of this formula that depends on the number of
nodes can be interpreted as follows. For each node a data
structure is stored consisting of the number of incoming
edges and a link to the table containing the incoming edges
as well as the number of outgoing edges and a link to the ta-
ble containing the outgoing edges. Furthermore a pointer to
the corresponding entry within the dictionary table is stored
within each node. The term degree ∗ 2 can be explained by
the pointers which group the edges by their corresponding
predicates. For each predicate there exist a pointer to the
edges itself and a counter, which is used for statistics. Be-
cause all edges are bidirectional, the estimation is quite ac-
curate even though it does not take the number of distinct
subjects or objects into account.
The part of the formula, which depends on the number of
edges, can be derived of the following facts. For each edge
the destination is stored on both ends. Furthermore, an
additional entry is stored within the predicate index which
allows to start the query execution not only at subject or
object nodes but as well at predicate nodes.
As an example the YAGO2 [8] data set used throughout
the evaluation consists of 194,35 million triples and of 28,74
million distinct nodes. The dictionary size in the case of
the YAGO2 data set is roughly about 1.1 gigabytes. In this
example 1.2 would be an appropriate value for the variable
degree. This number can be derived by counting the number
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of all distinct subject-predicate combinations and dividing it
by the total number of nodes. By apply these values to the
formula above a space consumption of about 7,4 gigabytes
might be expected. In comparison to the real footprint,
which is about 7.2 gigabytes this value is quite accurate.
Hence knowing the basic facts about a data set allows to es-
tablish an adequate estimation about the expected memory
footprint.

3. RELATIVE ADDRESSES
Using absolute pointer addresses for the location of nodes

enables the navigation between two nodes in O(1) as it has
been explained in the section before. The drawback of this
concept is that storing a persistent state of a whole graph
database can become quite complex. The reason for this is
that the database can only be dumped either by serializing
the whole graph and later deserializing the whole graph or
by dumping the whole memory snapshot and swizzling the
pointers to their correct representation at load time.
Another alternative to these approaches is to arrange the
whole database content based on an offset address. Hence
all memory locations have to be converted into relative ad-
dresses based on this offset. Resolving such relative pointers
yields in an overhead, which is negligible compared to the
total amount of time needed to fetch an arbitrary junk of
memory. The time for fetching an arbitrary chunk of mem-
ory can vary between some cpu cycles, when accessing mem-
ory already located within L1-cache, up to some hundreds
cpu cycles, when accessing a random chunk of memory which
is not available in the cache hierarchy yet.
In the context of SpiderStore we decided to use relative ad-
dressing. This has two advantages. The first advantage
is that the general architecture of SpiderStore is still ap-
plicable and the overhead introduced through relative ad-
dressing is insignificant in the SpiderStore concept as it has
been explained before. The main advantage of this ad-
dressing scheme is that database restarts can be executed
within a few milliseconds. This is possible by facilitating
the Unix memory mapping techniques which does not dis-
miss the mapped pages unless another executable allocates
large amounts of memory. Furthermore this concept allows
to facilitate the copy on write approaches used by the Hy-
Per project [10]. This approach benefits from the operating
system’s memory management, which would allow different
processes to share large memory segments, while preserving
an isolated view on the data.

Due to the lack of a customized memory allocator, the Spi-
derStore snapshot mechanism is currently implemented as
a read only approach. Each snapshot is split up into five
parts. One part is responsible for the storage of the node
data structures, another for the indexes between node iden-
tifiers and node addresses. One more file stores the node
identifiers. The other files are responsible for the storage
and indexing of predicate nodes and for the storage of the
edge information. The separation into several files prevents
memory fragmentation and leads to shorter ”addresses” for
nodes, predicates and strings. For example all entries within
the node, predicate or index files have uniform sizes and can
therefore be seen as simple array structures.

4. EVALUATION
As a platform for the evaluation a server equipped with

two Intel Xeon L5520 Quad Core CPUs, 2.27 GHz, Linux
kernel 2.6.18, CentOS, 64-bit architecture and 96 GB main
memory was used.

4.1 DataSet
For the evaluation we used the YAGO2 [8] data set. The

YAGO2 data set is the successor of the YAGO [16] data set
and represents a large semantic knowledge base which is gen-
erated on the basis of Wikipedia, WordNet and GeoNames.
The data set consist of of 194,350,853 triples (98 predicates,
28,744,214 unique subjects and objects). The queries exe-
cuted on this data set are derived from the queries on the
YAGO data set used in the benchmark presenting the RDF-
3X approach [12].

4.2 Evaluated Systems
For the evaluation of SpiderStore we used Virtuoso [6] in

version 6.1.3, RDF-3X [12] in version 0.3.5 and Jena TDB
[19] in version 0.8.9. The decision for these systems was
taken to the best of our knowledge. Even though Spider-
Store is the only main memory system tested, the decision
for choosing the other systems is accurate. The reason for
this is that those systems are assumed to be the currently
fastest systems available and that the benchmark results are
measured with warm caches on a system where the whole
database would be able to fit into main memory. All systems
were granted a maximum of 40 GB to ensure that sufficient
space is available.

4.3 Evaluation Results
The test results are separated into two parts. The first

part compares the bulk import times of the different sys-
tems. The bulk import time is specified as the time needed
to load the data, to create the indexes and to ensure that a
persistent state of the database is written to disk. A sum-
mary of the load times can be seen in Table 1. As can be
seen, SpiderStore is significantly faster than any of the other
systems. The reason for this is that SpiderStore, due to its
implicit statistics, does not need to explicitly create statis-
tics or indexes.

System Load Time

SpiderStore 1:09:18

Jena 1:36:35

RDF-3X 1:21:12

Virtuoso 3:32:16

Table 1: Import Times (in hours, minutes and sec-
onds)

The second part of the evaluation compares the query ex-
ecution for each query on the YAGO2 data set. Queries with
an execution time over 15 minutes without producing any
output are marked with ”DNF”. For the calculation of the
geometric mean, a query runtime of 15 minutes is assumed
for each cell which is marked with ”DNF”. Due to large re-
sult sets for query C-1 this limit is set to 60 minutes. The
results of this evaluation are shown in Table 2.
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Query A1 A2 B1 B2 B3 C1 C2 C3 geom. mean

SpiderStore 0.0016 0.2084 0.3688 0.0119 0.5143 DNF 16,5464 319.0703 0.4521

Jena 55.203 142.155 DNF DNF DNF DNF DNF DNF 578.3126

RDF-3X 0.0496 0.0524 0.0471 0.0936 0.0482 657.2100 0.2056 2.4741 0.3414

Virtuoso 0.766 0.127 0.71 0.46 3.223 2197,672 2.401 36.474 3,4420

#results 3 5 274 128 166 6,876,673 5313 35811

Table 2: Query Runtimes on the YAGO2 data set (in seconds).

Considering the average execution time, RDF-3X performs
better than all other stores tested. While SpiderStore in the
average case is the second fastest system, two queries exist
where SpiderStore outperforms the other stores. In the case
of those queries, the coarse heuristics were able to generate
a highly efficient execution plan. On the other side consider-
ing the queries C1-C3 SpiderStore has significant problems
to arrange and optimize the execution order to obtain bet-
ter results. Regarding query C1 even though intermediate
results where present the total execution time did exceed
the time limit of one hour. The reason for the performance
shortcomings in the case of those queries is that the selec-
tivity estimations based on the triple selectivity used for the
generation of the execution plan can in some cases produce
misleading execution orders. This is due to the fact that the
cardinality of properties is not considered in the current al-
gorithm. Regarding the other evaluated systems Jena TDB
seem to have severe problems when executing queries on
such large knowledge bases, because only two queries were
able to determine the results within the given time frame.
Whereas Virtuoso can be considered as the third fastest sys-
tem, which has a stable performance without any negative
outliers.

5. RELATED WORK
Several approaches exist for storing graph based data in

databases. In the particular case of this paper we focus on
RDF-stores because SpiderStore, the developed system, can
be considered as part of this category. Hence we give a short
overview about the different approaches available for storing
RDF data.
For storing RDF-data, two approaches are prevailing. On
the one hand the approach of mapping the RDF-data onto
relational schema exists while on the other hand the ap-
proach of native RDF-stores exist.
The mapping of RDF-data onto relational databases is done
either by facilitating a large triple table, where the columns
correspond to the RDF atoms subject, predicate and object
or by clustering the triples according to their predicate into
several tables. The latter approach is called property tables.
Both approaches are less than perfect because both suffer
from severe performance drawbacks imposed by the archi-
tecture of relational databases. For example in the property
tables approach the number of tables is equal to the number
of properties in the worst case. Several approaches which ex-
tend these two main approaches when mapping RDF-data
onto relational database have been developed and are bench-
marked in [17]. Beside mappings to traditional relational
database systems, mappings which make use of column ori-
ented databases exist [1, 15]. In the case of native stores

two major categories exist: (i) systems which have a main
memory architecture and (ii) systems which use secondary
memory storage as their primary storage layer. Systems
falling into the first category are for example Brahms [9],
Grin [18], Swift-OWLIM [11] or BitMat [2] as well as our sys-
tem SpiderStore [3]. While Brahms is highly optimized for
association finding and Grin for answering long path queries
the goal of SpiderStore is to provide efficient query process-
ing for arbitrary SPARQL queries. Swift-OWLIM is also
a general purpose RDF-store, which has a strong emphasis
on OWL-reasoning. Bitmat on the other hand represents a
lightweight index structure which uses bitmap indexes to
store space efficient projections of the three dimensional
triple space. In contrast to the main memory based sys-
tems YARS2 [7], RDF-3X [12] can be considered as native
systems of type (ii). Both systems make heavy use of in-
dex structures. While YARS facilitates six index structures
for subject, predicate, object and the context, RDF-3X [12]
generates index structures for all possible combinations and
orderings of subject, predicate and object. Beside these huge
number of index structures, RDF-3x makes heavy use of sta-
tistical information and has a highly sophisticated query ex-
ecution engine, which is described in [13]. While such an
enormous effort results in a good query performance, the
management of these specific data structures can become
quite complex. Neumann et al. therefore describe in [14]
how a query centric RDF-engine can be extended to pro-
vide full-fledged support for updates, versioning and trans-
actions. Beside these systems which can be clearly dedi-
cated to either the category of memory-native, secondary
memory-native or relational based systems several semantic
web frameworks exist, which provide storage engines fitting
in several or all of these categories. Examples of such frame-
works are Sesame [5], Jena [19] and Virtuoso [6]. For all the
systems described in this section several benchmarks exist
[4, 12], which extensively compare those systems.

6. CONCLUSION AND FUTURE WORK
In this paper we presented the SpiderStore memory lay-

out, which is able to store arbitrary graphs. The node cen-
tric layout has been discussed in detail and a formula for
the estimation of the space consumption was described. An
enhancement to the basic layout introducing a relative ad-
dressing schema was presented. Finally our experiments
showed that a node centric layout is able to perform ar-
bitrary SPARQL-queries on knowledge bases of up to 190
mio nodes with a performance comparable to highly sophis-
ticated RDF-stores. This promises further performance im-
provements because the query optimisation approach, which
has been developed in [3] is rather simple. Therefore future
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work on SpiderStore will emphasize on the query execution
engine to achieve excellent performance results on a scale of
up to a billion triple.
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APPENDIX
A. QUERIES

A.1 YAGO data set
prefix rdfs:〈http://www.w3.org/2000/01/rdf-schema#〉
prefix xsd:〈http://www.w3.org/2001/XMLSchema#〉
prefix owl:〈http://www.w3.org/2002/07/owl#〉
prefix rdf:〈http://www.w3.org/1999/02/22-rdf-syntax-ns#〉
prefix yago:〈http://www.mpii.de/yago/resource/〉

A1: SELECT ?GivenName ?FamilyName WHERE { ?p
yago:hasGivenName ?GivenName. ?p yago:hasFamilyName
?FamilyName. ?p rdf:type ?scientist. ?scientist rdfs:label
”scientist”. ?p yago:wasBornIn ?city. ?city yago:isLocatedIn
?switzerland. ?switzerland yago:hasPreferredName ”Switzer-
land”. ?p yago:hasAcademicAdvisor ?a. ?a yago:wasBornIn
?city2. ?city2 yago:isLocatedIn ?germany. ?germany
yago:hasPreferredName ”Germany”. }

A2: SELECT ?name WHERE { ?a yago:hasPreferredName
?name. ?a rdf:type ?actor. 1 ?actor rdfs:label ”actor”. ?a
yago:actedIn ?m1. ?m1 rdf:type ?movie. ?movie rdfs:label
”movie”. ?m1 yago:hasWikipediaCategory ”German films”.
?a yago:directed ?m2. ?m2 rdf:type ?movie2. ?movie2
rdfs:label ”movie”. ?m2 yago:hasWikipediaCategory ”Cana-
dian films”. }

B1: SELECT ?name1 ?name2 WHERE { ?a1
yago:hasPreferredName ?name1. ?a2
yago:hasPreferredName ?name2. ?a1 rdf:type
yago:wikicategory English actors. ?a2 rdf:type
yago:wikicategory English actors. ?a1 yago:actedIn ?movie.
?a2 yago:actedIn ?movie. FILTER (?a1 != ?a2) }
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B2: SELECT ?name1 ?name2 WHERE { ?p1
yago:hasPreferredName ?name1. ?p2
yago:hasPreferredName ?name2. ?p1 yago:isMarriedTo ?p2.
?p1 yago:wasBornIn ?city. ?p2 yago:wasBornIn ?city. }

B3: SELECT distinct ?name1 ?name2 WHERE { ?p1
yago:hasFamilyName ?name1. ?p2 yago:hasFamilyName
?name2. ?p1 rdf:type ?scientist1. ?p2 rdf:type ?scientist2.
?scientist1 rdfs:label ”scientist”. ?scientist2 rdfs:label ”scien-
tist”. ?p1 yago:hasWonPrize ?award. ?p2 yago:hasWonPrize
?award. ?p1 yago:wasBornIn ?city. ?p2 yago:wasBornIn
?city. FILTER (?p1 != ?p2) }

C1: SELECT DISTINCT ?name1 ?name2 WHERE { ?p1
yago:hasFamilyName ?name1. ?p2 yago:hasFamilyName
?name2. ?p1 rdf:type ?scientist. ?p2 rdf:type ?scientist.
?scientist rdfs:label ”scientist”. ?p1 ?c ?city. ?p2 ?c2 ?city.
?city rdf:type ?cityType. ?cityType rdfs:label ”city”. }

C2: SELECT DISTINCT ?name WHERE { ?p
yago:hasPreferredName ?name. ?p ?any1 ?c1. ?p ?any2 ?c2.
?c1 rdf:type ?city . ?c2 rdf:type ?city2. ?city2 rdfs:label
”city”. ?city rdfs:label ”city”. ?c1 yago:isCalled ”London”.
?c2 yago:isCalled ”Paris”. }

C3: SELECT ?p1 ?predicate ?p2 WHERE { ?p1 ?anypred-
icate1 ?city1. ?city1 yago:isCalled ”Paris”. ?p1 ?predicate
?p2. ?p2 ?anypredicate2 ?city2. ?city2 yago:isCalled ”Hong
Kong”. }
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