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ABSTRACT
Efficient workflow variant management is becoming crucial
especially for enterprises with a large process landscape. Our
research fosters the combination of business rules for adapt-
ing reference workflows at runtime and tailoring them to
many different situations. A main goal is to optimize the
performance of workflow instances w.r.t. different aspects,
e.g., branching decisions, throughput time or compliance.

Having a data mining procedure at hand which can auto-
matically extract potentially useful conditions from execu-
tion logs to create new variants is therefore a very signifi-
cant benefit. The extracted conditions could be conveniently
reused within the business rules of our framework, which can
handle the deviations at runtime for those special situations.
However, most existing data-mining techniques do not de-
scribe a continuous mining pipeline how to get from work-
flow logs to problematic context conditions for new variant
creation or are difficult for business people to interpret.

Therefore we present an integrated rule mining method-
ology, starting with the semi-automatic discovery of “hot
spots” within workflow instance logs. Then, data variables
of instances related to these hot-spots are translated into a
data mining classification problem. Other than related ap-
proaches, we employ a fuzzy rule learning algorithm, yielding
easily interpretable and reusable conditions for variants. We
also provide first insights from a case study at a consulting
company and corresponding open research challenges.
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1. INTRODUCTION
Workflow management systems (WfMS) are becoming an

essential part of most industrial IT system landscapes [19].
For some domains, traditional WfMS have already been de-
termined as unsuitable to cover prevalent requirements w.r.t.
the flexibility of workflows [7]. In order to address the chal-
lenge of managing workflow variants (i.e. workflows with
slight deviations from a “reference workflow”) at design-time
as well as their dynamic adaptation at runtime due to chang-
ing data contexts, we have proposed the integration of busi-
ness rules containing adaptation operations on adaptive seg-
ments in reference workflows [10].

In many practical scenarios, it is unrealistic that process
analysts are able to define all variants and exceptions in
a workflow. Especially when a WfMS is introduced in a
company, but also if workflow models are already mature,
environmental changes may lead to shifts in the impact fac-
tors on process performance. A potential relief for making
such blind spots in workflow execution visible is the applica-
tion of process mining techniques. The goal is to find data-
dependencies for weak spots in the workflows and making
them available as conditions for additional business rules
leading to new workflow variants. Existing work has partly
addressed these issues each with a relatively isolated view
on e.g. bottleneck detection or dependency mining. Results
w.r.t. to an integrated “mining pipeline” for a business user
are however still quite unsatisfying. For example, prevalent
approaches leave the user with a mined decision tree which,
as we will show, might be hard to read for real-world work-
flow logs. Instead, we aim at a pipeline from a workflow defi-
nition in an understandable notation over automated mining
application to interpretable business (variant) rules.

Our approach is based on the general idea of rule-based
workflow adaptation as described in Section 2. As a solu-
tion to the above challenges, in Section 3 we present a min-
ing methodology which we consider promising as a suitable
mining pipeline for a business user. For each of the method-
ology’s three generic steps, concrete technologies and their
wiring are explicated, especially the employment of a fuzzy
mining approach for ruleset extraction. We then present
first learnings from a case study on real-world workflow ex-
ecution data building upon our methodology in Section 4
and summarize challenges which have to be solved to fully
implement our methodology in Section 5. In Section 6 we
discuss related research, before we conclude in Section 7 and
state remaining issues for future work.
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2. FLEXIBILIZATION OF WORKFLOWS
BY ADAPTATION RULES

Our methodology for condition extraction is motivated
by a general approach for workflow adaptation [10, 9]. It is
considered essential to establish a basic understanding of the
nature of business(variant) rules as targeted for being auto-
matically mined. Our framework as well as the examples
in this paper rely on BPMN2 [1], because its notation is a
de-facto industry standard which was designed to be under-
standable for business users. Basically, the framework con-
sists of three conceptual building blocks for workflow variant
management and flexible workflow adaptation:

1. Adaptive Segments in BPMN2 Reference Work-
flows: An adaptive segment demarcates a region of a work-
flow which may be subject to adaptations at runtime when
entering the segment. It corresponds to a block-structured
part of the workflow, i.e. a subgraph which has only one
incoming and one outgoing connection. In special cases,
adaptive segments can also be “empty”. What matters is
that they correspond to valid BPMN2 workflow definitions
and not to a kind of white box which is left empty for later
filling. We have extended the BPMN2 metamodel to capture
the special semantics of adaptive segments [9].

2. Workflow Adaptations Defined in BPMN2: The
actual definition of potential adaptations which can take
place at runtime have been proposed as a pattern catalogue
[10] which also relies on BPMN2 notation, with the benefit
that adaptation patterns are comprehensible and extensible.
The catalogue contains basic adaptations like SKIP or IN-
SERT, but also more sophisticated event- and time- related
patterns, like “event-based cancel and repeat” or “validity
period”. Every adaptation pattern has the block-structured
adaptation segment as an obligatory input parameter. As
such, patterns can be conveniently nested and combined.

3. Linking Adaptations to Data Contexts by Busi-
ness Rules: Business (variant) rules are used to apply suit-
able adaptations for different situations expressed by data
context conditions. The data context can be globally valid
(like a date) or workflow instance specific (like an order
value). A pseudo-syntax for variant rules, where ∗ stands
for 0-n repetitions, can be defined as: ON entry-event IF

<data-context> THEN APPLY [<pattern( segment, (parameter,

value)*>]∗ Once the general relations of adaptive segments
and potential adaptations have been established by a pro-
cess analyst, the conditions could be maintained by a busi-
ness user e.g., via a domain-specific language. For automatic
rule extraction, in this work we therefore especially focus on
the IF-part of potentially newly discovered variant rules and
aim at revealing data dependencies for variants which are
not a-priori known, but have significant implicit impact on
the overall business performance of workflow execution.

Figure 2 exemplifies the above concepts based on a ship
engine maintenance workflow fragment. The actual conduc-
tion of engine tests for a ship may depend on the harbor
in which it currently resides. Due to environmental re-
strictions, many different harbors impose specific time con-
straints on ships conducting engine tests. In Hamburg for
example, ships may only have 12h time, after which devices
need to be reset and the tests need to be restarted. For
adapting the workflow correspondingly, a generic parame-
terizable template is used and weaved with the segment at
runtime.
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(BPMN Model)

•KPIs (SCIFF or LTL)

•Behaviour Constraints
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•…
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Figure 1: Outline of the Rule Extraction Procedure

3. METHODOLOGY FOR VARIANT RULE
CONDITION EXTRACTION

As already stated, we are interested in automatically ex-
tracting condition constraints (the “IF-part”) for potentially
useful workflow adaptation rules within our framework. Use-
ful in this respect means, that the condition constraints
should describe eventually problematic situations in work-
flow instances by means of their data context values, such
that a timely adaptation of a workflow instance can eventu-
ally prevent such a situation. Our proposed methodology is
illustrated in Figure 1 in a circular manner. The methodol-
ogy is divided into three main phases explained in detail in
the following subsections. For each phase, concrete concepts
and technologies for implementing the methodology are dis-
cussed and open challenges are outlined where existing.

3.1 Formulation of Log Expectations
The first phase of our methodology consists in the def-

inition of expectations towards a set of workflow instance
logs. Correspondingly, there are two obligatory input com-
ponents for the extraction pipeline: a workflow model and
a sufficiently large set of workflow instance logs belonging
to the model. The instance logs must contain workflow-
relevant events like at least the start or finishing timestamp
of particular task types and must also carry a number of data
context variables1. Since we want to target business users
with our rule extraction approach, we consider BPMN as an
appropriate input format for the expected control-flow logic
restricing the expected order of task executions and event
occurrences in the input logs.

As an optional input, additional constraints w.r.t. work-
flow execution can be provided in some form of logic. These
constraints may concern time-related interdependencies of
events within a workflow instance log, whereas typical key
performance indicators (KPIs) like throughput times can be
understood as a subset of such time constraints. But also
other more sophisticated circumstances which are hard to
model in BPMN2 graph structures can be provided as log-
ical constraints, as for instance that a task A should be
executed N times after the occurrence of task B. Suitable
logics to formulate such process-related constraints can for
example be based on the SCIFF framework [5] or linear tem-
poral logic (LTL) [17]. Since a regular business user may not

1It is hard to give generally valid recommendations on data
size characteristics, but from experience reasonable mining
can start from 1000 instances with about 5 context variables.
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be familiar or feel comfortable with such logics, it is recom-
mended to provide constraint templates, i.e. small chunks of
logic mapped to easily parameterizable pieces of restricted
natural language for constraint maintenance.

3.2 Automatic Discovery of “Hot Spots”
For the ability to apply established mining and analy-

sis techniques on the instance logs in combination with the
workflow model, it is useful to first transform the BPMN
workflow definition into a pure formal representation, e.g. in
terms of petri net graphs which are backed by a long trail of
research and corresponding toolsets. Transformation mech-
anisms which are able to map a large part of BPMN con-
structs to petri net constructs exist [8] and can be employed
within our methodology. The next phase of our methodol-
ogy then consists in the automatic discovery of problematic
spots in the instance logs, relating to different issues:

1. Non-conformance to defined workflow model:
Using log-replay approaches on the petri net model
as presented in [16], it can be determined whether
instances behave exactly according to the underlying
model or whether there are deviations. Provided the
petri net has been suitably constructed, such devia-
tions can be structurally spotted as petri net places
where tokens are left over after an instance has been
finished or where tokens often are missing when a tran-
sition should be fired. In most of the latter cases, a
distinct transition (=BPMN task) can be “blamed” for
causing the non-conformance. Places and transitions
with a relatively high error-rate are kept for further
analysis within our methodology.

2. Disproportionate delays (bottlenecks): Similar
to the above petri net log-replay techniques, the so-
journ times of tokens in places and the times it takes
to execute transitions can be stored [12]. Based on this
computed data, it can be determined where instances
on average get stuck for a disproportionate amount of
time related to the average overall throughput time.
The corresponding threshold values can be computed
automatically if they are not explicitly formulated as
KPI constraints, which is discussed below. Again, con-
cerned places and transitions are kept for analysis.

3. Non-conformance to execution constraints: SCIFF
or LTL constraints can be checked on the instances logs
using approaches from [5] resp. [17] with respect to
their violation. The employment of constraint check-
ing allows for a very broad range of non-conformance
types being checked. Three of the most important ones
are:

• The violation of KPIs by the use of time-related
constraints (for example, task B has to be exe-
cuted 1h after task A latest).

• The deviation from expected routing decisions (for
example if orderValue>10.000 in a sales order, al-
ways choose the “priority shipment” branch after
an exclusive gateway).

• Data- or organizational incompliance like the vi-
olation of the “four-eyes principle” for some tasks.

In contrast to the checking mechanisms for issues (1.)
and (2.), a challenge consists in the spotting of the
actual source for a constraint violation. For our KPI
example (B 1h after A), if B is not executed at all, it
has to be decided whether A or not B or both are to be
considered as the actual error source and kept for fur-
ther analysis. Potentials lie in the partly automated
mapping of constraint predicates to places or transi-
tions in the underlying model and the consideration of
“what happened first”. Research is still ongoing here.

As a final step of this phase, the user is confronted with is-
sues which have a particular degree of “severity” (e.g. exceed
a predefined fraction of instances which are non-conformant)
and gets the corresponding “hot-spots” based on average in-
stance execution marked in the BPMN process model. The
proper automatic accumulation and back-projection of is-
sues to the BPMN workflow model remains an open issue.
The user may then select one or several hot spots and one or
several problem types for these hot-spots for further analysis
by mining data dependencies as business rule conditions as
described in the next subsection.

3.3 Automatic Extraction of Rules for “Hot
Spot Occurrences”

For the selected hot-spots and problem types, the instance
data from the workflow logs is transformed into a classifica-
tion problem for machine learning algorithms. A classifi-
cation problem consists of a number of cases (=workflow
instances), each made up of a number of numeric or nomi-
nal data variable values (=workflow instance or task context,
e.g. order value, customer priority or shipment partner) and
a single class in terms of a category for a learning instance.
The class can be determined in a binary manner as problem-
atic or non-problematic from the problem types connected
to the hot spots, but also the distinction of finer-granular
problem classes can be considered. The variable values for
a learning instance can be constructed by looking at their
occurrence when an instance has reached a hotspot in the
petri net. Special challenges in this conversion step concern
the treatment of some control-flow constructs, as for exam-
ple a loop which may cause multiple visits of a hotspot in a
workflow, whereas the context variables may have changed
meanwhile. Such problems and solution approaches, for in-
stance creating a separate training instance for each loop
execution, are discussed, e.g., in [15].

Having the training set for a machine learning classifier at
hand, established algorithms like C4.5 decision tree [14] or
rule learners [6, 11] can be applied. In fact recent research
mostly favors decision trees for presenting mining results to
the business user [18]. However, we have tested the C4.5
decision tree learner on a real-world dataset (see Section 4)
and found its results not interpretable for the business user
to draw any reasonable conclusions from it mainly due to
the size and complexity of the overall decision tree. Despite
ex-post global optimization heuristics in C4.5, local feature
selection often leads to redundant splits in the initial decision
trees. As rules can only be extracted one-by-one along paths
in the decision tree [11], they are of rather less use for di-
rectly extracting conditions for use in adaptation rules that
might eventually tackle the problematic situation at work-
flow runtime. The problem with established rule learners
like RIPPER [6] in turn is that they generate ordered rule-
lists, which means each rule in the list covers only those
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learning instances which are not covered by the previous
rule. This characteristic makes the corresponding output
rules also hard to read and interpret for an end user. Po-
tential relief consists in the employment of a fuzzy learning
approach which generates globally valid rules that have a
probabilistic certainty factor to hold on the dataset or not.
We are currently evaluating a novel algorithm [13] w.r.t.
the suitability for being employed within our methodology,
which is subject to discussion in the following section.

4. CASE-STUDY
The first feasibility study for our methodology was con-

ducted at a large globally operating IT consulting company.
In the following, we report on the input dataset, the realiza-
tion of our methodology in the ProM2 framework, and our
preliminary results and findings.

4.1 Description of the Dataset
The focus of the case study is on a staffing workflow for

serving customer and company-internal human resource re-
quests for different type of IT projects. A simplified cor-
responding model in BPMN notation is shown in Figure 3.
The first three sequential steps are creating and submitting
the request and then having it validated by an authorized
person. Resources can be found by three different strategies:
by company-internal broadcasts, by external broadcasts to
partner consulting companies or by directly contacting a po-
tentially suitable resource. After at least one such search
procedure has been triggered, different reactions can occur,
namely the acceptance, rejection, withdrawal or feedback of
non-availability for a particular resource. At anytime during
these search procedures, an initial proposition of currently
gathered resources can be made to the customer. After the
request is closed, it is marked as either successfully or not
staffed. The input dataset consisted of 13225 workflow in-
stance logs each with up to 50 data context variable values
attached. In this case, context variables concern for example
the country a request is sent from, the concerned industry
profile or the overall duration of the project.

4.2 Realizing the Methodology based on ProM
For some basic analysis techniques, we rely on functional-

ity provided by ProM. The translation of the BPMN model
into a petri net was done manually, as automated mapping
approaches still generated too complex results which could
make first mining and analysis efforts more difficult. The
resulting petri net is shown in the upper middle of Figure 4.
Black boxes indicate “silent” transitions which do not corre-
spond to any task in the BPMN model. On the left upper
side, one of the additional constraints provided by the con-
sulting company for its staffing workflows is shown, i.e. that
before or at least in parallel to an external broadcast, there
should also be an internal broadcast trying to gather the
required resources. The lower left window shows the evalu-
ation results of these rules. In the right window, the petri
net-based bottleneck analysis indicates an overproportional
waiting time between request submission and request vali-
dation (concrete values in the figure have been changed for
anonymization purposes). In the lower middle window, we
see an instance marked with a conformance issue, namely
that the request validation sometimes has been left out or

2http://www.promtools.org/prom5/

was conducted only after another task already was executed.
Combining these information types, we would identify the
validation task as a “hot spot” in the process.

For our first analysis purpose however, we have concen-
trated on the decision whether a request has been staffed or
not. Following [15], we turn the decision into a binary classi-
fication problem using a manually selected subset of context
variables that have occurred while instance execution. The
results are presented in the following.

4.3 Preliminary Results
Running a C4.5 decision tree (J48 implementation) learner

with standard parameters yields a decision tree of size 757
with 644 leaves. It is quite obvious that this output type
would need a considerable time to be interpreted for a busi-
ness user. Leaving aside the rule learning algorithms for or-
dered rule lists, we instead applied the fuzzy rule induction
algorithm presented in [13]. Results were very promising,
for example generating the following output (some context
values changed for anonymization):

(Remote = Y) and (ReqingSRegion = DUCKBURG) and (ReqType = Project)

=> class=Branch 4.1 { ROLE_Closed (Not Staffed)/complete } (CF = 0.61)

(ReqingSRegion = NA) and (StartDateFlexible = Yes) and

(ReqingLOB = FS__Consulting) and (CustIndustry = )

=> class=Branch 4.1 { ROLE_Closed (Not Staffed)/complete } (CF = 0.71)

(Remote = N) and (ContractType = ) and (CustIndustry = UTILITIES) and

(JobText = B) and (Requestor = ABC) and (StartDateFlexible = No)

=> class=Branch 4.1 { ROLE_Closed (Not Staffed)/complete } (CF = 0.53)

(Remote = ) => class=Branch 4.2 { ROLE_Staffed/complete } (CF = 0.73)

(Remote = Y) => class=Branch 4.2 { ROLE_Staffed/complete } (CF = 0.7)

(ReqingSRegion = GOTHAM_CITY) => class=Branch 4.2 { ROLE_Staffed/complete } (CF = 0.72)

(StartDateFlexible = No) => class=Branch 4.2 { ROLE_Staffed/complete } (CF = 0.72)

Manual inspection of the instances characterized e.g. by
the first two rules immediately showed that they in fact con-
stitute problematic situations in the staffing workflows. In a
flexible WfMS according to Section 2, these conditions could
now be reused as a condition for a variant rule with the click
of a button, for example inserting addtional activities in the
workflow to handele the problematic situation or not even
trying specific activities because of potential waste of time.

5. OPEN CHALLENGES
For a better overview and to motivate future work in this

area, the main challenges we experienced while setting up
the mining pipeline are briefly recapitulated:

• A petri net conversion most useful for mining purposes
has to be determined, as straight-forward mappings
have problems with more advanced BPMN constructs
or generate valid but overcomplex petri nets.

• The accumulation and aggregation of hot spots from
the petri net-based and especially the constraint-based
checking methods has to be defined in more detail.
This challenge is connected to linking back hot spots
to the BPMN model for further investigation.

• The conversion of hot spots to a classification prob-
lem has to be advanced w.r.t. problematic control-flow
structures as for example loop or special joins.

• For the classification problem, the selection of context
variables and algorithm parameters has to be made
accessible for a business user. Experiments also showed
that the rule output may vary significantly w.r.t. the
predicates used in the rules. We have to find a way
for stabilizing the rule output, e.g. by modifying the
learning algorithm w.r.t. this goal and not only taking
prediction accuracy into account.
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6. RELATED WORK
Due to space restrictions, we do not cover the broad range

of general process mining approaches in this section, but
rather elaborate on selected approaches which tackle the is-
sue of dependency- or constraint-extraction in workflow logs:

The authors of [15] present the idea of decision point min-
ing in workflows by translating a routing decision into a
classification problem for machine learning. In this work,
we generalize this idea also for problem domains in work-
flow execution like bottlenecks or general rule compliance.
In [18], a pipeline for analyzing influential factors of business
process performance is presented. Some of the steps resem-
ble that of our approach, however e.g. decision trees are
used for dependency analysis. The approach is evaluated on
a simulated dataset. As we have motivated, decision trees
are rather unsuited for direct extraction of globally valid
“hot-spot” conditions for a business user on real-world data.
An approach for learning constraints for a declarative work-
flow model is presented in [4], however focusing on control-
flow constraints and neglecting data-dependencies. In [3],
related to HP’s solution for business operation management,
an overview on the suitability of different mining techniques
for specific analysis types are discussed. Rule extraction
is mentioned, but only as rules derived from decision trees
which as discussed may get too complex for our purposes.
The approach in [2] focuses on dependencies of service-level
agreements for service compositions and analyzes reasons for
SLA violations. In contrast to our approach, where depen-
dencies are extracted from historic data, the dependencies
in [2] are identified at design time for later comparison with
monitoring results at runtime.

7. CONCLUSION
We motivated the need for automated extraction of con-

dition constraints for problematic “hot spots” in workflows
by the initial uncertainty of a modeler when introducing a
flexible WfMS and by rapidly changing impact factors on
workflow execution performance. Existing approaches for
data dependency extraction have turned out not to deliver
conveniently interpretable results on real-world datasets and
were considered generally hard to employ for business users.

Therefore in this work we have proposed a methodology
which starts from a BPMN workflow definition with a set
of additional template-based constraints and transforms the
workflow into a petri net for automatic hot-spot discovery
according to rule-conformance, control-flow-conformance and
bottleneck detection. The hot-spots in turn are transformed
into a classification problem for further mining algorithms
which should explain the data-dependencies characterizing
the problem. One key differentiator to other approaches
is the use of a fuzzy rule induction approach, which deliv-
ers globally valid and interpretable rules. Our approach es-
pecially aims at providing the corresponding conditions for
reuse in adaptation rules which improve the overall workflow
performance by circumventing critical situations.

However, some integration steps between the phases of our
methodology, like a BPMN to petri net translation suitable
for mining purposes, the aggregation of problem situations
to hot-spots or the guided parameter selection for the rule
mining algorithm remain subject to future work.
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Figure 4: Screenshot of ProM with Most Relevant Workflow Analyses within our Methodology
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