
Workload Representation across Different Storage
Architectures for Relational DBMS

Andreas Lübcke
School of Computer Science

University of Magdeburg
Magdeburg, Germany

andreas.luebcke@ovgu.de

Veit Köppen
School of Computer Science

University of Magdeburg
Magdeburg, Germany

veit.koeppen@ovgu.de

Gunter Saake
School of Computer Science

University of Magdeburg
Magdeburg, Germany

gunter.saake@ovgu.de

ABSTRACT
Database systems differ from small-scale stripped database pro-
grams for embedded devices with minimal footprint to large-scale
OLAP applications for server devices. For relational database man-
agement systems, two storage architectures have been introduced:
the row-oriented and the column-oriented architecture. To select
the optimal architecture for a certain application, we need workload
information and statistics. In this paper, we present a workload rep-
resentation approach that enables us to represent workloads across
different DBMSs and architectures. Our approach also supports
fine granular workload analyses based on database operations.

1. INTRODUCTION
New requirements for database applications [23, 26, 27] came up

in recent years. Therefore, database management system (DBMS)
vendors and researchers developed new technologies, e.g., column-
oriented DBMSs (column stores) [1, 22, 30]. New approaches are
developed to satisfy the new requirements for database applica-
tions, thus the number of candidates in the decision process has also
increased. Moreover, new application fields imply a more complex
decision process to find the suitable DBMS for a certain use case.

We need statistics to come to a suitable design decision. These
statistics have to be represented system-independent for sound and
comparable decision. That implies the independence of workload
representation from different storage architectures. In this paper,
we introduce a new approach of workload statistics aggregation
and maintenance across different DBMSs and architectures. We
showed in [16] that query-based workload analyses, as described
in [7], are not suitable to select the optimal storage architecture. To
overcome drawbacks of query-based workload analyses, we define
workload patterns based on database operations. We introduce a
workload decomposition algorithm that enables us to analyze query
parts. Workload patterns represent the decomposed workloads to
compare the performance of database operations for column and
row stores. These workload patterns contain all statistics needed
for cost estimations. We simulate the statistic gathering process
with a exemplary workload.

23rd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 31.05.2011 - 03.06.2011, Obergurgl, Austria.
Copyright is held by the author/owner(s).

2. STATISTICS REPRESENTATION
To select the optimal storage architecture, we have to analyze a

given workload; thus, we need to decompose this workload. We
have to map single operations of a workload (at least of one query)
and their optimizer statistics to evaluable patterns. Therefore, we
present our pattern framework which stores all necessary statistics
for subsequent performance analyses. In [18], we illustrate the
procedure of our decision process regarding the storage architecture
selection. Below, we outline the design of our pattern framework.

2.1 Pattern Types
To analyze the influence of single operations, we propose three

patterns for operations in workload queries. The three operation
patterns are tuple operations, aggregations and groupings, and
join operations. We define a number of sub-patterns for each of
those three to characterize particular operations more precisely within
the patterns. This way, we support analyses based on the three pat-
terns and additionally fine granular analyses based on sub-patterns,
i.e., we can determine where the majority of costs emerge within a
workload (at least one query).

First, the tuple operation pattern covers all operations that pro-
cess or modify tuples, e.g., selection, sort operations. We propose
this pattern for performance analyses because row stores process
directly on tuples in contrast to column stores that costly recon-
struct tuples. We identify the following sub-patterns:

Sort/order operation: Sort/order operation creates sequences of
tuples and affects all attributes of a tuple. We consider dupli-
cate elimination as a sort operation because an internal sort
is necessary to find duplicates.

Data access and tuple reconstruction: Row stores always access
tuples and column stores must reconstruct tuples to access
more than one column.

Projection: Projection returns a subset of tuple attribute values
and causes (normally) no additional costs for query execu-
tion.

Filtering: Filtering selects tuples from tables or intermediate re-
sults based on a selection predicate, e.g., selection in WHERE-
clause and HAVING-clause.

Second, we cover all column processing operations in the aggre-
gation and grouping pattern, e.g., COUNT and MIN/MAX. We
propose this pattern as counterpart to the tuple operation pattern.
The operations of this pattern work only on single columns except
for grouping operations which can also process several columns,
e.g., GROUP BY CUBE. Due to column-wise partitioned data and
single column processing, column stores perform well on aggrega-
tions (cf. [16]). We identify the following sub-patterns:

Min/Max operation: The min/max operation provides the mini-
mum/maximum value of a single attribute (column).

79

Sum operation: This operation provides the sum of all values in
one column.

Count operation: The count operation provides the number of at-
tribute values in a column and COUNT(*) provides only the
number of key values, thus it processes a single column.

Average operation: The average operation computes all values of
a single column as well as the sum operation, but it can have
different characteristics, e.g., mean (avg) or median.

Group by operation: This operation merges equal values accord-
ing to a certain column and results in a subset of tuples.
Grouping across a number of columns is also possible.

Cube operations: The cube operation computes all feasible com-
bination of groupings for selected dimensions. This gener-
ation requires the power set of aggregating columns, i.e., n
attributes are computed by 2n GROUP BY clauses.

Standard deviation: The standard deviation (or variance) is a sta-
tistical measure for the variability of a data set and is com-
puted by a two pass algorithm which means two cycles.

Third, the join pattern matches all join operations of a workload.
Join operations are costly tasks for DBMSs. This pattern shows dif-
ferences of join techniques between column and row stores, e.g.,
join processing on compressed columns or on bitmaps. Within
this pattern, we evaluate the different processing techniques against
each other. Consequently, we define the following sub-patterns:

Vector based: The column oriented architecture naturally supports
vector based join techniques while row stores have to main-
tain and create structures, e.g., bitmap (join) indexes [15].

Non-vector based: This pattern matches "classic" join techniques
(from row stores1) to differentiate the performance between
vector and non-vector based join, thus we can estimate ef-
fects on the join behavior by architecture.

We only propose these two sub-patterns because the join concepts,
e.g., merge or nested loop join, exist for both architectures. Hence,
we assume that there is no necessity to map each join concept into
its own sub-pattern. Figure 1 shows all introduced patterns and
their relation to each other based on our exemplary workload.

2.2 Dependencies between Patterns
Database operations are not always independent from each other.

We can identify dependencies between the following patterns: join,
filtering, sort/order, group/cube, and data access pattern.

Join operations innately imply tuple selections (filtering pattern).
However, the tuple selection itself is part of the join operation by
definition, thus we assume that an additional decomposition of join
operations is not necessary. Moreover, new techniques would have
to be implemented to further decompose join operations and gather
the necessary statistics. Hence, the administrative cost for tun-
ing will be noticeably increased. To a side-effect, the comparison
of join techniques belonging to different architectures will be no
longer possible because of system-specific decomposition.

We state that two different types of sort/order operation can oc-
cur, i.e., implicit and explicit sort. The explicit sort is caused by
workload or user, thus we consider this operation in the sort/order
pattern. In contrast, we do not consider the implicit sort operation
in the sort/order pattern because this sort operation is caused by the
optimizer, e.g., for sort-merge join. Therefore, we assign all costs
of grouping to the GROUP BY (or CUBE) pattern including the
sort costs to sustain comparability.

Third, tuple reconstruction is part of several operations for col-
umn stores. We add these costs to the tuple operation pattern. We
1Some column stores also support these join techniques.

sustain the comparability of operations beyond the architectures be-
cause row stores are not affected by tuple reconstructions.

We assume further workload decomposition is not meaningful
because administrative costs would affect the performance of exist-
ing systems as well as the comparability of performance issues be-
tween the architectures according to certain workload parts. These
impacts would disadvantageously affect the usability of our pattern
framework.

3. QUERY DECOMPOSITION
In this section, we introduce the query decomposition approach.

First, we illustrate the (re-) used DBMS functionality and how we
gather necessary statistics from existing systems. Second, we in-
troduce the mapping of decomposed query parts to our established
workload patterns and show a decomposition result by example.
Our approach is applicable to each relational DBMS. Nevertheless,
we decide to use a closed source system for the following consider-
ations because the richness of detail of optimizer/query plan output
is higher and easier to understand. More detailed information will
result in more accurate recommendation.

3.1 Query Plans
A workload decomposition based on database operations is nec-

essary to select the optimal storage architecture (cf. [16]). There-
fore, we use query plans [4] which exist in each relational DBMS.
On the one hand, we reuse database functionality and avoid new
calculation costs for optimization. On the other hand, we make
use of system optimizer estimations that are necessary for physical
database design [10].

Based on query plans, we gather statistics directly from DBMS
and use the optimizer cost estimations. The example in Listing 1
shows an SQL query and we transform this to a query plan in Ta-
ble 1 [19]. Table 1 already offers some statistics such as number
of rows, accessed bytes by the operation, or costs. Nevertheless,
Table 1 shows only an excerpt of gathered statistics. All possible
values for query plan statistics can be found in [20] Chapter 12.10.
Hence, we are able to determine the performance of operations on
a certain architecture (in our example a row store) by statistics such
as CPU costs and/or I/O costs. In addition to performance evalua-
tion by several estimated costs, we can gather further statistics from
query plans which may influence performance of an operation on a
certain architecture, e.g., cardinality. For column stores, the oper-
ation cardinality can indirectly affect performance if the operation
processes several columns, thus column stores have to process a
number of tuple reconstructions, e.g., high cardinality means many
reconstructions. Thus, we use meta-data to estimate influences of
data itself on the performance, e.g., we can compute the selectivity
of attributes.

3.2 From Query Plans to Workload Patterns
We have to map the gathered statistics from DBMS to our work-

load patterns. We use a second example [21] (Listing 2 and Table 2)
to simulate a minimum workload instead of a single query. In the
following, we illustrate the mapping approach by using the exam-
ples in Listing 1 and 2. In our name convention, we define a unique
number2 that identifies queries of the workload within our mapping
algorithm, i.e., 1.X represents query 1 (Listing 1) and equally 2.X
represents query 2 (Listing 2). Furthermore, we reuse the opera-
tion IDs from query plans (Table 1 and 2) in the second hierarchy

2In the following considerations, we start with 1 which represents
the first query.

80

1 SELECT *
2 FROM employees e JOIN departments d
3 ON e.department_id=d.department_id
4 ORDER BY last_name;

Listing 1: Example SQL query (14-
1) [19]

ID Operation Name Rows Bytes Cost (%CPU) ...
0 SELECT STATEMENT 106 9328 7 (29) ...
1 SORT ORDER BY 106 9328 7 (29) ...

* 2 HASH JOIN 106 9328 6 (17)
3 TABLE ACCESS FULL DEPARTMENTS 27 540 2 (0) ...
4 TABLE ACCESS FULL EMPLOYEES 107 7276 3 (0) ...

Table 1: Textual query plan of SQL example (14-1) [19]

level (for X), e.g., 1.4 is the operation with ID 4 of query 1 (cf.
Table 1). In the following, we refer the CPU cost of Table 1 and 2.

The first query (Listing 1) is decomposed into four patterns. First,
we see the data access operation of the department (ID 3)
and the employees (ID 4) tables in the corresponding query
plan in Table 1. The total cost for the data access operations is 5.
Second, the join operation (ID 2) is executed with a hash join
algorithm. The hash join cost is only 1 because in Table 1 costs
are iteratively sum up and the costs of its children (5) and its own
cost (1) are summed up to 6 for ID 2. Third, the sort opera-
tion (ID 1) implements the ORDER BY statement with cost of
1. The total costs of all processed operations are 7 now. Fourth,
the select statement (ID 0) represents the projection and causes
no additional cost (remain 7). Following our name convention, the
identifiers from 1.0 to 1.4 represent the operations of our first
query (Listing 1) in Figure 1.

We also decompose the second example (Listing 2) into four op-
eration types (cf. Table 2). First, IDs 3, 7, and 8 represent
the data access operations and cause total costs of 14. Second,
the optimizer estimates both hash joins (ID 2 and 6) with no
(additional) costs because their costs are only composed by the
summed costs of their children (ID 3, 4 and ID 7, 8). Third,
the GROUP BY statement in Listing 2 is implemented by hash-
based grouping operations (ID 1 and ID 5). The cost of each
HASH GROUP BY is 1 and the total costs of this operation type
are 2. Fourth, the projection (ID 0) and the sum operation rep-
resented by select statement causes again no additional costs. If
the sum operation causes costs then it will be represented by a sep-
arate operation (ID). Following our name convention, the identi-
fiers from 2.0 to 2.8 represent the operations of the second query
(Listing 2) in Figure 1. The view (ID 2.4) is not represented in
our workload pattern because its costs are already mapped by its
child operations (ID 2.5-2.8).

In our examples, we summarize single operations of similar types
(five for example query two). In the following, we list the five op-
eration types and assign them to our workload patterns and their
sub-patterns that we introduced in Section 2. The join operations
of our example queries ID 1.2, 2.2, and 2.6 are assigned to
the non-vector based join pattern. We assign the operations with
ID 1.3, 1.4, 2.3, 2.7, and 2.8 to the data access sub-
pattern of the tuple operation pattern. We also assign the projec-
tions (ID 1.0 and 2.0) and the sort operation (ID 1.1) to
the tuple operation pattern. Finally, we assign the group by op-
erations (ID 2.1 and 2.5) to the group by sub-pattern within the
aggregation and grouping pattern. We present the result in Figure 1
whereby we only show ID and cost of each operation for reasons
of readability. We state that the we do not need to directly extract
statistics from existing systems. Our pattern framework is system
independent, thus we are also able to use already extracted (or ag-
gregated) data as well as estimated values.

3.3 Operations in Column Stores
We state that we do not need a separate decomposition algorithm

for column stores, i.e., the query plan operations of column stores

can be also mapped to our workload patterns. Representatively, we
illustrate the mapping of C-Store/Vertica query plan operations in-
troduced in [25] and map them to our workload patterns as follows:

Decompress: Decompress is mapped to the data access pattern.
This operation decompresses data for subsequent operations
in the query plan that cannot process on compressed data
(cf. [1]).

Select: Select is equivalent to the selection of relational algebra
with the exception that the result is represented as bitstring.
Hence, we map it to the filtering pattern.

Mask: Mask process on bitstrings and returns only those values
whose associated bits in the bitstring are 1. Consequently,
we map mask to the filtering pattern.

Project: Projection is equivalent to the projection of relational al-
gebra, thus this operation is mapped to the projection pattern.

Sort: This operation sorts the columns of a C-Store projection ac-
cording to a (set of) sort column(s). This technique is equiv-
alent to sort operations on projected tuples, i.e., we can map
this operation to the sort/order pattern.

Aggregation Operators: These operations compute aggregations
and groupings like in SQL [1], thus we directly map these
operations to the corresponding sub-pattern in the aggrega-
tion & grouping pattern.

Concat: Concat combines C-Store projections sorted in the same
order into a new projection. We regard this operation as tuple
reconstruction and map it to the corresponding pattern.

Permute: This operation permutes the order of columns in C-Store
projections according to the given order by a join index. It
prevents additional replication overhead that would emerge
through creation of join indexes and C-Store projections in
several orders. This operation is used for joins, thus we map
its cost to the join pattern.

Join: We map this operation to the join pattern and distinguish two
join types. First, if tuples are already reconstructed then we
process them as row stores, i.e., we map this join type to
the non-vector based join pattern. Second, the join operation
only processes columns that are needed to evaluate the join
predicate. The join result is a set of pairs of positions in the
input columns [1]. This join type can process on compressed
data as well as it can use vector based join techniques, thus,
we map this join type to the vector based join pattern.

Bitstring Operations: These operations (AND, OR, NOT) pro-
cess bitstrings and compute a new bitstring with respect to
the corresponding logical operator. These operations im-
plement the concatenation of different selection predicates.
Therefore, we map these operations to the filtering pattern.

Finally, we state that our approach can be used for each rela-
tional DBMS. Each relational DBMS is referable to the relational
data model, so these DBMSs are based on the relational algebra
in some manner too. Thus, we can reduce or map those opera-
tions to our workload patterns; in worst case, we have to add an
architecture-specific operation for hybrid DBMSs to our pattern,
e.g., tuple reconstruction for column stores. For a future (relational)

81

1 SELECT c.cust_last_name, SUM(revenue)
2 FROM customers c, v_orders o
3 WHERE c.credit_limit > 2000
4 AND o.customer_id(+) = c.customer_id
5 GROUP BY c.cust_last_name;

Listing 2: Example SQL query (11-
9) [21]

ID Operation Name Rows Bytes Cost (%CPU) ...
0 SELECT STATEMENT 144 4608 16 (32) ...
1 HASH GROUP BY 144 4608 16 (32) ...

* 2 HASH JOIN OUTER 663 21216 15 (27) ...
* 3 TABLE ACCESS FULL CUSTOMERS 195 2925 6 (17) ...

4 VIEW V_ORDERS 665 11305 ...
5 HASH GROUP BY 665 15960 9 (34) ...

* 6 HASH JOIN 665 15960 8 (25) ...
* 7 TABLE ACCESS FULL ORDERS 105 840 4 (25) ...

8 TABLE ACCESS FULL ORDER_ITEMS 665 10640 4 (25) ...

Table 2: Textual query plan of SQL example (11-9) [21]

Workload

Min / Max

Sum

Count

Cube

AvgSt. Dev.
Sort / Order
ID Cost

1.1 1

Non-vector based
ID Cost

1.2 1
2.2 0
2.6 0

Tuple Reconstruction /
Data Access
ID Cost

1.3 2
1.4 3
2.3 6
2.7 4
2.8 4

Projection
ID Cost

1.0 0
2.0 0

Filtering
(Having, Selection)Vector based

Tuple Operation Aggregation &
GroupingJoin

Median
Group by

ID Cost
2.1 1
2.5 1

Figure 1: Workload patterns with cost of operations for the row store example workload

hybrid storage architecture, such an operation could be necessary
to map the cost for conversions between row- and column-oriented
structures and vice versa.

4. DEMONSTRATING EXAMPLE
We decide to simulate the workload with the standardized TPC-

H benchmark (2.8.0) to show the usability of our approach. We use
the DBMSs Oracle 11gR2 Enterprise Edition and Infobright ICE
3.3.1 for our experiments3. We run all 22 TPC-H queries and ex-
tract the optimizer statistics from the DBMSs. For reasons of clar-
ity and comprehensibility, we only map three representative TPC-H
queries namely Q2, Q6, and Q14 to the workload patterns.

The query structure, syntax, and execution time are not sufficient
to estimate the query behavior on different storage architectures.
We introduced an approach based on database operations that pro-
vides analyses to find long running operations (bottlenecks). More-
over, we want to figure out reasons for the behavior, thus we have
to use additional metrics. We select the I/O cost to compare the
DBMSs and summarize the optimizer output in Table 3. Following
our previous name convention, we define the query IDs according
to their TPC-H query number, i.e., we map the queries with the
IDs 2, 6, and 14. The operations are identified by their query
plan number (IDs in Table 3), thus the root operation of TPC-H
query Q2 has the ID 2.0 in Figure 2. All values in Table 3 are
given in Kbytes. The given values are input costs of each opera-
tion except the table access costs because no information on input
costs to table access operations are available. Note, the granular-
ity of Oracle’s costs measurements is on the byte level whereas the

3We also wanted to evaluate our approach with the DBMSs solu-
tions from Vertica and Sybase because both DBMSs use cost-based
optimizer and we would be able to receive more expressive results.
We requested the permission to use the systems for our evaluation
but until now the decision is pending.

measurements of ICE are on the data pack (65k) level.
In Figure 2, we present our workload patterns with I/O costs of

the corresponding TPC-H queries. As we mentioned before, the
projection operation causes no additional costs. Hence, the I/O
costs in Table 3 and Figure 2 represent the size of final results.
The stored information can be analyzed and aggregated in decision
models with any necessary granularity. In our example, we only
sum up all values of the data access pattern for each query to calcu-
late the I/O costs per query in Kbytes. For these three queries, all
results and intermediate results are smaller than the available main
memory, thus no data has to be reread subsequently. Oracle reads
1452.133 Kbytes for query Q2 and takes 8.14 seconds. ICE needs
41 seconds and access 2340 Kbytes. We suppose, the DBMS with
minimal I/O cost performs best. Our assumption is confirmed for
query Q14. Oracle accesses 7020.894 Kbytes and computes the
query in 22.55 seconds whereas ICE computes it in 3 seconds and
reads 6240 Kbytes. Nevertheless, we cannot prove our assumption
for query Q6. Oracle (3118 Kbytes) accesses less data than ICE
(5980) Kbytes but ICE (2 seconds) computes this query ten times
faster than Oracle (22.64 seconds). Hence, we cannot figure out a
definite correlation for our sample workload.

We state that only I/O cost is not sufficient to estimate the be-
havior of database operations. However, I/O cost is one important
metric to describe performance behavior on different storage archi-
tectures because one of the crucial achievements of column stores is
the reduction of data size (i.e., I/O cost) by aggressive compression.
The I/O cost also gives an insight into necessary main memory for
database operations or if operations have to access the secondary
memory. Hence, we can estimate that database operations are com-
pletely computed in main memory or data have to be reread/read
stepwise4.

4We remind of the performance gap (circa 105) between main
memory and HDDs.

82

Oracle ICE
Operation Q2 (8.14sec) Q6 (22.64sec) Q14 (22.55sec) Q2 (41sec) Q6 (2sec) Q14 (3sec)
Data Access ID7:0.8;ID12:0.029;ID13:11.2; ID2:3118 ID3:1620.894; ID4:65;ID5:65;ID6:845;ID7:65ID8:260; ID2:5980 ID3:5980;

ID15:0.104;ID16:1440 ID4:5400 ID10:65;ID11:65;ID12:65;ID13:845 ID4:260
Non-vector based join ID6:202.760;ID8:1440;ID9:88.016; ID2:7020.894 ID3:1300;ID9:1040 ID2:6240

ID10:17;ID11:11.229
Sort ID3:33.18;ID5:45.346 ID2:65
Count ID1:31.284 ID1:65
Sum ID1:3118 ID1:3610.173 ID1:5980 ID1:65
Projection ID0:19.800 ID0:0.020 ID0:0.049 ID0:65 ID0:65 ID0:65

Table 3: Accessed Kbytes by query operations of TPC-H query Q2, Q6, and Q14.

Workload

Min / Max

Cube

AvgSt. Dev.

Sort / Order
ICE Oracle

ID Cost ID Cost
2.2 65 2.3 33.180

2.5 45.346

Non-vector based
ICE Oracle

ID KBytes ID KBytes
2.3 1300 2.6 202.760
2.9 1040 2.8 1440.000

14.2 6240 2.9 88.016
2.10 17.000
2.11 11.229

14.2 7020.894

Tupel Reconstruction / Data Access
ICE Oracle

ID KBytes ID KBytes
2.4 65 2.7 0.800
2.5 65 2.12 0.029
2.6 845 2.13 11.200
2.7 65 2.15 0.104
2.8 260 2.16 1440.000
2.10 65 6.2 3118.000
2.11 65 14.3 1620.894
2.12 65 14.4 5400.000
2.13 845
6.2 5980

14.3 5980
14.4 260

Projection
ICE Oracle

ID Kbytes ID KBytes
2.0 65 2.0 19.800
6.0 65 6.0 0.020

14.0 65 14.0 0.049

Filtering
(Having, Selection)

Vector based

Tuple Operation Aggregation &
GroupingJoin

MedianGroup by

Count
ICE Oracle

ID KBytes ID Kbytes
2.1 65 2.1 31.284

Sum
ICE Oracle

ID KBytes ID KBytes
6.1 5980 6.1 3118.000
14.1 65 14.1 3610.173

Figure 2: Workload graph with mapped I/O costs of TPC-H query Q2, Q6, and Q14.

5. RELATED WORK
Several column stores have been proposed [1, 14, 30] for OLAP

applications. But all systems are pure column stores and do not
support any row store functionality. Thus, a storage architecture
decision between row and column store is necessary. Abadi et
al. [2] compare row and column store with respect to performance
on the star schema benchmark. They simulate column store archi-
tecture by indexing every single column or vertical partitioning of
the schema. They show that using column store architecture in a
row store is possible but the performance is poor. In this paper, we
do not compare end to end performance of DBMSs or architectures.
We support sound and comparable analyses based on database op-
erations across different DBMSs with our approach. We do not
discuss approaches like DSM [8], hybrid NSM/DSM schemes [9],
or PAX [3] because the differences to state-of-the-art column stores
have been already discussed, e.g., Harizopoulus et al. [11].

There are systems available which attempt to fill the gap between
a column and a row store. C-Store [1] uses two different storage
areas to overcome the update problems of column stores. A related
approach brings together a column store approach and the typical
row store domain of OLTP data [24]. However, we do not develop
hybrid solutions that attempt to fill this gap for now.

There exist a number of design advisors which are related to our
work, e.g., IBM DB2 Configuration Advisor [13]. The IBM Con-
figuration Advisor recommends pre-configurations for databases.
Zilio et al. [28, 29] introduce an approach that gathers statistics like
our approach directly from DBMSs. The statistics are used to ad-
vise index and materialized view configurations. Similarly, Chaud-
huri et al. [5, 6] present two approaches which illustrate the whole
tuning process using constraints such as space threshold. However,

these approaches operate on single systems instead of comparing
two or more systems. In contrast to the mentioned approaches, our
approach do not consider tune configurations, indexes, etc.

Another approach for OLAP applications is Ingres/Vectorwise
which applies the Vectorwise (formerly MonetDB/X100) architec-
ture into the Ingres product family [12]. In cooperation with Vec-
torwise, Ingres developes a new storage manager ColumnBM for
the new Ingres/Vectorwise. However, the integration of the new
architecture into the existing environment remains unclear [12].

6. CONCLUSION
In recent years, column stores have shown good results for DWH

applications and often outperformed established row stores. How-
ever, new requirements arise in the DWH domain that cannot be
satisfied only by column stores. The new requirements demand
also for row store functionality, e.g., real-time DWHs need suffi-
cient update processing. Thereby, the complexity of design pro-
cess increases because we have to choose the optimal architecture
for given applications. We showed with an experiment that work-
load analyses based on query structure and syntax are not sufficient
to select the optimal storage architecture. Consequently, we sug-
gested a new approach based on database operations. We intro-
duced workload patterns which contain all workload information
beyond the architectures, e.g., statistics and operation cost. We
also presented a workload decomposition approach based on exist-
ing database functionality that maps operations of a given workload
to our workload patterns. We illustrated the methodology of our de-
composition approach using an example workload. Subsequently,
we state that a separate decomposition algorithm for column stores
is not needed. We stated that our presented approach is transparent

83

to any workload and any storage architecture based on the rela-
tional data model. In the evaluation, we proved the usability of
our approach. Additionally, we demonstrate the comparability of
different systems using different architectures even if the systems
provide different information with respect to their query execution.
The decision process can be periodically repeated, thus the storage
architecture selection is not static. Moreover, our approach can be
used for optimizer (decisions) in hybrid relational DBMS that has
to select the storage method for parts of data.

In future work, we will investigate two strategies to implement
our workload patterns in a prototype. First, we utilize a new DBS
to export periodically statistics and operation costs which we map
to our workload patterns. This way, we will not affect performance
of analyzed systems by prediction computation. Second, we adapt
existing approaches [5, 17] to automatically gather statistics, e.g.,
mapping statistics and workload patterns directly into a graph struc-
ture (query graph model). Additionally, aggregated or estimated
values from other sources can be stored. We will perform detailed
studies on OLAP, OTLP, and mixed workloads to gather expressive
values for predictions.

7. REFERENCES
[1] D. J. Abadi. Query execution in column-oriented database

systems. PhD thesis, Cambridge, MA, USA, 2008. Adviser:
Madden, Samuel.

[2] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores
vs. row-stores: How different are they really? In SIGMOD
’08, pages 967–980, New York, NY, USA, 2008. ACM.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB ’01,
pages 169–180, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[4] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. Gray, P. P. Griffiths, W. F. K. III, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W.
Wade, and V. Watson. System R: Relational approach to
database management. ACM TODS, 1(2):97–137, 1976.

[5] N. Bruno and S. Chaudhuri. To tune or not to tune? A
lightweight physical design alerter. In VLDB ’06, pages
499–510. VLDB Endowment, 2006.

[6] N. Bruno and S. Chaudhuri. An online approach to physical
design tuning. In ICDE ’07, pages 826–835, 2007.

[7] S. Chaudhuri and V. Narasayya. Autoadmin “what-if” index
analysis utility. In SIGMOD ’98, pages 367–378, New York,
NY, USA, 1998. ACM.

[8] G. P. Copeland and S. N. Khoshafian. A decomposition
storage model. In SIGMOD ’85, pages 268–279, New York,
NY, USA, 1985. ACM.

[9] D. W. Cornell and P. S. Yu. An effective approach to vertical
partitioning for physical design of relational databases. IEEE
Trans. Softw. Eng., 16(2):248–258, 1990.

[10] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
database design for relational databases. ACM TODS,
13(1):91–128, 1988.

[11] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden.
Performance tradeoffs in read-optimized databases. In VLDB
’06, pages 487–498. VLDB Endowment, 2006.

[12] Ingres/Vectorwise. Ingres/VectorWise sneak preview on the
Intel Xeon processor 5500 series-based platform. White
Paper, September 2009.

[13] E. Kwan, S. Lightstone, K. B. Schiefer, A. J. Storm, and
L. Wu. Automatic database configuration for DB2 Universal

Database: Compressing years of performance expertise into
seconds of execution. In BTW ’03, pages 620–629, 2003.

[14] T. Legler, W. Lehner, and A. Ross. Data mining with the
SAP NetWeaver BI Accelerator. In VLDB ’06, pages
1059–1068. VLDB Endowment, 2006.

[15] A. Lübcke. Cost-effective usage of bitmap-indexes in
DS-Systems. In 20th Workshop "Grundlagen von
Datenbanken", pages 96–100. School of Information
Technology, International University in Germany, 2008.

[16] A. Lübcke. Challenges in workload analyses for column and
row stores. In 22nd Workshop "Grundlagen von
Datenbanken", volume 581. CEUR-WS.org, 2010.

[17] A. Lübcke, I. Geist, and R. Bubke. Dynamic construction
and administration of the workload graph for materialized
views selection. Int. Journal of Information Studies,
1(3):172–181, 2009.

[18] A. Lübcke, V. Köppen, and G. Saake. A decision model to
select the optimal storage architecture for relational
databases. RCIS, France, MAY 2011. IEEE. to appear.

[19] Oracle Corp. Oracle Database Concepts 11g Release (11.2).
14 Memory Architecture (Part Number E10713-05), March
2010.

[20] Oracle Corp. Oracle Performance Tuning Guide 11g Release
(11.2). 12 Using EXPLAIN PLAN (Part Number
E10821-05), March 2010.

[21] Oracle Corp. Oracle Performance Tuning Guide 11g Release
(11.2). 11 The Query Optimizer (Part Number E10821-05),
March 2010.

[22] H. Plattner. A common database approach for OLTP and
OLAP using an in-memory column database. In SIGMOD
’09, pages 1–2, New York, NY, USA, 2009. ACM.

[23] R. J. Santos and J. Bernardino. Real-time data warehouse
loading methodology. In IDEAS ’08, pages 49–58, New
York, NY, USA, 2008. ACM.

[24] J. Schaffner, A. Bog, J. Krüger, and A. Zeier. A hybrid
row-column OLTP database architecture for operational
reporting. In BIRTE ’08, 2008.

[25] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J.
O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik.
C-Store: A column-oriented DBMS. In VLDB ’05, pages
553–564. VLDB Endowment, 2005.

[26] A. A. Vaisman, A. O. Mendelzon, W. Ruaro, and S. G.
Cymerman. Supporting dimension updates in an OLAP
server. Information Systems, 29(2):165–185, 2004.

[27] Y. Zhu, L. An, and S. Liu. Data updating and query in
real-time data warehouse system. In CSSE ’08, pages
1295–1297, Washington, DC, USA, 2008. IEEE Computer
Society.

[28] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. J.
Storm, C. Garcia-Arellano, and S. Fadden. DB2 Design
Advisor: Integrated automatic physical database design. In
VLDB ’04, pages 1087–1097. VLDB Endowment, 2004.

[29] D. C. Zilio, C. Zuzarte, S. Lightstone, W. Ma, G. M.
Lohman, R. Cochrane, H. Pirahesh, L. S. Colby, J. Gryz,
E. Alton, D. Liang, and G. Valentin. Recommending
materialized views and indexes with IBM DB2 Design
Advisor. In ICAC ’04, pages 180–188, 2004.

[30] M. Zukowski, P. A. Boncz, N. Nes, and S. Heman.
MonetDB/X100 - a DBMS in the CPU cache. IEEE Data
Eng. Bulletin, 28(2):17–22, June 2005.

84

