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ABSTRACT
Computer Science plays an important role in today’s Genet-
ics. New sequencing methods produce an enormous amount
of data, pushing genetic laboratories to storage and com-
putational limits. New approaches are needed to eliminate
these shortcomings and provide possibilities to reproduce
current solutions and algorithms in the area of Bioinformat-
ics. In this paper a system is proposed which simplifies the
access to computational resources and associated compu-
tational models of cluster architectures, assists end users in
executing and monitoring developed algorithms via a web in-
terface and provides an interface to add future developments
or any kind of programs. We demonstrate on existing algo-
rithms how an integretation can be done with little effort,
making it especially useful for the evaluation and simplified
usage of current algorithms.
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1. INTRODUCTION
In recent years Computer Science became an essential

part in the field of Genetics. Especially through the advent
of Next Generation Sequencing (NGS), whereby a human
genome (3 billion base pairs/chromosome set) can be se-
quenced in acceptable time, the amount of data is growing
significantly, exceeding all known dimensions in Genetics.
Figure 1 shows a comparison between the reducing DNA se-
quencing costs and Moore’s law. Moore’s law is used as a
reference to show that computer hardware can currently not
keeping pace with the progress in DNA sequencing. Further-
more, the amount of complete sequenced individuals is grow-
ing exponentially from year to year [11], making new models
necessary. For instance, to store the data of one complete
human DNA (Deoxyribonucleic acid) in raw format with 30-
times coverage, 30 terabytes of data is produced.

In the area of Copy Number Variations, a possible cause
for many complex genetic disorders, high throughput algo-
rithms are needed to process and analyze several hundred
gigabytes of raw input data [16] [6], yielding to a wall time
of up to one week for a typical study size [18]. This remark-
able increase of data and time causes genetic departments
to consider new ways of importing and storing data as well
as improving performance of current algorithms.

Cluster architectures in connection with associated mod-
els have the potential to solve this issue, but especially for
small departments often gainless and unaffordable. Using
clusters on demand, also referred to Infrastructure as a Ser-

vice (IaaS), builds therefore a good opportunity to circle
these issues. To capitalize the full potential of IaaS, a com-
bination with distribution models like MapReduce [5] is for
specific applications both possible and obvious. Several iso-
lated applications [9], [10], [14] already exist using a dis-
tributed approach for storing data and processing algorithms.
But since no general system is given to execute those solu-
tions, an evaluation and reproducibility is often not feasible.
Scientists need to setup a cluster on their own or using a
provided remote cluster architecture to evaluate a published
algorithm, being both time wasting and insecure for sensi-
tive data.
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Figure 1: Comparision of DNA sequencing cost with Moore’s law; Data from [17]

In this paper we present the idea to build an integrated
system for scientists in the area of Bioinformatics to (1) get
access to distributed cluster architectures and execute ex-
isting algorithms, (2) build maintainable and reproducible
workflows and (3) provide an interface to add future de-
velopments or any kind of programs to the system without
detailed IT knowledge. The reminder of this paper is struc-
tured as follows: Section 2 gives an overview of the related
work. In section 3 the architecture of our suggested system
is explained in more detail with potential case studies in sec-
tion 4. Section 5 shows necessary future work and the paper
ends with a conclusion in section 6.

2. RELATED WORK
Cluster solutions guided by a web-interface to execute dis-

tributed algorithms like Myrna [9], CrossBow [10] or Cloud-
Burst [13] already exist. Unfortunately, the user must login
to the Amazon Web Services (AWS) console to monitor the
progress of executed jobs or to shutdown the cluster after
execution. Additionaly, a data storage in S3 buckets is of-
ten required and a custom web interface needs to be imple-
mented for every single approach.
Galaxy [7] is a software system which facilitates the creation,
execution and maintainability of pipelines in a fast and user
friendly way. The platform itself executes the scripts and the
user has the possibility to monitor the progress. Galaxy’s ex-
tension CloudMan [1] provides the possibility to install and
execute Galaxy on Amazon EC2 (Elastic Compute Cloud).
However, the user needs to start the master node manually
by using the AWS console and Galaxy does not provide a
native support of Hadoop programs, executes modules step

by step and distributes only whole jobs among the cluster.

3. ARCHITECTURE
A modular architecture is suggested in Figure 2, separat-

ing the process of instantiate and set up a cluster (Cloud-

gene) from the process of monitor and run a program (EMI ).
Based on open source frameworks like Apache Hadoop [2]
and Apache Whirr [3], we implemented a prototype to ver-
ify our approach. The user utilizes Cloudgene to set up a
cluster architecture to his needs through XML configuration
files. This allows adding new algorithms dynamically with-
out digging into Cloudgene to deep. A fully operable and
customized cluster is then provided, including all necessary
user data. In a subsequent step EMI (Elastic MapReduce
Interface) is launched on the master node of the cluster.
EMI can be seen as an abstraction of the underlying system
architecture from the end user, lies on top of the integrated
programs and allows the user to communicate and interact
with the cluster as well as receive feedback of currently exe-
cuted workflows (see Figure 3). EMI can be disabled in case
a program already includes an interface by its own, yield-
ing to the most general approach to execute any kind of
developed solution. Both parts can be operated separately
via configuration files with clear defined input and output
variables.

3.1 Cloudgene
Amazon provides with its EC2 the currently most devel-

oped service for public clouds in the area of IaaS. Cloudgene
supports besides EC2 also Rackspace [12] to provide access
to cluster infrastructure. As mentioned in the introduction
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Figure 2: Architecture of the suggested system in-
cluding Cloudgene and EMI

Figure 3: Workflow of the system including Cloud-
gene and EMI

a combination with MapReduce is useful: In this paradigm,
the master node chops up data into chunks and distributes
it over all active worker nodes (map step). Subsequently,
the master node reassigns coherent map results to worker
nodes (sort and shuffle) to calculate the final result (reduce

step). For this project Apache Hadoop’s implementation of
MapReduce and its distributed file system (HDFS) are used.
Using Whirr as a connector, Cloudgene is able to instance
a full working EC2 or Rackspace cluster for end users with
various defined properties and copies the necessary program
data and configuration files to the cluster. Examples for de-
fined variables could be the desired image, amount and kind
of instances, HDFS options, MapReduce properties and the
user’s SSH public key. Amazon already provides several pre-
defined images for all sorts of use cases, which can be be
used with Cloudgene (e.g. http://www.cloudbiolinux.com).
Cloudgene takes over the customization of predefined images
and installs services like MapReduce, in our case included in
Cloudera’s distribution of Apache Hadoop [4]. The cluster
configuration is defined in an XML-based file format, includ-
ing all necessary information for a successful cluster boot.
Cloudgene routinely checks if new configurations are added
and offers the possibility to execute newly defined programs.
Since EC2 is using a pay-per-use model, end users must
provide their Amazon Access ID and Secret Key, which is
transferred via Cloudgene to Amazon in a secure way. Alter-
natively, Cloudgene can also be launched on every machine
having Java installed, eliminating the transfer via our server.
Cloudgene solves one important issue and gives genetic de-
partments access to computational power and storage. A
still unresolved problem is the lack of a graphical user inter-
face to control jobs deriving from command line based ap-
plications. Especially the need of putting enormous amount
of local data into HDFS has to be considered. To overcome
these shortcomings, a user interface (EMI) was designed.

3.2 Efficient MapReduce Interface (EMI)
Running Hadoop MapReduce programs on a cluster re-

quires the execution of several non-trivial steps: First, the
user must upload all input data to the master node, copy the
data into the proprietary HDFS, run the Hadoop MapRe-
duce job, export the results from the filesystem and finally
download them to the local workstation. For researchers
without expertise in Computer Science these tasks turns out
to be very challenging. For this purpose we developed EMI
which facilitates the execution, monitoring and evaluation
of MapReduce jobs. A web interface, which runs on the
master node of the cluster, enables the execution of jobs
through well-structured wizards and setting all required pa-
rameters step by step. As several studies have shown, repro-
ducibility of data analysis is one of the greatest problems in
biomedical publications [15]. For this purpose the execution
of a MapReduce job with its parameters and input data is
logged, thus a fast comparison of experiments with differ-
ent settings is possible. Moreover, the user always has the
full control over an execution of each job and can monitor
its current progress and status. All running jobs are listed
whereby the progress of the map and reduce phase are dis-
played separately. Since using resources from Amazon costs
money, EMI informs the user about the uptime of the clus-
ter and the number of rented instances (Figure 4).
The modular architecture enables a fast integration of any
Hadoop job which could be normally executed through the
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command line. A simple and clear XML configuration file
describes the input and output parameters of the program
and contains other relevant information that are necessary
to start the job (see Section 4). In addition to this file, a zip
archive file exists which contains all software relevant data
(e.g. jar file, meta data, configuration files). With those
files, EMI automatically generates a web interface in which
the possibility to set each defined parameter through wiz-
ards and to run the defined job by a single click is provided.
As mentioned earlier, all input data must be put into the ro-
bust and fault-tolerant HDFS. As this process is very time-
intensive an error prone, EMI supports the user by provid-
ing a wizard which enables the import of data from different
sources (FTP, HTTP, Amazon S3 buckets or local file up-
loads). In addition, files defined as output parameters can
be exported and downloaded as a zip archive or can be up-
loaded to Amazon S3 or FTP servers. EMI supports a multi-
user mode whereby all data by a certain user are password
protected and executed jobs are scheduled through a queue
system. Overall, EMI is fully independent from Cloudgene
and can be installed on a local Hadoop cluster too.

4. CASE STUDIES
In this section we explain how new programs can be in-

tegrated into Cloudgene and EMI. Based on two different
biomedical software solutions we demonstrate the diversity
and simplicity of our approach.

4.1 CloudBurst
CloudBurst is a parallel read-mapping algorithm to map

NGS data to the human genome and other reference genomes
[13]. It is implemented as a MapReduce program using
Hadoop and can be executed with the following command:

hadoop jar emi/cloudburst/CloudBurst.jar \

reference_genome reads results 36 36 3 0 1 240 \

48 24 24 128 16

In order to execute CloudBurst we create a configuration
file for Cloudgene which starts a Hadoop cluster on Amazon
EC2 with a standard Ubuntu Linux with open Hadoop ports
50030 and 50070. The corresponding XML has the following
structure:

<cloudgene>

<name>CloudBurst</name>

<options>

<option name="provider" value="amazon-aws"/>

<option name="image" value="default"/>

<option name="service" value="hadoop"/>

<option name="emi" value="true"/>

<option name="ports" value="50030 50070"/>

</options>

</cloudgene>

As CloudBurst has no graphical user interface, we install
EMI on the Amazon EC2 cluster and use it for user inter-
actions. For this purpose the command above with its ar-
guments must be translated into the following configuration
file:

<emi>

<program>

<name>CloudBurst</name>

<command>

hadoop jar emi/cloudburst/CloudBurst.jar \

$input1 $input2 $output1 36 36 3 0 1 240 \

48 24 24 128 16

</command>

<input>

<param id="1" type="hdfs">

<name>Reference Genome</name>

<default>data/cloudburst/s_suis.br</default>

</param>

</input>

<input>

<param id="2" type="hdfs">

<name>Reads</name>

<default>data/cloudburst/100k.br</default>

</param>

</input>

<output>

<param id="1" type="hdfs" merge="true">

<name>Results</name>

<default>data/cloudburst/results</default>

</param>

</output>

</program>

</emi>

After the XML file is uploaded to the Cloudgene server,
the user starts a web browser to (1) login to Cloudgene, (2)
start up a cluster preconfigured with CloudBurst and (3)
run and monitor jobs with EMI (Figure 4).

Compared to a standard manual approach, this eliminates
error-prone and time-consuming tasks such as (1) setting up
a cluster and connecting via the command line onto the mas-
ter node, (2) uploading and importing data into HDFS, (3)
exporting final results from HDFS and downloading them
and (4) executing and reproducing MapReduce jobs with
different configurations via a web interface. This shows,
that an easy integration can be done using a simple XML
configuration, supporting and guiding researchers as far as
possible.

4.2 HaploGrep
HaploGrep is a reliable algorithm implemented in a web

application to determine the haplogroup affiliation of thou-
sands of mitochondrial DNA (mtDNA) profiles genotyped
for the entire mtDNA or any part of it [8]. As HaploGrep
provides its own web interface we do not need to install EMI.
Since it does not use the Hadoop service either, we note this
option in the configuration as well. HaploGrep listens on
the ports 80 (http) and 443 (https), therefore this ports are
marked as open. The configuration file for Cloudgene with
all requirements looks as follows:

<cloudgene>

<name>Haplogrep</name>

<options>

<option name="provider" value="amazon-aws"/>

<option name="image" value="default"/>

<option name="service" value="none"/>

<option name="emi" value="false"/>

<option name="ports" value="80 443"/>
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Figure 4: Workflow based on CloudBurst

</options>

</cloudgene>

After the cluster setup is finalized, Cloudgene returns a
web address which points to the installed instance of Hap-
loGrep.

5. FUTURE WORK
One of the biggest advantages of IaaS is the changable

amount of needed datanodes on demand. Thus, the next
version of Cloudgene is conceived to provide functions for
adding and removing instances during runtime. Currently,
clusters started with Cloudgene are not data persistent which
yields to a data loss after a shutdown is fulfilled. For this
purpose we plan to store all results on persistent Amazon
EBS volumes. Furthermore, a simple user interface for Ha-
doop is not only useful for the end user but also for devel-
opers. It supports them during the whole prototyping and
testing process of novel MapReduce algorithms by highlight-
ing performance bottlenecks. Thus, we plan to implement
time measurements of the map, reduce and shuffle phase
and to visualize them in an intuitive chart. Additionally,
Hadoop plans in its next generation approach to support al-
ternate programming paradigms to MapReduce, what is par-
ticularly important for applications (e.g. K-Means) where
custom frameworks out-perform MapReduce by an order of
magnitude.

6. CONCLUSION
We presented a software system for running and maintain-

ing elastic computer clusters. Our approach combines the
individual steps of setting up a cluster into a user-friendly

system. Its modular architecture enables a fast integration
of any Hadoop job which could be only executed through
the command line. By hiding the low-level informatics, it is
the ideal system for researchers without deeper knowledge in
Computer Science. Moreover, our system is not constricted
to the life sciences and can be used in nearly every applica-
tion range. Overall, it is a first approach in order to narrow
the gap between cloud-computing and usability.
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