SD Elements: A Tool for Secure Application
Development Management

Golnaz Elahi!, Tom Aratyn?, Ramanan Sivaranjan?, Rohit Sethi?, and Eric
Yu?

! Department of Computer Science, University of Toronto, Canada, M5S 1A4
gelahi@cs.toronto.edu
2 8D Elements, Toronto, Canada
Tom,Ramanan,Rohit@sdelements.com
3 Faculty of Information, University of Toronto, Canada, M5S 3G6
eric.yu@utoronto.ca

Abstract. A major problem in achieving security goals in application
development is the overwhelming amount of security-related information,
variety of tools, and numerous security risks and vulnerabilities. Software
analysts, developers, and testers are not often able to identify relevant
security knowledge. Many security tools focus only on detecting vulner-
abilities, but the embedded available security guidelines are usually not
directly auditable. To fill these gaps, we introduce a new tool, called
SD Elements, which focuses on prevention of vulnerabilities as opposed
to detection. SD Elements is a centralized security knowledge base that
covers different development life cycle phases, so security is built into the
application from the early phases of the life cycle. Users are able to spec-
ify technologies, platforms, requirements, and programming languages,
and SD Elements tailor security guidelines for different projects accord-
ing to the user specifications. It enables businesses to provide tangible
security audit evidence and trace compliance with security standards.
The tool is currently being beta tested in varieties of firms, by different
roles, and in different development phases.

Keywords: Application security, security requirements, development guidelines,
security knowledge, test case.

1 Introduction

The software engineering community is slowly beginning to realize that infor-
mation security is also important for software whose primary function is not
related to security [1]. Since prevention is often more economical than remedi-
ation, empirical security knowledge such as common attacks and vulnerabilities
are made public and available for practitioners through web-based portals such
as NVD [2], CWE [3], OWASP [4]. Security standards, such as PCI DSS [5] or
ISO [6] provide high level guidelines and impose several compliance requirements
to application developers.

82 Pre-proceedings of CAISE’11 Forum

In reality, software analysts, developers, and testers are overwhelmed with
the amount of available information and variety of tools they can employ. Ana-
lysts are given massive lists of security requirements, guidelines, and standards,
and they need to provide tangible and audit-able evidence that the products
comply with security guidelines. Employing tools can help application testers.
However, security testing tools are usually intimidating and their adoption rate
is low, specially because application developers and testers are not often secu-
rity experts. Testers also need to tailor the testing scripts for the platforms and
technologies that they use.

The bottom line for practitioners is finding the relevant body of information
to their projects. However, there is a significant gap between the existing body
of empirical knowledge collected in (web-based) knowledge portals and actual
development demands.

1.1 Contributions

To fill the current gaps, we introduce a secure application development manage-
ment tool, called SD Elements, which provides a set of core values to application
developers, system analysts, and quality assurance teams.

SD Elements is a web-based knowledge repository of security guidelines, em-
powered by a retrieval tool. SD Elements surveys users to learn about the nature
of the project, platform, language, and technologies, and then it tailors security
knowledge:

— Generates relevant security requirements.

— Provides tailored guidelines on secure architecture design.

— Provides reusable development standards for different development platforms
and technologies.

— Provides sample tested code for implementing the standards.

— Creates a list of security test cases (and check lists) to enable non-expert
developers systematically test security requirements.

— Integrates into application life cycle management and bug tracking tools such
as Quality Center and trac.

— Ranks the risks related to standards which helps with prioritization of de-
velopment guidelines and security requirements.

SD Elements focuses on vulnerability prevention instead of detection. It inte-
grates security knowledge into the development life cycle, thus, security is built
into the application from the early phases. SD Elements provides a compliance
mechanism, i.e., users can trace which guidelines are employed, implemented,
and tested. This provides businesses with tangible and traceable evidence for
audit purposes. Finally, it provides requirements, implementation, and testing
guidelines, in situations that compliance with PCI DSS and HIPPA is needed.

2 SD Elements Architecture

SD Elements users will be software developers such as requirements analysts,
programmers, testers, project leaders, and security analysts. For each project,

SD Elements: A Tool for Secure Application Development Management — 83

SD Elements surveys the developers about the nature of the project, security
features and users of the application, types information being handled by the
application, business drivers and policies, platforms, technologies, programming
languages, and application interfaces. By collecting these information about the
project, SD Elements retrieves a customized set of guidelines and requirements,
appropriate for specific projects.

For example, application general questions (Figure 1) uncover the type of
application, type of web server, programming languages, platforms, third party
technologies and libraries. The survey also enables users to provide more de-
tails about the features and functions of the project. For example, developers
can specify whether the application being developed involves interactions with
operating system, file-upload function, authentication of end users, etc.

1= All Projects

Gopquements Project ABCBank App

Dashboard Guide Report Exportto CSV Exportto Excel Exportto Trac

Project Settings

Application General
Application type | Uses multi-threaded programming
Language and Platform

<

Web application

Features and Functions 1 Client/server 7] Generates temporary fles

Requirements 1 Web senvices
] Remotely accessible AP|
| Deskiop

Policies V| Performs diagnostic / debug logging

Testing

<

Uses a database

] Is multi-tiered

<)

Name of web server
| Apache
[[] MicrosoftiS

Fig. 1. SD Elements Survey (application general questions)

The answer to the questions enable the tool to refine the rest of questions as
well as retrieve relevant security guidelines and requirements. These guidelines
in the SD elements knowledge base are developed according to:

— Current vulnerabilities for different technologies, platforms, and languages.
Each guideline or requirement corresponds to a vulnerability in Common
Weakness Enumeration list of vulnerabilities [3].

— Best practices and existing standards such as OWASP [4], WASC threat
classification [7]; empirical data about commonly-exploitable applications in
web applications based on years of penetration testing; threat models, and
source code review; and regulatory compliance including PCI DSS, HIPPA
HITECH, GLBA, NERC CIP, and international privacy laws.

84 Pre-proceedings of CAISE’11 Forum

2.1 Knowledge Retrieval Engine

SD Elements’ knowledge storage and retrieval is based on Boolean logic. The
knowledge retrieval engine provides security guidelines, based on what users
has specified. For example, if users select a J2EE project, then SD Elements
concludes the user will be developing a web application that is probably multi-
tiered, etc. Thus it does not require overwhelming efforts for users and project
owners to describe the nature of project for receiving useful information. Project
managers can get security guidelines as well, without knowing much of technical
details.

2.2 SD Elements Knowledge Base Architecture

Figure 2 depicts a high level overview of the SD Elements’ knowledge base ar-
chitecture. The contents of the knowledge base are vulnerabilities, security stan-
dards, and implementation of the standards. By answering the survey questions,
a set of properties about the project are gathered. Each property entails a set
of content. The tool is implemented in Django which allows creating models to
generate the data base schemas.

Content
Survey
11 1]
| 1
Vulnerability] [Standard Tmpl fion Question Answer
*
* | -ncludes J
* | Jncludes | -Includes * | -Includes
* | -Grants
Property| *
-Indirectly grants
. T

Fig. 2. High level architecture of SD Elements knowledge base

3 Integration with Software Development Life Cycle

SD Elements helps in management of secure application development. It facili-
tates building security into the application, from the early requirements stage,
and considering security in mind at the design and implementation activities. Fi-
nally, it provides step-by-step test cases to help non-security experts test relevant
cases to their application.

3.1 Requirements Generation

SD Elements supports application security requirements analysis:

SD Elements: A Tool for Secure Application Development Management 85

— Surveys analysts about the project settings.

— Generates a list of relevant security requirements (in different categories)
which are tailored with respect to the project settings.

— Links generated requirements to relevant vulnerabilities.

— Links the generated requirements to a design/implementation guidelines and
test cases.

— Lists the requirements criteria of acceptance. These criteria are actually the
test cases. Thus, analysts will know from the early stages, how the require-
ments will be tested.

3.2 Design and Development Guidelines

SD Elements provides project-specific implementation guidelines. Suggested guide-
lines correspond to the list of security requirements and settings of the project.
Sample (and tested) code, whenever applicable, is provided as part of the con-
tent. For example, for the HTML encoding for JSPs, SD Elements provide a
sample code as depicted in Figure 3. Figure 4 shows an example list of develop-
ment guidelines in the authentication category.

You have completed 1 of 45 standards for the Development phase based on your

Requirements Architecture & Design Development Testing

ﬂ S44: Specify standard encoding format for all content /. See Related

Data Validation

Unless there is a specific reason to use a different format, specify a consistent character-encoding format such as UTF-8to all HTTP respanse
pages from the application server
How-To

=) 160: Specify standard encoding format for all comtent - Java EE >
Users can view and

download sample code for

The fallowing instructions de how to do this programmatic alk : "
implementation guidelines
Code
Add the following to the top of all JSPs:

<fipage contentType="text/htal; charset=UTF-8" %>

Description

Add the following to Servlet-gensrated responses:
response. serContentType ("texr/htnl: charsevsUTF-8");

Download the Complete Code Example ﬁ

4] 161: Specity standard encoding format for all content - Java EE with WebLogic 9.2

Related Weaknesses

+| We3Z: Improper Newtrafization of nput During Web Page Generation {'Cross-site Scripting’)

Fig. 3. Standard encoding format, sample code

3.3 Application Testing

SD Elements generates step by step test cases, that include failure conditions,
sample scripts (if needed), guidelines about testing tools, and guiding videos. By
the time the users get to the testing phase, SD Elements has provided proper
security requirements and implementation guidelines. Thus, although test cases
are provided, the emphasis is on preventing vulnerabilities instead of detection.
Test cases are linked to security requirements, and user can specify a test is
passed. Then, the requirements status is changed (to satisfied) as well. Figure 5
shows a screen shot of a sample test case.

86 Pre-proceedings of CAISE’11 Forum

Different guidelines and

— standards for different
Dashboard | Guide | Report phases of life cycle

Export to: G5V, Excel; Trac, HP Quality Center

Requirements Architecture & Design Development Testing

T,

View the Development guide as a: POF,

Arrange by, © e

Guidelines can

1 unsafe operating system interaction be s_orted .by
the risk rating

To protect against command injection, avoid interacting dynamically with an oparating system. When user-supplied Input is necessary,

determine what kind of input you would like to accept from the user and ensure you allow only those characters

The user toggles off
N the Tl
guidelines

User can indicate that the
guideline is implemented
i and it)

$53: Virus scan all uploaded files using an inline virus scanner na
File Handling
Perform & virus $can on any user-uploaded files using an inline virus scanner, such as Clam AY. This helps protect against 2 malicious user
wiho may Upload malware for ofher USers to download. Atematively, an attacker may atiempt 1o upload malware and then use 3 diferant

wulnerability to execute the file

$68: Protect all credit card PANs nsa

Cryptography

Avcording tot B — e Sleedend 0| DEE), ions that store, transmit, or process credi card numbers
D T GRS S
Risk rank: 10

A guideline that is
not yet implemented
(or satisfied)

Fig. 4. A sample development guideline generated by SD Elements tool for a banking
application

3.4 Umbrella Processes

Incremental survey: The survey section of the tool can be answered gradually
and incrementally, i.e., the more questions answered by the user, the more specific
and accurate guidelines are retrieved by SD Elements.

A Traceability System: Users can trace which guidelines they have applied,
which ones are not applicable, and which guidelines are outstanding. Applicable
guidelines and implementation standards can be added to bug tracking systems
and generated requirements can be imported to general requirements documents
such as PDF and doc files.

4 Beta Test Plan

SD Elements will be in beta test in a variety of sectors, such as energy, inde-
pendent software vendors, healthcare, and financial services. It will be mostly
championed by application security managers and development team leaders.
The beta tests will help us investigate various aspects of real world application
of SD Elements. By the end of the beta test phase, we will have concrete data
to evaluate usefulness and usability of SD Elements in real world practice.

1. How and in what logical path users browse the standards.
2. How the standards and requirements are applied in different phases of de-
velopment and by what roles.

SD Elements: A Tool for Secure Application Development Management 87

You have completed 0 of 41 standards for the Testing phase based on your [T
Requitements Architecture & Design Development Testing

$125: Test for open redirect User can browse other See Related
relevant test cases
f iy the ap| e h a; ?

TR DataValidation
Top 10

alues v

6: Test for open redirect manally with browser

irect. In Burps!
Step by step instruction uch as "t
and video to perform the ol

tests are developed and thien this test fails
provided in SD Elements

Related weaknesses
are linked to the test
cases

Related Weaknesses

3| W493: URL Redirection to Untrusted Sie "Open Redirect

$98: Test that input validation is performed on server
Data Validation
Find HTTP p
tool, converi the va

cookies which appear to be validated correctly. For each such input,
walid. If the inputis no longer validated, then this test fails.

alid value. Next, using an HTTP-praxy

Fig.5. A sample SD Elements test case

3. Whether users treat guidelines only as an after the fact check list or devel-
opers use guidelines in daily development tasks.

4. Whether SD Elements help developers actually prevent the introduction of
potential vulnerabilities into the code.

5. Whether users find SD Elements intuitive and usable.

6. Whether users need additional security knowledge sources in addition to SD
Elements.

5 Related Work

Various web-based software vulnerability knowledge bases provide a shared and
standard way for identifying, specifying, and measuring software weaknesses and
vulnerabilities. Common Weakness Enumeration (CWE) [3] provides a unified,
measurable set of software weaknesses for enabling effective discussion, descrip-
tion, selection, and use of software security tools and services that can find
these weaknesses in source code and operational systems. National Vulnerability
Database (NVD) portal provides a search engine over the Common Vulnera-
bility and Exposure (CVE) and Common Configuration Enumeration (CCE)

88 Pre-proceedings of CAISE’11 Forum

databases. However, these knowledge portals usually lack specific guidelines to
prevent the introduction of vulnerabilities. The burden of identifying relevant
vulnerabilities in the massive lists of these portals is on developers. SD Elements
solves these issues by providing customized guidelines for preventing CWE vul-
nerabilities.

The need for security guideline customization has been addressed in another
tool called TeamMentor [8]. TeamMentor only provides two layers of guidelines
filtering: 1) technology and 2) role of the user. Thus, still a massive list of guide-
lines without specific categorization is provided to the user. A link between
the suggested guidelines for different phases of life cycle is not considered, thus
traceability is not possible. Project specific features and functionalities are not
used to generate the list of guidelines, and still software developers can become
overwhelmed with the large list of guidelines.

6 Conclusions and Future Work

SD Elements is a web-based security knowledge base that provides security
guidelines for different development life cycle phases. The main goals of SD El-
ements is to build security into the application, from the early phases of the life
cycle. The outstanding contribution of SD Elements is tailoring the guidelines
according to project description. SD Elements helps businesses provide tangible
security audit evidence and trace compliance with security standards.

The results of the beta tests will help us investigate whether by applying
SD Elements, more vulnerabilities are actually prevented. In future releases, SD
Elements will be customizable to different domains and businesses. End user
administrators will be able to add their own questions, answers, and content
items so that they can support any technology stack. Also, we will continuously
add more content, thus SD Elements will work as a subscription service rather
than a single tool.

References

1. I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security requirements for the rest

of us: A survey,” IEEE Software, vol. 25, pp. 20-27, 2008.

National Vulnerability Database. http://nvd.nist.gov/.

Common Weakness Enumeration. http://cwe.mitre.org/.

OWASP. http://www.owasp.org/.

PCI Secutity Standard Council, Data Security Standards (PCI DSS).

https://www.pcisecuritystandards.org)/.

6. M. J. Kenning, “Security management standard — iso 17799/bs 7799,” BT Tech-
nology Journal, vol. 19, no. 3, pp. 132-136, 2001.

7. Web Application Security =~ Consortuim Threat Classification v2.0.
http://projects.webappsec.org.

8. Secure Development Standards. http://securityinnovation.com/products/team-
mentor/.

Gus w

