I mproving Agility in Model-Driven Web Engineering

José Matias Rivetd, Julian Grigerg Gustavo Ross?, Esteban Robles Luha
Nora Koch+#

LLIFIA, Facultad de Informatica, UNLP, La Plata, Argina
{mrivero, julian.grigera, gustavo, esteban.roblegfi@info.unlp.edu.ar
2Also at Conicet
3 Ludwig-Maximilians-Universitat MincheriCirqguent GmbH, Germany
kochn@pst.ifi.imu.de

Abstract. The increasing growth of the Web field has promadtee develop-
ment of a plethora of Model-Driven Web EngineeridDWE) approaches.
These methodologies share a top-down approach:staeyby modeling appli-
cation content, then they define a navigationakswh and finally refine the
latter to obtain presentation and rich behaviorcspations. Such approach
makes it difficult to acquire quick feedback fromstomers. Conversely, agile
methods follow a non-structured, implementationtessd process building
software prototypes to get immediate feedback.hia tvork we propose an
agile approach to MDWE methodologies (called Mockirjven Development,
or MockupDD) by inverting the development process:start from user inter-
face mockups that facilitate the generation ofvgafe prototypes and models,
then we enrich them and apply heuristics in ordeshtain software specifica-
tions at different abstraction levels. As a result,get an agile prototype-based
iterative process, with advantages of a MDWE one.

Keywords: Mockups, User-Interface, Agile, Web Engineering, DD

1 Introduction

During the last 20 years, many Model-Driven Web iBagring (MDWE) methodol-
ogies have been defined to improve the developmentess of web applications
approaches [1-4]. All of these methodologies slaatemmon top-down approach [5]
and construct web applications by describing aofehodels at different abstraction
levels:
e Content (or Domain) Model: defining domain objects and their relation-
ships.
» Hypertext (or Navigation) Model: defining navigation nodes and links that
publish information specified by objects in entent Model.
e Presentation Model: refining the Hypertext Model with concrete user-
interface presentation features like pages, comaevatgets, layout, etc.
This process is generally top-down, delivering raaffiweb application through a
process of (sometimes automatic) model transfoomativhich maps the previously
described models into other models or a specificrielogy.

164 Pre-proceedings of CAISE'11 Forum

Agile methodologies, on the other hand, promotdyeamnd constant interaction
with customers to assert that the software buithgiees with their requirements, by
constantly delivering prototypes developed in siperiods of time. Agile approaches
argue that software specifications must emergeraiftu enhancing former proto-
types along the development until the final appicais obtained.

To summarize, while MDWE methodologies facilitatdtware specification por-
tability, abstraction and productivity, they faih iproviding agile interaction with
customers because concrete results are obtainddtéo®n the other hand, while this
feature is clearly provided by agile methodologtbgy are heavily based on direct
implementation and thus fail to provide abstractiportability and productivity
through automatic code-generation.

In this paper we propose an hybrid model-base@ agithodology — called Mock-
up-Driven Development (MockupDD) — aiming to extrdee best of both worlds, i.e.
a process driven by the active participation ofrsisnd customers, and a classical
approach following the phases of analysis, desigh implementation assisted with
the use of models in all stages. Our approachsskartthe requirement analysis, i.e.
defining mockups (ideally together with the custoshdo agree upon the applica-
tion’s functionality, similar to Harel's behaviorgrogramming approach [6]. Then,
mockups are translated to an abstract user-interfaadel that can be directly derived
to specific MDWE presentation models or technologpendent Ul prototypes. By
tagging mockups and presentation models we addyaton features, and based on
the navigation specification, we use heuristicénfer content models. Thus, we are
starting the requirement specifications with olgabiat are perceivable by customers
(Ul structure elements), easing requirements gatfpend traceability [7].

Therefore, since we start with presentation moddiained from mockups and
then construct or obtaiapper (i.e. abstract) models, we are inverting the tianal
MDWE process, yielding to a moegile, yet truly model-based approach. While we
exemplify with the UML-based Web Engineering (UWEB], MockupDD can be
applied to any MDWE approach.

2 MockupDD by Example

User Interface (Ul) Mockup tools like Balsamiq, Bimr Mockingbird suit well in
agile methodologies [8-10], since they provide &kjwand easy way of capturing
interaction requirements. Usually, mockups are néefi in companion with other
specifications like use cases [11, 12], user sdi8] or informal annotations [14].
Also, mockups have been introduced in the contéxmodel-driven development
(MDD) approaches like ConcurTaskTrees [15]. In mcases, however, mockups
themselves are not considered as models and teeysaally thrown away after re-
quirement modeling. Thus, mockups are not usednasitant drivers of the devel-
opment process although they contain precise irdtom about the users’ needs.
MockupDD starts the development process by creddingockups with a mockup

tool. As we have shown in a previous work [16], theulting mockup files can be

1 http://balsamig.corrhttp://pencil.evolus.vn/en-US/Home.aspitps://gomockingbird.com
last visited 18.3.2011

Improving Agility in Model-Driven Web Engineerind65

parsed and translated to an abstract Ul modeldc8llé model (Structural Ul Model)
that can be in turn translated to presentation fsooemodern MDWE methodolo-
gies through a simple mapping, since most presentatetamodels (SUI included)
usually share the same concepts (e.g., pages,spéinks, buttons, etc.). We propose
to enrich SUI models usirtggs. Tags define simple but precise specifications dna
applied over particular types of SUI elements amt@sent hints that can result in the
derivation of particular MDWE model concepts.

In this paper we introduceavigation tags that enrich SUI models in order to de-
rive navigation models. After obtaining both prds¢ion and navigation models by
the aforementioned mapping and tags semantics asglg, we apply heuristics to
obtain the content model as well. We illustrate pracess by showing how it works
in the context of the development of a music catadoapplication, deriving models
for the UWE methodology. We have chosen UWE becé#userepresentative of an
important group of methods, it is based on UML &rfths tool support. A schematic
diagram of our process is shown in Figure 1.

Ul in a concrete
technology (e.g.
ExtJS)

UWE Presentation
Model

Heuristics/
Patterns

UWE Content
Model

UWE Navigational
Model

Figure 1. Mockup-Driven Development (MockupDD) pess.

2.1 From M ockupsto Presentation M odels

The Ul mockup (shown in Figure 2.a) depicts the égmage of the Music Portal
application containing a header, a list of featuallims, an album search box and its
corresponding search result. Figure 2.b shows theesponding UWE presentation
model that can be obtained through a simple SUAYE presentation widget map-
ping. Some advanced features (like choosing wheathase an UWEr esent at i on-
Group Or anlteratedPresentati onG oup) are inferred during the mockup transfor-
mation process through mockup analysis. The fireblem that emerges is that the
name of some widgets cannot be inferred; in theses; a generic id is generated
(like Panel 1, Text I nput1 or I magel). Since correctly naming model elements with
identifiers is important to reference them in thwufe and also for code or model
derivation, we define aaming tag set, that allows redefining the name of some wid-
gets when needed. The tagged mockup and resultiNg presentation model are
shown in Figure 2; note that naming tag starts &ithv: . The use of naming tags
implies that correct names are stored associatdd Sl model elements and thus
reflected in derived MDWE presentation ones. Alsben correctly applied, naming

166 Pre-proceedings of CAISE'11 Forum

tags allow deriving mockup implementations for amte technologies like Ext3S
using natural widget ids as when working directifhveode.

Songs | Albums

Featured Albums lRoIIing Stones

][5¢arch

1|

-4

lbumCover

(Y

Sticky ff_N: alboumName

| —art N: price
- jN:I [N: artistName| L-PTEE]
albumCover

17[N: year]

The Rolling Stones
Tatoo You
1981

—

N: artistName

N: albumName ; i

$ 3312 InStock

X<

The Rolling Stones $ 25.66 Out of stock

A Bigger Bang
2005

Kasabian
Kasabian

(a) Home page mockup

<<presentationGroup>>
: Panel1
<<image>> [g =
+ Image1 | : Songs | | : Albums |
<<presentationGroup>>
: Panel1
<<text>> A <<textinput>> <<anchor>> O
: FeaturedAlbums : Textinput1 : Search
<<iteratedPresentationGroup>: <<iteratedPresentationGroup>>
: Panel2 : Panel3
<<image>> [0] <<image>30] <<anchor>> == <<text>> g <<text>> g
: AlbumCover| : AlbumCover| | : ArtistName : Price : InStock
<<anchor>> ==
: AlbumName
<<anchor>> == <<text>> gy
: ArtistName : Year
: AlbumName

(b) Generated UWE presentation model after applgenging tags

Figure 2. Deriving an UWE presentation model fromackup.

2.2 Deriving Navigational Models

After deriving presentation models, a naive appinotic start generating navigation
models could be defining one UWavi gati ond ass (the UWE navigation concept
for defining nodes) for each mockup. However, ttWE metamodel defines several
navigation elements in addition to elements of typé gati ond ass: Query, | ndex
andmenu. While Quer yes and ndexes represent information retrieval and selection of
a particular element in a collection respectivébnus are used to specify alternative
navigation paths.

Since we cannot directly infer which UWE navigatielement must be used in
every mockup (this election requires design or rindeskills), we have defined a
second tag set: the UWE navigation tag set. THic@etains a tag for every UWE

2 http://www.sencha.com/products/extjist visited 18.3.2011

Improving Agility in Model-Driven Web Engineerind67

navigation element. Figure 3 shows the resultiggéal mockup and the conse-

guences of tag application i

n derived UWE navigatizodel.

UWE: Home| [UWE: Node(Album)]

|

Songs | Albums

Featured Albums [Rolling Stones

UWE: Query(Album)

The Rolling Stones $| UWE: Index(Album) |

<<navigationClass>>]
MusicPortal

(b) Navigation model generated without

Sticky Fingers
1971

X

Coldplay
Parachutes

Tatoo You
1981

X

Kasabian The Rolling Stones $

Kasabian

A Bigger Bang
2005

UWE: Link(Album)

<v.12 InStock

tags
<<navigationClass>> [7]
MusicPortal <<query>>
{isHome} AlbumQuery
<<navigationClass>> <<index>>
MusicPortalMenu Albumindex

25.66 Out of stock

albums

<<index>>
Songlindex

(a) Resulting tagged mockup

<<navigationClass>> O
Album

(c) Navigation model generated with tags

Figure 3. Initial mockup with UWE navigation tagsptied and the resulting navigation model.

The UWE navigation tags introduced are the follayvin

the navigation model.

Hore: defines that theiavi gat i ond ass related to the mockup is the home of

Node(<nodel d>) : Assigns an id to thsavi gati ond ass related to the mock-

up in order to be referenced as the destinatioon&f or more navigation

(Li nk) tags.

Li nk(<nodel d>) : Specifies a navigation link to anothei gati ond ass. A

correspondingiode tag with the samenodel d> must be specified in order
correctly derive the navigation.

Query(<el ement1d>) and | ndex(<el enent1d>) define aquery involving

elements of typecel ement I d> and thel ndex in which the results of the

Query are shown.

called UWEMenu.

UWE: Node(Album)

e

Songs | Albums

Return to Forever
by Chick Corea

Price:

Genres: Jazz Fusion In Stock

b b Imracki{ Nale UWE: Index(Song)
P Fovaurite 1 Return to Forever

2 Crystal Silence

3 What Game Shall We Play Today?

4 Sometime Ago/La Fiesta

Menu specifies that the panel over which it is applied set of links, a so

Figure 4. Album details mockup with UWE navigati@gs applied.

168 Pre-proceedings of CAISE'11 Forum

When clicking on an album’s title in the home page Ul of the album details will
be shown. A mockup of such user interface is dehateFigure 4. The complete
UWE navigation model can be observed in the alréafigduced Figure 3.c in which
the Al bumNavi gati ond ass is included. The navigation link is expressed tigto the
Li nk(Al bum) andNode(Al bumy tags in home page and album mockups, respectively.

2.3 Towardsa Content M odel

Once we have obtained the UWE navigation modelrst version of the content

model can be derived by applying some inferencesrdescribed in Figure 5. These
rules were designed by studying many examples ofEUNdvigation and content

models and discovering recurrent patterns in them.

<<navigationClass>>]
Class1

Class1

Class1 <<query>>
<<navigationClass>> [] :> c|asqs1Qr{1ery

Class1 l (optional) |j‘> class2s (class2 +s)
<<index>> E

Class2Index Class2

l* (optional)

<<navigationClass>>]
Class2

(b) NavigationClass and Index to Class
and Association

(a) NavigationClass to Class
Figure 5. Two content inference rules.

UWE navigation element names (previously generatgidg naming and UWE
navigation tags) are used to derive the nameseottimtent elements. The resulting
UWE content model after the application of theadtrced rules over the UWE navi-
gation model of Figure 3.c is shown in Figure & @pace reasons, only a part of the
navigation model is shown).

The obtained UWE content models must be refinedrigler to specify class
attributes. As UWE navigation models do not alloarenrefinement than the features
already commented, this information should be takem other models. Since in
UWE every navigation concept is refined by a preséon specification (e.g., & e-
sentationG oup), and given that we have already derived theseetsofilom SUI
specifications, we can use this link between moitetsrder to obtain attributes from
presentation structure. An example of this appraésicienoted in Figure 7.

Automatic derivation may naturally lead to an ingise content model, and some
thoughtful design might be required from a devetdpeorder to get to a definitive
version. However, even when most design adjustmearsnot be fully automated,
they can be still predicted. For example, an allpuesentation model might translate
into an album class with attributes suctaetsstName, when in fact the content model
should have two separate classesAicsum and Arti st, related to each other. We
have observed that many of these inaccurate diemgusually repeat, so the re-
quired adjustments can be documented (and applitbdawtomatic assistance when
possible) just like code refactorings [17].

Improving Agility in Model-Driven Web Engineerind69

<<navigationClass>>] — MusicPortal Album
MusicPortal <<navigationClass>>] albums *
{isHome} Song
oo) l songs
l' Song
<<navigationClass>> [] <<index>>
Album Songlndex

Figure 6. Inferred UWE content model derived thiotize application of the introduced rules.

<<presentationGroup>>
cAlbum @00 |eeeee- <<navigationClass>> O [Album
Album ititlej String
<<textinput>>[ab[] o
: title :

Figure 7. Attribute inference from presentationcifieations.

3 Conclusion and Further Work

We have presented a mockup-based approach (MockupDMuing an inversion of
the traditional MDWE process. We decided to stant process with mockups be-
cause they are becoming a common tool in agile odetogies to interact and estab-
lish a shared view of requirements between custerand developers. Mockups are
processed to structured Ul models (called SUI) aittl the help of tags they are
easily derived to MDWE presentation and navigatiwodels. Applying a set of infe-
rence rules, a first version of MDWE content modedsy be generated. We have
shown the approach applied to a brief example ugiegUWE methodology. With
our approach, we intend to provide an agile metlogobased on Ul mockups and
lightweight specifications to obtain MDWE modelshieh offer advantages like
automatic code generation.

Extending the proposed approach to other modern MDWethodologies like
WebML represents a fruitful work path. We are iat#ed in defining a general and
methodology-agnostic navigation tag set that alkmwaderiving navigation models
for a more comprehensive set of MDWE approachewllyi since obtained content
models likely require to be refactorized, we areriested in developing heuristics to
suggest refactoring alternatives to be applied owetent specifications.

4. References

1. Ceri, S., Fraternali, P., Bongio, A.: Web Modelihgnguage (WebML): A
Modeling Language for Designing Web Sites. Computietworks and

170 Pre-proceedings of CAISE'11 Forum

10.

11.

12.

13.

14.

15.

16.

17.

ISDN Systems, 33(1-6), pp. 137-157 (2000)

GOmez, J. and Cachero, C.: OO-H Method: ExtendiM]-Wo Model Web
Interfaces (2003). In: Information Modeling Forantet Applications, pp.
144-173, P. van Bommel, Ed. IGI Publishing, Hersli4 (2003)

Koch, N., Knapp, A.. Zhang G., Baumeister, H.: Uidhsed Web Engi-
neering, An Approach Based On Standards. In: Wedirieering, Modelling
and Implementing Web Applications, pp. 157-191.ii8yer (2008)

Rossi, G., Schwabe, D.: Modeling and ImplementingoVApplications us-
ing OOHDM. In: Web Engineering, Modelling and Impienting Web Ap-
plications, Springer, pp. 109-155 (2008)

Wimmer M., Schauerhuber, A., Schwinger, W., Kakgt, On the Integration
of Web Modeling Languages: Preliminary Results &odure Challenges.
In: Proc. of the 3nd Int. Workshop on Model-Drivé¥eb Engineering
(MDWE'07), CEUR-WS (2007)

Harel, D.: Some Thoughts on Behavioral ProgrammimgApplications and
Theory of Petri Nets. Springer Berlin Heidelber§1Q)

Seyff, N., Graf, F., Maiden, N.: End-user requir@tseblogging with iRe-
quire. In: 32nd ACM/IEEE International Conferenae 8oftware Engineer-
ing - ICSE '10. ACM Press, New York, New York, U32010)

Noble J., Biddle, R., & Martin, A.: The XP CustonRole in Practice: Three
Studies. In: Agile Development Conference, pp. 42{&EE Computer So-
ciety (2004)

Ferreira J., Noble J., & Biddle R.: Agile Developméterations and Ul De-
sign. In: AGILE 2007 Conference, Washington, DCEEEComputer Socie-
ty, pp. 50-58 (2007)

Ton, H.: A Strategy for Balancing Business Valud &tory Size. In: Agile
2007 Conference. Washington, DC: IEEE Computer &gcipp. 279-284
(2007)

Kulak, D. & Guiney, E.: Use Cases: Requirementintext. Addison-
Wesley (2004)

Homrighausen, A., Six, H., & Winter, M.: Round-THirototyping Based on
Integrated Functional and User Interface Requirgm&pecifications. In:
Requirements Engineering, 7(1), pp. 34-45 (2002)

Cohn, M.: User Stories Applied: for Agile Softwabevelopment. Addison-
Wesley (2004)

Moore, J. M.: Communicating Requirements Using Elsé+r GUI Construc-
tions with Argumentation. In: 18th IEEE Internat&drConference on Auto-
mated Software Engineering, pp. 360-363, IEEE Cdermfbociety (2003)
Panach, J. I., Espafia, S., Pederiva, |., & Pa§lorCapturing Interaction
Requirements in a Model Transformation Technologgé®l on MDA. Jour-
nal of Universal Computer Science, 14(9), pp. 14805 (2008)

Rivero, J. M., Rossi, G., Grigera, J., BurellaRbples Luna, E., Gordillo, S.
E.: From Mockups to User Interface Models: An Esibte Model Driven
Approach. In: 10th International Conference on \VE¥elgineering, pp. 13-24.
Springer (2010)

Fowler, M., Beck, K., Brant, J., Opdyke, W., RoleiD.: Refactoring: Im-
proving the Design of Existing Code. Addison-Wedhrgfessional (1999)

