
 

Comprehension and Utilization of Core Assets Models 

in Software Product Line Engineering 

Iris Reinhartz-Berger1, Arnon Sturm2, and Arava Tsoury1 
 

1 Department of Information Systems, University of Haifa, Haifa 31905, Israel 
iris@is.haifa.ac.il, aravabt@gmail.com 

2 Department of Information Systems Engineering, 
Ben-Gurion University of the Negev, Beer Sheva 84105, Israel 

sturm@bgu.ac.il 

Abstract. In software product line engineering, core assets are reusable 
artifacts that are intended to be used by a family of software products in order 
to improve development productivity and quality of particular software 
products. In order to support the construction and maintenance of core assets, 
various modeling methods have been proposed. However, the assessment of 
these methods is still in an incubation stage. In fact, only several frameworks 
for comparing and evaluating these methods have been suggested. These 
mainly refer to lists of criteria whose examination is sometimes subjective and 
opinion-dependent. In this paper, we call for empirical evaluation of the 
comprehension and utilization of core assets and report the initial results of a 
series of studies we performed in this context. 

Keywords: variability management, software product line engineering, domain 
analysis, UML, feature-orientation, evaluation 

1   Introduction 

In Software Product Line Engineering (SPLE), a core asset is "a reusable artifact or 
resource that is used in the production of more than one product" [ 5]. The 
development of core assets intends to improve productivity, increase quality of 
individual products, decrease development cost, decrease time to market or to launch 
new products or versions, and enable moving into new markets in shorter times. Core 
assets have different forms that may be useful in a software production process, one 
of which is domain models. These models capture both existing commonality and 
allowed variability of given product lines.  

Reviewing 97 papers that describe variability management approaches in SPLE, 
reported from 1990s to 2007, Chen and Babar [ 4] conclude that the main corpus of 
approaches focuses on variability modeling and utilizes feature models (33 works) or 
UML and its extensions (25 works) for this purpose. Feature-oriented methods, such 
as [ 6], [ 13], [ 14], and [ 21], support specifying domain models as sets of 
characteristics relevant to some stakeholders and the relationships and dependencies 
among them. Variability is specified in terms of mandatory vs. optional features, 
alternatives, OR features, 'require' and 'exclude' dependencies among features, feature 
groups, and composition rules. UML-based SPLE methods (e.g., [ 10], [ 18], [ 20], [ 25], 



172       Pre-proceedings of CAISE'11 Forum 
 

 

and [ 26]) usually suggest profiles for handling variability-related issues, including 
specification of mandatory and optional elements, dependencies among elements, 
variation points, and possible variants. Some UML-based methods suggest extending 
UML or representing variability aspects orthogonally to "regular" UML models of the 
product families, e.g., [ 11].  

As the number of suggested modeling methods increases, several evaluation 
frameworks have been proposed for comparing methods, belonging to different 
categories, e.g., [ 9], [ 12], [ 15], and [ 24], or within certain categories, e.g., [ 8]. 
Matinlassi [ 15], for example, refers to four main comparison criteria: context, user, 
contents, and validation. Haugen et al. [ 12] suggest examining the ways variability 
and commonality are modeled, the support for iterative and incremental system 
family development, and the production of individual systems. Djebbi and Salinesi [ 8] 
compare feature-oriented notations in terms of different criteria, including readability, 
simplicity and expressiveness, adaptability, scalability, and others. Although the 
various criteria may help understand the benefits and limitations of the different 
methods, their usage in examining and comparing the methods is limited as they are 
subjective and usually criticized as opinion-oriented [ 4]. 

Despite their amenability to be empirically evaluated, relatively minor attention is 
allocated for the empirical evaluation of SPLE methods in general and variability 
management approaches in particular. These studies highlight different aspects in 
SPLE, including product derivation [ 22], quality assurance [ 2,  7], and architecture 
process activities [ 1]. In this paper we draw a general evaluation framework for 
comparing core assets modeling methods. This framework, which refers to both 
specification and utilization aids, is used for better understanding the sources of 
difficulties of core assets modeling methods. In a series of three studies, we started 
examining the specification aids of modeling methods to clearly describe common 
and variable parts in core assets and the relevant utilization aids, which aim at guiding 
the developer in generating, deriving, and building valid software products. We report 
on some sources of difficulties we found in the comprehension and utilization of core 
assets models using feature-oriented and UML-based methods. 

The remainder of this paper is organized as follows. Section 2 reviews the 
suggested dimensions for evaluation, whereas Section 3 describes two core assets 
modeling methods on which we conducted the evaluation so far and justifies their 
selection. Section 4 elaborates on the empirical studies and reports our initial results. 
Finally, Section 5 concludes and refers to future research directions.  

2 Dimensions for Evaluating Core Assets Modeling Methods 

When evaluating core assets modeling methods, two important dimensions can be 
identified: specification, which refers to the collection of aids required for specifying 
both existing commonality and allowed variability in a software product line, and 
utilization, which refers to the different means to use core assets in order to create 
particular software product in the domain.  

The specification aids are further divided into commonality- and variability-related 
ones. Commonality-related aids are used for specifying aspects that all (or most of) 



Comprehension and Utilization of Core Assets Models in SPLE       173 
 

 

the products in the line exhibit, while variability-related aids enable specifying added 
values that not all the products in the family include in the same way.  

The utilization dimension refers to the aids needed in core assets modeling 
methods in order to improve the effectiveness and efficiency of creating particular 
product artifacts in certain domains. This includes guidance and validation. Guidance 
refers to the ways in which core assets can be used for specific needs (i.e., in the 
development or production of particular software products), while validation refers to 
the mechanisms and tools that may be provided by the modeling methods for enabling 
alignment of specific software products with the domain constraints and rules as 
specified in core assets.  

Table 1 summarizes the main specification and utilization aids of feature-oriented 
and UML-based methods. In order to define sources of difficulties in specifying and 
modeling core assets in these categories, we used the suggested evaluation framework 
and conducted three studies (the focus of each study is depicted in Table 1). Due to 
the large number of methods in each category, we had to select specific methods for 
evaluation. Explanations on the selected modeling methods, as well as the reasons for 
their selection are provided next. 

Table 1. Evaluation Framework for Core Assets Modeling Methods 

Category Specification Aids Utilization Aids 

Commonality Variability Guidance Validation 

Feature-
oriented 

Mandatory and 
optional elements, 
dependencies  

Feature groups, 
alternatives, and 
OR-related features  

Cardinality, 
rationale, 
constraints  

Instantiation 
and 
configuration 
conformance  

UML-based Mandatory and 
optional elements, 
dependencies  

Variation points, 
variants  

Cardinality, 
openness,  
 
 
reuse 
mechanisms, 
binding time  

Specialization 
and 
configuration 
conformance   

Legend: Eval 1, Eval2 , Eval 3  

3 The Selected Modeling Methods: CBFM and ADOM 

3.1 Feature-Oriented Methods and CBFM  

In feature-orientation, features are defined as end-user characteristics of systems, or 
distinguishable characteristics of concepts that are relevant to some stakeholders of 
the concepts [ 13]. Features can be composed and decomposed into trees, where the 
edges represent dependencies between features. Some of the feature-oriented 
methods, such as [ 14], concentrate on commonality specification and do not explicitly 
specify variability. However, guidance is partially supported in these methods, mainly 



174       Pre-proceedings of CAISE'11 Forum 
 

 

via XOR and OR constructs or via explicit textual constraints and guidelines. Some 
methods, e.g., [ 6] and [ 23], support representing variation points and variants via 
feature groups and refer to guidance via OR and XOR constructs.  

Cardinality-Based Feature Modeling (CBFM) [ 6] exceeds the expressiveness of 
other feature-oriented methods by enabling usage of OCL for specifying different 
dependencies and allowing definition of various cardinalities for better guiding the 
development of particular software products. In particular, CBFM extends the 
expressiveness of feature diagrams in FODA [ 13], the ancestor of most feature-
oriented methods, with five main aspects: (1) cardinality, which denotes how many 
clones of a feature can be included in a concrete product, (2) feature groups, which 
enable organizing features and defining how many group members can be selected at 
certain points, (3) attribute types, indicating that attribute values can be specified 
during configuration, (4) feature model references, which enable splitting a feature 
diagram into different diagrams, and (5) OCL constraints.  

3.2 UML-based Modeling Methods and ADOM  

Most UML-based methods model commonality-related aspects via dedicated 
stereotypes for differentiating mandatory (sometimes called kernel) and optional 
elements. Some works explicitly specify variability using both «variation point» and 
«variant» stereotypes, while others specify only one of these concepts and the other is 
implicitly specified from its relationships with the other concept.  

We selected the Application-based DOmain Modeling (ADOM) method [ 18] for 
our evaluation, since it consistently integrate all the main stereotypes from other 
methods in the UML-based SPLE category [ 19] and it explicitly refers to guidance 
and validation of software products with respect to core assets, aspects which other 
methods in this category tend to neglect. Furthermore, it enables explicit specification 
of both variation points and variants and it allows specifying ranges of multiplicity. 

At the basis of ADOM there is a profile that includes the following six stereotypes: 
(1) «multiplicity», specifying the range of product elements that can be classified as 
the same core element, (2) «variation point», indicating locations where variability 
may occur, including rules to realize the variability in these locations, (3) «variant», 
which refers to possible realizations of variability and is associated to the 
corresponding variation points, (4) «requires» and (5) «excludes», which determine 
dependencies between elements (and possibly between variation points and variants), 
and (6) «reuse», which is used for guiding the developer about the possible usages of 
the core asset element in specific products. 

4 Empirical Evaluation of Core Assets Modeling Methods 

4.1 Eval1: Comprehension and Utilization of ADOM's Models  

The first study was associated with two research questions: (1) Are the specification 
aids of ADOM well understood and to what extent? (2) Are the specification aids of 



Comprehension and Utilization of Core Assets Models in SPLE       175 
 

 

ADOM well utilized and to what extent? The subjects of this study were 15 advanced 
undergraduate and graduate students in an Information Systems program at the 
University of Haifa, Israel, who took a seminar course named “Advanced Topics in 
Software Engineering” in 2009. During the course, the students studied domain 
engineering techniques, focusing on ADOM and its capabilities. The study took place 
towards the end of the course as a class assignment. The students got a domain model 
(in ADOM) and had to answer questions in three categories. In the first category of 
questions, which referred to comprehension, the subjects had to answer 14 true/false 
questions regarding the domain and explain their answers based on the given model. 
The questions referred to both commonality and variability aspects. The second group 
of questions, validation, required finding violations in a particular application, with 
respect to the domain constraints as specified in the given model. For checking this 
task, we prepared a list of 9 mistakes (or inaccuracies) in the application model and 
measured the performance of the subjects in terms of precision, recall, and F-measure. 
Finally, in the third part, guidance, the subjects were asked to model another 
application in the domain based on a list of requirements and the given domain model 
(in ADOM). In this part, we examined how the specification aids were utilized for 
guiding the creation of particular models.  

The results of this study brought up the following main points. First, variant-related 
aspects are better comprehended than variation point-related aspects. Our conjecture 
regarding this observation is that variation points are more abstract, usually refer to 
several elements (variants) and include information regarding the way to realize the 
variability. Thus, their specification is more difficult to understand than that of 
variants, which are more concrete and focus on particular elements. Second, errors 
that referred to commonality-related aspects, including such that refer to optional 
elements and not just to mandatory ones, are easier to find than errors that referred to 
variability. Furthermore, variability-related errors that involved several different 
model elements were the most difficult to detect (only two students found one such 
error each). Third, the subjects had difficulties in mapping the particular application 
elements to the domain elements as specified in the domain model. As this mapping 
may reveal anchors for validation, these difficulties also prevent the subjects from 
correctly identifying problems that are related to both commonality and variability 
issues. Finally, we found a correlation between the success in applying a variation 
point and the success to utilize its variants. However, it seems that the guidance 
provided by variation points is less considered than the guidance provided by the 
variants. A possible reason for this may be again the different abstraction levels of 
variation points and variants.  

4.2 Eval2: Specification and Guidance Aids in ADOM  

The second study addressed two research questions: (1) Do variability specification 
and guidance aids help comprehend core assets and to what extent? (2) Do variability 
specification and guidance aids help create or model correct products and to what 
extent? The subjects of this study were 116 advanced undergraduate students in an 
Information Systems Engineering program at Ben-Gurion University of the Negev, 
Israel, who took a mandatory course named “Object-Oriented Analysis and Design” 



176       Pre-proceedings of CAISE'11 Forum 
 

 

in 2009. During the course, the students studied the ADOM method and the study 
took place as part of the final exam in the course. The students were randomly divided 
into four groups, each of which got a core asset model (in ADOM) and had to answer 
15 comprehension questions regarding the given model and to model a particular 
application in the domain. The model given to the first group included only 
commonality-related stereotypes, namely «multiplicity», «requires», and «excludes». 
The model given to the second group included guidance-related stereotypes (i.e., 
«reuse») besides the commonality-related stereotypes, while the model given to the 
third group included, besides the commonality-related stereotypes, variability-related 
stereotypes, namely «variation point» and «variant». The model given to the fourth 
group included all six stereotypes. Despite the difference in the sets of stereotypes 
provided to the four groups, the models included similar (equivalent) information 
using UML expressiveness and associating textual notes when required. 

The following interesting points have risen from this study. First, the guidance 
aids, which explicitly explain how to reuse a core asset element in a particular 
software product, help comprehend aspects that refer to commonality and variability 
issues, and not just to reusability. This was especially remarkable when referring to 
variation points and their rules to select variants. Our conjecture is that explicit 
specification of guidance required additional attention from the students, thus 
resulting in better outcomes. Second, the existence of all stereotypes seemed to 
complicate the core asset models and negatively affect comprehension. Finally, no 
statistically significant differences were found among the particular models produced 
by the various groups from the core asset. We believe that this is due to the clear and 
unambiguous requirements of the requested system, a situation which is less realistic 
in "real life", but required for a controlled experiment. 

4.3 Eval3: Comprehension of CBFM and ADOM Specification Aids  

The research question in the third study was: The specifications of which method, out 
of CBFM and ADOM, are more comprehensible and to what extent? The subjects in 
this study were 18 advanced graduate and undergraduate information systems 
students at the University of Haifa, Israel who took the seminar course “Advanced 
Topics in Software Engineering” in 2010. During the course, the students studied 
various domain engineering techniques, focusing on CBFM and ADOM and their 
ability to specify core assets. The study took place towards the end of the course as a 
class assignment. The students were equally divided into two groups of 9 students 
each according to their grades in relevant modeling courses, their academic and 
industrial background, and their familiarity with the examined methods. The students 
in the first group got a CBFM model of a domain and a dictionary of terms in that 
domain, while the students in the second group got an ADOM model of the same 
domain and the same dictionary of domain terms. The students in the two groups were 
asked to answer 15 true/false comprehension questions and to provide full 
explanations to their answers.  

The results showed that CBFM outperformed ADOM in commonality-related 
questions, while ADOM outperformed CBFM in variability-related questions. This 
outcome is reasonable, as feature-orientation concentrates on a common kernel and its 



Comprehension and Utilization of Core Assets Models in SPLE       177 
 

 

possible configurations, while ADOM treats software products and product lines as 
belonging to two different abstraction levels and allows more variability among 
products that belong to the same product line (e.g., via specialization and extension). 
Nevertheless, a statistical analysis showed that there is significant difference only in 
the variability specification and this is in favor of ADOM [ 19]. In all other categories 
no statistical significance was found. Still, according to the achieved averages, the 
overall comprehensibility in ADOM was better than that in CBFM. This outcome 
somehow questions the widespread opinion [ 20] that feature-orientation is simpler 
and, thus, more comprehensible to different stakeholders involved in SPLE and worth 
further investigation in the future.  

5 Summary and Future Work 

Different core assets modeling methods have been suggested. These methods are 
usually evaluated and compared subjectively, using different lists of criteria that 
highlight various aspects of core assets specification and utilization. We used a 
different approach for comparing these methods: empirical evaluation of 
comprehending and utilizing their resultant models. Based on a series of three studies, 
we noticed that variability is comprehensible and utilizable to a limited extent and that 
the main source of problem is in comprehending variation points. Yet, when 
providing explicit guidelines, the comprehension of the domain model increases. 

  The three conducted studies were relatively limited in their subjects' qualifications, 
the numbers of participating subjects, required tasks, examined methods, and 
provided models. Thus, in the future, we plan to replicate the empirical study on 
larger classes of trained domain engineering students and software developers and to 
use the suggested framework for comparing and evaluating core assets modeling 
methods in other categories, such as in Domain-Specific Languages [ 16]. 

References 

1. Ahmed, F. and Capretz, L. F. The software product line architecture: An empirical 
investigation of key process activities. Information and Software Technology 50, pp. 1098–
1113, 2008. 

2. Bagheri. E. and Dasevic, G. Assessing the Maintainability of Software Product Line 
Feature Models using Structural Metrics. Software Quality Journal, Springer, DOI: 
10.1007/s11219-010-9127-2, 2011. 

3. Borba, C. and Silva, C. A Comparison of Goal-Oriented Approaches to Model Software 
Product Line Variability. ER'2009 workshops. LNCS 5833, pp. 244-253, 2009. 

4. Chen, L. and Babar, M. A. A systematic review of evaluation of variability management 
approaches in software product lines. Information and Software Technology 53, pp. 344-
362, 2011. 

5. Clements, P. and Northrop, L. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002. 

6. Czarnecki, K. and Kim, C.H.P. Cardinality-Based Feature Modeling and Constraints: A 
Progress Report. In Proceedings of the OOPSLA Workshop on Software Factories, 2005. 



178       Pre-proceedings of CAISE'11 Forum 
 

 

7. Denger, C. and Kolb, R. Testing and Inspecting Reusable Product Line Components: First 
Empirical Results. Proceedings of the 2006 ACM/IEEE International Symposium on 
Empirical Software Engineering, ACM, pp. 184–193, 2006. 

8. Djebbi, O. and Salinesi, C. Criteria for Comparing Requirements Variability Modeling 
Notations for Product Lines. The Fourth International Workshop on Comparative 
Evaluation in Requirements Engineering (CERE'06), in conjunction with RE'06, 2006. 

9. Frakes, W.B. and Kyo, K. Software Reuse Research: Status and Future. IEEE Transactions 
on Software Engineering, 31 (7), pp. 529-536, 2005. 

10. Gomaa, H. Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures, Addison-Wesley Professional, 2004. 

11. Halmans, G. and Pohl, K. Communicating the Variability of a Software-Product Family to 
Customers. Software and Systems Modeling 2 (1), pp. 15-36, 2003. 

12. Haugen, Ø. Møller-Pedersen, B., and Oldevik, J. Comparison of System Family Modeling 
Approaches. Software Product Lines Conference. LNCS 3714, pp. 102-112, 2005. 

13. Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, A. Feature-Oriented Domain 
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software 
Engineering Institute, Carnegie Mellon University, 1990. 

14. Kyo, C. K.  , Sajoong, K., Jaejoon, L., Kijoo, K., Euiseob, S.  and Moonhang, H. FORM: A 
feature oriented reuse method with domain-specific reference architectures. Annals of 
Software Engineering 5 (1), pp. 143-168, 1998. 

15. Matinlassi, M. Comparison of Software Product Line Architecture Design Methods: 
Comparison of Software Product Line Architecture Design Methods: COPA, FAST, 
FORM, KobrA and QADA. Proceedings of the 26th International Conference on Software 
Engineering (ICSE’04), 2004. 

16. Mernik, M., Heering, J., and Sloane, A. M. When and How to Develop Domain-Specific 
Languages. ACM Computing Surveys (CSUR) 37 (4), pp. 316-344, 2005. 

17. Ramesh, V. and Topi, H. Human Factors Research on Data Modeling: A Review of Prior 
Research, an Extended Framework and Future Research Directions, Journal of Database 
Management, Vol. 13 (2), pp. 3-19, 2002. 

18. Reinhartz-Berger, I. and Sturm, A. Utilizing Domain Models for Application Design and 
Validation. Information and Software Technology, 51(8), pp. 1275-1289, 2009. 

19. Reinhartz-Berger, I. and Tsoury, A. Experimenting with the Comprehension of Feature-
Oriented and UML-Based Core Assets. Lecture Notes in Business Information Processing 
(LNBIP) 81, pp. 468–482, 2011. 

20. Robak, S., Franczyk, B., Politowicz, K., Extending the UML for modeling variability for 
system families. International Journal of Applied Mathematics and Computer Science 12 
(2), pp. 285-298, 2002. 

21. Silva, C., Alencar, F., Araújo, J., Moreira, A., Castro, J. Tailoring an Aspectual Goal-
Oriented Approach to Model Features. 20th International Conference on Software 
Engineering and Knowledge Engineering (SEKE'2008), pp. 472-477, 2008. 

22. Sinnema, M. and Deelstra, S. Industrial validation of COVAMOF. Journal of Systems and 
Software 81 (4), pp. 584-600, 2008. 

23. Svahnberg, M., Van Gurp, J., and Bosch, J. A Taxonomy of Variability Realization 
Techniques. Software – Practice & Experience 35 (8), pp. 705-754, 2005.  

24. Trigaux, J.C. and Heymans, P. Modeling variability requirements in Software Product 
Lines: A comparative survey. Technical report PLENTY project, Institut d’Informatique 
FUNDP, Namur, Belgium, November 2003. 

25. Webber, D. and Gomaa, H. Modeling variability in software product lines with variation 
point model. Science of Computer Programming, Vol. 53, pp. 305-331, 2004. 

26. Ziadi, T., Hélouët, L., and Jézéquel, J.M. Towards a UML Profile for Software Product 
Lines. Software Product-Family Engineering (PFE'2004), LNCS 3014, pp. 129-139, 2004. 


