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Abstract

In this paper we propose an idea of transforma-
tion relational database problems to computa-
tional geometry problems to develop more ef-
ficient algorithms for discovering useful infor-
mation from databases. We consider in detail
relational algebra operations - the base of rela-
tional language foundation - and give adequate
geometrical interpretation for each of them.

1 Introduction

Over the past ten years the relational database manage-
ment systems (DBMS) have become wide applicable in
different areas such as automated design system, CAE
system, geographic information system, office informa-
tion system and so on. However, the relational database
management systems have limited capacity from the ob-
ject’s modeling viewpoint. That makes the DBMS to
be non-applicable for the complicated specialized ap-
plications. Also, the recent progress of communication
and network technologies makes it easy to accumulate a
large collection of unstructured or semi-structured texts
data [2, 5, 6]. In this context, the problem of searching
more efficient algorithms to discover useful information
from large non-structured databases that differs from ex-
istent information retrieving methods is a point of big
interest [7, 4]. The work [3] is worth to be mentioned,
since it is devoted to problem of discovering data in large
semistructured text collections.

The paper proposes an algorithm based on one of the
computational geometry methods that is called the re-
gional search algorithm and speeds up search substan-
tially. So nomogenously the subject about the possibil-
ity to transform relational database problems to computa-
tional geometry problems has been occurred taking into
account a high efficient of geometric algorithms.

2 The geometrical approach to informa-
tion retrieval

Definition. ProblemA are transduced into ProblemB,
if:

1. The input data for ProblemA are transduced into
corresponding input data for ProblemB.

2. The ProblemB is solved.
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3. The result of ProblemB resolving is transduced
into correct result for ProblemA.

Theorem. The search problems in relational database
are transformed to computational geometry search prob-
lems in timeO(N).

Proof. To prove the theorem, it is necessary to prove
the fulfillment of three conditions mentioned above. To
this end, let us formalize input data sets of the relational
database search problem in terms and concepts of the ge-
ometric search problem, and per contra, results of ge-
ometric search problem solution interpreted in terms of
databases.

Let each tuple of relationR put in accordance to some
point (or IOWn-plex) of geometric spaceER. Let each
attribute of relationR put in accordance to some coordi-
nate axis in the following way: axis value area is defined
by domain, the attribute is specified under so that value of
each tuple element corresponds to some coordinate value
of corresponding space point. Such a correspondence is
“one-one”. Ex facte, input data for relational database
problems are transformed into corresponding input data
for computational geometry problem in timeO(N) and
the received computational geometry problem solution is
transformed into correct solution for relational database
problem in timeO(N) also. Let us consider the main op-
erations of relational algebra that is the base for relational
languages creation. And by using examples of relational
algebra search queries, we proved their geometrical re-
alization (condition 2), and hence, the transformation of
two classes of problems, mentioned above.

Selection(S = σpredicate(R)).
Selection is a unary operation. The result of the se-

lection is a new relationS containing only those tuples
of the input relationR that holds the specified condition
(predicate). Let the relationR of the relational database
put in accordance to the subspaceER of the spaceEn.
As it was mentioned above, the rank d of the relation
R defines the dimension of the corresponding subspace
ER, Figure 1.

Predicate in the selection operation defines some do-
main (plane of the rankk < d). We are interested in
all those points of the subspaceER that lie within the
defined domain. Thereby, the predicate determines the
search region in the subspaceER, and under the geomet-
ric interpretation the result of the selection operation is
the query about the points set of the subspaceER that
lie within the queried region. Thus, the regional search
corresponds to the selection operation. There were pro-
posed several solutions of the regional search. Among
them, the algorithm based on the orthogonal range tree
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method and described in Preparata and Shamos [1] is
worth to be mentioned. The very algorithm uses a data
structure called the orthogonal range tree that requires
O(logd−1N) time per query,O(Nlogd−1N) space and
O(Nlogd−1N) preprocessing time, where theN is the
number of points andd is the space dimension. For an
example let us consider the following relations:

PRODUCER (PR, Surname, City, Status)
CUSTOMER (CS, Surname, City)
DETAIL (DT, Name, Weight)
CPD({CS, PR, DT}, Quantity, Price)

Query 1. Find out the list of all the details with the
weight in range (0.2; 0.45).

This query is composed in such a way:

σ0.2<weight<0.45(Detail)

The given query has the following geometric view,
Figure 2.

Projection (S = Πatr.1,...,atr.n(R)).
A projection is also a unary operation. It deter-

mines a new relationS that encloses a vertical subset
(i.e., an attributes subset) of the input relation R ob-
tained by deriving the values of the defined attributes
and by removing all duplicate tuples from the result.
Ex facte, the projection operation of the relationR cor-
responds to the projection of the points collection of
the spaceER over some coordinate planeπ, defined
by the coordinate axisl1, . . . , ln, that correspond to the
attributesatr.1, . . . , atr.n in the projection operation
Πatr.1,...,atr.n(R), Figure 3.

Figure 3:

Assume that we are given a pointP =
(x(1), x(2), . . . x

(n)
P ) over a subspaceER, dim(ER) = d;

where L = {l1, l2, . . . , ld} is a set of the
coordinate axis of the subspaceER. Then
Πatr.i(R) ≡ prli(ER) = {P ′|P ′ = prliP,∀P ∈ ER}=
{P ′|P ′ = (0, . . . , 0, x

(i)
P , 0, . . . , 0), ∀P ∈ ER},

Πatr.i,...,atr.j(R) ≡ prπ(ER)={P ′|P ′ =
prπP, π li, . . . , lj ,∀P ∈ ER}= {P ′|P ′ =
(0, . . . , 0, x

(i)
P , . . . , x

(j)
P , 0, . . . , 0), ∀P ∈ ER}.

Union (R ∪ S).
The union of two relationsR andS with tuplesI and

J correspondingly results their concatenation by forma-
tion a new relation enclosing the maximal number of tu-
ples(I + J), if the duplicated tuples are expunged. The
relationsR andS should be a union compatible (i.e., they
should have the same number of attributes with coinci-
dent domains). Let the relationsR andS of the relational
database put in accordance to the subspaceER andES of
the spaceEn correspondingly. In the geometric space the
union compatibility corresponds to the following condi-
tions:

1. Relations R and S have the same number of at-
tributes↔ corresponding subspacesER andES have the
same dimension

R ↔ ER

S ↔ ES => dim(ER) = dim(ES)
2. Domains coincides↔ corresponding subspaces

ER andES are given under the same field. Thus, the
union compatibility of the relationsR andS corresponds
to the isomorphism of the subspacesER andES . Under
the geometric interpretation the union of two relationsR
andS corresponds to the union of point sets of subspaces
ER andES .

Intersection (R ∩ S).
The necessary condition for intersection of two rela-

tionsR andS is their union compatibility.
Consequently, subspacesER and ES , that corre-

sponds to the relationsR andS, should be isomorphic.
The intersection of two relationsR andS contains all the
tuples ofR that also belong toS. Thus, the intersection
of two relationsR andS is corresponded to the intersec-
tion of subspacesER andES .

Difference (R− S).
The difference of two relationsR andS contains only

those tuples ofR that do not belong toS.



Also, relationsR andS should be a union compati-
ble. As it was mentioned above, the union compatibility
of the relations R and S corresponds to the isomorphism
of the subspacesER andES . Under the geometric in-
terpretation the difference of two relationsR andS cor-
responds to the set difference of point sets of subspaces
ER andES .

Cartesian product (R× S).
The Cartesian product of two relationsR andS corre-

sponds to the sum of the subspacesER andES . It should
be denoted that this sum is not a direct one, since if the
attribute names of relationsR andS coincide, the coordi-
nate axis that correspond to these attributes are collinear.

Division (R÷ S).
The division is a binary operation. The result consists

of the restrictions of tuples inR to the attribute names
unique toR, i.e., in the header ofR but not in the header
of S, for which it holds that all their combinations with
tuples inS are present inR. This operation may be ex-
pressed through the other ones:

T1 = Πc(R)
T2 = Πc((S × T1)−R)
T = T1 − T2

The projection, Cartesian product, and difference op-
erations have been already interpreted in terms of geom-
etry. Thus, the division operation could be geometrically
interpreted.

Joins.
Join operation derivates from Cartesian product since

it is equal to selection applied to Cartesian product of
those tuples of two relationsR andS that meet the con-
dition specified in selection predicate. Thus, join opera-
tion of two relationsR andS corresponds to the regional
search in subspace resulting as sum of the subspacesER

andES . Natural join is a binary operator that is written
as (R, S) whereR andS are relations. The result of the
natural join is the set of all combinations of tuples inR
andS that are equal on their common attribute names.
The right outer join of relationsR andS is written as
R X = S. The result of the right outer join is the set
of all combinations of tuples inR andS that are equal
on their common attribute names, in addition to tuples in
S that have no matching tuples inR.

The outer join or full outer join in effect combines
the results of the left and right outer joins.

The full outer join is written asR = X = S whereR
andS are relations. The result of the full outer join is the
set of all combinations of tuples inR andS that are equal
on their common attribute names, in addition to tuples in
S that have no matching tuples inR and tuples inR that
have no matching tuples inS in their common attribute
names.

3 Conclusion
In this paper we considered the problems of information
retrieval from relational databases and proved their trans-
formation to the geometric search problems in computa-
tional geometry, what allows us to use more efficient ge-
ometric algorithms for implementing search functions in

hyper-large databases. To this end, we formalized input
sets of the relational database search problem in terms
and concepts of the geometric search problem, and per
contra, results of geometric search problem solution in-
terpreted in terms of databases. Also, by using examples
of relational algebra search queries, we proved their ge-
ometrical realization, and hence, the transformation of
two classes of problems, mentioned above.

The object of our future researches is to develop the
general theory of transformation of database problems to
computational geometry problems and to create new data
structures for informational storing and searching using
geometrical methods.
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