
Development of a Parallel DBMS on the Basis of PostgreSQL∗

c© Constantin Pan

South Ural State University
kvapen@gmail.com

M.Sc. advisor: Mikhail Zymbler

Abstract

The paper describes the architecture and the
design of PargreSQL parallel database man-
agement system (DBMS) for distributed mem-
ory multiprocessors. PargreSQL is based upon
PostgreSQL open-source DBMS and exploits
partitioned parallelism.

1 Introduction
Currently open-source PostgreSQL DBMS [12] is a re-
liable alternative for commercial DBMSes. There are
many both practical database applications based upon
PostgreSQL and research projects devoted to extension
and improvement of PostgreSQL.

One of the directions mentioned above is to adapt
PostgreSQL for parallel query processing. In this paper
we describe the architecture and design of PargreSQL
parallel DBMS for analytical data processing on dis-
tributed multiprocessors. PargreSQL represents Post-
greSQL with embedded partitioned parallelism.

The paper is organized as follows. Section 2 briefly
discusses related work. Section 3 gives a description of
the PostgreSQL DBMS architecture. Section 4 intro-
duces design principles and architecture of PargreSQL
DBMS. The results of experiments on the current partial
implementation are shown in section 5. Section 6 con-
tains concluding remarks and directions for future work.

2 Related work
The research on extension and improvement of Post-
greSQL DBMS includes the following.

In [10] native XML type support in PostgreSQL is
discussed. Adding data types to provide support of HL7
medical information exchange standard in PostgreSQL
is described in [4]. The authors of [3] propose an image-
handling extension to PostgreSQL. In [8] an approach
to integration of PostgreSQL with the Semantic Web is
presented.

There are papers investigating adoption of Post-
greSQL for parallel query processing as well. In [6]
authors introduce their work on extending PostgreSQL

∗ This paper is supported by the Russian Foundation for Basic Re-
search (grant No. 09-07-00241-a).

Proceedings of the Spring Researcher’s Colloquium on Database
and Information Systems, Moscow, Russia, 2011

to support distributed query processing. Several limita-
tions in PostgreSQL’s query engine and corresponding
query execution techniques to improve performance of
distributed query processing are presented. ParGRES [9]
is an open-source database cluster middleware for high
performance OLAP query processing. ParGRES exploits
intra-query parallelism on PC clusters and uses adaptive
virtual partitioning of the database. GParGRES [5] ex-
ploits database replication and inter- and intra-query par-
allelism to efficiently support OLAP queries in a grid.
The approach has two levels of query splitting: grid-
level splitting, implemented by GParGRES, and node-
level splitting, implemented by ParGRES.

In [1] building a hybrid between MapReduce and par-
allel database is explored. The authors created a proto-
type named HadoopDB on the basis of Hadoop and Post-
greSQL, that is as efficient as parallel DBMS, but as scal-
able, fault tolerant and flexible as MapReduce systems.
PostgreSQL is used as the database layer and Hadoop as
the communication layer.

Our contribution is embedding partitioned paral-
lelism [2] into PostgreSQL. We use methods for parallel
query processing, proposed in [11] and [7].

3 PostgreSQL Architecture
PostgreSQL is based on the client-server model. A ses-
sion involves three processes into interaction: a frontend,
a backend and a daemon (see fig. 1).

Frontend

Daemon

k

1connects

Backend

k

1

<<create>>

queryexec 1

1-user

-executor

Figure 1: PostgreSQL processes

The daemon handles incoming connections from
frontends and creates a backend for each one. Each back-
end executes queries received from the related frontend.
The activity diagram of a PostgreSQL session is shown
in fig. 2.

There are following steps of query processing in Post-
greSQL: parse, rewrite, plan/optimize, and execute.

Respective PostgreSQL subsystems are depicted in
fig. 3. Parser checks the syntax of the query string and
builds a parse tree. Rewriter processes the tree according

connect accept

fork

send query exec query

send resultrecv result

[more
queries]

else

Frontend Daemon Backend

Figure 2: PostgreSQL session

PostgreSQL

Parser

Rewriter

Storage

Executor

Planner

libpq

libpq-be libpq-fe

Figure 3: PostgreSQL subsystems

to the rules specified by the user (e.g. view definitions).
Planner creates an optimal execution plan for this query
tree. Executor takes the execution plan and processes it
recursively from the root. Storage provides functions to
store and retrieve tuples and metadata.

Client

libpq-fe

libpq-fe

app

Server

Backend

libpq-be

Figure 4: PostgreSQL deployment

libpq implements frontend-backend interaction proto-
col and consists of two parts: the frontend (libpq-fe) and
the backend (libpq-be). The former is deployed on the
client side and serves as an API for the end-user applica-
tion. The latter is deployed on the server side and serves
as an API for libpq-fe, as shown in fig. 4.

4 PargreSQL Architecture
PargreSQL utilizes the idea of partitioned parallelism [7]
as shown in fig. 5. This form of parallelism supposes par-
titioning relations among the disks of the multiprocessor
system.

The way the partitioning is done is defined by a frag-
mentation function, which for each tuple of the relation

00
⋮
09

10
⋮
19

⋮

90
⋮
99

⋮

P0

S0

P1

S1

P9

S9

D
is

tr
ib

u
ti

on

Partitioning function

S.S_ID

⋮

M
er

gi
n

g

⋮

Result relation

Figure 5: Parallel query processing

calculates the number of the processor node which this
tuple should be placed at. A query is executed in parallel
on all processor nodes as a set of parallel agents. Each
agent processes its own fragment and generates a partial
query result. The partial results are merged into the re-
sulting relation.

The architecture of PargreSQL, in contrast with Post-
greSQL, assumes that a client connects to two or more
servers (see fig. 6).

par_Frontend

Daemon

k

nconnects

par_Backend

k

1

<<create>>

Backend
queryexec n

1-user

-executor

Figure 6: PargreSQL processes

The interaction sequence is shown in fig. 7. As op-
posed to PostgreSQL there are many daemons running in
PargreSQL. A frontend connects to each of them, sends
the same query to many backends, and receives the result
relation.

f : par_Frontend

dn : Daemon

d1 : Daemon b1 : par_Backend

bn : par_Backend

2.1: create()

2.n: create()

1.n: connect()

1.1: connect()

3.n: sendquery()

5.1: sendresult()

5.n: sendresult()

3.1: sendquery()

4.1: exchange()

4.n: exchange()

Figure 7: Interaction of PargreSQL clients and servers

Parallel query processing in PargreSQL is done in
more steps: parse, rewrite, plan/optimize, parallelize,
execute, and balance. During the query execution each
agent processes its own part of the relation independently
so, to obtain the correct result, transfers of tuples are re-
quired. Parallelization stages creation of a parallel plan
by inserting special exchange operators into the corre-
sponding places of the plan. Balance provides load-
balancing of the server nodes.

PargreSQL subsystems are depicted in fig. 8. Post-
greSQL is one of them. PargreSQL development in-
volves changes in Storage, Executor and Planner subsys-
tems of PostgreSQL.

The changes in the old code are needed to integrate it
with the new subsystems. par Storage is responsible for
storing partitioning metadata of relations. par Exchange

PostgreSQL

Parser

Rewriter

Storage

Executor

Planner

libpq

libpq-be libpq-fe

par_Storage

par_Exchange

par_Parallelizer

par_libpq

par_libpq-fe

par_Compat

<<use>>

<<use>>

<<use>>

<<use>>

PargreSQL

par_Balancer

<<use>>

Figure 8: PargreSQL subsystems

encapsulates the exchange operator implementation. Ex-
change operator is meant to compute the distribution
function ψ for each tuple of the relation, send “alien”
tuples to the other nodes, and receive “own” tuples in
response.

There are however some new subsystems which do
not require any changes in the old code: par libpq-fe and
par Compat. par libpq-fe is a wrapper around libpq-fe,
it is needed to propagate queries from an application to
many servers. par Compat makes this propagation trans-
parent to the application.

Client

libpq-fe

libpq-fe

par_libpq-fe

libpq-fe

app

Server

par_Backend

libpq-be

Figure 9: PargreSQL deployment

The only difference of deployment schemes (see
fig. 9) is that there is one more component on the client
side — the lipq-fe wrapper.

4.1 par libpq Design

par libpq subsystem consists of par libpq-fe library and
a set of macros (par Compat).

par libpq-fe is a library that is linked into frontend
applications instead of original PostgreSQL libpq-fe,
around which it is a wrapper. Its design is illustrated
with a class diagram in fig. 10.

The idea is to use original libpq-fe for connecting to
many servers simultaneously.

par Compat is a set of C preprocessor definitions for
transparent usage of par libpq-fe. An example of what
these macros are is given in fig. 11.

Using these macros an application programmer can
switch from PostgreSQL to PargreSQL without global
changes in the application code.

par_libpq-fe

par_PGconn

par_PQconnectdb()
par_PQstatus()
par_PQexec()
par_PQfinish()

libpq-fe

PGconn

PQconnectdb()
PQstatus()
PQexec()
PQfinish()

* 1

PGresult

Figure 10: PargreSQL libpq-fe wrapper

#define PGconn par_PGconn
#define PQconnectdb(X) par_PQconnectdb()
#define PQfinish(X) par_PQfinish(X)
#define PQstatus(X) par_PQstatus(X)
#define PQexec(X,Y) par_PQexec(X,Y)

Figure 11: PargreSQL compatibility macros

4.2 Exchange Operator Design

Exchange operator [7, 11] serves to exchange tuples be-
tween parallel agents. It is inserted into execution plans
by Parallelizer subsystem. The operator’s architecture is
presented in fig. 12.

merge

split

scattergather

ex
ch

ang
e

Figure 12: Exchange operator architecture

Fig. 13 shows new classes (grouped in par Exchange
package) that implement exchange operator.

par_Exchange
Exchange_Factory

+make_exchange()

Split

+init()
+next()
+reset()

Merge

+init()
+next()
+reset()

-even

Scatter

+init()
+next()
+reset()

-port
+isSending

Gather

+init()
+next()
+reset()

-port
-NULLcnt

*

1

* * *

<<entity>>
par_Plan

+frag_attr

Executor

Plan

+init()
+next()
+reset()

1 1

MPS

Figure 13: Exchange operator classes

MPS subsystem (Message Passing System) is used by
Scatter and Gather to transmit tuples. Its interface is like
MPI reduced to three methods: ISend, IRecv, and Test.
They are actually implemented on top of MPI.

Figs. 14, 15, 16, and 17 show algorithms for next()
method of four exchange subnodes.

[right.isSending
 = TRUE] wait

left.next

ψ

tuple

[own]

right.buffer := tuple

right.next

[alien]

[NULL]

[tuple]

Figure 14: Split.next() method

Split is meant to calculate fragmentation function for
each tuple and choose whether to keep it on the processor
node or send it to other processor node.

even := not even

right.next

left.next

NULL

[tuple]

tuple

[tuple]

right.next

left.next

NULL

[tuple]

tuple

[tuple]

[even] [odd]

[NULL]

[NULL]

[NULL]

[NULL]

else

else

else

else

Figure 15: Merge.next() method

Merge merges tuples from Gather and Split.

Test[isSending]

NULL[ok]

waitelse

[NULL] Isend(NULL)

to everyoneelse

isSending := FALSE

NULL

ψ

Isend(tuple, ψ)

isSending := TRUE NULL

Figure 16: Scatter.next() method

Scatter sends tuples coming from Split to other pro-
cessor nodes.

[all NULLs
gathered]

NULL

[tuple]

else

Test

tuple

Irecv

NULLcnt++ Irecv

waitelse

[NULL]

Figure 17: Gather.next() method

Gather does the opposite, receiving tuples from other
processor nodes.

5 Experimental Evaluation
At the moment we have implemented par libpq and
par Exchange subsystems of PargreSQL. The imple-
mentation has been tested on the following query:

select * from tab where tab.col % 10000 = 0

The query has been run against table tab consisting of
108 tuples. The speedup relative to PostgreSQL is shown
in fig. 18.

Nodes
1

(PostgreSQL)
2 3 4 5 6

Sp
ee
d
u
p

1

2

3

4

5

6
Linear

Actual

Figure 18: PargreSQL speedup

6 Conclusion
In this paper we have described the architecture and de-
sign of PargreSQL parallel DBMS for distributed mem-
ory multiprocessors. PargreSQL is based upon Post-
greSQL open-source DBMS and exploits partitioned par-
allelism.

There are following issues in our future research. We
plan to complete the implementation and to investigate
its speedup and scalability. The future research is also
going to be concentrated on implementing data updates,
transactions and fault tolerance.

References
[1] Azza Abouzeid, Kamil Bajda-Pawlikowski,

Daniel J. Abadi, Alexander Rasin, and Avi Sil-
berschatz. HadoopDB: An Architectural Hybrid
of MapReduce and DBMS Technologies for
Analytical Workloads. PVLDB, 2(1):922–933,
2009.

[2] David J. DeWitt and Jim Gray. Parallel Database
Systems: The Future of High Performance
Database Systems. Commun. ACM, 35(6):85–98,
1992.

[3] Denise Guliato, Ernani V. de Melo, Ran-
garaj M. Rangayyan, and Robson C. Soares.
POSTGRESQL-IE: An Image-handling Extension
for PostgreSQL. J. Digital Imaging, 22(2):149–
165, 2009.

[4] Yeb Havinga, Willem Dijkstra, and Ander de Kei-
jzer. Adding HL7 version 3 data types to Post-
greSQL. CoRR, abs/1003.3370, 2010.

[5] Nelson Kotowski, Alexandre A. B. Lima, Esther
Pacitti, Patrick Valduriez, and Marta Mattoso. Par-
allel query processing for OLAP in grids. Concur-
rency and Computation: Practice and Experience,
20(17):2039–2048, 2008.

[6] Rubao Lee and Minghong Zhou. Extending
PostgreSQL to Support Distributed/Heterogeneous
Query Processing. In Kotagiri Ramamohanarao,
P. Radha Krishna, Mukesh K. Mohania, and Ekawit
Nantajeewarawat, editors, DASFAA, volume 4443
of Lecture Notes in Computer Science, pages 1086–
1097. Springer, 2007.

[7] Andrey V. Lepikhov and Leonid B. Sokolinsky.
Query processing in a DBMS for cluster systems.
Programming and Computer Software, 36(4):205–
215, 2010.

[8] Dmitry V. Levshin and A. S. Markov. Algorithms
for integrating PostgreSQL with the semantic web.
Programming and Computer Software, 35(3):136–
144, 2009.

[9] Melissa Paes, Alexandre A. B. Lima, Patrick Val-
duriez, and Marta Mattoso. High-Performance
Query Processing of a Real-World OLAP Database
with ParGRES. In José M. Laginha M. Palma,
Patrick Amestoy, Michel J. Daydé, Marta Mattoso,
and João Correia Lopes, editors, VECPAR, volume
5336 of Lecture Notes in Computer Science, pages
188–200. Springer, 2008.

[10] Nikolay Samokhvalov. XML Support in Post-
greSQL. In Sergei D. Kuznetsov, Andrey
Fomichev, Boris Novikov, and Dmitry Sha-
porenkov, editors, SYRCoDIS, volume 256 of
CEUR Workshop Proceedings. CEUR-WS.org,
2007.

[11] Leonid B. Sokolinsky. Organization of Paral-
lel Query Processing in Multiprocessor Database
Machines with Hierarchical Architecture. Pro-
gramming and Computer Software, 27(6):297–308,
2001.

[12] Michael Stonebraker and Greg Kemnitz. The
POSTGRES next generation database management
system. Commun. ACM, 34:78–92, October 1991.

