
Modelling Snapshot Isolation Performance

c© Dmitri Vasilik

Saint Petersburg State University
Dmitri.Vasilik@gmail.com

Abstract

Snapshot Isolation (SI) level is extensively used
in commercial database systems. We devel-
oped a simple SI implementation protocol for
distributed DBMS and implemented it in the
Apache HBase. The work presents the perfor-
mance evaluation of the protocol. We have mea-
sured the performance of a single-node system
and modeled the performance of a distributed
HBase cluster.

1 Introduction
In the last ten years the special class of data-intensive
web-application has emerged. Youtube, Google Maps,
social networks, etc. represent the applications of the
class. This applications can be characterized by the fol-
lowing features: they work with large volumes of data
and typically do not need ACID transactions.

The choice of the concurrency control to employ in
the application is of great importance, since it affects the
performance of the application as well as the complexity
and cost of development. For example, choice of even-
tual consistency (EC) as an isolation level may result in
increased complexity of programming model. Thus, ap-
plication designer has to carefully look for the most suit-
able compromise between level of guarantees he gets and
performance of isolation level protocols.

The Snapshot Isolation (SI) isolation level was intro-
duced in [2]. It is widely adopted by the commercial and
open-source systems thanks to its ability to cope with
read intensive workloads and high degree of consistency
guarantees. It is even used instead of serializable isola-
tion level in Oracle and PostgreSQL. This decision can
be justified by level of guarantees SI actually offers.

The transaction executed under SI reads data from a
snapshot of the data as of the time the transaction started.
Two transactions are called competitive if they have over-
lapping execution intervals and they have written the
same data item. When the transaction is ready to commit,
it is assigned the commit timestamp and in case if there
is no competing transactions in the system it commits.
This feature is called “First-Commiter-Wins”.

We developed SI protocol for distributed DBMS. We
have presented it in [12] along with its implementation
prototype. We have chosen HBase to implement it in
because it is open source distributed data storage which

Proceedings of the Spring Researcher’s Colloquium on Database
and Information Systems, Moscow, Russia, 2011

has natively supported only EC1. In [12] we have mea-
sured the performance of the prototype in a single-node
mode and compared it with that of HBase, but we had not
an opportunity to run the system in a distributed mode.
Compared to [12], in this work we present performance
model of the protocol and the comparison of the protocol
simulation results with HBase simulation results for the
distributed mode.

The remainder of this paper is organized as follows.
In Section 2 we discuss literature works on the DBMS
performance evaluation with concurrency control perfor-
mance comparison being in focus. Section 3 contains
the description of the protocol and its implementation.
Performance model is provided in Section 4. Section
5 presents results of conducted simulation experiments.
Section 6 contains discussion of protocol implementa-
tion performance along with model validation issues. In
section 7 the results are summed up.

2 Related Work
A lot of concurrency control algorithms was introduced
in the last 30 years. Considerable research was devoted
to evaluating the performance of concurrency control al-
gorithm in the 80s and the earlier 90s.

In [1] authors has examined the assumption set em-
ployed in concurrency control performance (CC) mod-
elling. Authors has investigated the reasons of appar-
ent contradictions in performance results of earlier stud-
ies. In particular, the common assumption of infinite re-
sources was critically examined. The paper [11] lists the
CC methods along with results gained from analytical
and simulation studies. For a given CC method the mod-
els employed for its performance evaluation are briefly
described. In [10] issues in modelling performance are
discussed. The paper contains tens of questions to be
solved by the researcher before he starts to implement
his model along with some critique of using one’s intu-
ition in performance modelling.

Works [7, 6, 5] are focused on the distributed sys-
tems performance evaluation, however, this studies do
not have the CC methods in the main focus. In [6] perfor-
mance models classification based on the model assump-
tion set is provided. The paper [7] contains a detailed
comparison of Shared Disk and Shared Nothing (SN) ar-
chitectures. In particular, the performance of Scan and
Join operators is discussed. The paper [5] contains a
comprehensive SN DBMS performance study, perfor-

1Optimistic concurrency control was the only available alternative
for HBase by the moment we started implementation.



mance is modeled using three different workloads, one
of them being generated from database traces.

The work [8] presents an analytical SI performance
model for a standalone server machine.

Recently there was a number of studies related to SI
implementation in distributed systems [14, 4, 13]. The
work [4] presents a technique to preserve the behaviour
of centralized SI system in guaranteeing global SI in dis-
tributed, lazily replicated system. The technique lever-
ages local SI concurrency control. A simulation model
was developed to study the cost of using the technique.
This model is rather simple in aspects of single-node per-
formance, e.g. the service time per operation is specified
as model parameter.

The article [13] presents a cloud storage system
named ecStore. The article contains a brief description of
concurrency control protocols used, but it does not con-
tain CC performance comparison.

In the paper [14] an approach to use HBase as a cloud
database solution with global SI is described. The paper
presents an optimistic protocol, which uses 4 special ta-
bles and several queries to provide SI gaurentees. The
protocol is implemented on top of bare-bones HBase on
the client side, it’s imlementation is rather high-level, it
does not introduce any changes to server code. Authors
have conducted several experiments in a distributed envi-
ronment (3-machine cluster) to evaluate the cost of em-
ploying the proposed protocol.

In this work we present performance models for our
protocol and HBase and the comparison of simulation
results. To the best of our knowledge the performance
model of Key Value store like HBase has not been pre-
sented yet.

3 Implementation Protocol
3.1 Protocol Description

Let us suppose that current transaction state, its start
timestamp and end timestamp (if a transaction has been
already committed or aborted) are available at the execu-
tion time.

Read operation execution is straightforward. To read
a data object x the transaction t performs a selection of
all versions of x, committed before start time of t. Then
it traverses the obtained list of versions to find the latest
committed version. If the list contains version written by
t, this version is read instead of the latest committed.

Before the value of x can be updated the transaction
has to ensure, that no competitive transaction had already
written x. If x was updated by transaction, which was
committed after t had started or by active transaction,
than t aborts.

We have formally proved the correctness of the proto-
col in [12], but the prove is not in the scope of this work.

3.2 Data Storage Design Issues

We have implemented our protocol in HBase. HBase is
an open-source distributed data storage written in Java. It
was made after Google Bigtable. In [3] Bigtable is pre-
sented along with design and implementation decisions
made by developers.

Authors has called Bigtable “a sparse distributed per-
sistent multidimensional sorted map”. Bigtable API is

very simple. HBase API is also restricted to get, put,
delete and scan operations. The data processing nec-
essary for a query can not be pushed as close as possible
to data, as it is usually done in distributed RDBMS. If a
client wants to update data according to a special rule, it
requests the data, updates it locally and puts the updated
data to the storage. That is, complex query execution
is decomposed into two or more phases. As it was said
before, initially only eventual consistency isolation guar-
antees were provided by HBase. HBase/Bigtable users
who needed transactional execution, were suggested to
implement it themselves using data timestamps.

HBase cluster consists of servers of two types: master
nodes and region nodes. Every region server manages a
number of regions. HBase uses horizontal partitioning,
each region contains data for an interval of keys.

HBase is column oriented storage, that is, data is
stored on a per column basis in main memory and in the
file system. Every column store has its own set of files
and a per file buffer pool employing the classical LRU
discipline to manage pages. HBase use immutable files
to store data. When the total space occupied by updates
kept in main memory exceeds specified threshold a new
file is written to the file system. This is done in a special
thread. HBase uses write ahead log (WAL), that is, every
update is written to log before it gets to main memory
store.

3.3 Protocol Performance Discussion

The “First-Commiter-Wins” feature has an optimistic na-
ture, thus SI definition naturally accepts the optimistic
protocol. Our approach is not optimistic, it should be
rather called “First-Updater-Wins”.

Although the algorithm is nonlocking, it is more close
to restart oriented locking methods such as immediate-
restart. Immediate-restart algorithm description, its per-
formance modelling and comparison with blocking and
optimistic methods can be found in [1]. More sophis-
ticated restart oriented methods exist such as wound-
wait or wait-die, which could outperform the immediate-
restart method in most cases ([11]). We did not attempt
to build a protocol on top of this ideas.

Before a data object is written the version check is
performed. All data object versions made after the trans-
action had started must be selected and traversed. It may
take a considerable amount of time, because some of
committed versions of data object may have been already
written to the file system. In this case a number of page
reads is to be performed.

Some tricks could be used to avoid unnecessary disk
accesses or at least reduce their probability. The main
memory store could be assigned a timestamp each time
its contents are flushed to a new file. The version check
performed in main memory is sufficient to ensure “First-
Writer-Wins” feature if the transaction started after the
main memory store had been written to disk last time.
The second trick which may be used is to write only
the oldest versions to file, keeping new ones in memory.
Given average transaction execution time tavg , we can
keep versions with timestamps greater than now()−tavg .

To ensure transactional execution of queries in dis-
tributed data storage we used the distributed commit pro-
tocol. We have chosen a protocol similar to Two Phase



Commit (2PC) for its implementation simplicity. The
classical 2PC successfully commit scenario consists of
the following steps. The transaction initiator waits for
READY message from all the participated servers. When
all the participants voted to commit, it sends them COM-
MIT message and waits for ACK messages. After all
ACK messages were received, initiator finishes the trans-
action.

Since HBase uses WAL, when subtransaction sends
READY message to the transaction home node (client
machine), it has no additional work to do before it can
commit. It can not be aborted by other local subtrans-
action. When the transaction initiator receives READY
message from all the execution region servers, it just
sends them COMMIT message and commits the trans-
action locally. It does not wait for ACK messages from
executor servers as in the classical 2PC.

Let us summarize the overheads introduced by the
protocol.

• Employing distributed commit protocol leads to ad-
ditional communication overhead.

• Version check may lead to additional (local) disk
accesses and may consume CPU.

• Certain resources are wasted due to additional
aborts by protocol reasons.

4 Simulation Performance Model
The simulation model was written in Java using Simkit
simulation package [9].

Our model is rather hardware resource bounded than
data contention bounded. We believe that HBase was
not intended to be used for the workloads with high data
contention. Our model was not aided to solve some fun-
damental questions, it concentrates on answering the en-
gineering questions only. We have modeled the particu-
lar distributed data storage performance, so the model is
much less universal than models employed in mentioned
related works. However, the model is rather simple. It
abstracts from some details. For example, the primary
copy replication used in HBase, may affect the perfor-
mance, but it is not reflected in the model.

The model will be described in terms of queries, we
will use the term transaction when we need to outline the
differences.

4.1 Modelling Assumptions

We use a close system model. There is always the same
number of queries in the system. After one query had
completed its execution, the new one immediately re-
places it. Since the concurrency control performance
hardly depends on the active query count in the system,
we decided to keep these number constant.

The cluster is modelled as a queueing network, each
node is itself modeled as a queueing network.

We use quite common assumption called “homogene-
ity assumption” in [6].

• All database sites have the same structure and the
same service capacity.

• The amounts of data allocated to each unit are equal.

Parameters Settings
CPU: cores per PE 2

processor capacity (MIPS) 9000
#avg instr.: BOE and EOE steps 5000

per object reference 25000
for message 5000
for IO operation 3000

Disks: count per PE 1
access time mean (ms) 8
page transmission time (ms) 0.2

Network: throughput (Mbit/sec) 100
min packet size 540

Database: page size (Kb) 4
count of pages per PE 53000000
count of pages in buffer pool 500000

Table 1: System parameter settings.

• Data accesses are spread among nodes in uniform
manner.

We do not use a sophisticated model of a communi-
cation network as well, because we believe that network
should not be a bottleneck. In our model there is a vir-
tual connection between every query initiator (client) and
executor node with 100Mbit/sec throughput.

Table 1 contains the system settings used for experi-
ments.

4.2 Workload Model

The workload model is homogeneous, i.e. it consists of
queries of one type. As was mentioned above, the com-
plex query is executed in a number of steps. We evaluate
the performance for the query which has two execution
steps.

1. Several regions are scanned. After the scan results
are send to the client (query initiator machine).

2. Some of the objects obtained on the first step are
updated. Updates take place in the same regions,
and thus are performed by the same region servers.

The number of nodes participating in query execu-
tion is distributed according to Poisson distribution with
mean M . The number of data objects query reads per
region server is exponentially distributed with the mean
Nr, writes count is distributed in a similar way with the
mean Nw. Reads and writes are distributed among the
nodes uniformly.

The 99%-1% data access pattern is used. 99% of
transactions references 1% of data objects. In our model
the data access pattern influences both the buffer pool hit
rate and the data contention.

For the model simplicity we assumed that the data ob-
ject version has a page size. It is reasonable assumption,
because HBase was not designated to work with objects
of small size. Thus, the granule for CC algorithm is rep-
resented by a page in our model.

Workload parameters can be found in the Table 2.

4.3 Query Execution Model

Each query has a home node. The home node is the client
machine it has arrived to. After a query has arrived, it is



Parameters Settings
M 7
Nr 1000
Nw 10
Nvc 10
data access pattern 99%-1%
percent of sequential IO 5%

Table 2: Workload parameter settings.

split to a number of subqueries, each of which is local
to one of execution nodes. Each subquery is modeled
as a list of data references (pages) to be processed. For
each subquery the message is sent to the execution site
to start up the execution. Each query joins the Net queue
and consumes CPU time to send a message to execution
sites.

When the subquery start message arrives to the exe-
cution site, the subquery is created and it joins the Net
queue on the execution site and consumes CPU time
needed to read a message. Than it consumes CPU to
begin execution.

The subquery execution consists of Begin-Of-
Execution (BOE) step, a number of data reference pro-
cessing iterations and End-Of-Execution (EOE) step.

For each data object reference it goes to the buffer
pool to get the data. If the required page is not already
in memory, subquery consumes processor time to start
IO and joins the disk queue. Than the subquery goes to
CPU queue and consumes time to process data reference
(to find appropriate version). In case there are some more
references the subquery repeats a similar data reference
processing iterations.

After the subquery has successfully finished its execu-
tion it sends requested data (if present) and the READY
message to the home node. After that, the subquery is
finished, so it goes to CPU queue and consumes time for
EOE step.

The client receives the data from all the participated
servers, process it and sends a message to each partici-
pant to perform updates of the second execution stage.

A write subquery is executed in the similar way with
a read subquery. Its behaviour differs in data processing
iteration. The write subquery firstly consumes CPU for
reference processing and after that writes the log page to
the file system and enqueues the page write (it does not
wait until the page will be written).

4.4 Transaction Execution Model

Read subtransactions do not differ from read subqueries
in their execution model. Although they may consume
more CPU time for a data reference processing to find
appropriate version, the performed steps are same.

Write subtransaction performs version check before
each write. If the version check failed, the transaction is
to be aborted, and subtransaction goes to the Net node
to send an ABORT message. The probability of version
check success will be discussed later.

The probability that versions needed for version check
were not flushed to a file since the transaction had started
is quite high for not write intensive workload. Therefore,
the version check step is modeled as processing of Nvc

pages, each of which is already in buffer pool, so disk IO
is not needed.

After the write subtransaction has finished execution
it sends READY to the home node and waits for COM-
MIT or ABORT message in reply. The transaction ini-
tiator waits until all READY messages (or one ABORT
message) will be received. Than it sends the COMMIT
(ABORT) message to all executors and the transaction
is finished. After the subquery received the COMMIT
(ABORT) message, it writes a log page and goes to the
CPU queue to perform the EOE step.

4.5 Abort Probability

Let us consider the probability of version check failure.
Suppose the transaction t which was started at the mo-
ment u0 is going to update the value of data object x at
the moment u.

The failure of version check may be caused by two
types of transactions that had updated x recently.

1. x may been written by the transaction which was
committed after t had started. Given the throughput
of the server T (u) for the moment u, the number of
transactions committed in the time interval [u0, u]
can be approximated by Nw ∗ T (u) ∗ (u− u0).

2. x may been written by the transaction, that has not
already committed. Let A(u) denote the number
of write subtransaction active at the server as for
the moment u. The average number of writes made
by active subtransactions may be approximated by
Nw/2. The number of writes made by all active
transaction as for a moment u may be estimated
with Nw ∗A(u)/2.

The count of updates written by transactions which
execution interval overlaps with execution interval of t
may be approximated by

K(u, u0) = Nw ∗ A(u) + 2 ∗ T (u) ∗ (u− u0)

2

Let us consider the a-b data access pattern and the case
when t belongs to majority of transactions. The num-
ber of updates made by transactions of major class is
a∗K(t, u), while the number of data objects t can access
is D ∗ b. The probability of observing update made by a
transaction of the same class is

a ∗K(u, u0)

D ∗ b
The probability of observing updates made by transac-
tions of the other class is

(1− a) ∗K(u, u0)

D

Thus, for a transaction of the first type the probability of
version check failure can be estimated by

P1(u, u0) =
b ∗ (1− a) + a

b
∗ K(u, u0)

D

and for a transaction of the second type by

P2(u, u0) =
K(u, u0)

D



5 Simulation Results

The main goal of our performance study consists in eval-
uation of performance degradation caused by additional
overheads introduced by the protocol. We measured
the performance of the protocol in terms of the system
throughput and average response time.

We evaluated the throughput degradation for a partic-
ular parameter settings as the difference between the EC
and SI throughputs divided by EC throughput.

In this section we use the abbreviation EC to denote
HBase version, which uses eventual consistency, and SI
for HBase, which uses our protocol. For most of the ex-
periments we present two diagrams: one depicts normal
workload results, while the other reflects the situation
when all the available resources are already saturated.
We have payed a special attention to the saturated sys-
tem performance to examine the influence of transaction
aborts on the throughput.

Fig. 1 and 2 plot throughput results against the ac-
tive queries count in the system. The maximum degrada-
tion obtained for normal workload was 3.3% and 7.7%
for saturated system. In the latter case transaction aborts
make significant contribution to the throughput degrada-
tion. As the number of queries in the system increase,
the throughput degradation raises to the mentioned max-
imum of 7.7% for 1400 queries. When the number of
queries is equal to 100, aborts number per second is
less than 30% of difference between EC and SI through-
puts. The rate of aborts count per second to difference of
throughputs reaches the maximum of 98.8% at the point
of 700 queries.

Fig. 3 and 4 give the average response time against
the active queries count in the system. Relative response
time increase is quite small, it does not exceed 3%. After
the queries count reaches 35 the relative response time
increase does not change significantly. It remains about
3% for the highly saturated workload too.

As expected the use of distributed commit protocol
does not make considerable contribution to the average
response time for the long-running transactions. The disk
system appears to be the bottleneck for this kind of work-
load. The performance of the system is substantially in-
fluenced by the buffer pool hit rate.

Fig. 5 and 6 shows the throughput results for EC and
SI against buffer pool hit rate. These experiments were
conducted with the systems running 70 (Fig. 5) and 400
(Fig. 6) transactions. The partition size was varied to
provide needed buffer pool hit rate. The results obtained
from both experiments are similar. In both experiments
systems show significant speedup with buffer pool hit
rate verging towards 1. EC outperforms SI by 0.51-6.3%
in case of normal workload and by 2.9-6.7% otherwise.

Fig. 7 gives response time against buffer pool hit rate
for the system running 70 queries. Response time is not
as sensible to buffer pool hit rate as throughput. The
graph is close to linear. However, relative response time
increase grows rapidly with buffer pool hit rate getting
closer to 1 and reaches the maximum of 6.25% for nor-
mal workload and 3.87% for saturated workload.

Figure 1: Normal workload throughput against the active
queries count.

Figure 2: Saturated workload throughput against the ac-
tive queries count.

Figure 3: Normal workload response time against the ac-
tive queries count.



Figure 4: Saturated workload response time against the
active queries count.

Figure 5: Normal workload throughput against buffer
pool hit rate.

Figure 6: Saturated workload throughput against buffer
pool hit rate.

Figure 7: Normal workload response time against buffer
pool hit rate.

6 Model Validation

We have implemented the protocol in HBase. Initially
we have evaluated the protocol performance using the
prototype. We have measured the prototype performance
for a workload, which consisted of short-running queries.
Each query read and updated 3 values of double type.
The prototype has shown relatively good results for such
workload: the throughput was 3 times lower than that of
initial HBase version.

To validate our model mentioned test set was changed.
If each query writes 3 double values, size of log entries
to be flushed to disk before query finishes is small. So
we replaced double values with 4Kb sized byte arrays.
After the changes had been made we discovered HBase
throughput being ten times greater than that of the proto-
type.

We suppose the prototype implementation showed
such a poor performance, because it copies data objects
for internal purposes. For every single get and put op-
eration at least one data object is copied. We suppose
that despite the fact that main memory reads and writes
are extremely fast, copying of data objects may affect the
performance in case of no disk accesses.

The values of model parameters for EC were selected
in such a way, that EC throughput was as close as pos-
sible to HBase throughput. The experiment conducted
with the same parameters using SI model has shown the
throughput 1.5 times lower than for EC (1200 vs. 1800).

To have the SI model performance close to that of the
prototype, we adjusted the mean page processing time
parameter to be 270000 instruction instead of default
25000. The primary goal of this experiment was to val-
idate the abort probability model. Fig. 8 shows the pro-
totype throughput and SI model throughput, and 9 shows
abort rates obtained. The difference between the aborts
rates obtained from the model and the prototype has not
exceeded 3% being about 2% at average. We conclude
that our model captures the system behaviour adequate.



Figure 8: Model validation: SI throughput.

Figure 9: Model validation: SI abort rate.

7 Summary
In this work we presented SI protocol and evaluated its
performance. The advantage of the protocol under EC is
obvious: the data storage user is provided with SI con-
sistency guarantees. However, the protocol introduces
several additional overheads, which may affect the per-
formance. We have modeled the performance for the par-
ticular kind of workload and validated the model using
the prototype we have presented in [12]. Although, the
protocol implementation prototype has shown quite poor
performance, it does not imply that the protocol is inef-
fective itself. The simulation results has shown that use
of the protocol does not lead to significant performance
degradation for this workload type.

References
[1] Rakesh Agrawal, Michael J. Carey, and Miron

Livny. Concurrency control performance model-
ing: Alternatives and implications. ACM Transac-
tions on Database Systems, 12(4):609–654, 1987.

[2] Hal Berenson, Phil Bernstein, Jim Gray, Jim
Melton, Elizabeth O’Neil, and Patrick O’Neil. A
critique of ANSI SQL isolation levels. In Proceed-
ings of the 1995 ACM SIGMOD international con-
ference on Management of data, volume 24, pages
1–10, New York, 1995.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A distributed storage system for
structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Im-
plementation, volume 7, pages 295–310, 2006.

[4] Khuzaima Daudjee and Kenneth Salem. Lazy
database replication with Snapshot Isolation. In
Proceedings of the 32nd international conference
on Very Large Databases, 2006.

[5] Robert Marek and Erhard Rahm. Performance eval-
uation of parallel transaction processing in Shared
Nothing database systems. In Proceedings of the
4th International PARLE Conference on Parallel
Architectures and Languages Europe, pages 295–
310, Paris, 1992.

[6] Matthias Nicola and Matthias Jarke. Performance
modeling of distributed and replicated databases.
IEEE Transactions on Knowledge and Data Engi-
neering, 12(4), 2000.

[7] Erhard Rahm. Parallel query processing in Shared
Disk database systems. In Proceedings of 5th Int.
Workshop on High Performance Transaction Sys-
tems, Asilomar, 1993.

[8] Pierangelo Di Sanzo, Bruno Ciciani, and
Francesco Quaglia Sapienza. A performance
model of multi-version concurrency control. In
Proceedings of IEEE International Symposium on
Modeling, Analysis and Simulation of Computers



and Telecommunication Systems, pages 1–10,
2008.

[9] Naval Postgraduate School, March 2010. Simkit.

[10] Y.C. Tay. Issues in modelling locking performance.
In Hideaki Takagi, editor, Stochastic Analysis of
Computer and Communication. Elsevier Science
Publishers B.V. (North-Holland), New York, 1990.

[11] Alexander Thomasian. Concurrency control:
Methods, performance, and analysis. ACM Com-
puting Surveys, 30(1), 1998.

[12] Dmitri Vasilik. Implementing Snapshot Isolation
in HBase. Diploma thesis, Saint Petersburg State
University, 2010.

[13] Hoang Tam Vo, Chun Chen, and Beng Chin Ooi.
Towards elastic transactional cloud storage with
range query support. Proceedings of the VLDB En-
dowment, 3(1-2), 2010.

[14] Chen Zhang and Hans De Sterck. Supporting multi-
row distributed transactions with Global Snapshot
Isolation using bare-bones HBase. In Proceedings
of the 11th ACM/IEEE International Conference
on Grid Computing (Grid 2010), pages 295–310,
Brussels, 2010.


