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Abstract. The MapReduce programming model has gained traction in
different application areas in recent years, ranging from the analysis of
log files to the computation of the RDFS closure. Yet, for most users the
MapReduce abstraction is too low-level since even simple computations
have to be expressed as Map and Reduce phases. In this paper we pro-
pose RDFPath, an expressive RDF path query language geared towards
casual users that benefits from the scaling properties of the MapReduce
framework by automatically transforming declarative path queries into
MapReduce jobs. Our evaluation on a real world data set shows the
applicability of RDFPath for investigating typical graph properties like
shortest paths.
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1 Introduction

The proliferation of data on the Web is growing tremendously in recent years.
According to Eric Schmidt, CEO of Google, more than five Exabyte of data are
generated collectively every two days, which corresponds to the whole amount
of data generated up to the year 20031. Another example is Facebook with
currently more than 500 million active users interacting with more than 900
million different objects like pages, groups or events.

In a Semantic Web environment this data is typically represented as a RDF
graph [19], which is a natural choice for social network scenarios [20], thus facili-
tating exchange, interoperability, transformation and querying of data. However,
management of large RDF graphs is a non-trivial task and single machine ap-
proaches are often challenged with processing queries on such graphs [28]. One
solution is to use high performance clusters or to develop custom distributed
systems that are commonly not very cost-efficient and also do not scale with
respect to additional hardware [1, 8, 9].

1 http://techonomy.com



The MapReduce programming model introduced by Google in [8] runs on
regular off-the-shelf hardware and shows desirable scaling properties, e.g. new
computing nodes can easily be added to the cluster. Additionally, the distri-
bution of data and the parallelization of calculations is handled automatically,
relieving the developer from having to deal with classical problems of distributed
applications such as the synchronization of data, network protocols or fault toler-
ance strategies. These benefits have led to the application of this programming
model to a number of problems in different areas, where large data sets have
to be processed [1, 2, 7]. One line of research is centered around the transfor-
mation of existing algorithms into the MapReduce paradigm [18], which is a
time consuming process that requires substantial technical knowledge about the
framework. More in line with the approach presented in this paper is the idea
to use a declarative high-level language and to provide an automatic translation
into a series of Map and Reduce phases as proposed in [14, 27] for SPARQL and
in [22] for Pig Latin, a data processing language for arbitrary data.

Contributions. In this paper we present RDFPath, a declarative path query
language for RDF that by design has a natural mapping to the MapReduce
programming model while remaining extensible. We also give details about our
system design and implementation. By its intuitive syntax, RDFPath supports
the exploration of graph properties such as shortest connections between two
nodes in a RDF graph. We are convinced that RDFPath is a valuable tool for
the analysis of social graphs, which is highlighted by our evaluation on a real-
world data set based on user profiles crawled from Last.fm. The implementation
of RDFPath is available for download from our project homepage2.

Related Work. There is a large body of work dealing with query languages for
(RDF) graphs considering various aspects and application fields [6, 10, 12, 16, 25,
32]. Besides classical proposals for graphs as introduced in [25] and in [16] with
RQL, there are also many proposals for specific RDF graph languages (cf. [6,
10, 12] for detailed surveys). Taking this into account, we extended the proposed
comparison matrix for RDF query languages from [4, 5] by two additional prop-
erties, namely the support for shortest path queries and aggregate functions, as
well as the additional RDF query languages SPARQL [24], RPL [32], and RDF-
Path, as depicted in Table 1. For a more detailed description of the properties
occurring in Table 1 the interested reader is referred to [5].

According to Table 1, RDFPath has a competitive expressiveness to other
RDF query languages. For the missing diameter property, which is not consid-
ered in any of the listed languages, a MapReduce solution has been proposed
in [15], regardless of a syntactically useful integration into any path query lan-
guage. There are also further approaches to extend SPARQL with expressive
navigational capabilities such as nSPARQL [23], (C)PSPARQL [3] as well as

2 http://dbis.informatik.uni-freiburg.de/?project=DiPoS/RDFPath.html



Property RQL
SeRQL,
RDQL3,
Triple

N3 Versa RxPath RPL
SPARQL

(1.0)
RDFPath

Adjacent nodes ± ± ± ± ×
√ √ √

Adjacent edges ± ± × × × ×
√ √

Degree of a node ± × × × × × ×
√

Path × × × × ± ± × ±
Fixed-length Path ± ± ± × ± ±

√ √

Distance between 2 nodes × × × × × × × ±
Diameter × × × × × × × ×
Shortest Paths × × × × × × × ±
Aggregate functions ± × × × ± × × ±

(×: not supported, ±: partially supported,
√

: fully supported)

Table 1. Comparison of RDF Query Languages (adapted from [4, 5])

property paths, that are a part of the proposal for SPARQL 1.14. In contrast,
we focus on path queries and study their implementation based on MapReduce.

Another area, which is related to our research, is the distributed processing
of large data sets with MapReduce. Pig is a system for analyzing large data
sets, consisting of the high-level language Pig Latin [22] that is automatically
translated into MapReduce jobs. Furthermore there are serveral recent approches
for evaluating SPARQL queries with MapReduce [14, 21, 27]. However, because
of the limited navigational capabilities of SPARQL [23], as opposed to RDFPath,
these approaches do not offer a sufficient functionality to support a broad range
of analysis tasks for RDF graphs.

Besides the usage of a general purpose MapReduce cluster, some systems
rely on a specialized computer cluster. Virtuoso Cluster Edition [9] is a clus-
ter extension of the RDF Store Virtuoso and BigOWLIM5 is a RDF database
engine with extensive reasoning capabilities, both allowing to store and process
billions of triples. In [30] the authors propose an extension of Sesame for query-
ing distributed RDF repositories. However, such specialized clusters have the
disadvantage that they require individual infrastructures, whereas our approach
is based on a general framework that can be used for different purposes.

Paper Structure. Section 2 provides a brief introduction to the MapReduce
framework. Section 3 introduces the RDFPath language, while Section 4 dis-
cusses the components of the implemented system and the evaluation of RDF-
Path queries. Section 5 presents our system evaluation based on a real-world
data set and Section 6 concludes this paper with an outlook on future work.

3 In [13] the authors describe how to extend RDQL to support aggregates.
4 http://www.w3.org/TR/sparql11-query
5 http://www.ontotext.com/owlim



2 MapReduce

The MapReduce programming model was originally introduced by Google in
2004 [8] and enables scalable, fault tolerant and massively parallel calculations
using a computer cluster. The basis of Google’s MapReduce is the distributed
file system GFS [11] where large files are split into equal sized blocks, spread
across the cluster and fault tolerance is achieved by replication. The workflow of
a MapReduce program is a sequence of MapReduce jobs each consisting of a Map
and a Reduce phase separated by a so-called Shuffle & Sort phase. A user has
to implement the map and reduce functions which are automatically executed
in parallel on a portion of the data. The Mappers invoke the map function for
every record of their input data set represented as a key-value pair. The map
function outputs a list of new intermediate key-value pairs which are then sorted
according to their key and distributed to the Reducers such that all values with
the same key are sent to the same Reducer. The reduce function is invoked for
every distinct key together with a list of all according values and outputs a list of
values which can be used as input for the next MapReduce job. The signatures
of the map and reduce functions are therefore as follows:

map: (inKey, inValue) -> list(outKey, intermediateValue)

reduce: (outKey, list(intermediateValue)) -> list(outValue)

3 RDFPath

A RDF data set consists of a set of RDF triples in the form <subject, predicate,
object> that can be interpreted as ”subject has the property predicate with value
object”. It is possible to represent a RDF data set as directed, labeled graph
where every triple corresponds to an edge (predicate) from one node (subject)
to another node (object). For clarity of presentation, we use a simplified RDF
notation without URI prefixes in the following. Strings and numbers are mapped
to their corresponding datatypes in RDF.

Executing path queries on very large RDF data sets like social network graphs
with billions of entries is a non-trivial task that typically requires many resources
and computational power [1, 8, 9, 20, 28]. RDFPath is a declarative RDF path
query language, inspired by XPath and designed especially with regard to the
MapReduce model. A query in RDFPath is composed by a sequence of location
steps where the output of the ith location step is used as input for the (i + 1)th

location step. Conceptually, a location step adds one or more additional edges
and nodes to an intermediate path that can be restricted by filters. The result of
a query is a set of paths, consisting of edges and nodes of the given RDF graph.
In the following we give an example-driven introduction to RDFPath.

3.1 RDFPath By Example

Start Node. The start node is the first part of a RDFPath query, separated by
"::" from the rest of the query and specifies the starting point for the evaluation



of a path query as shown in Query 1. Using the symbol "*" indicates an arbitrary
start node where every subject with the denoted predicate of the first location
step is considered (see Query 2).

Chris :: knows (1)

* :: knows (2)

Location Step. Location steps are the basic navigational component in RDF-
Path, specifying the next edge to follow in the query evaluation process. The
usage of multiple location steps, separated by ">", defines the order as well as
the amount of edges followed by the query (Query 3). If the same edge is used
in several consecutive location steps one can use an abbreviation by specifying
the number of iterations within parentheses as shown in Query 4. Instead of
specifying a fixed edge, the symbol "*" can be used to follow an arbitrary edge
as illustrated in Query 5 that determines all adjacent edges and nodes of Chris.

Chris :: knows > knows > age (3)

Chris :: knows (2) > age (4)

Chris :: * (5)

Filter. Filters can be specified within any location step using square brackets.
There are two types of filters to constrain the value (Queries 6, 7) or the proper-
ties (Query 8) of a node reached by the location step. Multiple filters are specified
in a sequence and a path has to satisfy all filters. If a node does not have the
desired property, the filter evaluates to false. Up to now, the following filter
expressions are applicable: equals(), prefix(), suffix(), min(), max().

Chris :: knows > age [min(18)] [max(67)] (6)

Chris :: * > * [equals(’Peter’)] (7)

Chris :: knows [age = min(30)] [country = prefix(’D’)] > name (8)

Bounded Search. This type of query starts with a fixed node and computes
the shortest paths between the start node and all reachable nodes within a
user-defined bound. For this purpose we extend the notation of the previously
introduced abbreviations with an optional symbol "*". While the abbreviations
indicate a fixed length, the "*" symbol indicates to use the number as upper
bound for the maximum search depth. As an example, in Query 9 we search for
all German people with a maximum distance of three to Chris.

Chris :: knows [country = equals(’DE’)] (*3) (9)

Bounded Shortest Path. This type of query computes the shortest path
between two nodes in the graph with a user-defined maximum distance. As
we are often interested in the length of the path, the query outputs the shortest
distance and the corresponding path between two given nodes. To do this one has
to extend a bounded search query with a final distance() function specifying
the target node as shown in Query 10.

Chris :: knows (*3).distance(’Peter’) (10)



Aggregation Functions. It is possible to count the number of resulting paths
for a query (Query 11 calculates the degree of Chris) or to apply some aggregation
functions to the last nodes of the paths, respectively. The following functions
are available: count(), sum(), avg(), min() and max(). It should be noted
that aggregation functions can only be applied to nodes of numeric type (e.g.
integer or double) as shown in Query 12.

Chris :: *.count() (11)

Chris :: knows > age.avg() (12)

Example. Figure 1 shows the evaluation of the last location step of Query 13 on
the corresponding RDF graph. The second path is rejected as the age of Sarah
does not satisfy the filter condition.

Chris :: knows [country=prefix(’D’)] > knows > age [min(30)] (13)

 DE 
  

CH 
  

  
Sarah 

  
Chris 

  
Alex 

  
Simon   Peter 

DO     
Frank 

42 
  

25   
knows 
country 
age 

result: 
Chris (knows) Peter [country=DE] (knows) Simon (age) 42 
Chris (knows) Alex  [country=DO] (knows) Sarah (age) 25 

Fig. 1. RDFPath Example

3.2 Expressiveness

In this section we will evaluate the expressiveness of RDFPath w.r.t. the prop-
erties listed in Table 1. A detailed discussion can be found on our project home-
page6 and in [26]. Query 5 shows an example for the calculation of all adjacent
edges and nodes of a node by using the symbol "*" instead of specifying a fixed
edge. Query 11 calculates the degree of a node by applying the aggregation func-
tion count() on the resulting paths and Query 7 gives all paths with a fixed
length of two from Chris to Peter by specifying two location steps with arbi-
trary edges. The properties path, distance between 2 nodes and shortest paths
are only partially supported by RDFPath because in general to answer these
properties one has to calculate paths of arbitrary length where RDFPath only
supports paths of a maximum fixed length. Furthermore aggregation functions
are partially supported as they can only be applied in the last location step of a
query.

6 http://dbis.informatik.uni-freiburg.de/?project=DiPoS/RDFPath.html



4 Query Evaluation

We implemented RDFPath based on the well-known Apache Hadoop Frame-
work, an open source implementation of Google’s MapReduce and GFS. Our
system loads the considered RDF graph into the Hadoop Distributed File Sys-
tem (HDFS) once in advance, translates RDFPath queries into a sequence of
MapReduce jobs, executes them in the framework and stores the results again
in HDFS. A location step in RDFPath mostly follows a fixed edge (predicate)
which means that only a portion of the RDF graph has to be considered in
many cases. In these cases, it is advantageous to read only those triples concern-
ing the relevant edge which can be done by partitioning the triples of the RDF
graph according to their predicates. This principle is also knows as vertical par-
titioning [2] and forms the basis of our data model. Hence an input RDF graph
is loaded in advance to apply the vertical partitioning and store the resulting
partitions in HDFS.
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Fig. 2. Query Processing

The Query Processor parses the query and generates a general execution plan
that consists of a sequence of instructions where each instruction describes e.g.
the application of a filter, join or aggregation function. In the next step, the
general execution plan is mapped to a specific MapReduce plan that consists of
a sequence of MapReduce assignments. An assignment encapsulates the specific
MapReduce job together with a job configuration. The Query Engine runs the
MapReduce jobs in sequence, collects information about the computation process
like time and storage utilization and cleans up temporary files. A schematic
representation of this procedure is shown in Figure 2.



4.1 Mapping of Location Steps to MapReduce jobs

A query in RDFPath is composed of a sequence of location steps that is trans-
lated into a sequence of MapReduce jobs automatically. As illustrated in Figure 3
a location step corresponds to a join in MapReduce between an intermediate set
of paths and the corresponding RDF graph partition. Joins are implemented as
so-called Reduce-Side-Joins since the assumption of the more efficient Map-Side-
Joins that both inputs must be sorted is not fulfilled in general. The principles
of Reduce-Side-Joins can be looked up in [18, 31]. Filters are applied in the Map
phase by rejecting all triples that do not satisfy the filter conditions and aggrega-
tion functions are computed in parallel in the Reduce phase of the last location
step. We also implemented a mechanism to detect cycles when extending an
intermediate path where the user can decide at runtime whether (1) cycles are
allowed, (2) only allowed if the cycle contains two or more distinct edges or (3)
not allowed at all. Considering Figure 3 the given query requires two joins and
is therefore mapped into a MapReduce plan that consists of two MapReduce
jobs. While the first job computes all friends of ”Chris” that can be reached by
following the edge knows at most two times, the second MapReduce job follows
the edge country and restricts the value to ”DE”.
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Fig. 3. Joins and Location Steps

5 Evaluation

We evaluated our implementation on two different data sources to investigate
the scalability behavior. First, we used artificial data produced by the SP2Bench
generator [29] which allows to generate arbitrary large RDF documents that
contain bibliographic information about synthetic publications. The generated
RDF documents contained up to 1.6 billion RDF triples. Second, we collected
225 million RDF triples of real world data from the online music service Last.fm
that are accessible via a public API. Due to space limitations we only discuss
some results for the Last.fm dataset, which is a more appropriate choice for path
queries and can also be interpreted in a more intuitive way. Figure 4 illustrates
the dataset.

We used a cluster of ten Dell PowerEdge R200 servers connected via a gigabit
network and Cloudera’s Distribution for Hadoop 3 Beta (CDH3). Each server
had a Dual Core 3,16 GHz processor, 4 GB RAM and 1 TB harddisk. One of the
servers was exclusively used to distribute the MapReduce jobs (Jobtracker) and



Triples Percentage

artistSimilar artistSimilar 52980897 22,18495
userListenedTo listenedTo 44392851 18,58883
trackSimilar trackSimilar 38814321 16,25291
trackSimilar trackSimilar 38814321 16,25291
userTopTracks topTracks 11816784 4,948099
userTopAlbums userTopAlbums 11697657 4,898216
userTopArtists topArtists 11671320 4,887188
trackTopFans trackTopFans 7991565 3,346346
artistTopTracks artistTopTracks 6885028 2,883001
artistTopFans artistTopFans 6627451 2,775144
userKnows knows 3398561 1,423096
artistTopAlbums artistTopAlbums 834521 0,349443
trackArtist trackArtist 241637 0,101182
artistTracks artistTracks 241634 0,101181
trackDuration trackDuration 241609 0,10117
trackPlaycount trackPlaycount 241609 0,10117
albumArtist albumArtist 240446 0,100683
artistAlbum artistAlbum 240444 0,100682
userPlaycount userPlaycount 239864 0,100439
userGender userGender 239029 0,10009
albumPlaycount albumPlaycount 214118 0,089659
albumTracks albumTracks 161804 0,067753
trackAlbum trackAlbum 161804 0,067753
userCountry userCountry 160407 0,067168
userAge userAge 136629 0,057211
userRealname userRealname 128321 0,053732

Summe 238814632
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Fig. 4. (a) Histogram of Last.fm data (b) Simplified RDF graph of the Last.fm data set.
The missing edge labels are named like the target nodes. In the case of ambiguity, the
edge label is extended by the type of source (e.g. trackPlaycount and albumPlaycount)

store the metadata of the file system (Namenode). Besides the default Hadoop
configuration we used 9 reducers (one per harddisk).

Query 1. Starting from a given track this query determines the album name
for all similar tracks that can be reached by following the edge trackSimilar at
most four times. The overall execution times of this query are shown in the left
diagram of Figure 5 and exhibit a linear scaling behavior in the size of the graph.
Furthermore it turns out that this is also the case for the amount of transferred
data (SHUFFLE), intermediate data (LOCAL) and data stored in HDFS. These
values are shown in the right diagram of Figure 5. We conclude that the execution
time is mainly influenced by the number of intermediate results stored locally
as well as the transferred data between the machines.
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The Disco Boys - I Surrender :: trackSimilar(*4) > trackAlbum. 

Fig. 5. Query 1

Query 2. Starting from all tracks of Michael Jackson that are on the album
”Thriller” the query determines all similar tracks that have a minimum duration
of 50 seconds. The last location step then looks for the top fans of these tracks
who live in Germany. The idea behind this query was to have a look at the
impacts of using filters to reduce the amount of intermediate results. The number



of results to the query and therefore the used HDFS storage do not increase
significantly with the size of the graph as the tracks of the album ”Thriller” are
fixed. This also explains the execution times of the query as illustrated in the left
diagram of Figure 6 and confirms that the execution time is mainly determined
by the amount of intermediate results.
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 > trackSimilar[trackDuration=min(50000)] > trackTopFans[country=equals(‘DE’)] 

 

Fig. 6. Query 2

Query 3. These queries determine the friends of Chris reached by following an
increasing number of edges. The first query starts by following the edge knows

once and the last query ends by following the edge knows at most ten times.
This corresponds to the computation of the Friend of a Friend 7 paths starting
from Chris with an increasing maximum distance. The left chart of Figure 7
illustrates the percentage of reached people, in accordance to the maximum
Friend of a Friend distance, where the total percentage represents all reachable
people. Starting with a fixed person we can reach over 98% of all reachable
persons by following the edge knows seven times which corresponds to the well-
known six degrees of separation paradigm [17]. The right chart of Figure 7 shows
the execution times depending on the maximum Friend of a Friend distance. We
can observe a linear scaling behavior that is mainly determined by the number
of joins rather than computation and data transfer time.

Results. Our evaluation shows that RDFPath allows to express and compute
interesting graph issues such as Friend of a Friend queries, small world properties
like six degrees of separation or the Erdös number8 on large RDF graphs. The
execution times for the surveyed queries on real-world data from Last.fm scale
linear in the size of the graph where the number of joins as well as the amount of
intermediate results, that must be transferred over the network, determine the
complexity of a query.

7 http://www.foaf-project.org
8 http://www.oakland.edu/enp
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Fig. 7. Query 3

6 Conclusion

The amount of available Semantic Web data is growing constantly, calling for
solutions that are able to scale accordingly. The RDF query language RDFPath,
that is presented in this paper, was designed with this constraint in mind and
combines an intuitive syntax for path queries with an effective execution strategy
using MapReduce. Our evaluation confirms that both large RDF graphs can be
handled while scaling linear with the size of the graph and that RDFPath can be
used to investigate graph properties such as a variant of the famous six degrees
of separation paradigm typically encountered in social graphs.

As future work we plan to extend RDFPath with more powerful language
constructs geared towards the analysis of social graphs, e.g. to express the full
list of desiderata stated in [20]. In parallel, we are optimizing our implementation
on the system level by incorporating current results for the efficient computation
of joins with MapReduce [7].
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