
Reducing I/O Load in Parallel RDF Systems via
Data Compression

Jesse Weaver and Gregory Todd Williams

Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
{weavej3,willig4}@cs.rpi.edu

Abstract. The amount of RDF data published to the web is rapidly
growing which has led to an increase in research of systems for handling
such vast amounts of data. Employing parallelism has been a common ap-
proach, for which parallel I/O of RDF data can be very time-consuming.
To reduce I/O load without requiring preprocessing, we propose a syn-
tactic subset of the Turtle syntax called Sterno which is amenable for
parallel I/O. We also evaluate the performance gain of using LZO com-
pression, assuming preprocessing of data is allowable in a given use case.
Our evaluation shows that Sterno documents improve on our previous
work in parallel reading of N-triples documents, and LZO compression
significantly reduces document size and read time.

Keywords: RDF, Sterno, LZO, compression, parallel I/O, syntax

1 Introduction

The amount of RDF data published to the web is rapidly growing which has led
to an increase in research of systems for handling such vast amounts of data.
One approach has been to employ parallelism for processing large datasets (e.g.
forward-chained reasoning[5, 6, 8–11, 13], RDF query[14], and so-called “reduc-
tion”[15]). In our experience, a significant challenge for such parallel systems is
efficient, parallel I/O of RDF data.

In previous work[13–15], we approached the challenge by taking advantage
of the simple syntax of N-triples documents[2]. However, the N-triples syntax is
very verbose, and as a result, relying on it entails significant I/O costs. In this pa-
per, we propose a syntax for RDF called Sterno1, a syntactic subset of the Turtle
syntax[3] that is amenable to parallel I/O. We also propose using Lempel-Ziv-
Oberhumer (LZO) compression for which both compression and decompression
can be parallelized. Our evaluation suggests that Sterno documents can achieve
a compression ratio (compared to their N-triples equivalents) of under 50%,

1 The name “Sterno” originated as an abbreviation for sternotherus, a genus of aquatic
turtle, the most common species of which typically grows to only 7.5-14 centimeters.
This name is chosen to reflect that the Sterno syntax is a small, syntactic subset
of the Turtle syntax. Additionally, it is an acronym meaning “Simple, TErse Rdf...
NOthing else.”

2 Jesse Weaver, Gregory Todd Williams

and LZO compression can achieve a compression ratio (compared to the original
N-triples document) of under 10%. Furthermore, LZO-compressed N-triples doc-
uments can be read much more quickly than uncompressed N-triples documents.
LZO-compressed Sterno documents can be read more quickly than uncompressed
Sterno documents, but not as quickly as LZO-compressed N-triples documents.

2 Motivation

Traditionally, a common approach to parallel I/O in scientific computations is
to divide the input data among processes by essentially striping the data. That
is, dividing the input into same-sized chunks of data, every n chunks (where n
is the number of processes) is assigned to processes such that process i− 1 gets
the ith chunk. (We view process ranks as being in the range [0, n− 1].) Such an
approach is made possible by the nature of scientific data which often consists of
fixed-sized units of data (e.g., integers, doubles), which leads to fixed-size chunks
of data. Therefore, it is easy to determine where one chunk of data begins and
ends in a file. That is, if a chunk of data is always K bytes, then every byte
offset B such that B mod K = 0 marks the beginning of a chunk of data.

In RDF, the fundamental unit of data is the RDF triple, but a triple consists
of three pieces of variable-length data called RDF terms. Some systems use
dictionary encoding to first assign to each RDF term a unique, fixed-length
identifier (e.g., [5, 7, 11, 12]), and then these identifiers are used to transform
RDF triples into fixed-sized units of data. The drawback of this approach is that
the dictionary must be generated when data is loaded, and dictionary encoding
of RDF terms is not a straightforward, parallel computation. For query systems
with a “load once, query often” kind of use case, such dictionary encoding is a
reasonable solution because the dictionary is built once for a bulk load and need
not be rebuilt at query time. However, for one-time computations like closure
materialization, preprocessing time for dictionary building can be significant and
prohibitive.

In our previous work, we had taken the approach to view RDF data in the
N-triples syntax as delimited data (delimited by the end-line sequence2) which
allowed parallel processes to read independent triple sets using very little coordi-
nation at the beginning of reading. This approach is promising because it scales
well with the number of processes (given appropriate parallel storage hardware)
as shown in [13, 14] since no preprocessing is required and parallel processes read
disjoint portions of the N-triples file. However, this approach suffers from exces-
sive consumption of disk space as well as significant disk I/O traffic. N-triples is
one of the most verbose RDF syntaxes, but it is the only widely used syntax that
provides a simple, delimited format that enables scaling of parallel I/O without
preprocessing3.
2 An end-line sequence is either a linefeed character or a carriage return character

optionally followed by a linefeed character, as defined in N-triples.
3 If not for its named graph feature, or if the named graph portions of its documents

are ignored, TriX could also be used. However, it is more verbose than N-triples.

Reducing I/O Load in Parallel RDF Systems via Data Compression 3

Therefore, in order to improve compression of RDF data and reduce costs
associated with disk I/O, we define an RDF syntax called Sterno that extends
N-triples with some features from Turtle. Sterno was designed with four criteria
in mind:

1. Divisibility. Independent chunks of data must begin and end on easily iden-
tifiable boundaries. Thus, parallel processes are able to divide input data
independently and read from disjoint portions of the file. This is the only
criterion that is absolutely necessary for parallel I/O. For Sterno, we use an
end-line sequence to delimit independent portions of data.

2. Directive. Any directives or global information about the data should oc-
cur at the beginning of the file, allowing parallel processes to initially and
collectively read directives and then independently read disjoint portions of
the remainder of the file. Indeed, parallel processes could initially scan the
entire file for all directives, but the I/O cost would be prohibitive. Therefore,
we consider this criterion necessary for efficient, parallel I/O. In Sterno, this
essentially means prefix declarations should occur at the beginning of the
document.

3. Balance. Each independent chunk of data should correspond to roughly the
same number of units of data. This allows parallel processes to improve load-
balancing if it is known how many units of data are actually being read. This
criterion is not necessary but is desirable. This criterion could be met in a
number of ways, but for Sterno, we partially meet this criterion by requiring
that each triple reside on its own line.

4. Simplicity. Features which add significant complexity to parsing are not
adopted. This criterion is not necessary for parallel I/O.

N-triples already meets these criteria (only partially for balance), and so the goal
of Sterno is to simply adopt features of Turtle (an ubiquitous, widely-supported,
RDF syntax of which N-triples is a subset) that improve compression without
further violating these criteria.

To further improve compression without violating divisibility (since it is a
block-level compression algorithm), we employ LZO compression on RDF data.
Parallel I/O using indexed, LZO-compressed files is not a novel idea45, but its
applicability to RDF data has yet to be evaluated. We provide an evaluation on
its compression of RDF data and its impact on performance.

3 Compression

3.1 Sterno

Sterno extends N-triples with features from Turtle that improve (or do not de-
crease) compression without further violating the aforementioned criteria. In this
4 Hadoop-LZO: https://github.com/kevinweil/hadoop-lzo - last accessed Febru-

ary 25, 2011.
5 Appears to be employed by Twitter: http://www.cloudera.com/blog/2009/11/

hadoop-at-twitter-part-1-splittable-lzo-compression/ - last accessed Febru-
ary 25, 2011.

4 Jesse Weaver, Gregory Todd Williams

section, we provide a normative description of Sterno as an extension of N-triples
as well as an informative description of Sterno as a restriction of Turtle.

<file:///foaf.rdf#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .

<file:///foaf.rdf#me> <http://xmlns.com/foaf/0.1/nick> "Andr\u00E9" .

<file:///foaf.rdf#me> <http://xmlns.com/foaf/0.1/age> "40"^^<http://www.w3.org/2001/XMLSchema#integer> .

:list <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/1999/02/22-rdf-syntax-ns#List> .

:list <http://www.w3.org/1999/02/22-rdf-syntax-ns#first> "line1\n\tline2 \"quoted string\" " .

:list <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

:contrived <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/2002/07/owl#Thing> .

What a contrived triple.

Fig. 1: N-Triples example.

Extending N-triples. In the following, we delineate features of Sterno that
extend N-triples. Differences between N-triples and Sterno syntaxes are illus-
trated in figures 1 and 2.

– UTF-8 encoding. A UTF-8-encoded character is at most four bytes long,
but its equivalent escaped representation using \u or \U uses 6 or 10 bytes,
respectively.

– Prefix declarations. Prefix declarations allow URIs to be abbreviated.
Some care is needed in determining what prefix declarations should be made.
For example, if a namespace URI occurs at most once, then declaring a prefix
declaration for that URI will actually increase the size of the document.
Unlike in Turtle, all prefix declarations must occur at the beginning of the
document.

– Implicit datatypes. Typed literals having a datatype URI of xsd:integer,
xsd:double, xsd:decimal, or xsd:boolean may be abbreviated. For the
three numeric datatypes, their lexical representations may be embedded di-
rectly into the text without quotes or datatype URI. For xsd:boolean, the
text true and false may be used directly in the text. RDF datasets con-
taining much numeric data stand to gain significantly from this feature.

– The a keyword. The single character a can be used to replace the URI
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> when it occurs
in the predicate position of a triple.

– The empty collection. A pair of parentheses () can be used to replace
the URI <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> when it
occurs in the subject or object position of a triple.

– Anonymous blank nodes. A pair of square brackets [] (with nothing in
between) may be used to denote a blank node without a label. While this
feature has very limited usefulness, there is no reason to exclude it.

– Complex blank node labels. This feature does not improve compression,
but there is no reason to exclude it. Blank node labels may include any
characters allowed by Turtle.

Reducing I/O Load in Parallel RDF Systems via Data Compression 5

It is important to understand the impact of prefix declarations when com-
pressing to Sterno. As mentioned, if a prefix is declared for a namespace URI
that is used at most once, then the document actually becomes larger. If a prefix
X is defined for a namespace URI U , then for each URI starting with U and
followed by a string that syntactically conforms to the requirements of a “name”
in Sterno (we will say such a URI is amenable to prefixing), the URI is replaced
by X followed by a colon, followed by the name. Thus given X, U , and m (the
number of times a URI amenable to prefixing occurs with namespace URI U),
we can determine whether it is beneficial to declare a prefix (including spaces in
declaration) using the following equation.

|@prefix X: <U> .\n|+ m |X:| < m |<U>|
8 + |X|+ 3 + |U |+ 4 + m(|X|+ 1) < m(1 + |U |+ 1)

15 + |X|+ |U |+ m |X|+ m < 2m + m |U |
15 + |X|+ |U | < m + m |U | −m |X|
15 + |U |+ |X|
1 + |U | − |X| < m

@prefix mine: <file:///foaf.rdf#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

mine:me a foaf:Person .

mine:me foaf:nick "André" .

mine:me foaf:age 40 .

:list a rdf:List .

:list rdf:first "line1\n\tline2 \"quoted string\" " .

:list rdf:rest () .

[] a <http://www.w3.org/2002/07/owl#Thing> .

What a contrived triple.

Fig. 2: Sterno example.

Restricting Turtle. In the following, we delineate the features of Turtle
that are excluded from Sterno and give reason (i.e., which of the aforementioned
criteria are violated) for their exclusion. Figures 2 and 3 illustrate differences in
Sterno and Turtle.

– Whitespace leniency. For divisibility, Sterno preserves the requirement
(from N-triples) that each triple must end with an end-line sequence. For
simplicity, Sterno preserves the requirement that whitespace must occur be-
tween subject and predicate and between predicate and object.

– Prefix declaration placement leniency. To meet the directive require-
ment, all prefix declarations must occur at the beginning of a Sterno docu-
ment before the occurrence of any triples.

6 Jesse Weaver, Gregory Todd Williams

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<#me> a foaf:Person ; foaf:nick "André" ; foaf:age 40 .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

("""line1

line2 "quoted string" """) a rdf:List .

[]a<http://www.w3.org/2002/07/owl#Thing> . # What a contrived triple.

Fig. 3: Turtle example assuming document is stored at file:///foaf.rdf.

– Triple-quoted literals. The purpose of triple-quoted literals in Turtle is
to allow vertical whitespace and quotes in the literal. Sterno excludes this
feature to maintain divisibility.

– Property and object lists. Sterno excludes these features to improve
balance. Even when kept on the same line with their respective subjects
(thus maintaining divisibility), property and object lists have the potential
to severely skew the number of triples that occur within a chunk of data
(that is, a single line). Exclusion of this feature also improves simplicity.

– Non-empty collections. To improve balance, Sterno excludes the collec-
tion syntax (except for the empty collection) because a non-empty collection
represents two triples for each item in the collection.

– Relative URIs. Resolving a relative URI can be expensive compared to
a simple prefix lookup. This feature is excluded in favor of simplicity, and
thus, the @base declaration from Turtle is unnecessary.

– Trailing comments. In Turtle, comments may occur at the end of any
line. For simplicity, Sterno preserves the requirement of N-triples that each
comment must occur on its own line.

3.2 LZO

LZO is a lossless data compression algorithm which has two important proper-
ties: block-level compression and fast decompression.

A block compression algorithm is a compression algorithm in which indi-
vidual, fixed-size blocks of data are compressed independently of each other;
therefore, it is parallelizable. However, there is no obvious delimiter between
compressed blocks, making it difficult to divide a block-compressed file for par-
allel reading and decompression. The solution is to create an index file at the
time of compression. The index file consists of byte offsets into the compressed
file where blocks begin. The index enables parallel processes to divide a block-
compressed file into independent portions that can be decompressed in parallel.

Decompression of LZO-compressed data is extremely fast so that the com-
bined cost of reading the compressed data and decompressing it is usually less
than the I/O cost of reading uncompressed data. Compression speed is reason-
able but not insignificant (often referred to as “pretty good”). Thus, unless the
dataset is already LZO compressed (which is not expected to be the case), then
compressing the dataset introduces preprocessing.

Reducing I/O Load in Parallel RDF Systems via Data Compression 7

4 Implementation

Our system aims to generically support parallel, RDF-processing systems in
which each process initially reads a disjoint portion of the input data6. As such,
we rely on the MPI interface to abstract away from the details of the under-
lying hardware, trading off potential performance advantages for genericalness
and portability. The system has an iterator interface which returns triples in a
normalized format – essentially a string in the N-triples syntax except that it
is UTF-8 encoded. Thus, when reading N-triples documents, \u and \U escape
sequences are converted to UTF-8-encoded characters. When reading Sterno doc-
uments, abbreviated terms must be expanded (e.g., a, (), abbreviated URIs),
and any \u and \U escaped sequences must be UTF-8-encoded. Thus, although
a Sterno document may be smaller than its N-triples counterpart, it may incur
more processing time to normalize. Comments are ignored.

The system is implemented in C++ using MPI for interprocess communica-
tion and parallel I/O. For LZO compression/decompression, we used the LZO1X
algorithm from the open source LZO 2.04 library7. The implementation details
regarding I/O are given in the remainder of this section.

Regardless of the format of the input file, parallel reading essentially begins
the same way. As a general heuristic for efficient I/O, we desire each process
to read only entire disk pages along page boundaries. These boundaries may
not (and likely will not) align with data boundaries. Given a file of P pages,
each of n processes is assigned bP/nc pages, and P mod n processes are each
assigned an additional page. Each process’ pages are consecutively addressed
(i.e., logically adjacent), so the file is effectively divided up into n portions of
(logically) consecutive data. We will refer to these portions of the file as segments,
and each process holds a byte offset that points to the beginning of its segment
and knows the length of its segment. Note that a segment may not correspond
to an independent set of triples. Here we have discussed page-aligned segments.
Each segment may begin (except for the first one) and/or end (except for the last
one) with a fragment of a data chunk. The method of handling these fragments
depends on whether the input data is delimited (N-triples and Sterno) or indexed
(indexed LZO-compressed).

For Sterno documents, the beginning of the file must be read for prefix dec-
larations. In this case, the processes collectively read from the beginning of the
file using MPI File read at all begin and MPI File read at all end, loading
prefix mappings in memory. When a triple is reached, there are no more prefixes,
and the remainder of the file is divided into segments as previously described.
For N-triples documents, the entire file is divided into segments since there are
no prefix declarations or other directives. In order to ensure that every process
has only complete triples, each process i sends the beginning fragment (indicated

6 Assuming input document does not repeat triples. Technically, if there are duplicate
triples in the input document, then each process will not necessarily have a disjoint
portion of the RDF data.

7 http://www.oberhumer.com/opensource/lzo/ - last accessed February 25, 2011.

8 Jesse Weaver, Gregory Todd Williams

by the first occurrence of an end-line sequence) to process i− 1 (for i > 0) and
receives a fragment from process i+1 (for i < n−1). MPI File iread at is used
for reading, and MPI Isend and MPI Irecv are used for fragment passing.

For LZO-compressed, Sterno documents, prefix declarations are read collec-
tively by all processes just as before except this time decompressing as data
is read. When the first triple is encountered, processes note which block – say
the kth block – contains the first triple. The index file is then logically divided
into segments of offset integers (rather than pages as before) ignoring the first
k − 1 offsets, and each process reads only the first offset integer in its segment
to determine the beginning of its block-aligned segment in the LZO-compressed
data. Instead of passing fragments, offsets are passed where process i receives
an offset from process i + 1 (for i < n− 1) to be used as the upper bound for its
segment. Each process then reads blocks from its segment (reading along page
boundaries) and decompresses them. Process 0 has the kth block at the beginning
of its segment, and it may contain some of the last prefix declarations. These
prefix declarations are ignored like comments. Logically speaking, each process’
segment of the LZO-compressed file corresponds to a block-aligned segment of
the uncompressed document which may begin and/or end with fragments. Thus,
processes perform fragment passing before continuing to read and decompress
the remainder of their segments. Reading LZO-compressed, N-triples documents
happens in the same fashion except without the initial, collective reading of pre-
fix declarations.

5 Evaluation

Our evaluation is designed to measure compression of RDF data (Sterno and
LZO) and the impact compression has on the performance of parallel reading8

of RDF data. Therefore, we report compression ratios (compared to the original
N-triples file) and times for reading.

For evaluation, we use the 2010 Billion Triple Challenge dataset9 (BTC2010)
which contains 3,171,793,030 quads. We stripped out the context URIs since we
consider only triples. BTC2010 represents a worst-case scenario for compression
using prefix declarations in Sterno since a large number of namespace URIs are
used. Note that the document contains a significant number of duplicate triples.
This does not take away from the validity of our evaluation since (1) Sterno com-
pression does not benefit directly from duplicate triples but rather from a small
number of namespaces, and (2) LZO compression is a block compression algo-
rithm and thus only duplicate triples within a single block (much less likely) will
benefit LZO compression. Also, note that BTC2010 is a “messy” dataset con-
taining some invalid URIs (e.g., <mailto:Ron Alford>) and blank node labels
(e.g., some contain ‘.’). Rather than attempt to somehow repair the data (which
would be both arduous and dubious since we do not know the valid versions of
8 Note that the data is merely read triple-by-triple; each triple is immediately dis-

carded after being read.
9 http://km.aifb.kit.edu/projects/btc-2010/ - last accessed February 27, 2011.

Reducing I/O Load in Parallel RDF Systems via Data Compression 9

what the publishers originally intended), our parsers have been implemented to
tolerate these subtle syntax violations for the purposes of this evaluation.

For near optimal compression using Sterno, we determined which namespaces
in the BTC2010 should have prefixes declared using the formula from section 3.1.
Using a Perl script, we scanned through the N-triples file seeking URIs amenable
to prefixing. Each time one was found, its namespace URI was printed. We then
used Unix commands sort and uniq to rank the namespace URIs by descending
frequency. We then used another Perl script to generate the prefix declarations
using the frequencies and the formula from section 3.1. The Perl script uses
a base-36 counter to generate prefix names, skipping any values for which the
most significant digit is a base-10 numeric digit (since a prefix name cannot
begin with a numeric digit). This allowed us to keep prefix names reasonably
short. The entire process of generating prefix declarations took roughly ten hours
and generated 5,770,712 prefix declarations. In practice, we would expect data
publishers to already know which namespace URIs are worth prefixing.

To evaluate the impact of the number of prefix declarations, we generated
Sterno files using 0, 10, 1K, 100K, and N=5,770,712 prefix declarations (using
the most frequent namespace URIs). The frequency of namespace URIs is given
in figure 4a where each plotted point (x, y) indicates that y unique namespace
URIs occur exactly x times in the dataset. Only seven namespace URIs occur
over a hundred million times. Therefore, we have 12 evaluation scenarios: N-
triples (NT) and the five Sterno variants (ST[M] where M is the number of prefix
declarations), each in LZO-compressed and non-LZO-compressed forms. The
sizes for the 12 documents are given in figure 4b. Without any prefix declarations,
Sterno achieves very little compression, 94% of the N-triples document. However,
using only ten prefix declarations (for the ten most common namespace URIs)
results in a Sterno document about 53% of the size of the N-triples document.
ST[N] achieves the greatest compression of roughly 42%. The LZO-compressed
versions are much smaller, ranging from 9.3% for N-triples down to 7.7% for
ST[N].

We ran our experiments for parallel reading on the Opteron blade cluster at
the Computational Center for Nanotechnology Innovations10 (CCNI). Each node
was an IBM LS21 blade server with two dual-core 2.6 GHz Opteron processors, 16
GB of memory, and Infiniband interconnects. The operating system was RedHat
5, and the MPI version was MVAPICH2 1.4. The GPFS11 file system was used
(with Gigabit Ethernet connection to the cluster) for all data storage and parallel
I/O. The GPFS setup has 48 storage nodes, each with several LUNs attached.
Data and metadata replication are used, but at the cost of performance and
space. The GPFS is shared with all machines at the CCNI, and thus, there is
always potential for contention with other jobs being run.

The results are given in figure 5. Note that the charts use log-log scale. In
figure 5a, the parallel read times are given for files that are not LZO-compressed.

10 http://www.rpi.edu/research/ccni/ - last accessed February 28, 2011.
11 http://www-03.ibm.com/systems/software/gpfs/ - last accessed February 28,

2011

10 Jesse Weaver, Gregory Todd Williams

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

N

am
es

pa
ce

 U
R

Is

Occurrences

(a) Namespace URI Frequencies

455.4

427.8

243.1

227.6

195.0

189.6

42.1

41.2

36.9

35.9

35.2

35.1

0

100

200

300

400

500

NT ST[0] ST[10] ST[1K] ST[100K] ST[N]

Si
ze

 (G
B

)

File Type

No LZO LZO

(b) File sizes

Fig. 4: Namespace URIs and Compression

Note that N-triples takes the longest to read while ST[10] is the fastest (except
for 32 processes). It is not surprising that it generally takes longer to read ST[1K],
ST[100K], and ST[N] than ST[10] since there is less I/O savings to be had by
adding more prefix declarations but there is increased cost of expanding URIs
when normalizing data. The increase for NT and lack of decrease for ST[0] when
moving from 16 to 32 processes is unusual. Preliminary investigation suggests
that there is a bottleneck in the hardware system when moving from 16 to 32
processes. Further investigation into a definitive cause is left for future work. On
64 processes, NT took 18.3 minutes (≈ 2.9 × 106 triples/sec), and ST[10] took
8.7 minutes (≈ 6.1× 106 triples/sec).

In figure 5b, the parallel read times are given for files that are LZO-compressed.
Interestingly, NT is the fastest, benefiting the most from high-redundency when
performing compression and requiring only fast LZO decompression without
expansion of abbreviated RDF terms. As the number of prefix declarations in-
creases, the time increases. However, the time to read LZO-compressed versions
are always faster than for their non-LZO-compressed counterparts. For 64 pro-
cesses, NT took 2.4 minutes (≈ 2.2×107 triples/sec), and ST[N] took 6.7 minutes
(≈ 7.9× 106 triples/sec).

6 Related Work

Although there are many syntaxes for RDF, to our knowledge, there is no re-
lated work on developing RDF syntaxes for the explicit purpose of improving
parallel I/O. The most relevant work is dictionary encoding of RDF terms using
Hadoop by Urbani et al.[12]. Including the compressed triples with the dictio-
nary (presumably uncompressed), a compression ratio ranging from 25-33% was
achieved. Other work[1, 4] on compressing RDF data has been done without re-

Reducing I/O Load in Parallel RDF Systems via Data Compression 11

gard for parallel I/O, focusing primarily on achieving high compression in a data
structure that offers basic functionality for supporting higher-level operations.

1.0

10.0

100.0

8 16 32 64

Ti
m

e
(m

in
)

Processes

NT ST[0] ST[10]

ST[1K] ST[100K] ST[N]

(a) Without LZO Compression

1.0

10.0

100.0

8 16 32 64

Ti
m

e
(m

in
)

Processes

NT ST[0] ST[10]

ST[1K] ST[100K] ST[N]

(b) With LZO Compression

Fig. 5: Times for Parallel Reading for 8-64 processes.

7 Conclusion

To reduce I/O costs for parallel, RDF-processing systems, we proposed the RDF
syntax Sterno which is readily amenable (that is, no preprocessing required) for
parallel I/O and a subset of the common Turtle syntax. We have shown that it is
able to achieve compressions as small as 42% for the diverse BTC2010 dataset,
and that reading Sterno documents in parallel is usually faster than reading N-
triples documents. Additionally, we showed that LZO compression can be used to
significantly reduce document size and improve performance of parallel reading,
particularly for N-triples documents. If preprocessing is tolerated, then it is
always beneficial to LZO-compress the document. The best read performance is
achieved with LZO-compressed, N-triples documents.

In short, for one-time jobs or use cases that do not tolerate preprocessing,
Sterno is the best choice for compression and read time. For systems that will
process the input file multiple times, it is likely worthwhile to LZO-compress the
data (ideally, in N-triples syntax) beforehand.

Acknowledgments. We thank the staff at the CCNI for their support, espe-
cially Dr. Lindsay Todd for his insights into the details of their systems config-
urations.

12 Jesse Weaver, Gregory Todd Williams

References

1. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix “Bit”loaded: A scalable
lightweight join query processor for RDF data. In: Proceedings of the 19th Inter-
national World Wide Web Conference (2010)

2. Beckett, D., Grant, J.: RDF Test Cases. W3C recommendation, W3C (February
2004), http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

3. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple
Language. W3C team submission, W3C (January 2008),
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/

4. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutierrez, C.: Compact Representation
of Large RDF Data Sets for Publishing and Exchange. In: Proceedings of the 9th
International Semantic Web Conference (2010)

5. Goodman, E.L., Mizell, D.: Scalable in-memory rdfs closure on billions of triples. In:
Proceedings of the 6th International Workshop on Scalable Semantic Web Knowl-
edge Base Systems (2010)

6. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: Saor: Template rule optimisations
for distributed reasoning over 1 billion linked data triples. In: Proceedings of the
9th International Semantic Web Conference. (2010)

7. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – a Pragmatic Semantic Repos-
itory for OWL. In: Proceedings of the Conference on Web Information Systems
Engineering Workshops. pp. 182–192 (2005)

8. Kotoulas, S., Oren, E., van Harmelen, F.: Mind the Data Skew: Distributed Infer-
encing by Speeddating in Elastic Regions. In: Proceedings of the 19th International
World Wide Web Conference (2010)

9. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
Marvin: Distributed reasoning over large-scale Semantic Web data. Journal of Web
Semantics 7(4), 305–316 (2009)

10. Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge Bases. In:
Proceedings of the 37th International Conference on Parallel Processing. pp. 75–
82 (2008)

11. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning
with WebPIE: calculating the closure of 100 billion triples. In: Proceedings of the
7th Extended Semantic Web Conference (2010)

12. Urbani, J., Maassen, J., Bal, H.E.: Massive semantic web data compression with
mapreduce. In: Proceedings of the 1st International Workshop on MapReduce and
its Applications (2010)

13. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for
Hundreds of Millions of Triples. In: Proceedings of the 8th International Semantic
Web Conference. pp. 682–697 (2009)

14. Weaver, J., Williams, G.T.: Scalable RDF query processing on clusters and super-
computers. In: Proceedings of the 5th International Workshop on Scalable Semantic
Web Knowledge Base Systems (2009)

15. Williams, G.T., Weaver, J., Atre, M., Hendler, J.A.: Scalable Reduction of Large
Datasets to Interesting Subsets. Billion Triples Challenge at the 8th International
Semantic Web Conference (2009)

