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Abstract. With billions of triples in the Linked Open Datdoad, which
continues to grow exponentially, very challengiagkis begin to emerge related
to the exploitation of large-scale reasoning. Asidarable amount of work has
been done in the area of using Information Retrievaihods to address these
problems. However, although applied models work \Web scale, they
downgrade the semantics contained in an RDF graptoliserving each
physical resource as a 'bag of words (URIs/litetalB)stributional statistic
methods can address this problem by capturingtthetsre of the graph more
efficiently. However, these methods are continuatipfronting with efficiency
and scalability problems on serial computing amgttiires due to their
computational complexity. In this paper, we dese@parallelization algorithm
of one such method (Random Indexing) based on thesdde-Passing
Interface (MPI), that enables efficient utilizatioh high performance parallel
computers. Our evaluation results show signifigarformance improvement.

Keywords: Statistical Semantics, Random Indexing, Paralletimat High
Performance Computing, Message-Passing Interface.

1 Introduction

Recent years have seen a tremendous increaseuofuséd data on the Web with
public sectors such as UK and USA governments oettieir data to public and
encouraging others to build useful applicationsth same time, Linked Open Data

1 http://data.gov.uk and www.data.gov



(LOD) project continues stimulating creation, publication anceiltimking the RDF
graphs with those already in the LOD cloud [1].Ntarch 2009, around 4 billion
statements were available while in September 2019 number increased to 25
billion RDF triples, and still continues to grow.

This massive amount of data requires effective ataiion, which is now a big
challenge not only because of the size but alsotaluke nature of this data. Firstly,
due to the varying methodologies used to geneftadset RDF graphs they face
inconsistencies, incompleteness, but also redumemnthese are partially addressed
by approaches for assessing the quality such asghrtracking the provenance [2].
Secondly, even if the quality of the data would diea high level, exploring and
searching through large RDF graphs requires fartjliavith the structure, and
knowledge of the exact URISs.

Traditionally, RDF spaces are being searched usm&DF query language such
as SeRQL [3] or SPARQL [4]. These languages allesvformulation of fine-grained
gueries by their ability to match whole graphs tmdreate complex conditions on the
variables to be bound in the query. This level omplexity and flexibility is very
useful in many situations, especially when the gusrcreated automatically in the
context of an application. However, for end-useh®want to explore the knowledge
represented in an RDF store, this level of desadiften more of a hindrance: querying
the repository is not possible without a detailedwledge of its structure and the
names and semantics of all the properties andeddasolved. Another challenge is
reasoning over this vast amount of data. The languages useéxpressing formal
semantics (e.g. OWL) use logic, which does notestalthe amount of information
and the setting that is required for the Web. bt #spect, the approach suggested by
Fensel and van Harmelen in [5] is to merge retfigwacess and reasoning by the
means ofselection or subsetting: selecting a subset of the RDF graph which is
relevant to a query and sufficient for reasoning.

A considerable amount of work has been done inatlea of using Information
Retrieval (IR) methods for the task section and retrieval of RDF triples, and also
for searching through them. The primary intention of these apphea is location of
the RDF documents relevant to the given keywordarah URI. These systems are
semantic search engines such as Swoogle [6] oricgind]. They collect the
Semantic Web resources from the Web and then itidekeywords and URIs against
the RDF documents containing those keywords andsJ&ding the inverted index
scheme [8].

However, although these models work on the Webesdhley downgrade the
semantics contained in an RDF graph by observiey eaysical resource as a ‘bag
of words (URIs/literals)’. More sophisticated IR deds can capture the structure
more efficiently by modelling meaning similaritibetween words through computing
the distributional similarity over large amount of text. These are calétistical
semantics methods and examples include Latent Semantic Analysis f&] Random
Indexing [10]. In order to compute similarities,efe methods first generate a
semantic space model. Both generating the modeseacthing through it (e.g. using
cosine similarity) are quite computationally expgeasHence these methods have not
been used with enormous corpora such as hundreadlimins of documents, which

2 http://linkeddata.org/



is the case we aim to address in our work. Moreofrem the end-users point of
view, the linear increase of the search time thhothg large semantic space model is
a large bottleneck.

In this paper we describe a parallelization appnofor the Random Indexing
search algorithm for calculating semantic similastbased on the cosine function,
and how we reduce this time on the way to achiewvgb scale. This is of a
significant contribution not only to the SemanticellVcommunity, but also to the
Information Retrieval community, due to the sizeoaf corpus, which is considerably
larger than what has previously been processeR.il®h the other hand, this work is
of great interest for High Performance Computinghownity, for which Semantic
Web has already attracted much attention due toctiadlenging computationally
intensive tasks. A number of European initiativésve to achieve the goal of
increasing the scalability of the Semantic Web ailgms by introducing parallel
computing, such as the Large Knowledge Colfigepject [21]. However, due to the
lack of parallelised algorithms developed for SeticaWeb, the current HPC support
(except some promising examples, refer to Sectjom Ghis domain is still rather
rudimentary.

This paper introduces the results of our recerareh, which strives to close those
identified gaps. The paper is structured as follo8exction 2 introduces the pilot use
case our research was concentrated on. Sectioesémis basics of the distributed
parallelization, followed by the detailed descptiof the parallelization strategy
elaborated for the pilot use case. Section 4 cdrates on the performance
evaluation of the parallel realization. Sectionig&cdsses some related works. Section
6 presents directions for further work.

2 UseCase

One of the newest advances in semantic statistitish enjoys the global data stores
for the information retrieval, is Random Indexingandom Indexing is a novel
approach for word space modelling. The word spameeption is founded on the
distributional hypothesis [10], according to whithe two words that tend to
constantly co-occur in several contexts have thilai meaning. Typically, a context
refers to a multi-word segment, i.e. document.hi@ ¢ontext of the data repository,
that comprises a set of contes of sizem, which are built upon a set of word8
occurring in those contexts (obviously<n), it is possible, for each word,
belonging to the word set", to build a so-called context vector (1), whosanmnts
are defined by means of the co-occurrence fundgion

OxOX", Ov=[ f4(x,)] D

wheref, is a co-occurrence function between the woaahd each of the contexts,is
a total number of the contextsjs a total number of the words in all contegtSC™

j=1.m.

3 http://www.larkc.eu



The co-occurrence function is in the simplest aa$quency counter, specifying
how many times the word occurs in the correspondiogtext, normalized and
weighted in order to reduce the effects of higlyfiency words, or compensate for
differences in document sizes. Therefore, the vefld represents the context in
which the word occurs in the document collectiontHe scope of the document base,
the full word co-occurrence characteristic is aubel by combining the context
vectors for each words resulting in the vector spaca two-dimensional co-
occurrence matrix of sizan.

The vector space represents the distributionailprof the words in relation to the
considered contexts/documents. The main methodlak of this profile is that it
enables calculation of the semantic similarity Ew the words in scope of the
document collection (text corpus), based on théneosimilarity of the given words’
context vectors. Cosine similarity is a measursiofilarity between the two vectors
of mdimensions, equals to the cosine of the angle deivthem.

This context vector property has found a wide aggpion in Semantic Web
applications. Prominent examples of algorithms dame semantic spaces are query
expansion (e.g. [20]) and subsetting (e.g. [22De® expansion is extensively used
in IR with the aim to expand the document collett{see Fig. 1a), which is returned
as a result to a query thus covering the largetigpgoiof the documents. Subsetting
(also known as selection), on the contrary, depescthe unnecessary items from a
data set (see Fig. 1b), in order to achieve faptecessing. Hence, the query
expansion and subsetting applications are complemenand are used to change
properties of the query process to best adapttiteésearch needs.

SPARQL Query Semantic Index
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@

a) b)
Fig. 1. Examples utilizing Random Indexing: a) Query exjpamsb) RDF subsetting.

The pilot application considered in our researctthis Airhead Semantic Spaces
library [11]. Airhead is an open-source implementatof Random Indexing in the

Java language, which has proved its usability farnuanber of practical tasks, in

particular when applied for query refinement or RBUbsetting using Linked Life

Date (LLD) or Wikipedia. Nevertheless, the very highmginsionality of the context

vectors, which is a direct function of the analyzlzda size, results in the hardware
requirements going far beyond the capabilitieshef ¢durrent desktop computers. The
latter fact makes traditional serial computing #&eztiures increasingly ineffective

when complexly addressing those large data amoastsnabled by LLD.

4 http://linkedlifedata.com



3 Paralleization strategy

3.1 Basicsof Parall€elization

Parallelization is a mechanism that allows the Isingrocessor's workload to be
decomposed and distributed among other computesnafdéne parallel system, thus
reducing the total time of the algorithm executiofihis basically suggests
identification of the concurrent regions of the iggiion work- and dataflow, with
further mapping them to the independent processits of a parallel system, aiming
at achieving the positive performance impact ferdpplication.

In software engineering, the most successful paizdition strategies are based on
a non-overlapping domain decomposition of data ctires as well as code

instructions (Fig. 2).
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Fig. 2. Examples of parallel data and code constructiona simple reasoning application
workflow, as considered in the LarKC project.

There are several well-established technologies fomplementation of
parallelization in software applications, which dansubdivided into two big classes:
= thread-based, for systems built on top of tighthumled parallel CPUs
(e.g. Multithreading, OpenMP);
= process-based, for systems built on top of thediyosoupled parallel
CPUs (e.g. MPI, MapReduce).

Whereas the thread-based strategies, sudhukts Threading [12], are considered
to be very efficient and relatively easy to implerhian the application code, they do
not allow the application to achieve high perforemrspeed up due to resource
limitation of the existing shared-memory computeh@ecture (the total number of
CPU cores provided by such system is usually rgtidri than 8). On the contrary, the
process-based strategies, suchMapReduce [13] or Message-Passing Interface
(MPI) [14], enable distributed compute architectures dpplication execution, in
particular clusters, HPC, or Grid systems. In thiofving, we concentrate basically
on the process-based approaches, in particular MPI.



3.2 Distributed-memory Parallelization Frameworks

Among the most widely utilized and sustainable pelfaation approaches, the
following two are of special interest for implematibn of data-demanding parallel
applications:

= MapReduce

= Message-Passing Interface

MapReduce is a software framework for distributechputing on large data sets
on clusters of workstations. Although MapReduce bpasved it efficiency for
processing large datasets on certain kinds ofildig&ble problems, in particular for
Semantic Web tasks, this technique requires coraditle re-thinking of the
application algorithms in order to confirm to theapMand the Reduce steps [13]. In
the consequence, quite a big effort is requiredrdemplement existing large
applications with the MapReduce framework.

Contrary to MapReduce, MPI does not require suafsiderable changes in the
application code because it is simply a utilityrdity supporting information exchange
among the parallel application instances. Moredy® is a language-independent
standard, so can be re-used at almost any pasgiétm. For the above-mentioned
reasons, we chose exactly MPI for the parallel @npntation of the considered
algorithm.

As the acronym suggests, MPI is a process-basduhitpe, whereby processes
communicate by means of messages transmitted beti@eso-called “point-to-point”
communication) or among (involving several or ewah processes, a so called
“collective” communication) the nodes. Normally,eoprocess is executed on a single
computing node. If any of the processes needs rd/iseceive data to/from other
processes, it should call a corresponding MPI comaation function. Both point-to-
point and collective communications available foPMprocesses are documented in
the MPI standard [15].

There have been several initiatives striving tovigle support for Java in HPC
environments. One of the most successful MPI implatattions is considered to be
mpiJava [16], which came out of the HPJava project andegg developed in the
framework of the Large Knowledge Collider projethe key feature of mpiJava is
that it wraps the calls of the native C library,igthmpiJava is installed on top of (e.qg.
MPICH® or Open MPI). This allows mpiJava to substitute MPI operatiaiith calls
to the native library (thanks to Java Native Iraedf - JNI), that ensures better
communication performance as in case of the “Jag-aealization, as was for
example done in MPJ-Express [17] library (see Big.Nevertheless, MPJ-Express
can be greatly utilized for debugging purposes lmn user’s local machine before
porting to a large HPC system.

5 https://sourceforge.net/projects/mpijava/
6 http://www.mcs.anl.gov/research/projects/mpich2/
7 http://www.open-mpi.org
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Fig. 3. Comparison of time (a) and bandwidth (b) of inted@ communication with different
Java MPI libraries on the HLRS Nehalem cluster \ithernet and Infiniband interconnects.

3.3 MPI Realisation for Random Indexing

In both query expansion and subsetting computiegctisine between a query vector
and the rest of the vectors in the space (neamghinours) is the operation that
benefits the most from paralellization. From now we refer to the objects we
operate with as words, even though they may béiatls of things such as IDs,
genome locations, proteins, and other non-worahgri Fig. 4a shows a schema of
selection of théN=3 most similar words from the semantic vector spacthe given
word. Provided that the vectors are analyzed indeégetly of each other and in an
arbitrary order, the parallelization can be triliachieved by applying a data domain
decomposition to subdivide the vector space ambmegprocessors of the parallel
system (Fig. 4b).

Problem domain (veclorspace) —semvecwor Problem domain (vector space) s sem vectol
I:IEIEIEIEIEIEIEIEIEIEIEII:IEIEIEI Illllllll:ll:ll:ll:llfll:ll:l
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T with the given vector with the given vector
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with max. cosines

{ Parallel éj Parallel
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i block 1 block 2
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Fig. 4. The sequential (a) and the parallel (b) realizatibthe cosine similarity analysis in the
Random Indexing algorithm.



In such a parallel fashion, each of the vector pabss is processed by a separate
processor based on the domain boundaries (Lis)ing 1

int my_rank = MPI.Rank();
int subspace_begin = VectorSpace.size() * (my_rank);

int subspace end = VectorSpace.size() * (my_rank + 1);

Listing 1. Calculation of the subspace boundaries for parglitetessing withMPI.Rank()
function.

Each parallel processor is identified by its ‘rarkabsolute and unique number in
the total processor scope, assigned by the MPtimm-environment. The processor
ranking starts from 0 and ends with-&>, wheren is a total number of the requested
processors. For example, for configuration of twBINdrocesses, the first one will be
assigned the rank “0, and the second one the rahkBased on the rank, each
process calculates the subdomain to be processtdstarts the cosine similarity
analysis in the corresponding subdomain. As a tresfuthe analysis, each of the
processes produces a list of the most similar wokttsvever those results are
incomplete as valid only for a particular subdomdim order to generalize those
partial results for the whole vector space domtiay should be collected in one of
the processes (a root) that finalize the searcdh tfse “synchronization” block in Fig.
4b). Usually the process with the ra@lacts as the root process, however any other
process can be assigned by the programmer as.a root

Collection of the results from each subdomain cathieved by the means of the
collectiveMPI.Gather function, according to the schema shown in Fig. 5.

e.g., root=1

before
gather

1
{

after

gather AB|C]

Fig. 5. Schema of thdMPI.Gather function for collecting the each process’s outputhe root
process.

4 Performance Evaluation and Benchmarking

Performance of the parallel Airhead realisation waaluated for the four semantic
space configurations described in Table 1. The aases were executed on the



Nehalen cluster of HLRS, whose compute nodes are equipptdIntel Xeon 2.8
GHz processors, interconnected with Infiniband. f@pmation of 1, 2, 4, 8, and 16
compute nodes, each equipped with 12 GB of shafdd Bpace, were benchmarked.
The MPI environment was served by mpiJava instaltetbp of Open MPI 1.4.1.

Table 1. Characteristics of the benchmarked semantic spaces.

Semantic Space Nr. of vectors Disk size, GRescription

LLD1 0,064 M 0,082 Subset of LLD

LLD2 0,5M 0,65 Subset of LLD

Wikil 1 M (low density, terms1,6 Term set from 1M most
only) central Wikipedia articles

Wiki2 1 M (high density, entirel6 Document set from 1M
documents) most central Wikipedia

articles

The quantitative evaluation was focused on the #tacution time, the time for
loading the vector space from the file on the diklk, duration of the search operation
as well as the overhead of the inter-node MPI conication. The obtained
benchmarking results are collected in Table 2.

Table 2. Evaluation results on the Nehalem cluster.

Semantic Nr. of compute Time, s. Speed-up
Space nodes (processes) Loading Search MPI Total
comm.
LLD1 1 9 - - 2 1
2 0,75 0,5 0,04 1,61 1,25
4 0,4 0,4 0,05 1,2 1,7
8 0,23 0,32 0,1 1,01 1,98
16 0,17 0,29 0,16 0,94 2,13
LLD2 1 12 6 - 19,5 1
2 4 3,3 0,03 7,9 2,47
4 2,4 1,8 0,23 4,6 4,24
8 1,2 1 0,16 2,9 6,72
16 0,6 0,7 0,2 2 9,75
Wikil 1 18 4 - 22 1
2 8,9 3,8 1 13,3 1,65
4 4,6 2 0,08 7,4 2,97
8 2,3 1.3 0,23 4,4 5
16 1,2 0,75 0,52 2,8 7,86
Wiki2 1 309 83 - 395 1
2 59 27 0,58 88 4,5
4 35 13 16 59,1 6,7
8 20 8 4 32,2 12,3
16 10 3,7 0,16 14,6 27

8 http://www.hlrs.de/systems/platforms/nec-nehaldaster/
9 This configuration was not tested due to the RAfithtion on the single node



The evaluation results show that the MPI-parakalizersion of Random Indexing
scales well on the parallel architecture for the aases of any complexity, varying
from the sparse term vectors (LLD1) to large datts scontaining a million of
documents (Wiki2), despite the increasing commuitnsoverhead. In the best case,
the performance speed-up achieved by the paratelitgorithm was approximately
27 times.

5 Reated Work

Despite Parallel Computing being recognized in Ssmantic Web domain quite
recently, there have been some work performed wsvaigh performance reasoning,
such as introduced in [18]. However the majorityhmse approaches only introduce
ideas and roadmaps towards developing scalablerithigns rather then describe
working prototypes (i.e., concrete applicationgittban be quantitatively evaluated.

An outstanding approach is the work presented 9} {iat addresses the concrete
problem of scalable distributed reasoning by inidg a realization for
materialising the closure of an RDF graph basetherHadoop implementation of the
MapReduce framework. This realization is very prng in terms of the
performance and scalability that can be achieved production-level HPC system.
On the other hand, the application scenario desdrib this work was developed
from scratch and it is not clear what the developmefforts for an existing
application are. Combination of both those appreacthe one presented in [19] and
the one elaborated by us, would be of potentiaérast for building the next-
generation reasoning applications and porting thera large HPC, such as a new
Cray computer which will be installed at HLR$ the nearest future and will offer
several hundreds of CPU cores.

6 Conclusion and Future Work

The Semantic Web and the High Performance Computiommmunities have
traditionally been somewhat disjoint. However, Iz heeds and capabilities of these
two communities continue to converge, it will benbgcial for both to mutually
leverage their respective technologies. This papesents our approach to parallelise
the Airhead library for Random Indexing, which damused to significantly improve
information retrieval methods, in particular thabat use the cosine similarity for
searching a large vector space model. We use a&ctief parallel programming
paradigm, namely MPI, to exploit parallelism foetRandom Indexing algorithm in
order to take advantage of large-scale distribptedllel systems and thus to improve
its performance.

10 http:/finvestors.cray.com/phoenix.zhtml?c=98390&pk
newsArticle&ID=1486975&highlight=



Our parallelization technique is based on the dardacomposition. The technique
was presented using the simplest constructions fhenMPI specification. It required
a minimum of implementation efforts in the origiregplication’s code and is quite
generic, so that it may be easily reused in angradipplication.

In the future work, we will demonstrate the bersef MPI for parallelization of
further applications. On the other hand, we willdstigate the approach proposed in
[19] where we are going to look for a trade-offvee¢n both MPI and MapReduce
based techniques.
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