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Abstract. With billions of triples in the Linked Open Data cloud, which 
continues to grow exponentially, very challenging tasks begin to emerge related 
to the exploitation of large-scale reasoning. A considerable amount of work has 
been done in the area of using Information Retrieval methods to address these 
problems. However, although applied models work on Web scale, they 
downgrade the semantics contained in an RDF graph by observing each 
physical resource as a ’bag of words (URIs/literals)’. Distributional statistic 
methods can address this problem by capturing the structure of the graph more 
efficiently. However, these methods are continually confronting with efficiency 
and scalability problems on serial computing architectures due to their 
computational complexity. In this paper, we describe a parallelization algorithm 
of one such method (Random Indexing) based on the Message-Passing 
Interface (MPI), that enables efficient utilization of high performance parallel 
computers. Our evaluation results show significant performance improvement. 

Keywords: Statistical Semantics, Random Indexing, Parallelization, High 
Performance Computing, Message-Passing Interface. 

1   Introduction 

Recent years have seen a tremendous increase of structured data on the Web with 
public sectors such as UK and USA governments opening their data to public1, and 
encouraging others to build useful applications. At the same time, Linked Open Data 
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(LOD) project2 continues stimulating creation, publication and interlinking the RDF 
graphs with those already in the LOD cloud [1]. In March 2009, around 4 billion 
statements were available while in September 2010 this number increased to 25 
billion RDF triples, and still continues to grow. 

This massive amount of data requires effective exploitation, which is now a big 
challenge not only because of the size but also due to the nature of this data. Firstly, 
due to the varying methodologies used to generate these RDF graphs they face 
inconsistencies, incompleteness, but also redundancies. These are partially addressed 
by approaches for assessing the quality such as through tracking the provenance [2]. 
Secondly, even if the quality of the data would be at a high level, exploring and 
searching through large RDF graphs requires familiarity with the structure, and 
knowledge of the exact URIs. 

Traditionally, RDF spaces are being searched using an RDF query language such 
as SeRQL [3] or SPARQL [4]. These languages allow the formulation of fine-grained 
queries by their ability to match whole graphs and to create complex conditions on the 
variables to be bound in the query. This level of complexity and flexibility is very 
useful in many situations, especially when the query is created automatically in the 
context of an application. However, for end-users who want to explore the knowledge 
represented in an RDF store, this level of detail is often more of a hindrance: querying 
the repository is not possible without a detailed knowledge of its structure and the 
names and semantics of all the properties and classes involved. Another challenge is 
reasoning over this vast amount of data. The languages used for expressing formal 
semantics (e.g. OWL) use logic, which does not scale to the amount of information 
and the setting that is required for the Web. In that aspect, the approach suggested by 
Fensel and van Harmelen in [5] is to merge retrieval process and reasoning by the 
means of selection or subsetting: selecting a subset of the RDF graph which is 
relevant to a query and sufficient for reasoning. 

A considerable amount of work has been done in the area of using Information 
Retrieval (IR) methods for the task of selection and retrieval of RDF triples, and also 
for searching through them. The primary intention of these approaches is location of 
the RDF documents relevant to the given keyword and/or an URI. These systems are 
semantic search engines such as Swoogle [6] or Sindice [7]. They collect the 
Semantic Web resources from the Web and then index the keywords and URIs against 
the RDF documents containing those keywords and URIs, using the inverted index 
scheme [8]. 

However, although these models work on the Web scale, they downgrade the 
semantics contained in an RDF graph by observing each physical resource as a ‘bag 
of words (URIs/literals)’. More sophisticated IR models can capture the structure 
more efficiently by modelling meaning similarities between words through computing 
the distributional similarity over large amount of text. These are called statistical 
semantics methods and examples include Latent Semantic Analysis [9] and Random 
Indexing [10]. In order to compute similarities, these methods first generate a 
semantic space model. Both generating the model and searching through it (e.g. using 
cosine similarity) are quite computationally expensive. Hence these methods have not 
been used with enormous corpora such as hundreds of millions of documents, which 
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is the case we aim to address in our work. Moreover, from the end-users point of 
view, the linear increase of the search time through the large semantic space model is 
a large bottleneck. 

In this paper we describe a parallelization approach for the Random Indexing 
search algorithm for calculating semantic similarities based on the cosine function, 
and how we reduce this time on the way to achieving Web scale. This is of a 
significant contribution not only to the Semantic Web community, but also to the 
Information Retrieval community, due to the size of our corpus, which is considerably 
larger than what has previously been processed in IR. On the other hand, this work is 
of great interest for High Performance Computing community, for which Semantic 
Web has already attracted much attention due to the challenging computationally 
intensive tasks. A number of European initiatives strive to achieve the goal of 
increasing the scalability of the Semantic Web algorithms by introducing parallel 
computing, such as the Large Knowledge Collider3 project [21]. However, due to the 
lack of parallelised algorithms developed for Semantic Web, the current HPC support 
(except some promising examples, refer to Section 5) in this domain is still rather 
rudimentary. 

This paper introduces the results of our recent research, which strives to close those 
identified gaps. The paper is structured as follows. Section 2 introduces the pilot use 
case our research was concentrated on. Section 3 presents basics of the distributed 
parallelization, followed by the detailed description of the parallelization strategy 
elaborated for the pilot use case. Section 4 concentrates on the performance 
evaluation of the parallel realization. Section 5 discusses some related works. Section 
6 presents directions for further work. 

2   Use Case 

One of the newest advances in semantic statistics, which enjoys the global data stores 
for the information retrieval, is Random Indexing. Random Indexing is a novel 
approach for word space modelling. The word space conception is founded on the 
distributional hypothesis [10], according to which the two words that tend to 
constantly co-occur in several contexts have the similar meaning. Typically, a context 
refers to a multi-word segment, i.e. document. In the context of the data repository, 
that comprises a set of contexts Cm of size m, which are built upon a set of words Xn 
occurring in those contexts (obviously, m≤n), it is possible, for each word x, 
belonging to the word set Xn, to build a so-called context vector (1), whose elements 
are defined by means of the co-occurrence function fq: 

∀x∈Xn, ∃ v=[ fq(x,cj)] (1) 

where fq is a co-occurrence function between the word x and each of the contexts, m is 
a total number of the contexts, n is a total number of the words in all contexts cj∈Cm

,  

j= m..1 . 
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The co-occurrence function is in the simplest case a frequency counter, specifying 
how many times the word occurs in the corresponding context, normalized and 
weighted in order to reduce the effects of high frequency words, or compensate for 
differences in document sizes. Therefore, the vector (1) represents the context in 
which the word occurs in the document collection. In the scope of the document base, 
the full word co-occurrence characteristic is collected by combining the context 
vectors for each words resulting in the vector space – a two-dimensional co-
occurrence matrix of size mxn.  

The vector space represents the distributional profile of the words in relation to the 
considered contexts/documents. The main methodical value of this profile is that it 
enables calculation of the semantic similarity between the words in scope of the 
document collection (text corpus), based on the cosine similarity of the given words’ 
context vectors. Cosine similarity is a measure of similarity between the two vectors 
of m dimensions, equals to the cosine of the angle between them.  

This context vector property has found a wide application in Semantic Web 
applications. Prominent examples of algorithms based on semantic spaces are query 
expansion (e.g. [20]) and subsetting (e.g. [22]). Query expansion is extensively used 
in IR with the aim to expand the document collection (see Fig. 1a), which is returned 
as a result to a query thus covering the larger portion of the documents. Subsetting 
(also known as selection), on the contrary, deprecates the unnecessary items from a 
data set (see Fig. 1b), in order to achieve faster processing. Hence, the query 
expansion and subsetting applications are complementary, and are used to change 
properties of the query process to best adapt it to the search needs. 

 

 

Fig. 1. Examples utilizing Random Indexing: a) Query expansion, b) RDF subsetting. 

The pilot application considered in our research is the Airhead Semantic Spaces 
library [11]. Airhead is an open-source implementation of Random Indexing in the 
Java language, which has proved its usability for a number of practical tasks, in 
particular when applied for query refinement or RDF subsetting using Linked Life 
Data4 (LLD) or Wikipedia. Nevertheless, the very high dimensionality of the context 
vectors, which is a direct function of the analyzed data size, results in the hardware 
requirements going far beyond the capabilities of the current desktop computers. The 
latter fact makes traditional serial computing architectures increasingly ineffective 
when complexly addressing those large data amounts, as enabled by LLD.  
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3   Parallelization strategy 

3.1   Basics of Parallelization 
 
Parallelization is a mechanism that allows the single processor’s workload to be 
decomposed and distributed among other compute nodes of the parallel system, thus 
reducing the total time of the algorithm execution. This basically suggests 
identification of the concurrent regions of the application work- and dataflow, with 
further mapping them to the independent processor units of a parallel system, aiming 
at achieving the positive performance impact for the application. 

In software engineering, the most successful parallelization strategies are based on 
a non-overlapping domain decomposition of data structures as well as code 
instructions (Fig. 2). 
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Fig. 2. Examples of parallel data and code constructions in a simple reasoning application 
workflow, as considered in the LarKC project. 

There are several well-established technologies for implementation of 
parallelization in software applications, which can be subdivided into two big classes: 

� thread-based, for systems built on top of tightly coupled parallel CPUs 
(e.g. Multithreading, OpenMP); 

� process-based, for systems built on top of the loosely coupled parallel 
CPUs (e.g. MPI, MapReduce). 

Whereas the thread-based strategies, such as Multi-Threading [12], are considered 
to be very efficient and relatively easy to implement in the application code, they do 
not allow the application to achieve high performance speed up due to resource 
limitation of the existing shared-memory compute architecture (the total number of 
CPU cores provided by such system is usually not higher than 8). On the contrary, the 
process-based strategies, such as MapReduce [13] or Message-Passing Interface 
(MPI) [14], enable distributed compute architectures for application execution, in 
particular clusters, HPC, or Grid systems. In the following, we concentrate basically 
on the process-based approaches, in particular MPI. 



3.2   Distributed-memory Parallelization Frameworks 

Among the most widely utilized and sustainable parallelization approaches, the 
following two are of special interest for implementation of data-demanding parallel 
applications: 

� MapReduce 
� Message-Passing Interface 

MapReduce is a software framework for distributed computing on large data sets 
on clusters of workstations. Although MapReduce has proved it efficiency for 
processing large datasets on certain kinds of distributable problems, in particular for 
Semantic Web tasks, this technique requires considerable re-thinking of the 
application algorithms in order to confirm to the Map and the Reduce steps [13]. In 
the consequence, quite a big effort is required to re-implement existing large 
applications with the MapReduce framework. 

Contrary to MapReduce, MPI does not require such considerable changes in the 
application code because it is simply a utility library supporting information exchange 
among the parallel application instances. Moreover MPI is a language-independent 
standard, so can be re-used at almost any parallel system. For the above-mentioned 
reasons, we chose exactly MPI for the parallel implementation of the considered 
algorithm. 

As the acronym suggests, MPI is a process-based technique, whereby processes 
communicate by means of messages transmitted between (a so-called “point-to-point” 
communication) or among (involving several or even all processes, a so called 
“collective” communication) the nodes. Normally, one process is executed on a single 
computing node. If any of the processes needs to send/receive data to/from other 
processes, it should call a corresponding MPI communication function. Both point-to-
point and collective communications available for MPI processes are documented in 
the MPI standard [15]. 

There have been several initiatives striving to provide support for Java in HPC 
environments. One of the most successful MPI implementations is considered to be 
mpiJava5 [16], which came out of the HPJava project and is being developed in the 
framework of the Large Knowledge Collider project. The key feature of mpiJava is 
that it wraps the calls of the native C library, which mpiJava is installed on top of (e.g. 
MPICH6 or Open MPI7). This allows mpiJava to substitute MPI operations with calls 
to the native library (thanks to Java Native Interface - JNI), that ensures better 
communication performance as in case of the “Java-only” realization, as was for 
example done in MPJ-Express [17] library (see Fig. 3). Nevertheless, MPJ-Express 
can be greatly utilized for debugging purposes on the user’s local machine before 
porting to a large HPC system. 
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      a)     b) 

Fig. 3. Comparison of time (a) and bandwidth (b) of inter-node communication with different 
Java MPI libraries on the HLRS Nehalem cluster with Ethernet and Infiniband interconnects. 

3.3   MPI Realisation for Random Indexing 

In both query expansion and subsetting computing the cosine between a query vector 
and the rest of the vectors in the space (nearest neighbours) is the operation that 
benefits the most from paralellization. From now on we refer to the objects we 
operate with as words, even though they may be all kinds of things such as IDs, 
genome locations, proteins, and other non-word strings. Fig. 4a shows a schema of 
selection of the N=3 most similar words from the semantic vector space to the given 
word. Provided that the vectors are analyzed independently of each other and in an 
arbitrary order, the parallelization can be trivially achieved by applying a data domain 
decomposition to subdivide the vector space among the processors of the parallel 
system (Fig. 4b).  
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Fig. 4. The sequential (a) and the parallel (b) realization of the cosine similarity analysis in the 
Random Indexing algorithm. 

 



In such a parallel fashion, each of the vector subspaces is processed by a separate 
processor based on the domain boundaries (Listing 1).  

 

int my_rank = MPI.Rank(); 

int subspace_begin = VectorSpace.size() * (my_rank); 

int subspace_end = VectorSpace.size() * (my_rank + 1); 

 

Listing 1. Calculation of the subspace boundaries for parallel processing with MPI.Rank() 
function. 

Each parallel processor is identified by its ‘rank’ – absolute and unique number in 
the total processor scope, assigned by the MPI run-time environment. The processor 
ranking starts from 0 and ends with <n-1>, where n is a total number of the requested 
processors. For example, for configuration of two MPI processes, the first one will be 
assigned the rank “0, and the second one the rank “1”. Based on the rank, each 
process calculates the subdomain to be processed and starts the cosine similarity 
analysis in the corresponding subdomain. As a result of the analysis, each of the 
processes produces a list of the most similar words. However those results are 
incomplete as valid only for a particular subdomain. In order to generalize those 
partial results for the whole vector space domain, they should be collected in one of 
the processes (a root) that finalize the search (see the “synchronization” block in Fig. 
4b). Usually the process with the rank 0 acts as the root process, however any other 
process can be assigned by the programmer as a root. 

 
Collection of the results from each subdomain can be achieved by the means of the 

collective MPI.Gather function, according to the schema shown in Fig. 5. 
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Fig. 5. Schema of the MPI.Gather function for collecting the each process’s output in the root 
process. 

4   Performance Evaluation and Benchmarking 

Performance of the parallel Airhead realisation was evaluated for the four semantic 
space configurations described in Table 1. The use cases were executed on the 



Nehalem8 cluster of HLRS, whose compute nodes are equipped with Intel Xeon 2.8 
GHz processors, interconnected with Infiniband. Configuration of 1, 2, 4, 8, and 16 
compute nodes, each equipped with 12 GB of shared RAM space, were benchmarked. 
The MPI environment was served by mpiJava installed on top of Open MPI 1.4.1. 

Table 1. Characteristics of the benchmarked semantic spaces. 

Semantic Space Nr. of vectors Disk size, GB Description 
LLD1 0,064 M 0,082 Subset of LLD 
LLD2 0,5 M 0,65 Subset of LLD 
Wiki1 1 M (low density, terms 

only) 
1,6 Term set from 1M most 

central Wikipedia articles 
Wiki2 1 M (high density, entire 

documents) 
16 Document set from 1M 

most central Wikipedia 
articles 

 
The quantitative evaluation was focused on the total execution time, the time for 

loading the vector space from the file on the disk, the duration of the search operation 
as well as the overhead of the inter-node MPI communication. The obtained 
benchmarking results are collected in Table 2. 

Table 2. Evaluation results on the Nehalem cluster. 

Time, s. Speed-up Semantic 
Space 

Nr. of compute 
nodes (processes) Loading Search MPI 

comm. 
Total  

LLD1 1 -9 - - 2 1 
 2 0,75 0,5 0,04 1,61 1,25 

 4 0,4 0,4 0,05 1,2 1,7 

 8 0,23 0,32 0,1 1,01 1,98 

 16 0,17 0,29 0,16 0,94 2,13 

LLD2 1 12 6 - 19,5 1 

 2 4 3,3 0,03 7,9 2,47 

 4 2,4 1,8 0,23 4,6 4,24 

 8 1,2 1 0,16 2,9 6,72 

 16 0,6 0,7 0,2 2 9,75 

Wiki1 1 18 4 - 22 1 

 2 8,9 3,8 1 13,3 1,65 

 4 4,6 2 0,08 7,4 2,97 

 8 2,3 1,3 0,23 4,4 5 

 16 1,2 0,75 0,52 2,8 7,86 

Wiki2 1 309 83 - 395 1 

 2 59 27 0,58 88 4,5 

 4 35 13 16 59,1 6,7 

 8 20 8 4 32,2 12,3 

 16 10 3,7 0,16 14,6 27 

                                                           
8 http://www.hlrs.de/systems/platforms/nec-nehalem-cluster/  
9 This configuration was not tested due to the RAM limitation on the single node 



 
The evaluation results show that the MPI-parallelized version of Random Indexing 

scales well on the parallel architecture for the use cases of any complexity, varying 
from the sparse term vectors (LLD1) to large data sets containing a million of 
documents (Wiki2), despite the increasing communication overhead. In the best case, 
the performance speed-up achieved by the parallelized algorithm was approximately 
27 times. 

5   Related Work 

Despite Parallel Computing being recognized in the Semantic Web domain quite 
recently, there have been some work performed towards high performance reasoning, 
such as introduced in [18].  However the majority of those approaches only introduce 
ideas and roadmaps towards developing scalable algorithms rather then describe 
working prototypes (i.e., concrete applications) that can be quantitatively evaluated. 

An outstanding approach is the work presented in [19] that addresses the concrete 
problem of scalable distributed reasoning by introducing a realization for 
materialising the closure of an RDF graph based on the Hadoop implementation of the 
MapReduce framework. This realization is very promising in terms of the 
performance and scalability that can be achieved on a production-level HPC system. 
On the other hand, the application scenario described in this work was developed 
from scratch and it is not clear what the development efforts for an existing 
application are. Combination of both those approaches, the one presented in [19] and 
the one elaborated by us, would be of potential interest for building the next-
generation reasoning applications and porting them to a large HPC, such as a new 
Cray computer which will be installed at HLRS10 in the nearest future and will offer 
several hundreds of CPU cores. 

6   Conclusion and Future Work 

The Semantic Web and the High Performance Computing communities have 
traditionally been somewhat disjoint. However, as the needs and capabilities of these 
two communities continue to converge, it will be beneficial for both to mutually 
leverage their respective technologies. This paper presents our approach to parallelise 
the Airhead library for Random Indexing, which can be used to significantly improve 
information retrieval methods, in particular those that use the cosine similarity for 
searching a large vector space model. We use an effective parallel programming 
paradigm, namely MPI, to exploit parallelism for the Random Indexing algorithm in 
order to take advantage of large-scale distributed parallel systems and thus to improve 
its performance. 
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newsArticle&ID=1486975&highlight= 



Our parallelization technique is based on the domain decomposition. The technique 
was presented using the simplest constructions from the MPI specification. It required 
a minimum of implementation efforts in the original application’s code and is quite 
generic, so that it may be easily reused in any other application. 

In the future work, we will demonstrate the benefits of MPI for parallelization of 
further applications. On the other hand, we will investigate the approach proposed in 
[19] where we are going to look for a trade-off between both MPI and MapReduce 
based techniques. 
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