
Scalable Discovery of Linked Services

Barry Norton and Steffen Stadtmüller

AIFB, Karlsruhe Institute of Technology, Germany
firstname.lastname@kit.edu

Abstract. Linked Services bring together the principles and technology which
define Linked Data with those of RESTful services. Services and APIs are thus
enriched by, and contribute to, the Web of Data. A number of approaches to the
semantic description of services have chosen SPARQL graph patterns as a means
to describe input and output expectations. This paper describes two contributions.
Firstly, the extension of discovery mechanisms offered over such Linked Service
descriptions for use at application design time. Secondly, the realisation of this
discovery approach in a distributed fashion using the Hadoop implementation of
MapReduce, and an evaluation using private cloud infrastructure.

1 Introduction

Linked Data is identified with the application of a set of principles, and related best
practice, regarding the use of RDF, SPARQL and HTTP in the publication of data.
Linked Open Data is the result of the application of these principles in combination
with the push to opening up public sector and other data.

Linked Open Services (LOS) [3] and Linked Data Services (LIDS) [9] look beyond
the exposure of a fixed datasets using HTTP, SPARQL and RDF and consider how the
data that results from computation over input can carry explicit semantics and be inter-
linked with existing Linked Data sets, and other dynamic data, thus also contributing
to the Web of Data. It is natural that Linked Data’s use of HTTP should be extended,
consistently with REST [2], and that RDF should be made available, at least as an al-
ternative via Content Negotiation, to encode representations to achieve these aims.

Other work [6] — which introduces the name ‘Linked Services’ that we conse-
quently use to generalise over the different approaches to the combination of Linked
Data and RESTful service approaches — introduces the idea that service descriptions
should also be exposed as Linked Data. The original approach, pursued in the SOA4All
project1 and leading to the iServe service repository2, uses a lightweight RDF version
of the models used over many years of the literature on ‘Semantic Web Services’, the
so-called ‘Minimal Service Model’3. This uses semantic technology to characterise the
input and output expectations of a service by annotating structural message parts with
ontology classes.

1 http://www.soa4all.eu/
2 http://iserve.kmi.open.ac.uk/
3 http://cms-wg.sti2.org/minimal-service-model/

2

LIDS and LOS both base their service descriptions on the notion that Linked Data
provides a better description for services’ input and output requirements: the graph pat-
terns provided by the SPARQL query language. These provide the advantage of famil-
iarity to Linked Data producers and consumers, but also of a more thorough description
of what should be communicated and the possibility for increased tool support. One
such kind of tool support is the extension of the notion of service discovery to better
support a data-oriented view. This paper is organised as follows: Section 2 explores this
motivation further and introduces the idea of design-time discovery of services using
graph patterns; Section 4 sketches our approach to implementing such a mechanism in a
distributed, scalable fashion; Section 5 details our evaluation of the current status of this
implementation and justifies its general feasibility; Section 6 then provides conclusions
and introduces our planned future work.

2 Motivation

In order to motivate the advantages of graph-based IO description we introduce an
example based on wrapping some social network platform that only provides an API,
not a dump of Linked Data (there are many such, so we do not need to be specific).
A common feature of these social networks is the display of a ‘birthday list’, i.e. a
list of people with a birthday on the day of access. Encouraging use of APIs, rather
than crawling, a call might be provided to retrieve such a list. The Linked Services
approach would be to wrap this call to provide the information in RDF, reusing existing
vocabularies. Here the natural choice is the ‘Friend of a Friend’ (FOAF) vocabulary4.

A wrapping for such a service then, putting aside issues of security and credentials
for which our solution would build on WebID5, would make explicit the input of a per-
son identified in that social network, and an output that gives the age of certain friends.
Furthermore, following Linked Open Service principles6, reproduced in Table 1, we
would use graph patterns to do so (Principle 1), where the foaf:knows predicate
is the link between the input and output (Principle 3). The resulting input and output
descriptions for the service are represented in Table 2

1. Describe services’ input and output as SPARQL graph patterns
2. Communicate RDF by RESTful content negotiation
3. The output should make explicit its relation with the input

Table 1. (Core) Linked Open Service Principles

4 http://xmlns.com/foaf/spec/
5 http://www.w3.org/wiki/WebID
6 http://linkedservices.org/wiki/LOS_Principles

3

Input: {?user a foaf:Person; sn:id ?uid.}

Output: {?user foaf:knows [sn:id ?fid; foaf:age ?age].}

Table 2. Basic Description for Example Service

We elide the namespace prefix declarations — for foaf and sn, the social network
— as these are defined across the service description. Note that the reuse of the variable
?user across input and output imply that this will have the same binding in the output
as provided in the input. In SPARQL terms these would be ‘safe variables’ if we con-
sidered the service to be a CONSTRUCT query from the input to the output patterns
(which indeed is the approach taken in Linked Data Services, where the same type of
service descriptions are given) .

The advantages of this graph-based approach to the description of inputs and out-
puts can be seen in comparing the description to a traditional ‘semantic web service’
model such as OWL-S7, where syntactic messages (with the implicit assumption that
these will be bourne in plain XML) are annotated simply with classes. Here both the
input and output message of the service would simply have to be annotated with the
foaf:Person class. Any other information on which is required for input, and can
be expected from output, would either be hidden in non-semantic transforms for ‘lift-
ing’ and ‘lowering’ (usually using XSLT) and/or in pre- and post-conditions in a non-
standard rule language (usually SWRL). In fact it is not clear whether properties applied
to instances in a postcondition are expected to the returned in the services communica-
tions as these are also used to indicate changes in the state of the world outside of the
communications (e.g., the dispatch of a physical book in a book ordering service).

The Web Service Modeling Ontology (WSMO)8 improves somewhat on the vague
‘semantic’ description of accepting instances of Person, and providing back instances
of Person, by two means. Firstly, WSMO models an explicit choreography, which in
the Web Service Modeling Language (WSML) is defined by a language fragment that
indicates not just which classes (called concepts in WSML) are communicable, but also
which relations (a n-ary generalisation of binary RDF properties) are. Unfortunately,
indicating that instances of foaf:age are communicated does not tell the user whether
the submitted user’s age is returned, or whether their friends’ ages are. In other words
it could, in graph pattern descriptions, correspond either to the output shown in Table 2
or of: ?user foaf:age ?age; foaf:knows ?friend.

Secondly, WSMO distinguishes assumptions from preconditions, and effects from
postconditions, so that pre- and post-conditions may apply only to communicated data.
Unfortunately WSMO implementations do not respect this difference. In fact IRS-III [1],
a version of the Internet Reasoning Service that is one of the two reference platforms for
WSMO, deliberately uses conditions in the assumption field to judge the applicability
of services, given concrete input data (and not the exterior ‘state of the World’ that they
are otherwise specified to model).

7 http://www.w3.org/Submission/OWL-S/
8 http://www.w3.org/Submission/WSMO/

4

The LOS and LIDS approaches to the use of graph patterns for service descriptions
can be traced back to an extension of the OWL-S, in the work described in [8]. Here,
though, this was cast slightly differently: as pre- and post-conditions. It is our belief
that simply replacing the entire class-based annotation of messages with patterns is ul-
timately more comprehensible and useful than trying to reconcile an annotation with
these conditions, especially since they have unclear semantics that are not directly re-
lated to communication. It is our hope, furthermore, that this approach will continue
to grow in popularity due to the more useful descriptions that can be formed, while
sticking to the ‘lightweight’ semantic languages — RDF(S) and SPARQL — that have
been at least partly responsible for the rapid growth of Linked Data. For this reason we
introduce a discovery mechanism that aids in the use of such service descriptions.

3 Approach

In our approach to discover Linked Services with graph pattern-based I/O descriptions
we allow service requests to be formulated as service templates with the the same syntax
than the service descriptions. So a service template is also a pair of SPARQL graph
patterns: one representing the set of all possible input RDF graphs an agent (human or
machine) can provide for the invocation of a service and one representing a template of
output RDF graphs such an agent expects to be delivered from the service. Therefore
service templates encapsulate all necessary request information needed, including the
expected relation between the input and output.

Therefore the question of whether a given service description matches a service
template correlates to the problem of graph pattern containment. The input graph pattern
of a service description must be contained in the service template’s pattern; every graph
that satisfies the template input graph pattern must also satisfy the service description’s
input graph pattern. Intuitively this is to say that the input an agent can provide fulfils
the needs of the service to be invoked. Note that this also allows for the agent to talk
about additional data he can provide for service invocation even though a matching
service does not require them.

Matching the output graph patterns works in an analogous way. The output graph
pattern of a service description contains the output graph pattern of a template; i.e.,
every graph that satisfies the service description output graph pattern also satisfies the
template output graph pattern. So the required containment relation of the output pat-
terns is dual to that of the input graph patterns. Intuitively again this means a service
output has to provide enough to satisfy the request, but can provide more.

The matching based on graph pattern containment subsists in two binary decisions
(one for the input and one for the output), answering if a service description completely
matches a service template. In addition to this, in order to provide a more flexible dis-
covery approach, we allow for the ranking of service descriptions against service tem-
plates by providing a number of continuously-valued matching metrics.

5

To achieve this, we introduce two additional metrics:

– The predicate subset ratio (psr) measures to what degree the set of predicates used
in one pattern are subsumed within the set used in another.

– The resource subset ratio (rsr) measures to what degree the set of named resources,
in subject or object position, used in one pattern are subsumed with those of another
pattern.

Intuitively these metrics indicate to what degree a service description and a service tem-
plate are using the same vocabulary. If a service description does not match a template
in terms of pattern containment completely, they allow to test whether they at least use
some of the same resources and predicates (and to what degree). Therefore they pro-
vide a mechanism to discover services, which are close to a given template, but are not
necessarily completely matching.

Similarly to the pattern containment we have to distinguish between the metrics for
input and output. Since a template input graph pattern can offer more data than actually
needed by a described service without endangering their compatibility, the subset ratios
for the input patterns have to measure, to what degree the resources (respectively pred-
icates) in the service descriptions are used in the service template. For the subset ratios
of the output patterns this works the other was around, because a described service can
offer more output than required be the template. So in this case the subset ratios have to
measure, to what degree the resources (respectively predicates) in the template are used
in the service description. The Equations (1)-(4) show how the metrics are calculated.

psrinput =
#({predicates in template} ∩ {predicates in service description})

{predicates in service description}
(1)

psroutput =
#({predicates in template} ∩ {predicates in service description})

{predicates in template}
(2)

rsrinput =
#({resources in template} ∩ {resources in service description})

{predicates in service description}
(3)

rsroutput =
#({resources in template} ∩ {resources in service description})

{resources in template}
(4)

Note, that if a graph pattern is contained in another one (i.e., the binary decision is
positive), the subset ratios must necessarily result in a metric of 1.0.

6

As an example again consider an agent looking for a service that takes information
about a person represented in the FOAF vocabulary as input, and provides the name
and the age of the friends of this specified person as output. Further consider two poten-
tially useful service descriptions. The first is for a service that expects input exactly as
proposed by the template, but only provides the age of the person with the foaf:age
predicate. The second is for a service that provides the name, age and the OpenID
as output with the predicates foaf:name, foaf:age and foaf:openid respec-
tively, but additionally requires a userID from a specific social network (from which
the service would actually obtain its data). In this case the input graph pattern of the
template does not promise all the data needed to invoke the service. On the other hand,
only this service covers all the data the template requires in the output (as well as some
additional, not needed).

The discovery process is depicted in Figure 1. In this example we would find that the
agent who submitted the template can invoke the service described with the first service
description but he only gets a subset of the output data he demands for. But taking into
account that the psroutput = 0.75 and the rsroutput = 1.0, this service is still close and
could be presented to the agent, for example with an additional notification, that some
of the requested output will not be there.

The second service description on the other hand represents a service that provides
all the output data the agent is looking for. Here it is the input in the template that does
not promise all the necessary data, from the service’s point of view. Again, however, by
looking at the subset ratios (psrinput = 0.5 and rsrinput = 1.0) it becomes apparent
that this service could be useful for the agent, since it is very close to the template.
In this case the agent could be specifically asked to provide the missing input for the
service invocation.

To realize the described discovery approach and to address scalability we propose
a discovery cloud, which provides as service description repository as well as template
repository. This distribution cloud offers a RESTful [2] repository API to manage the
service descriptions and to allow agents to submit new templates and retrieve the calcu-
lated metrics, or rather the discovered services ranked according to these.

Now the described semantic discovery process is applied at the following stages:

– When a new service template is uploaded to the discovery cloud, semantic discov-
ery is used against every service description.

– When a new service description is uploaded to the discovery cloud every service
template will be checked against this new service.

The insight pursued in our implementation, described in the following section, is that
both of these problems can be structured as a MapReduce problem, with a map over
the other type of resource, followed by a simple reduce. An important consideration,
as with any MapReduce problem, is the locality of data; i.e., that the computation is
reasonably well isolated from the communication of large amounts of data.

7

Service Description 1) Service Description 2)
input output input output

pattern containment YES NO NO YES
psr 1.0 0.75 0.5 1.0
rsr 1.0 1.0 1.0 1.0

Fig. 1. Example for the discovery process

8

4 Implementation

In order to realise this approach for the discovery of Linked Services we implemented a
system, that stores service descriptions and templates, both of which can be considered
to consist of a URI as unique identifier and two SPARQL graph patterns that describe
service input and output.

Work already exists on the provision of RESTful repositories for service descrip-
tions, and provision of these according to Linked Data principles [4], [7]. Our imple-
mentation applies the same approach also to templates. In practical terms, when an RDF
representation of a service description or template is HTTP POSTed to the repository,
a URI is returned by which it is identified as a resource. In the standard REST manner,
the resource can be updated by PUTting a new representation to the same URI, and it
can be removed by a DELETE.

By managing templates as persistent resources, discovery against the template be-
comes an on-going task. Each retrieval of the list of services matching a template may
be different due to two forms of dynamicity. First new service descriptions may be
added to the repository, or indeed removed, between retrievals. Secondly, dynamic as-
pects of the service may affect ranking of each list; for instance the Quality of Service
provided by the described service, as this is monitored over time.

When an agent (human or machine) would like to find services for a given task,
then, a template can be POSTed. Every submitted template is stored and matched with
all currently stored service descriptions. We use Jena9, a Java framework for building
Semantic Web applications, and ARQ10, a query engine for Jena, to implement the
matching mechanism. To determine if a service description matches a template we cal-
culate, if the graph representing the input in the service description is ‘contained’ in
the graph representing the input in the template; equivalent to checking whether the
promised input is enough to invoke the described service. Analogously it is determined
if the graph pattern representing the output of the template is contained in the graph
representing the output in the service description. This is equivalent to checking, if the
output of the described service is enough to satisfy the demands of the agent.

To determine these containment relations, the patterns for input and output (of tem-
plates and service descriptions respectively) are parsed and used as “WHERE”- clause
of ARQ SPARQL ASK queries. Additionally the variables in both patterns are substi-
tuted by generated resources, resulting in graphs, which are skolemized versions of the
original patterns. To test if a graph pattern A is contained a graph pattern B, we exe-
cute the ASK query of A over the skolemized version of B. The query will result in a
positive answer, iff B contains A.

To allow for a sophisticated ranking, instead of just a binary discovery decision, we
additionally calculate two other metrics: The predicate subset ratio, which measures
the fraction of predicates used in the input graph pattern of the service description, that
are also used in the input graph pattern in the template (and vice versa for output graph
patterns). The resource subset ratio analogously measures the fraction of resources in
subject or object position of the triple patterns in one graph that are used in the other.

9 http://openjena.org
10 http://jena.sourceforge.net/ARQ

9

These two metrics provide a continuum of matches be expressing to what degree
the template and the service description use the same vocabulary. To calculate the two
ratios for input and output respectively ARQ SPARQL SELECT queries are executed
over the skolemized graphs to extract the set of predicates (resources) used in the graph
patterns. Each set of metrics, generated in this way, for every combination of template
and service descriptions is tagged with an identifier consisting of a combination of
respective service description URI and template URI.

To allow service descriptions to be updated, or to populate the system with new
service descriptions, an analogous process is employed. A submitted (via HTTP POST)
service description is stored in the system and matched with all service templates. The
resulting metrics are also tagged with an identifier and complement the already existing
results. Thus, every combination of template and service description has a set of results
that is persistently saved and can be retrieved from the system via HTTP GET.

If the system is populated with several thousands of service descriptions, the amount
of calculations for determining all the metrics can be quite high. However, to provide for
scalability of our approach we use Apache Hadoop11, the open-source implementation
of Google MapReduce. The Hadoop software is designed for distributed computation
by dividing computation jobs into smaller sub-tasks, which can be executed in parallel
on different nodes in a cluster of machines (map function). The results of these sub-
tasks are retrieved and combined to achieve the overall goal of the original computation
job (reduce function). For this purpose Hadoop implements a distributed file system
(HDFS), which spans over an arbitrary number of computers. Data is stored on blocks
of this file system; these blocks are distributed randomly over all nodes in the cluster. If
the input data of a computing job is spanning over several blocks, a sub-task for every
block is created and executed on the node where the block resides. Additionally the
blocks can be replicated several times to provide a safe mechanism against failure of
nodes.

To deploy our system we use OpenCirrus12, a collaboration of several organizations
to provide a research testbed for cloud-based systems. The Karlsruhe Institute for Tech-
nologies cluster within OpenCirrus makes use of OpenNebula13 toolkit, an open source
software used by OpenCirrus to build an “infrastructure as a service”-cloud (IaaS). This
environment allows us to easily create and configure virtual machines that act as inde-
pendent computers. We use these machines to set up a Hadoop cluster. This implies,
that our cluster runs on top of a cloud, further abstracting from actual physical hosts.

We store the service descriptions, templates and matching results on a distributed
HDFS storage, hosted on several virtual machines, as described. When a template, or
service description, is submitted, Hadoop calculates the matching metrics by transfer-
ring and executing the code, that implements the matching mechanism together with the
submitted template, to the nodes where the service descriptions (templates) are stored,
rather than moving the data to the code. Furthermore Hadoop is “rack-aware”, which
means it always tries to use nodes close to each other (e.g. blades on the same rack in a
datacenter) to reduce network traffic in the cluster.

11 http://hadoop.apache.org
12 http://opencirrus.org
13 http://www.opennebula.org

10

Since our Hadoop system runs on virtual machines, whose communication is bal-
anced by the OpenNebula Toolkit, we chose a flat structure, acting as if all nodes are
hosted on the same rack. Finally Hadoop tries to balance the workload of the nodes,
taking into account that some nodes contain the same data blocks due to the described
replication mechanism.

After calculation of the metrics, the map function assigns a timestamp and the iden-
tifier to every set of metrics and passes the generated results to the reduce function.
In our case the reduce function just gathers all the results and saves them persistently
on the distributed file system. Since our system also allows for updating templates and
service descriptions by re-submitting a new version of them with the same identifier,
we have to run a second house-keeping MapReduce job. This second job compares the
newly generated results with the results that are already stored. If a submitted service
description is tagged with the same URI than a preexisting service description (i.e., an
update is intended), some of the generated results will also have the same identifiers.
In this case the older results are deleted, which can be checked by using the mentioned
timestamps.

5 Evaluation

To evaluate our discovery system, especially in terms of scalability and in the absence
of a large number of existing real service descriptions (since these number only in the
double-figures so far, we have developed a generator. This create random pairs of related
SPARQL graph patterns within boundaries, set by certain parameters, described below.
These graph patterns can be interpreted as input and output of a service description or
a template, because these are essentially equivalent.

For evaluation we generated 10 000 tuples used as service descriptions. Both pat-
terns in these tuples are composed with a random number between 5 and 50 of triple
patterns. The triple patterns for every respective pair are generated with resources in
subject or object position, randomly drawn out of a local resource pool consisting of 10
to 50 different (URI-identified) resources. These local resources are randomly drawn
out of a global pool of 500 resources. The predicates in the triple patterns of the tuples
are also randomly drawn out of 3 to 25 different predicates in a local predicate pool.
And again this local pool is randomly chosen out of a global pool of 250 predicates. So
the difference between the local and global pools is, that the global pools of resources
and predicates are used for all tuples, whereas the local predicates and resources are
only consistent for both of the graph patterns within a tuple. This approach is chosen to
establish a credible relationship between input and output.

Additionally the generator uses variables, rather than resources, in subject or object
position with a probability of 0.3 in each case. A variable is used in predicate posi-
tion with a probability of 0.2. In every tuple between 2 and 10 different variables are
used. Since variables are already locally valid within one tuple, no global variable pool
to draw from is needed. Additionally we generated a tuple of graph patterns used as
template with the same parameters.

11

We populated the system with the service description using different setups with
one, two, five, eight and ten worknodes in the Hadoop cluster, deployed on virtual ma-
chines of the OpenCirrus test bed. With every setup one additional virtual machine
is needed to act as namenode for the Hadoop cluster. The namenode is used for the
coordination of the distributed computation tasks, but does no computation itself. The
distributed HDFS storage was configured with a block size of 1MB with a replication of
factor 3 for every used block. The 10 000 service descriptions corresponded to 8.16MB
of data and were therefore stored over 3 x 9 blocks on the cluster.

Then the matching process for the generated template over all service descriptions
was triggered on every setup. We measured the execution time needed for the match-
ing itself (i.e., first MapReduce job) and the overall execution, which includes the time
needed for the second MapReduce job to combine the newly calculated with the pre-
existing metric sets. To provide for comparable results regarding the overall time, we
did not prepopulate the system with results. Therefore the second MapReduce job used
every time only the 10 000 newly calculated metric sets as input (i.e., one for every
combination of service description and template).

worknodes execution time (sec) mean (sec) standard deviation (sec) standard error (sec)
1 1. 477.3

2. 463.3 470.3 9.9 7.0
2 1. 283.7

2. 277 280.4 4.7 3.3
5 1. 169.7

2. 156 162.9 9.6 6.8
8 1. 155.3

2. 167.1 161.2 8.2 5.9
10 1. 134

2. 121.7 127.8 8.7 6.2
Table 3. measurements of overall execution time

worknodes execution time (sec) mean (sec) standard deviation (sec) standard error (sec)
1 1. 394.3

2. 395.8 395 1 0.7
2 1. 223.6

2. 219.3 221.5 3 2.1
5 1. 120.6

2. 124 122.4 2.4 1.7
8 1. 121.7

2. 117.2 119.5 3.2 2.3
10 1. 81.4

2. 82.1 81.8 0.5 0.4
Table 4. measurements of exclusive matching time

12

Fig. 2. graphical representation of measurements

To account for fluctuations in network traffic we measured the matching on each
setup twice. The results are shown in Table 3 and Table 4 with a graphical represen-
tation in Figure 2. The calculation of the metrics alone took between 81.4 sec, on ten
worknodes, and 395.8 sec, on one worknode. The overall execution time was measured
between 121.7 sec using ten worknodes, and 477.3 sec on one worknode. It can be seen,
that the system scales well by adding additional worknodes between one to five nodes.
Between five and eight nodes the execution time stagnates almost completely. By using
ten worknodes in the Hadoop cluster the measured times are further decreased com-
pared to the setup with eight worknodes, although the improvement is less significant
than in the area between one and five worknodes.

The behavior between one and five worknodes is easily accounted for by the possi-
bility to execute more computations simultaneously. The more nodes are on the system,
the more sub-tasks can be launched at the same time. By employing up to eight workn-
odes above five no further decrease in execution time is achieved because the Hadoop
system was able at these settings to balance the workload with fewer nodes. Since the
maximum number of map tasks executed by the system is determined by the amount of
block the input data fills on the HDFS storage. So in our case not more than nine map
tasks can be launched (eight, and one with a small input size of 0.19MB). Therefore
on settings with one to five worknodes almost every worknode has to execute at least
two map tasks. This provides the namenode with more posibilities to distribute the map
tasks among the worknodes.

13

Such a distribution takes into account the fact that the worknodes contain non-
disjunctive subsets of the overall input data set. The tasks can therefore be assigned
in such a way that all employed worknodes contribute an equal amount of work to the
calculation of the metrics. By using, for example, eight nodes, the namenode loses this
possibility to some extent, since it always prefers parallel computation over load bal-
ancing (i.e., it will not wait for a worknode to finish if another worknode is already
available). This also explains why a further, though diminishing, decrease of execution
time is achieved by using more than eight nodes. In this case the namenode can (and
must) decide not to use one of the nodes (and assigning the insignificant small map job
to another). In this situation the least useful worknode is chosen to be disregarded by
the namenode.

The effect of losing the possibility to balance the workload between the nodes can
easily be avoided by choosing a smaller blocksize that allows for more map tasks than
available nodes. But for our evaluation this observation also shows, that the improve-
ment in terms of execution speed can not only be attributed to the increase of compu-
tation resources (i.e., adding additional CPUs and memory with every worknode), but
also to the strategic distribution and execution of matching sub-tasks.

By comparing the results of the overall execution time and the matching time with-
out housekeeping, similar observations can be made. The time needed to execute this
second MapReduce job decreases due to the employment of a second worknode com-
pared to a setup with only one node, but no further improvement can be achieved by
adding additional nodes. The inputs for this second job are the calculated metrics, for
every combination of service descriptions and template. They amounts to 2.68MB of
data. So only 3 MapJobs can be start simultaneously.

The standard deviation and standard error of the individual results are also shown
in the tables, and represented in the figure (as bars). For the overall execution time the
standard deviation ranges between 4.7 sec and 9.9 sec, which results in a standard error
between 3.3 sec and 7 sec. For the exclusive matching process the standard deviation
is measured between 0.5 sec and 3.2 sec, which results in a standard error between 0.4
sec and 2.3 sec. Those values clearly indicate the stability of the system. The difference
between the overall execution time and the exclusive matching time can be explained by
the second MapReduce job that is included in the overall time, since most fluctuations in
our measurements are due to the overhead time, that is needed to start a new MapReduce
job.

Our results are not only valid for the matching a template over service descriptions,
but also for populating the discovery system with a new service description, because
they are syntactically equivalent and the process to submit a new service description
is symmetrical to the process of submitting a new template. In other words the 10 000
used graph pattern tuples could have just as well been interpreted as templates, that are
already stored on the system and one new service description (i.e., the former template)
is submitted.

14

6 Conclusions and Future Work

In this paper we have: motivated the use of SPARQL graph patterns for the description
of Linked Services; given an overview of one approach to discovery where both ser-
vices and templates, representing data requirements from services, are described in this
way; detailed an interface to such a discovery approach extending the existing notion of
provision of RESTful and Linked Data-compliant registries; detailed a distributed im-
plementation based on Hadoop; and described an evaluation of the scalability of such
an implementation based on realistic parameters.

In future work we will expand on our coverage of SPARQL and RDF(S) in two ma-
jor ways. Firstly, while the discovery approach detailed here concentrates on the con-
junctive graph patterns, to which Linked Data Services restrict themselves, the Linked
Open Services approach has motivated the use of disjunction. Consider, for example,
a social network that allows its users to hide their full date of birth but to expose their
birthdays. This means that for some friends they would be included in the results for
a birthdays-based API call, but their age would not be included. In this case we might
model the output as follows:

{?user foaf:knows ?friend.
?friend sn:id ?fid.
OPTIONAL {?friend foaf:age ?age}.}

Similarly we have considered, related to the geospatial services considered in our
previous work [5], that a service might be flexible in the use of vocabularies encoding
input. While our existing services have used the Basic Geo Vocabulary14 (usually given
the prefix wgs84, wgs84 pos, or wgs84 loc), the Geo OWL ontology15 follows
GeoRSS in using Geography Markup Language (GML)-style objects (declared in a
namespace usually given the prefix gml16) containing complex GML-defined literals.
A service that accepts, as input, point in either of these encodings could be described as
follows:

{{?point a wgs84:Point; wgs84:lat ?lat; wgs84:long ?long.}
UNION
{?point a gml:Point; gml:pos ?pos.}}

Similarly it could be a promising avenue to consider the use of FILTER expressions
within the SPARQL graph patterns, indeed we could restrict, given dates of birth, the
returned people in the running example to actually have their birthdays at the time of
request by these means. This, however, seems like a better of use true rule-based post-
conditions (or effects, in WSMO terminology) because it is not necessarily a property
of the data communicated and the strength, demonstrated in this paper, of graph-based
patterns is that they directly capture the information communicated by a service.

14 http://www.w3.org/2003/01/geo/
15 http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/W3C_XGR_
Geo_files/geo_2007.owl

16 http://www.opengis.net/gml

15

The provision for inference in the containment of one graph pattern by another
is also part of our immediate future work. In our running example, the specification
of an instance of foaf:Person, and likewise Point, is redundant since this is the
domain of required predicates. There may be many such ways in which a pattern that is
not directly contained may necessarily infer, in all matching patterns, the matching of
another pattern. Inference also affects our continuous metrics in useful and interesting
ways. This leads on to one final notable piece of on-going work: an attempt to establish
the most effective means to combine matching metrics to define a useful ranking of
services with respect to a template.

Acknowledgement: The work is supported by the EU FP7 projects SOA4All (IP
215219), and PlanetData (NoE 257641). We thank our colleagues from these projects
for valuable discussions on the topics of this paper.

References

1. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci, C.:
IRS-III: A broker for semantic web services based applications. In: Proceedings of the 5th
International Semantic Web Conference (ISWC2006). Athens, Georgia, USA (Nov 2006)

2. Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine (2000)

3. Krummenacher, R., Norton, B., Marte, A.: Towards Linked Open Services. In: 3rd Future
Internet Symposium (September 2010)

4. Norton, B., Kerrigan, M., Marte, A.: On the use of transformation and linked data principles
in a generic repository for semantic web services. In: Proceedings of the 1st Workshop on
Ontology Repositories and Editors for the Semantic Web (ORES-2010). No. 596, CEUR-WS
(2010)

5. Norton, B., Krummenacher, R.: Geospatial linked open services. In: Proceedings of Workshop
Towards Digital Earth (DE-2010). No. 640, CEUR-WS (2010)

6. Pedrinaci, C., Domingue, J., Krummenacher, R.: Services and the Web of Data: An Unex-
ploited Symbiosis. In: AAAI Spring Symposium (March 2010)

7. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.: iServe: a
linked services publishing platform. In: Proceedings of the 1st Workshop on Ontology Repos-
itories and Editors for the Semantic Web (ORES-2010). No. 596, CEUR-WS (2010)

8. Sbodio, M., Moulin, C.: SPARQL as an Expression Language for OWL-S. In: Workshop on
OWL-S: Experiences and Directions at 4th European Semantic Web Conference (June 2007)

9. Speiser, S., Harth, A.: Taking the lids off data silos. In: Proceedings of the 6th International
Conference on Semantic Systems (iSemantics). ACM International Conference Proceeding
Series (2010)

