
Zoè Lacroix
Edna Ruckhaus
Maria-Esther Vidal (Eds.)

RED’11
Fourth International Workshop on REsource
Discovery

Workshop co-located with the 8th Extended Semantic Web Con-
ference (ESWC 2011)
Heraklion, Greece, May 30, 2011
Proceedings

c© 2011 for the individual papers by the papers’ authors. Copying permitted for private
and academic purposes. Re-publication of material from this volume requires permission
by the copyright owners.

Editors’ addresses:
Arizona State University
{zoe.lacroix}@asu.edu
Universidad Simón Bolı́var
Department of Computer Science
Valle de Sartenejas
Caracas 1086, Venezuela

{ruckhausl |mvidal}@ldc.usb.ve

Preface

This volume contains abstracts from the technical program of the Fourth International
Workshop on REsource Discovery, held on May 30, 2011. After three successful events,
first in Linz, Austria, joined to IIWAS (2008), then in Lyon, France, colocated with VLDB
(2009), and finally in Pontoise, France, joined again to IIWAS (2010), the fourth Interna-
tional Workshop on REsource Discovery (RED 2011) was held together with ESWC in
Heraklion, Greece.

A resource may be a data repository, a database management system, a linked data end-
point, a link between resources, a semantic wiki, or a Web service. Resources are charac-
terized by core information including a name, a description of its functionality, its URLs,
and various additional Quality of Service parameters that express its non-functional char-
acteristics. Resource discovery is the process of identifying, locating and selecting ex-
isting resources that satisfy specific functional and non-functional requirements. Current
research includes crawling, indexing, ranking, clustering, and rewriting techniques, for
collecting and consuming the resources for a specific request.

The Fourth International Workshop on REsource Discovery is aimed at bringing together
researchers from the database, artificial intelligence and semantic web areas, to discuss re-
search and experiences in developing and deploying concepts, techniques and applications
that address various issues related to resource discovery.

We received 11 submissions, out of which we selected nine for inclusion in the digital
and printed proceedings. We set up an exciting program which included a talk on Linked
Services given by invited speaker, Andreas Harth. We organized four sessions, two sec-
tions on Scalable architectures for Resource Discovery, one section on Ontology-based
Resource Discovery, and one section on Applications in Life Sciences.

We thank the 21 members of our Program Committee, the invited speaker and the authors
for their valuable contribution to the workshop. We are also grateful to ESWC organizers
for their support in making this meeting successful. We kindly acknowledge the National
Science Foundation for supporting student travel (grant IIS 0944126), and the DID-USB.

May 2011 Zoé Lacroix, Edna Ruckhaus,
Maria-Esther Vidal

3

Workshop Chairs and Organizing Committee

Zoè Lacroix, Arizona State University and Translational Genomics Research Institute,
USA
Edna Ruckaus, Universidad Simón Bolı́var, Venezuela
Maria-Esther Vidal, Universidad Simón Bolı́var

Program Committee

Mohammad Alrifai, University of Hannover, Germany.
José Luis Ambite, University Southern California, USA.
Yudith Cardinale, Universidad Simón Bolı́var, Venezuela.
Vassilis Christophides, ICS-FORTH, Greece.
Oscar Corcho, Universidad Politecnica de Madrid, Spain.
Joyce El Haddad, Universite Paris-Dauphine, France.
Alberto Fernández, Universidad Juan Carlos I, Spain.
Manolis Gergatsoulis, Ionian University, Greece.
Marlene Goncalves, Universidad Simón Bolı́var, Venezuela
Andreas Harth, AIFB, Karlsruhe Institute of Technology, Germany.
H.V. Jagadish, University of Michigan, USA.
Gunter Ladwig, AIFB, Karlsruhe Institute of Technology, Germany.
Maria Maleshkova, KMI, The Open University, United Kingdom.
Kunal Patel, Ingenuity Systems, USA.
Marta Rukoz, Paris Ouest Nanterre La Defense University, France.
Fatiha Sais, IUT Orsay (Paris-Sud 11 University), France.
Sherif Sakr, National ICT Australia (NICTA) and University of New South Wales (UNSW),
Australia.
Miguel-Angel Sicilia, University of Alcala, Spain.
Hala Skaf-Moli, Nantes University, LINA, France.
Dimitrios Skotas, University of Hannover, Germany.
Maciej Zaremba, DERI and National University of Ireland, Ireland.

4

Contents

Scalable Discovery of Linked Services
Barry Norton, and Steffen Stadtmüller 6

Ontology-based User-defined Rules and Context-aware Service Composition Sys-
tem
Victoria Beltran, Knarig Arabshian, and Henning Schulzrinne 21

Random Indexing for Finding Similar Nodes within Large RDF graphs
Danica Damljanovic, Johann Petrak, Mihai Lupu, Hamish Cunningham, Mats
Carlsson, Gunnar Engstrom, and Bo Andersso 36

An organizational environment for in silico experiments in molecular biology
Yuan Lin, Marie-Angélique Laporte, Lucile Soler, Isabelle Mougenot,and Thérèse
Liboure 51

A Directory of Heterogeneous Services
Zijie Cong, Alberto Fernández, Carlos A. Soto 65

A Framework for Resource Annotation and Classification in Bioinformatics
Nadia Yacoubi Ayadiy, Malika Charrady, Soumaya Amdouniz and Mohamed Be-
nahmed 80

LDM: Link Discovery Method for new Resource Integration
Nathalie Pernelle and Fatiha Saı̈s 94

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes
Saumen Dey, Daniel Zinn, and Bertram Ludäscher 109

C-Set : a Commutative Replicated Data Type for Semantic Stores
Khaled Aslan, Pascal Molli, Hala Skaf-Molli and Stephane Weis 123

5

Scalable Discovery of Linked Services

Barry Norton and Steffen Stadtmüller

AIFB, Karlsruhe Institute of Technology, Germany
firstname.lastname@kit.edu

Abstract. Linked Services bring together the principles and technology which
define Linked Data with those of RESTful services. Services and APIs are thus
enriched by, and contribute to, the Web of Data. A number of approaches to the
semantic description of services have chosen SPARQL graph patterns as a means
to describe input and output expectations. This paper describes two contributions.
Firstly, the extension of discovery mechanisms offered over such Linked Service
descriptions for use at application design time. Secondly, the realisation of this
discovery approach in a distributed fashion using the Hadoop implementation of
MapReduce, and an evaluation using private cloud infrastructure.

1 Introduction

Linked Data is identified with the application of a set of principles, and related best
practice, regarding the use of RDF, SPARQL and HTTP in the publication of data.
Linked Open Data is the result of the application of these principles in combination
with the push to opening up public sector and other data.

Linked Open Services (LOS) [3] and Linked Data Services (LIDS) [9] look beyond
the exposure of a fixed datasets using HTTP, SPARQL and RDF and consider how the
data that results from computation over input can carry explicit semantics and be inter-
linked with existing Linked Data sets, and other dynamic data, thus also contributing
to the Web of Data. It is natural that Linked Data’s use of HTTP should be extended,
consistently with REST [2], and that RDF should be made available, at least as an al-
ternative via Content Negotiation, to encode representations to achieve these aims.

Other work [6] — which introduces the name ‘Linked Services’ that we conse-
quently use to generalise over the different approaches to the combination of Linked
Data and RESTful service approaches — introduces the idea that service descriptions
should also be exposed as Linked Data. The original approach, pursued in the SOA4All
project1 and leading to the iServe service repository2, uses a lightweight RDF version
of the models used over many years of the literature on ‘Semantic Web Services’, the
so-called ‘Minimal Service Model’3. This uses semantic technology to characterise the
input and output expectations of a service by annotating structural message parts with
ontology classes.

1 http://www.soa4all.eu/
2 http://iserve.kmi.open.ac.uk/
3 http://cms-wg.sti2.org/minimal-service-model/

6

2

LIDS and LOS both base their service descriptions on the notion that Linked Data
provides a better description for services’ input and output requirements: the graph pat-
terns provided by the SPARQL query language. These provide the advantage of famil-
iarity to Linked Data producers and consumers, but also of a more thorough description
of what should be communicated and the possibility for increased tool support. One
such kind of tool support is the extension of the notion of service discovery to better
support a data-oriented view. This paper is organised as follows: Section 2 explores this
motivation further and introduces the idea of design-time discovery of services using
graph patterns; Section 4 sketches our approach to implementing such a mechanism in a
distributed, scalable fashion; Section 5 details our evaluation of the current status of this
implementation and justifies its general feasibility; Section 6 then provides conclusions
and introduces our planned future work.

2 Motivation

In order to motivate the advantages of graph-based IO description we introduce an
example based on wrapping some social network platform that only provides an API,
not a dump of Linked Data (there are many such, so we do not need to be specific).
A common feature of these social networks is the display of a ‘birthday list’, i.e. a
list of people with a birthday on the day of access. Encouraging use of APIs, rather
than crawling, a call might be provided to retrieve such a list. The Linked Services
approach would be to wrap this call to provide the information in RDF, reusing existing
vocabularies. Here the natural choice is the ‘Friend of a Friend’ (FOAF) vocabulary4.

A wrapping for such a service then, putting aside issues of security and credentials
for which our solution would build on WebID5, would make explicit the input of a per-
son identified in that social network, and an output that gives the age of certain friends.
Furthermore, following Linked Open Service principles6, reproduced in Table 1, we
would use graph patterns to do so (Principle 1), where the foaf:knows predicate
is the link between the input and output (Principle 3). The resulting input and output
descriptions for the service are represented in Table 2

1. Describe services’ input and output as SPARQL graph patterns
2. Communicate RDF by RESTful content negotiation
3. The output should make explicit its relation with the input

Table 1. (Core) Linked Open Service Principles

4 http://xmlns.com/foaf/spec/
5 http://www.w3.org/wiki/WebID
6 http://linkedservices.org/wiki/LOS_Principles

Scalable Discovery of Linked Services

7

3

Input: {?user a foaf:Person; sn:id ?uid.}

Output: {?user foaf:knows [sn:id ?fid; foaf:age ?age].}

Table 2. Basic Description for Example Service

We elide the namespace prefix declarations — for foaf and sn, the social network
— as these are defined across the service description. Note that the reuse of the variable
?user across input and output imply that this will have the same binding in the output
as provided in the input. In SPARQL terms these would be ‘safe variables’ if we con-
sidered the service to be a CONSTRUCT query from the input to the output patterns
(which indeed is the approach taken in Linked Data Services, where the same type of
service descriptions are given) .

The advantages of this graph-based approach to the description of inputs and out-
puts can be seen in comparing the description to a traditional ‘semantic web service’
model such as OWL-S7, where syntactic messages (with the implicit assumption that
these will be bourne in plain XML) are annotated simply with classes. Here both the
input and output message of the service would simply have to be annotated with the
foaf:Person class. Any other information on which is required for input, and can
be expected from output, would either be hidden in non-semantic transforms for ‘lift-
ing’ and ‘lowering’ (usually using XSLT) and/or in pre- and post-conditions in a non-
standard rule language (usually SWRL). In fact it is not clear whether properties applied
to instances in a postcondition are expected to the returned in the services communica-
tions as these are also used to indicate changes in the state of the world outside of the
communications (e.g., the dispatch of a physical book in a book ordering service).

The Web Service Modeling Ontology (WSMO)8 improves somewhat on the vague
‘semantic’ description of accepting instances of Person, and providing back instances
of Person, by two means. Firstly, WSMO models an explicit choreography, which in
the Web Service Modeling Language (WSML) is defined by a language fragment that
indicates not just which classes (called concepts in WSML) are communicable, but also
which relations (a n-ary generalisation of binary RDF properties) are. Unfortunately,
indicating that instances of foaf:age are communicated does not tell the user whether
the submitted user’s age is returned, or whether their friends’ ages are. In other words
it could, in graph pattern descriptions, correspond either to the output shown in Table 2
or of: ?user foaf:age ?age; foaf:knows ?friend.

Secondly, WSMO distinguishes assumptions from preconditions, and effects from
postconditions, so that pre- and post-conditions may apply only to communicated data.
Unfortunately WSMO implementations do not respect this difference. In fact IRS-III [1],
a version of the Internet Reasoning Service that is one of the two reference platforms for
WSMO, deliberately uses conditions in the assumption field to judge the applicability
of services, given concrete input data (and not the exterior ‘state of the World’ that they
are otherwise specified to model).

7 http://www.w3.org/Submission/OWL-S/
8 http://www.w3.org/Submission/WSMO/

Scalable Discovery of Linked Services

8

4

The LOS and LIDS approaches to the use of graph patterns for service descriptions
can be traced back to an extension of the OWL-S, in the work described in [8]. Here,
though, this was cast slightly differently: as pre- and post-conditions. It is our belief
that simply replacing the entire class-based annotation of messages with patterns is ul-
timately more comprehensible and useful than trying to reconcile an annotation with
these conditions, especially since they have unclear semantics that are not directly re-
lated to communication. It is our hope, furthermore, that this approach will continue
to grow in popularity due to the more useful descriptions that can be formed, while
sticking to the ‘lightweight’ semantic languages — RDF(S) and SPARQL — that have
been at least partly responsible for the rapid growth of Linked Data. For this reason we
introduce a discovery mechanism that aids in the use of such service descriptions.

3 Approach

In our approach to discover Linked Services with graph pattern-based I/O descriptions
we allow service requests to be formulated as service templates with the the same syntax
than the service descriptions. So a service template is also a pair of SPARQL graph
patterns: one representing the set of all possible input RDF graphs an agent (human or
machine) can provide for the invocation of a service and one representing a template of
output RDF graphs such an agent expects to be delivered from the service. Therefore
service templates encapsulate all necessary request information needed, including the
expected relation between the input and output.

Therefore the question of whether a given service description matches a service
template correlates to the problem of graph pattern containment. The input graph pattern
of a service description must be contained in the service template’s pattern; every graph
that satisfies the template input graph pattern must also satisfy the service description’s
input graph pattern. Intuitively this is to say that the input an agent can provide fulfils
the needs of the service to be invoked. Note that this also allows for the agent to talk
about additional data he can provide for service invocation even though a matching
service does not require them.

Matching the output graph patterns works in an analogous way. The output graph
pattern of a service description contains the output graph pattern of a template; i.e.,
every graph that satisfies the service description output graph pattern also satisfies the
template output graph pattern. So the required containment relation of the output pat-
terns is dual to that of the input graph patterns. Intuitively again this means a service
output has to provide enough to satisfy the request, but can provide more.

The matching based on graph pattern containment subsists in two binary decisions
(one for the input and one for the output), answering if a service description completely
matches a service template. In addition to this, in order to provide a more flexible dis-
covery approach, we allow for the ranking of service descriptions against service tem-
plates by providing a number of continuously-valued matching metrics.

Scalable Discovery of Linked Services

9

5

To achieve this, we introduce two additional metrics:

– The predicate subset ratio (psr) measures to what degree the set of predicates used
in one pattern are subsumed within the set used in another.

– The resource subset ratio (rsr) measures to what degree the set of named resources,
in subject or object position, used in one pattern are subsumed with those of another
pattern.

Intuitively these metrics indicate to what degree a service description and a service tem-
plate are using the same vocabulary. If a service description does not match a template
in terms of pattern containment completely, they allow to test whether they at least use
some of the same resources and predicates (and to what degree). Therefore they pro-
vide a mechanism to discover services, which are close to a given template, but are not
necessarily completely matching.

Similarly to the pattern containment we have to distinguish between the metrics for
input and output. Since a template input graph pattern can offer more data than actually
needed by a described service without endangering their compatibility, the subset ratios
for the input patterns have to measure, to what degree the resources (respectively pred-
icates) in the service descriptions are used in the service template. For the subset ratios
of the output patterns this works the other was around, because a described service can
offer more output than required be the template. So in this case the subset ratios have to
measure, to what degree the resources (respectively predicates) in the template are used
in the service description. The Equations (1)-(4) show how the metrics are calculated.

psrinput =
({predicates in template} ∩ {predicates in service description})

{predicates in service description}
(1)

psroutput =
({predicates in template} ∩ {predicates in service description})

{predicates in template}
(2)

rsrinput =
({resources in template} ∩ {resources in service description})

{predicates in service description}
(3)

rsroutput =
({resources in template} ∩ {resources in service description})

{resources in template}
(4)

Note, that if a graph pattern is contained in another one (i.e., the binary decision is
positive), the subset ratios must necessarily result in a metric of 1.0.

Scalable Discovery of Linked Services

10

6

As an example again consider an agent looking for a service that takes information
about a person represented in the FOAF vocabulary as input, and provides the name
and the age of the friends of this specified person as output. Further consider two poten-
tially useful service descriptions. The first is for a service that expects input exactly as
proposed by the template, but only provides the age of the person with the foaf:age
predicate. The second is for a service that provides the name, age and the OpenID
as output with the predicates foaf:name, foaf:age and foaf:openid respec-
tively, but additionally requires a userID from a specific social network (from which
the service would actually obtain its data). In this case the input graph pattern of the
template does not promise all the data needed to invoke the service. On the other hand,
only this service covers all the data the template requires in the output (as well as some
additional, not needed).

The discovery process is depicted in Figure 1. In this example we would find that the
agent who submitted the template can invoke the service described with the first service
description but he only gets a subset of the output data he demands for. But taking into
account that the psroutput = 0.75 and the rsroutput = 1.0, this service is still close and
could be presented to the agent, for example with an additional notification, that some
of the requested output will not be there.

The second service description on the other hand represents a service that provides
all the output data the agent is looking for. Here it is the input in the template that does
not promise all the necessary data, from the service’s point of view. Again, however, by
looking at the subset ratios (psrinput = 0.5 and rsrinput = 1.0) it becomes apparent
that this service could be useful for the agent, since it is very close to the template.
In this case the agent could be specifically asked to provide the missing input for the
service invocation.

To realize the described discovery approach and to address scalability we propose
a discovery cloud, which provides as service description repository as well as template
repository. This distribution cloud offers a RESTful [2] repository API to manage the
service descriptions and to allow agents to submit new templates and retrieve the calcu-
lated metrics, or rather the discovered services ranked according to these.

Now the described semantic discovery process is applied at the following stages:

– When a new service template is uploaded to the discovery cloud, semantic discov-
ery is used against every service description.

– When a new service description is uploaded to the discovery cloud every service
template will be checked against this new service.

The insight pursued in our implementation, described in the following section, is that
both of these problems can be structured as a MapReduce problem, with a map over
the other type of resource, followed by a simple reduce. An important consideration,
as with any MapReduce problem, is the locality of data; i.e., that the computation is
reasonably well isolated from the communication of large amounts of data.

Scalable Discovery of Linked Services

11

7

Service Description 1) Service Description 2)
input output input output

pattern containment YES NO NO YES
psr 1.0 0.75 0.5 1.0
rsr 1.0 1.0 1.0 1.0

Fig. 1. Example for the discovery process

Scalable Discovery of Linked Services

12

8

4 Implementation

In order to realise this approach for the discovery of Linked Services we implemented a
system, that stores service descriptions and templates, both of which can be considered
to consist of a URI as unique identifier and two SPARQL graph patterns that describe
service input and output.

Work already exists on the provision of RESTful repositories for service descrip-
tions, and provision of these according to Linked Data principles [4], [7]. Our imple-
mentation applies the same approach also to templates. In practical terms, when an RDF
representation of a service description or template is HTTP POSTed to the repository,
a URI is returned by which it is identified as a resource. In the standard REST manner,
the resource can be updated by PUTting a new representation to the same URI, and it
can be removed by a DELETE.

By managing templates as persistent resources, discovery against the template be-
comes an on-going task. Each retrieval of the list of services matching a template may
be different due to two forms of dynamicity. First new service descriptions may be
added to the repository, or indeed removed, between retrievals. Secondly, dynamic as-
pects of the service may affect ranking of each list; for instance the Quality of Service
provided by the described service, as this is monitored over time.

When an agent (human or machine) would like to find services for a given task,
then, a template can be POSTed. Every submitted template is stored and matched with
all currently stored service descriptions. We use Jena9, a Java framework for building
Semantic Web applications, and ARQ10, a query engine for Jena, to implement the
matching mechanism. To determine if a service description matches a template we cal-
culate, if the graph representing the input in the service description is ‘contained’ in
the graph representing the input in the template; equivalent to checking whether the
promised input is enough to invoke the described service. Analogously it is determined
if the graph pattern representing the output of the template is contained in the graph
representing the output in the service description. This is equivalent to checking, if the
output of the described service is enough to satisfy the demands of the agent.

To determine these containment relations, the patterns for input and output (of tem-
plates and service descriptions respectively) are parsed and used as “WHERE”- clause
of ARQ SPARQL ASK queries. Additionally the variables in both patterns are substi-
tuted by generated resources, resulting in graphs, which are skolemized versions of the
original patterns. To test if a graph pattern A is contained a graph pattern B, we exe-
cute the ASK query of A over the skolemized version of B. The query will result in a
positive answer, iff B contains A.

To allow for a sophisticated ranking, instead of just a binary discovery decision, we
additionally calculate two other metrics: The predicate subset ratio, which measures
the fraction of predicates used in the input graph pattern of the service description, that
are also used in the input graph pattern in the template (and vice versa for output graph
patterns). The resource subset ratio analogously measures the fraction of resources in
subject or object position of the triple patterns in one graph that are used in the other.

9 http://openjena.org
10 http://jena.sourceforge.net/ARQ

Scalable Discovery of Linked Services

13

9

These two metrics provide a continuum of matches be expressing to what degree
the template and the service description use the same vocabulary. To calculate the two
ratios for input and output respectively ARQ SPARQL SELECT queries are executed
over the skolemized graphs to extract the set of predicates (resources) used in the graph
patterns. Each set of metrics, generated in this way, for every combination of template
and service descriptions is tagged with an identifier consisting of a combination of
respective service description URI and template URI.

To allow service descriptions to be updated, or to populate the system with new
service descriptions, an analogous process is employed. A submitted (via HTTP POST)
service description is stored in the system and matched with all service templates. The
resulting metrics are also tagged with an identifier and complement the already existing
results. Thus, every combination of template and service description has a set of results
that is persistently saved and can be retrieved from the system via HTTP GET.

If the system is populated with several thousands of service descriptions, the amount
of calculations for determining all the metrics can be quite high. However, to provide for
scalability of our approach we use Apache Hadoop11, the open-source implementation
of Google MapReduce. The Hadoop software is designed for distributed computation
by dividing computation jobs into smaller sub-tasks, which can be executed in parallel
on different nodes in a cluster of machines (map function). The results of these sub-
tasks are retrieved and combined to achieve the overall goal of the original computation
job (reduce function). For this purpose Hadoop implements a distributed file system
(HDFS), which spans over an arbitrary number of computers. Data is stored on blocks
of this file system; these blocks are distributed randomly over all nodes in the cluster. If
the input data of a computing job is spanning over several blocks, a sub-task for every
block is created and executed on the node where the block resides. Additionally the
blocks can be replicated several times to provide a safe mechanism against failure of
nodes.

To deploy our system we use OpenCirrus12, a collaboration of several organizations
to provide a research testbed for cloud-based systems. The Karlsruhe Institute for Tech-
nologies cluster within OpenCirrus makes use of OpenNebula13 toolkit, an open source
software used by OpenCirrus to build an “infrastructure as a service”-cloud (IaaS). This
environment allows us to easily create and configure virtual machines that act as inde-
pendent computers. We use these machines to set up a Hadoop cluster. This implies,
that our cluster runs on top of a cloud, further abstracting from actual physical hosts.

We store the service descriptions, templates and matching results on a distributed
HDFS storage, hosted on several virtual machines, as described. When a template, or
service description, is submitted, Hadoop calculates the matching metrics by transfer-
ring and executing the code, that implements the matching mechanism together with the
submitted template, to the nodes where the service descriptions (templates) are stored,
rather than moving the data to the code. Furthermore Hadoop is “rack-aware”, which
means it always tries to use nodes close to each other (e.g. blades on the same rack in a
datacenter) to reduce network traffic in the cluster.

11 http://hadoop.apache.org
12 http://opencirrus.org
13 http://www.opennebula.org

Scalable Discovery of Linked Services

14

10

Since our Hadoop system runs on virtual machines, whose communication is bal-
anced by the OpenNebula Toolkit, we chose a flat structure, acting as if all nodes are
hosted on the same rack. Finally Hadoop tries to balance the workload of the nodes,
taking into account that some nodes contain the same data blocks due to the described
replication mechanism.

After calculation of the metrics, the map function assigns a timestamp and the iden-
tifier to every set of metrics and passes the generated results to the reduce function.
In our case the reduce function just gathers all the results and saves them persistently
on the distributed file system. Since our system also allows for updating templates and
service descriptions by re-submitting a new version of them with the same identifier,
we have to run a second house-keeping MapReduce job. This second job compares the
newly generated results with the results that are already stored. If a submitted service
description is tagged with the same URI than a preexisting service description (i.e., an
update is intended), some of the generated results will also have the same identifiers.
In this case the older results are deleted, which can be checked by using the mentioned
timestamps.

5 Evaluation

To evaluate our discovery system, especially in terms of scalability and in the absence
of a large number of existing real service descriptions (since these number only in the
double-figures so far, we have developed a generator. This create random pairs of related
SPARQL graph patterns within boundaries, set by certain parameters, described below.
These graph patterns can be interpreted as input and output of a service description or
a template, because these are essentially equivalent.

For evaluation we generated 10 000 tuples used as service descriptions. Both pat-
terns in these tuples are composed with a random number between 5 and 50 of triple
patterns. The triple patterns for every respective pair are generated with resources in
subject or object position, randomly drawn out of a local resource pool consisting of 10
to 50 different (URI-identified) resources. These local resources are randomly drawn
out of a global pool of 500 resources. The predicates in the triple patterns of the tuples
are also randomly drawn out of 3 to 25 different predicates in a local predicate pool.
And again this local pool is randomly chosen out of a global pool of 250 predicates. So
the difference between the local and global pools is, that the global pools of resources
and predicates are used for all tuples, whereas the local predicates and resources are
only consistent for both of the graph patterns within a tuple. This approach is chosen to
establish a credible relationship between input and output.

Additionally the generator uses variables, rather than resources, in subject or object
position with a probability of 0.3 in each case. A variable is used in predicate posi-
tion with a probability of 0.2. In every tuple between 2 and 10 different variables are
used. Since variables are already locally valid within one tuple, no global variable pool
to draw from is needed. Additionally we generated a tuple of graph patterns used as
template with the same parameters.

Scalable Discovery of Linked Services

15

11

We populated the system with the service description using different setups with
one, two, five, eight and ten worknodes in the Hadoop cluster, deployed on virtual ma-
chines of the OpenCirrus test bed. With every setup one additional virtual machine
is needed to act as namenode for the Hadoop cluster. The namenode is used for the
coordination of the distributed computation tasks, but does no computation itself. The
distributed HDFS storage was configured with a block size of 1MB with a replication of
factor 3 for every used block. The 10 000 service descriptions corresponded to 8.16MB
of data and were therefore stored over 3 x 9 blocks on the cluster.

Then the matching process for the generated template over all service descriptions
was triggered on every setup. We measured the execution time needed for the match-
ing itself (i.e., first MapReduce job) and the overall execution, which includes the time
needed for the second MapReduce job to combine the newly calculated with the pre-
existing metric sets. To provide for comparable results regarding the overall time, we
did not prepopulate the system with results. Therefore the second MapReduce job used
every time only the 10 000 newly calculated metric sets as input (i.e., one for every
combination of service description and template).

worknodes execution time (sec) mean (sec) standard deviation (sec) standard error (sec)
1 1. 477.3

2. 463.3 470.3 9.9 7.0
2 1. 283.7

2. 277 280.4 4.7 3.3
5 1. 169.7

2. 156 162.9 9.6 6.8
8 1. 155.3

2. 167.1 161.2 8.2 5.9
10 1. 134

2. 121.7 127.8 8.7 6.2
Table 3. measurements of overall execution time

worknodes execution time (sec) mean (sec) standard deviation (sec) standard error (sec)
1 1. 394.3

2. 395.8 395 1 0.7
2 1. 223.6

2. 219.3 221.5 3 2.1
5 1. 120.6

2. 124 122.4 2.4 1.7
8 1. 121.7

2. 117.2 119.5 3.2 2.3
10 1. 81.4

2. 82.1 81.8 0.5 0.4
Table 4. measurements of exclusive matching time

Scalable Discovery of Linked Services

16

12

Fig. 2. graphical representation of measurements

To account for fluctuations in network traffic we measured the matching on each
setup twice. The results are shown in Table 3 and Table 4 with a graphical represen-
tation in Figure 2. The calculation of the metrics alone took between 81.4 sec, on ten
worknodes, and 395.8 sec, on one worknode. The overall execution time was measured
between 121.7 sec using ten worknodes, and 477.3 sec on one worknode. It can be seen,
that the system scales well by adding additional worknodes between one to five nodes.
Between five and eight nodes the execution time stagnates almost completely. By using
ten worknodes in the Hadoop cluster the measured times are further decreased com-
pared to the setup with eight worknodes, although the improvement is less significant
than in the area between one and five worknodes.

The behavior between one and five worknodes is easily accounted for by the possi-
bility to execute more computations simultaneously. The more nodes are on the system,
the more sub-tasks can be launched at the same time. By employing up to eight workn-
odes above five no further decrease in execution time is achieved because the Hadoop
system was able at these settings to balance the workload with fewer nodes. Since the
maximum number of map tasks executed by the system is determined by the amount of
block the input data fills on the HDFS storage. So in our case not more than nine map
tasks can be launched (eight, and one with a small input size of 0.19MB). Therefore
on settings with one to five worknodes almost every worknode has to execute at least
two map tasks. This provides the namenode with more posibilities to distribute the map
tasks among the worknodes.

Scalable Discovery of Linked Services

17

13

Such a distribution takes into account the fact that the worknodes contain non-
disjunctive subsets of the overall input data set. The tasks can therefore be assigned
in such a way that all employed worknodes contribute an equal amount of work to the
calculation of the metrics. By using, for example, eight nodes, the namenode loses this
possibility to some extent, since it always prefers parallel computation over load bal-
ancing (i.e., it will not wait for a worknode to finish if another worknode is already
available). This also explains why a further, though diminishing, decrease of execution
time is achieved by using more than eight nodes. In this case the namenode can (and
must) decide not to use one of the nodes (and assigning the insignificant small map job
to another). In this situation the least useful worknode is chosen to be disregarded by
the namenode.

The effect of losing the possibility to balance the workload between the nodes can
easily be avoided by choosing a smaller blocksize that allows for more map tasks than
available nodes. But for our evaluation this observation also shows, that the improve-
ment in terms of execution speed can not only be attributed to the increase of compu-
tation resources (i.e., adding additional CPUs and memory with every worknode), but
also to the strategic distribution and execution of matching sub-tasks.

By comparing the results of the overall execution time and the matching time with-
out housekeeping, similar observations can be made. The time needed to execute this
second MapReduce job decreases due to the employment of a second worknode com-
pared to a setup with only one node, but no further improvement can be achieved by
adding additional nodes. The inputs for this second job are the calculated metrics, for
every combination of service descriptions and template. They amounts to 2.68MB of
data. So only 3 MapJobs can be start simultaneously.

The standard deviation and standard error of the individual results are also shown
in the tables, and represented in the figure (as bars). For the overall execution time the
standard deviation ranges between 4.7 sec and 9.9 sec, which results in a standard error
between 3.3 sec and 7 sec. For the exclusive matching process the standard deviation
is measured between 0.5 sec and 3.2 sec, which results in a standard error between 0.4
sec and 2.3 sec. Those values clearly indicate the stability of the system. The difference
between the overall execution time and the exclusive matching time can be explained by
the second MapReduce job that is included in the overall time, since most fluctuations in
our measurements are due to the overhead time, that is needed to start a new MapReduce
job.

Our results are not only valid for the matching a template over service descriptions,
but also for populating the discovery system with a new service description, because
they are syntactically equivalent and the process to submit a new service description
is symmetrical to the process of submitting a new template. In other words the 10 000
used graph pattern tuples could have just as well been interpreted as templates, that are
already stored on the system and one new service description (i.e., the former template)
is submitted.

Scalable Discovery of Linked Services

18

14

6 Conclusions and Future Work

In this paper we have: motivated the use of SPARQL graph patterns for the description
of Linked Services; given an overview of one approach to discovery where both ser-
vices and templates, representing data requirements from services, are described in this
way; detailed an interface to such a discovery approach extending the existing notion of
provision of RESTful and Linked Data-compliant registries; detailed a distributed im-
plementation based on Hadoop; and described an evaluation of the scalability of such
an implementation based on realistic parameters.

In future work we will expand on our coverage of SPARQL and RDF(S) in two ma-
jor ways. Firstly, while the discovery approach detailed here concentrates on the con-
junctive graph patterns, to which Linked Data Services restrict themselves, the Linked
Open Services approach has motivated the use of disjunction. Consider, for example,
a social network that allows its users to hide their full date of birth but to expose their
birthdays. This means that for some friends they would be included in the results for
a birthdays-based API call, but their age would not be included. In this case we might
model the output as follows:

{?user foaf:knows ?friend.
?friend sn:id ?fid.
OPTIONAL {?friend foaf:age ?age}.}

Similarly we have considered, related to the geospatial services considered in our
previous work [5], that a service might be flexible in the use of vocabularies encoding
input. While our existing services have used the Basic Geo Vocabulary14 (usually given
the prefix wgs84, wgs84 pos, or wgs84 loc), the Geo OWL ontology15 follows
GeoRSS in using Geography Markup Language (GML)-style objects (declared in a
namespace usually given the prefix gml16) containing complex GML-defined literals.
A service that accepts, as input, point in either of these encodings could be described as
follows:

{{?point a wgs84:Point; wgs84:lat ?lat; wgs84:long ?long.}
UNION
{?point a gml:Point; gml:pos ?pos.}}

Similarly it could be a promising avenue to consider the use of FILTER expressions
within the SPARQL graph patterns, indeed we could restrict, given dates of birth, the
returned people in the running example to actually have their birthdays at the time of
request by these means. This, however, seems like a better of use true rule-based post-
conditions (or effects, in WSMO terminology) because it is not necessarily a property
of the data communicated and the strength, demonstrated in this paper, of graph-based
patterns is that they directly capture the information communicated by a service.

14 http://www.w3.org/2003/01/geo/
15 http://www.w3.org/2005/Incubator/geo/XGR-geo-20071023/W3C_XGR_
Geo_files/geo_2007.owl

16 http://www.opengis.net/gml

Scalable Discovery of Linked Services

19

15

The provision for inference in the containment of one graph pattern by another
is also part of our immediate future work. In our running example, the specification
of an instance of foaf:Person, and likewise Point, is redundant since this is the
domain of required predicates. There may be many such ways in which a pattern that is
not directly contained may necessarily infer, in all matching patterns, the matching of
another pattern. Inference also affects our continuous metrics in useful and interesting
ways. This leads on to one final notable piece of on-going work: an attempt to establish
the most effective means to combine matching metrics to define a useful ranking of
services with respect to a template.

Acknowledgement: The work is supported by the EU FP7 projects SOA4All (IP
215219), and PlanetData (NoE 257641). We thank our colleagues from these projects
for valuable discussions on the topics of this paper.

References

1. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci, C.:
IRS-III: A broker for semantic web services based applications. In: Proceedings of the 5th
International Semantic Web Conference (ISWC2006). Athens, Georgia, USA (Nov 2006)

2. Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine (2000)

3. Krummenacher, R., Norton, B., Marte, A.: Towards Linked Open Services. In: 3rd Future
Internet Symposium (September 2010)

4. Norton, B., Kerrigan, M., Marte, A.: On the use of transformation and linked data principles
in a generic repository for semantic web services. In: Proceedings of the 1st Workshop on
Ontology Repositories and Editors for the Semantic Web (ORES-2010). No. 596, CEUR-WS
(2010)

5. Norton, B., Krummenacher, R.: Geospatial linked open services. In: Proceedings of Workshop
Towards Digital Earth (DE-2010). No. 640, CEUR-WS (2010)

6. Pedrinaci, C., Domingue, J., Krummenacher, R.: Services and the Web of Data: An Unex-
ploited Symbiosis. In: AAAI Spring Symposium (March 2010)

7. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.: iServe: a
linked services publishing platform. In: Proceedings of the 1st Workshop on Ontology Repos-
itories and Editors for the Semantic Web (ORES-2010). No. 596, CEUR-WS (2010)

8. Sbodio, M., Moulin, C.: SPARQL as an Expression Language for OWL-S. In: Workshop on
OWL-S: Experiences and Directions at 4th European Semantic Web Conference (June 2007)

9. Speiser, S., Harth, A.: Taking the lids off data silos. In: Proceedings of the 6th International
Conference on Semantic Systems (iSemantics). ACM International Conference Proceeding
Series (2010)

Scalable Discovery of Linked Services

20

Ontology-based User-defined Rules and
Context-aware Service Composition System

Victoria Beltran1, Knarig Arabshian2, and Henning Schulzrinne3

1 Dept of Telematics, Universitat Politècnica de Catalonia/Fundació I2Cat,
Barcelona, Spain

2 Alcatel-Lucent Bell Labs, New Jersey, USA
3 Dept of Computer Science, Columbia University, New York, USA

Abstract. The World Wide Web is becoming increasingly personalized
as users provide more of their information on the Web. Thus, Web ser-
vice functionality is becoming reliant on user profile information and
context in order to provide user-specific data. In this paper, we discuss
enhancements to SECE (Sense Everything, Control Everything), a plat-
form for context-aware service composition based on user-defined rules.
We have enhanced SECE to interpret ontology descriptions of services.
With this enhancement, SECE can now create user-defined rules based
on the ontology description of the service and interoperate within any
service domain that has an ontology description. Additionally, it can use
an ontology-based service discovery system like GloServ as its service
discovery back-end in order to issue more complex queries for service
discovery and composition. This paper discusses the design and imple-
mentation of these improvements.

Keywords: context-aware systems, ontologies, semantic web, rule-based
systems, service discovery, service composition, web services

1 Introduction

In recent years, the World Wide Web has been advancing towards greater person-
alization. Services on the Web such as, social networking, e-commerce or search
sites, store user information in order to profile the user and target specific prod-
ucts or ads of interest. Since web service functionality is increasingly relying on
user information, a user’s context is becoming more crucial towards creating a
personalized set of services within the Web.

As these types of services proliferate, a framework is needed where multiple
services can be discovered and composed for a particular user within a cer-
tain context. With this in mind, we have developed SECE (Sense Everything,
Control Everything), a platform for context-aware service composition based on
user-defined rules. The contributions to SECE are two-fold: a user-friendly rule
language and the design and implementation of a context-aware service compo-
sition framework.

SECE differs from other rule-based systems in that it provides an interface for
creating rules in natural English-like language commands. The main drawback

21

2 V. Beltran, K. Arabshian and H. Schulzrinne

of rule-based systems is that the rule languages involve complex formulaic or
XML descriptions. Lay people are not as inclined to use these systems as the
learning curve for these languages may be steep. Thus, we have defined a formal
rule language which resembles English. With a simplified English-like interface
to creating rules, users will be more prone to incorporate rule-based systems into
their lives, making context-aware computing a seamless part of everyday life.

Additionally, SECE provides a platform for context-aware service composi-
tion for a number of services, such as, presence, telecommunication, sensors and
location-aware services. Users can subscribe to various services by formulating
simple rules that create a composition of services. The rules trigger event-based
service discovery and composition depending on the user’s context, such as her
location, time, and communication requests. Traditional rule-based systems are
mostly designed to handle a single service domain. SECE, on the other hand,
interacts with a few service domains. For more information on the SECE ar-
chitecture and rule language, we encourage the readers to refer to the following
paper [1].

In this paper, we discuss enhancements to both aspects of SECE: its rule
language and back-end architecture. Whereas previously SECE had a hard-coded
rule language for a limited number of event-based service domains, we have now
improved SECE to use the Web Ontology Language (OWL) description of a
service domain to dynamically create a rule language for that service domain.
Additionally, SECE’s architectural platform has been modified to integrate with
a back-end ontology-based global service discovery system, GloServ, to access
any type of service domain within the GloServ directory [2] [3]. GloServ classifies
services in an ontology and provides ontology descriptions of different service
domains. It also has an ontology-based query interface for service discovery and
composition.

With these improvements, SECE can now be generalized to include all types
of service domains, described in an ontology, as well as issue more complex
ontology-based queries for service discovery and composition. Having the ability
to adapt a rule language to new service domains makes SECE into a powerful
front-end context-aware system. Additionally, by using GloServ as its back-end,
SECE can now interoperate with any type of service that has an OWL descrip-
tion, broadening its scope drastically. We envision that SECE will enable services
to seamlessly integrate into people’s lives. A person can now create rules with
ease and be notified of services at the right time and place. This will create a
profound impact in how people interact with services. There will now be a closer
connection between a person and services available, establishing a personalized
network of services.

The organization of this paper is as follows: Section 2 describes current work
in the field of context-aware computing and service composition; Section 3 gives
an overview of the original SECE architecture and functionality; we discuss the
enhancements to SECE and its implementation in Section 4; Section 5 discusses
future work; finally, Section 6 summarizes the main contributions of this paper.

Ontology-based User-defined Rules and Context-aware Service Composition System

22

Ontology-based User-defined Rules and Context-aware Service Composition 3

2 Related Work

Several solutions for user created services have been proposed; some of these so-
lutions are compared to SECE in Figure 1. The second column indicates the user
language for defining events and conditions that trigger action scripts. The third
column indicates the language for action scripts. The fourth column shows the
kinds of communication services that the users can use. The following columns
show the types of information handled by the systems. CPL [4], LESS [5], SPL [6],
VisuCom [7] and DiaSpec [8] are attempts to allow end users to create services,
but they are all limited to controlling call routing. Also, CPL and LESS use XML
and, hence, even simple services require long programs. Moreover, XML-based
languages are difficult to read and write for non-technical end-users. DiaSpec is
very low level. Writing a specification in DiaSpec and then developing a service
using the generated framework is definitely not suitable for non-technical end
users. The authors of DiaSpec extended [9] their initial work to support services
beyond telephony, which include sensors and actuators. However, it is still only
suitable for advanced developers. SPL is a scripting language which is suitable
for end-users but only for telephony events. VisuCom has the same functionality
as SPL, but allows users to create services visually via GUI components.

Fig. 1. Comparison to related work

CybreMinder [10] is a context-aware tool which allows users to setup email,
SMS, print out and on-screen reminders based not only on time but also loca-
tion and presence status of other users. It uses local sensors to detect a user’s
location. It does not take any actions, but rather displays reminders to the end
user. Also it is not as powerful as scripting-based systems due to its form-based
nature. Task.fm [11] is a similar SMS and email remainder system which uses
natural language to describe time instants when email or SMS reminders will
be sent. However, Task.fm only supports time-based rules and does not include
information from sensors. This tool does not take actions other than reminding
users via SMS, email or phone call.

Regarding composition of web services, SWORD [12] was one of the first
prototypes. However, this offers a quite limited composition that is not automatic

Ontology-based User-defined Rules and Context-aware Service Composition System

23

4 V. Beltran, K. Arabshian and H. Schulzrinne

and its scripting language is targeted at developers. Ezweb [13] is a graphical
tool by which users can connect web services manually. However, this does not
provide automatic web service discovery or a language for composing services.
Moreover, service composition is not context-aware and proactive. Yahoo Pipes
[14] is other graphical tool for web service composition. However, it presents the
same limitations as Ezweb and its graphical interface is not really easy-to-use
and intuitive, which makes it very difficult for non-technical users. We only found
a prototype described in a research paper [15] that offers event-based web service
composition. This means that service composition is triggered by events, such
as changes in the user’s context, instead of end users. However, this work does
not provide any language or tool for specifying the web service compositions and
events that trigger them. The authors seem to implement low-level compositions
that may be personalized according to user preferences. Thus, this does not offer
end users control of service composition. Moreover, this prototype seems not to
be available in the Internet.

To the best of our knowledge, there is no implemented platform for allowing
end users to compose services of different kind based on events. The current
solutions are not proactive because the end-user is who triggers the composite
services or only provides template-based compositions (i.e., the user is not who
defines the compositions). There is neither a platform for event-based web ser-
vice discovery. The composition tools that take user context into account, only
consider a limited set of context. The graphical interfaces of the studied tools are
quite limited and not flexible for non-technical users. The scripting languages
provided by some tools are neither suitable for non-technical users and only sup-
port a limited set of context information. Moreover, none of the studied tools
proactively discover web services based on the user preferences.

3 SECE

SECE is a rule-based context-aware system that connects services, that may have
otherwise been disconnected, to create a personalized environment of services for
a user. It has two fully-integrated components: user-defined rules in a natural
English-like formal language and a supporting software architecture. Users are
not required to continually interact with the system in order to query for or
compose a set of services. They need to only define rules of what they want to
accomplish and SECE does the rest by keeping track of the user’s context, as well
as information from external entities such as sensors, buddies, or social events in
order to notify the user about a service. It accomplishes this by communicating
with several third party applications and web services such as Google services
(e.g., GMail, GContacts and GCalendar), Social Media services (e.g., Facebook
or Twitter), VoIP proxy servers, presence servers, sensors and actuators. Figure
2 gives an overview of the overall SECE architecture and how it interacts with
its environment. We will discuss these two components of SECE in this section.

Ontology-based User-defined Rules and Context-aware Service Composition System

24

Ontology-based User-defined Rules and Context-aware Service Composition 5

Fig. 2. SECE and its external components

3.1 SECE Architecture

As Figure 2 depicts, SECE is a web service that interacts with other web ser-
vices, namely Google Services and Social Media services such as Twitter, Flickr
and Facebook. The rules that are running on SECE and the rule actions that
will potentially be executed determine the services with which SECE needs to
interact. Thus, based on the kinds of rule that the user wishes to create and the
actions that she wishes to compose, the user will need to configure the proper
third-party services in her SECE account. Section 3.2 explains the SECE rules
and actions, and their required services in more detail.

We are developing two services that tightly collaborate with SECE: the pres-
ence server and the VoIP proxy server. The presence server is built on the Mo-
bicents Presence Service [16], which is compliant with SIMPLE (SIP for Instant
Messaging and Presence Leveraging Extensions) [17]. It is responsible for col-
lecting and aggregating context from different sources and sending it to SECE.
It accomplishes this by receiving presence publications from context sources that
contain the latest information about a user and, in turn, notifying SECE of the
context changes. In the SECE framework, context sources include user devices’
presence applications and gateways that control sensor networks, energy con-
sumption and user location via RFID. To use the presence service, the end user
needs to create an account from the SECE website in order to obtain the SECE
presence server’s access information. Thus, the user can configure the SIMPLE-
compliant presence applications (e.g. SIP Communicator and Pidgin) that run
on her mobile devices or desktop computers to use the SECE presence server. In
the future, the presence server will interact with the home gateway for obtaining
information from sensor networks and changing the state of actuators.

The VoIP proxy server is a SIP (Session Initiation Protocol) Express Router
(SER) [18] extended to interact with SECE for handling users’ SIP communi-

Ontology-based User-defined Rules and Context-aware Service Composition System

25

6 V. Beltran, K. Arabshian and H. Schulzrinne

cations. This server and SECE implement an efficient binary protocol that lets
SER inform SECE of a SIP event and lets SECE notify SER of the action to
take for this event. Basically, SER informs SECE of users’ incoming and outgo-
ing calls and instant messages (IM). If an event of this kind matches a rule, the
rule is triggered and, therefore, decides to either forward, reject, or modify the
call by invoking an action. Then, SECE will let SER know about the action to
take. As the presence service, the user needs to create a SER account through
her SECE account for using the VoIP proxy service. The user also needs to set
her SIP-compliant multimedia applications to use the SECE VoIP proxy server
as outbound/inbound SIP proxy. A first prototype of SECE has already been
developed as a web service and is being tested by members of the Internet Real
Time (IRT) group at Columbia University. For a more detailed description of
the SECE architecture, we refer the readers to the following paper [1].

3.2 SECE rules

The SECE language supports five types of rules: time, calendar, location, context
and communication. As a formal language, it states the valid combinations of
keywords and variables for each kind of event and provides a set of commands,
such as “sms”, “email”, “tweet” or “call”. SECE rules and actions interact with
different third party services based on their subscribed events and functions.
Thus, SECE users need to learn about the services needed by the rule types
and actions that they wish to use and configure their SECE accounts for such
services. SECE will provide online documentation that gives users information
about each rule’s and action’s syntax and required services. This documentation
will also contain example rules to help users build rules for specific events and
goals, and get familiarized with SECE rules. Figure 3 summarizes the required
and optional services for the SECE rules and some actions.

Any SECE rule has the structure “event { actions }”. Event defines the
conditions that need to be satisfied to execute the actions that are delimited by
braces. The SECE language for describing events is a formal language similar
to English that has been designed to be easy to use and remember by end-
users. This language is generated by an ANTLR grammar [19]. We use the Tcl
language [20] as the syntax for the rule actions. This choice is due to Tcl’s
extensibility that allows adding new commands to its core with relative ease.
Tcl provides a command that receives the name, arguments and code of a new
command as parameters, constructs the corresponding Tcl command and incor-
porates it into the Tcl interpreter. Below, we describe the types of SECE rules
and their involved services. In order to clearly display the structure of the rule
and action language, the variables that are set by the user are highlighted in
bold and the language keywords are italicized.

Time rules: Below are two types of rules: single time events and recurrent time
events. The former starts with the keyword on and the latter starts with the
keyword every. Both are fully-compliant with the Internet Calendar (ICal)

Ontology-based User-defined Rules and Context-aware Service Composition System

26

Ontology-based User-defined Rules and Context-aware Service Composition 7

Fig. 3. Third party services of SECE rules and some actions

standard [21]. The on, until, except and including keywords are always fol-
lowed by a date expression that can have different formats (e.g., “December
31, 2011”, “31st day of December, 2011” and “12/31/2011”) or can be an
entry in the user’s GCalendar. In the first example below, the user defined
an entry named “Anne’s birthday” in her 2011 GCalendar.

on Anne’s birthday, 2011 at 12:00 in Europe/Zurich {
sms Anne ”Happy Birthday!!! John”;

}
every week on WE at 6:00 PM from 1/1/11 until May 10, 2011
except 3rd WE of Feb, 2011 including first day of June, 2011 {

email irt-list ”reminder: weekly meeting today at 6:00 PM”;
}

Calendar rules: These rules specify events that are defined in the user’s GCal-
endar and always start with the keyword when. Thus, the user needs to
configure his GCalendar in his SECE account before entering rules of this
kind.

when 30 minutes before ”weekly meeting” {
email [event participants] ”The weekly meeting will start in 30 minutes”;
if {{ ! my location within 3 miles of campus } {

email [status bob.email] ”I’m away” ”Please, head the conference room and
prepare everything for the weekly meeting. Not sure if I will be on time.”;

}
}

Location rules: A location rule starts with the keyword me, if it is about the
user that is entering the rule, or an identifier of one of his friends such
as a nickname, email and SIP address. Five types of location information
are supported: geospatial coordinates, civic information, well-known places,
user-specified places and user locations. Different location-related operators
can be used, such as near, within, in, outside of or moved. Below we show a
location rule using the near operator. Within means that the user is within a
radius of the reference point. Near means the same but the radius is a default

Ontology-based User-defined Rules and Context-aware Service Composition System

27

8 V. Beltran, K. Arabshian and H. Schulzrinne

distance that the user defines in his SECE account.Outside of and in means
that the user is outside of and inside the reference point, which must be
represented as a polygonal structure. We are working on a location database
that allows users to predefine polygonal locations through a GMaps-based
graphical interface. Moved means that the user moved the given distance
from where he was located when the rule was entered or triggered for the
last time.

Bob near ”Columbia University” {
if{ my status is idle } { call bob; }

}

Context rules: These specify the action to execute when some context infor-
mation changes, such as presence or sensor state. These rules always start
with the keyword if. If the rule is about the user that is entering the rule,
this keyword if followed by my. Otherwise, the if keyword is followed by
the friend’s identifier. Below, we show an example of a context rule about a
friend.

if Bob’s status is available { alarm me; }

Communication rules: These specify the actions to execute in response to
incoming, outgoing or missed communication requests. A request rule can
start with the keyword incoming, outgoing or missed, followed by the type
of event. The following rule is an example of incoming call handling.

incoming call to me.phone.work {
if { [my location is not office] } {

autoanswer audio no office.au;
email me ”[incoming caller] tried to reach you on your work phone at
[incoming time]”;

}
}

4 Enhancing SECE Toward Ontology-based User-defined
Rules for Automatic Service Discovery

As it stands, SECE has no way of automatically discovering a new type of ser-
vice, generating a rule language for it and incorporating it in its system. The set
of services that are supported in SECE are hard-coded. Thus, we have enhanced
SECE to support ontology-based user-defined rules for automatic service discov-
ery. The simple but illustrative example below emails the user whenever a new
restaurant that satisfies the given conditions is found.

Any japanese restaurant that is cheaper than 20$ and whose location contains Manhattan {
email me “new restaurant found” “Details: [event description]”;

}

Ontology-based User-defined Rules and Context-aware Service Composition System

28

Ontology-based User-defined Rules and Context-aware Service Composition 9

We have incorporated GloServ, an ontology-based service discovery system,
within SECE’s back-end architecture. GloServ provides an API whereby service
ontology descriptions, for a number of domains, can be downloaded and queried
for with an ontology query. GloServ uses the OWL DL ontology to describe its
services. Thus, SECE can access these OWL specifications in order to dynami-
cally define rules for the specific service domain. Users are made aware of these
services by a front-end application to SECE that displays the discoverable ser-
vices’ descriptions. For each service domain, SECE will provide documentation
on how to create rules. Currently, users will still need to learn how the rules are
constructed, however, for the future, we plan on building a GUI that will use
the ontology description to aid the user in constructing the rules. This section
will describe the design and implementation of these enhancements.

4.1 SECE Architecture

Design Figure 4 outlines the main interactions between SECE, GloServ, front-
end applications and web services. We assume that end users are connected to
front-end applications, which detatches users from SECE and offers more flexi-
bility. Front-end applications retrieve user data from SECE and allow users to
create their rules probably by means of more fancy graphical interfaces, sug-
gestions and user preferences, for example. From the moment at which a web
service rule is entered in SECE on, SECE will periodically communicate with
GloServ for discovering the web services that match the rule. A GloServ request
specifies the web service of interest as a SPARQL query [22] and matched ser-
vices’ profiles, if any, are sent to SECE into a GloServ response. If a new web
service matches a rule, SECE executes the rule’s body.

Fig. 4. SECE, GloServ, front-end applications and web services

SECE has a layered architecture, as Figure 5 shows. For details of each of the
components, we encourage the reader to refer to the original SECE paper [1].
We will discuss the components that have been added to the enhanced SECE
architecture in this section.

The new components that have been added to the SECE architecture are:
1)WBRL rule, which implements the web service rules; 2) Jena Ontology Model,

Ontology-based User-defined Rules and Context-aware Service Composition System

29

10 V. Beltran, K. Arabshian and H. Schulzrinne

which contains the necessary ontologies’ schemes; 3) GloServ Context Mediator,
which periodically pulls GloServ for checking out new web services of interest. .

Fig. 5. SECE architecture

Implementation SECE stores the OWL specifications of web services in an
ontology database that is built upon the Jena Framework [23]. When a web
service rule is entered into SECE, it has to go through the following steps: 1)
parse the rule (i.e., syntactic checking); 2) verify that the described kind of web
service exists (i.e., semantic checking); 3) subscribe to the described web service
event; and 4) take the rule’s actions whenever this event occurs. Figure 6 outlines
the main interactions for creating a web service subscription.

The SECE core coordinates the software components in SECE. First, the
SECE parser checks that the input rule is consistent with the SECE language,
which is generated by an ANTLR grammar [19]. As a result, the parser creates a
WSRule object that encapsulates information about the rule, namely a web ser-
vice event and the actions that will be taken if this event occurs. The web service
event is defined by the service name and optionally a set of property constraints
in the form of (propertyName, operator, value). If the rule parsing is success-
ful, the SECE core verifies that the rule’s web service description corresponds
to a web service’s ontology. To do it, this interacts with the SECE Ontology
Model (i.e., SECEOntModel in Figure 6). The SECE Ontology Model encapsu-
lates the Jena database that contains the web services’ ontologies and provides
convenient functions for searching and retrieving information about them. A web
service description is semantically correct if there exists a web service’s ontology
that describes a service that is named as the described web service and can be
associated with the described properties and constraints. Thus, SECE will ask
the SECE Ontology Model for the namespace URI of the web service and its
properties. If this web service does not correspond to any ontology, the SECE
ontology Model returns null values. This means that the rule’s web service event
is semantically incorrect, which results in aborting rule creation and warning

Ontology-based User-defined Rules and Context-aware Service Composition System

30

Ontology-based User-defined Rules and Context-aware Service Composition 11

the user. Otherwise, the rule’s web service event is semantically correct and the
SECE core proceeds to create the corresponding subscription (i.e., WSSubs in
Figure 6).

The SECE core then retrieves an event monitor from the Event Monitor
Broker (OntEM and EMBroker in Figure 6). An event monitor is the agent that
watches a particular service and generates an event whenever a new instance of
this service is discovered. The Event Monitor Broker maintains a list of the event
monitors that are actually monitoring a web service. Thus, if an event monitor
for the web service event already exists, the Event Monitor Broker returns it.
Otherwise, the Event Monitor Broker creates a new one, appends it to the list of
monitors and returns it. Then, the SECE core associates the event subscription
with the event monitor and starts the subscription.

Starting and pausing an event subscription makes it subscribe and unsub-
scribe to the associated event monitor, respectively. When an event monitor
receives a subscription request and there are no other subscribers, it creates
the corresponding SPARQL query that describes the web service event. This
also starts up a recursive timer to query the GloServ Context Mediator (i.e.,
GloServCM in Figure 6) at fixed intervals with the SPARQL query. If this query
results in any matched service, the event monitor creates an OntEvent object
that describes the discovered service and notifies the subscriber of this event.
Note that the outbound messages between GloServCM and GloServ are omitted
in Figure 6 because of lack of space. When an event monitor is associated with
more than one subscriber, the SPARQL query represents the least restrictive
subscription. When a web service matches this subscription, the event monitor
checks out whether the service matches any of the other subscriptions. Figure 6
only shows this check on the web service subscription wss through the matched-
Serv method. Furthermore, the event monitor maintains a cache of discovered
events. When a new subscription is created, this cache is checked out and the
matching web services are notified.

4.2 SECE Ontology-based Sublanguage

SECE provides a simple and generic ontology-based language for end-users to
define web service rules. In line with SECE’s philosophy, this language looks like
natural English and is easy to learn. Its basic structure is “any service whose
prop rel value” given that service is a web service class, prop is one of this service
class’ properties and rel and value represent a restriction on the property. Rel
is a relational operator that depends on the property’s type: contains and is for
strings and =, <, >,≤ and ≥ for numbers.

Multiple property constraints can be added by the and and or boolean op-
erators as for example “any shopping offer whose type contains “ski boots” and
whose price is cheaper than 150$”. Equality on numeric properties can be ex-
pressed by the verb has followed by a number and the property name as in
“any happy hour and inexpensive bar that has 20 free seats”. Users can place
property values before the class name when the property works as adjective. In
the previous example, the bar class has the boolean properties happyHour and

Ontology-based User-defined Rules and Context-aware Service Composition System

31

12 V. Beltran, K. Arabshian and H. Schulzrinne

Fig. 6. Sequence diagram from entering a web service rule to querying GloServ

inexpensive. Boolean constraints can also be expressed by the operators that has
(no) and that is (not) as in “any restaurant that has delivery”, “any restau-
rant that is open 24 hours” and “any cultural exhibition that is free and is not
crowded”.

Boolean constraints can be applied to class properties or types, which de-
pends on the ontology’s structure and is transparent for end-users. An example
of boolean property is the above-mentioned delivery property whose domain is
the restaurant class. Boolean constraints on class types restrict inherited types
as for example “any restaurant that is southamerican” subscribes to restaurants
that are subclasses of the southamericanRestaurant class.

5 Future Work: Event-Based Context-aware Web Service
Composition System

Integrating web service rules into SECE brings out exciting possibilities in the
Semantic Web. This permits end-users to define and personalize context-aware

Ontology-based User-defined Rules and Context-aware Service Composition System

32

Ontology-based User-defined Rules and Context-aware Service Composition 13

web service discovery, invocation and composition based on a variety of events.
SECE provides a set of actions for users to build up compositions. Some ac-
tions interact with web services, such as tweet, publish and email ; other actions
send protocol-specific requests, such as call (i.e., SIP INVITE); and others are
supportive routines. The set of web services with which SECE communicate is
static and the communication is hard-coded.

Therefore, SECE compositions are static in the sense that, once a compo-
sition is created, it will not change. We are planning to incorporate dynamic
compositions to SECE through automatic web service discovery and compo-
sition. Two new SECE actions will add this functionality: find and plan for
discovery and composition, respectively. An example rule is shown below, in
which the plan and find commands are pseudo-code because they have not been
implemented yet. In this example, whenever a new flight is found, other web
services are discovered (i.e., hostels, car rentals and restaurants) and composed
(i.e., trip planning). Note that the plan action could invoke find to discovery web
services that are necessary for the composition. As the discovered web services
and the communication with them can be different each time the composition is
executed, we say that this composition is dynamic.

Any domestic flight that is cheaper than 200$ and whose date is after June 1, 2011 {
p=plan flight with hostel and car rental;
r=find good restaurants according to $p;
email me “new plan found” “Details: $p $r”;
sms me “New Plan discovered. See email inbox for details!”;

}

With these two new actions, SECE could perform semantic web service dis-
covery and composition that does not need user interaction to be executed; it is
automatically triggered by events. In addition, this would also allow combining
static and dynamic composition. For example, the rule above provides dynamic
composition through the plan and find actions and static composition through
the email and sms actions. As the Semantic Web is not widely adopted yet,
hybrids platforms like SECE are necessary to offer users flexible and powerful
composition tools. Table 1 indicates the types of composition that SECE already
supports (white column) and will support in the future (gray columns). Rows
define the events that trigger the compositions and columns the types of web
service communication in the compositions.

Table 1. Types of SECE composition

Semantic service com-
munication

Hard-coded service
communication

Both kinds of communi-
cation

Web service
events

Dynamic composition
triggered by discovered
web services

Static composition trig-
gered by discovered web
services (current contribu-
tion)

Mixed composition trig-
gered by discovered web
services

Other events Dynamic composition
triggered by real-world
events

Static composition trig-
gered by real-world events
(typical SECE composi-
tion)

Mixed composition trig-
gered by real-world events

Ontology-based User-defined Rules and Context-aware Service Composition System

33

14 V. Beltran, K. Arabshian and H. Schulzrinne

For dynamic compositions, SECE will interact with web services automat-
ically, by retrieving their models and, according to their WSDL specifications,
constructing HTTP requests.

6 Conclusions

The Semantic Web is investing a great deal of effort in developing standards
for providing automatic web service discovery and composition. Although many
authors have been interested in this exciting topic in the last decade, complete
solutions do not yet exist. Thus, there is a strong need for general-purpose plat-
forms for automatic web service discovery and composition that also provide
intuitive and user-friendly interfaces that do not require engineering or tech-
nical skills. Besides template-based composition, end users should be able to
orchestrate service composition.

To face all these needs, we present a context-aware, event-based platform for
service discovery and composition by integrating two existing solutions: SECE
and GloServ. SECE is a user-centric, context-aware platform for service com-
position that provides a natural-English-like language for creating event-based
rules. GloServ is a scalable network for web service discovery. We implemented
the communication between GloServ and SECE. We extended SECE with an on-
tology database that stores the web services’ schemes that come from GloServ.
We also developed a SECE sublanguage to subscribe to web services, which
allows subscribing to web service discovery events by creating rules in a user-
friendly language that looks like natural English. This makes SECE suitable
for non-technical users. SECE also allows creating service compositions that
can be triggered by discovered web services and real-world events such as con-
text changes, location, or time. Modeling SECE rules ontologically can provide
front-ends with the means of understanding and learning new SECE rules auto-
matically. Thus, the combination of SECE and GloServ paves the way for future
extensions.

Acknowledgments. Victoria Beltran was supported by the Spanish Govern-
ment through the CICYT project TIC2009-11453 and the FPU grant AP2006-
02846.

References

1. O. Boyaci, V. Beltran, and H. Schulzrinne, “Bridging communications and the
physical world: Sense everything, control everything,” in Proceedings on the IEEE
Globecom (UbiCoNet Workshop), December 2010.

2. K. Arabshian and H. Schulzrinne, “An ontology-based hierarchical peer-to-peer
global service discovery system,” Journal of Ubiquitous Computing and Intelli-
gence, vol. 1, no. 2, p. 133.

3. K. Arabshian, C. Dickmann, and H. Schulzrinne, “Service composition in an
ontology-based global service discovery system,” tech. rep., Columbia University,
New York, NY, September 2007.

Ontology-based User-defined Rules and Context-aware Service Composition System

34

Ontology-based User-defined Rules and Context-aware Service Composition 15

4. J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony
services,” Internet Computing, IEEE, vol. 3, pp. 63–72, May/Jun 1999.

5. Xiaotao Wu and Henning Schulzrinne, “Programmable End System Services Us-
ing SIP,” Conference Record of the International Conference on Communications
(ICC), May 2003.

6. L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix, and L. Reveillere, “Language
Technology for Internet-Telephony Service Creation,” in Communications, 2006.
ICC ’06. IEEE International Conference on, vol. 4, pp. 1795–1800, June 2006.

7. F. Latry, J. Mercadal, and C. Consel, “Staging telephony service creation: a lan-
guage approach,” in IPTComm ’07: Proceedings of the 1st international conference
on principles, systems and applications of IP telecommunications, (New York, NY,
USA), pp. 99–110, ACM, 2007.

8. W. Jouve, N. Palix, C. Consel, and P. Kadionik, “A SIP-Based Programming
Framework for Advanced Telephony Applications,” in IPTComm (H. Schulzrinne,
R. State, and S. Niccolini, eds.), vol. 5310 of Lecture Notes in Computer Science,
pp. 1–20, Springer, 2008.

9. D. Cassou, B. Bertran, N. Loriant, and C. Consel, “A generative programming
approach to developing pervasive computing systems,” in GPCE ’09: Proceedings
of the eighth international conference on Generative programming and component
engineering, (New York, NY, USA), pp. 137–146, ACM, 2009.

10. A. K. Dey and G. D. Abowd, “CybreMinder: A Context-Aware System for Sup-
porting Reminders,” in HUC ’00: Proceedings of the 2nd international symposium
on Handheld and Ubiquitous Computing, (London, UK), pp. 172–186, Springer-
Verlag, 2000.

11. “task.fm Free SMS and Email Reminders.” http://task.fm.
12. S. Ponnekanti and A. Fox, “Sword: A developer toolkit for web service composi-

tion,” in Proc. of the Eleventh International World Wide Web Conference, Hon-
olulu, HI, 2002.

13. J. Soriano, D. Lizcano, J. Hierro, M. Reyes, C. Schroth, and T. Janner, “Enhanc-
ing user-service interaction through a global user-centric approach to SOA,” in
Networking and Services, 2008. ICNS 2008. Fourth International Conference on,
pp. 194–203, IEEE, 2008.

14. “Yahoo pipes.” http://pipes.yahoo.com/pipes/.
15. R. Kazhamiakin, P. Bertoli, M. Paolucci, M. Pistore, and M. Wagner, “Having Ser-

vices ”YourWay!”: Towards User-Centric Composition of Mobile Services,” Lecture
Notes in Computer Science, vol. 5468/2009, pp. 94–106, 2009.

16. “Mobicents.” http://www.mobicents.org/.
17. “SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE).” http:

//datatracker.ietf.org/wg/simple/charter/.
18. “About SIP Express Router.” http://www.iptel.org/ser/.
19. T. Parr, The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Bookshelf, 2007.
20. J. K. Ousterhout and K. Jones, Tcl and the Tk Toolkit. Upper Saddle River, NJ:

Addison-Wesley, 2nd ed., 2009.
21. B. Desruisseaux, “Internet Calendaring and Scheduling Core Object Specification

(iCalendar).” RFC 5545 (Proposed Standard), Sept. 2009. Updated by RFC 5546.
22. W3C, “SPARQL Query Language for RDF.” Website, January 2008. http://www.

w3.org/TR/rdf-sparql-query/.
23. “Jena - A Semantic Web Framework for Java.” Website. http://jena.

sourceforge.net/index.html.

Ontology-based User-defined Rules and Context-aware Service Composition System

35

Random Indexing for Finding Similar Nodes
within Large RDF graphs

Danica Damljanovic1, Johann Petrak2, Mihai Lupu3, Hamish Cunningham1,
Mats Carlsson4, Gunnar Engstrom4, and Bo Andersson4

1 Department of Computer Science, University of Sheffield, United Kingdom
d.damljanovic@dcs.shef.ac.uk, h.cunningham@dcs.shef.ac.uk

2 Austrian Reseach Institute for Artificial Intelligence, Vienna, Austria
johann.petrak@ofai.at

3 Information Retrieval Facility (IRF), Vienna, Austria
m.lupu@ir-facility.org

4 AstraZeneca, Lund, Sweden
Mats.Carlsson, Gunnar.Engstrom, Bo.H.Andersson@astrazeneca.com

Abstract. In this paper, we propose an approach for searching large
RDF graphs, using advanced vector space models, and in particular, Ran-
dom Indexing (RI). We first generate documents from an RDF Graph,
and then index them using RI in order to generate a semantic index,
which is then used to find similarities between URIs, literals, and RDF
subgraphs. We have experimented with large RDF graphs in the domain
of life sciences and engaged the domain experts in two stages: firstly, to
generate a set of keywords of interest to them, and secondly to judge
on the quality of the output of the Random Indexing method, which
generated a set of similar terms (literals and URIs) for each keyword of
interest.

Key words: random indexing, vectors space models, information re-
trieval, RDF graphs, ontologies

1 Introduction

Recent years have seen a massive increase of highly structured data being made
available in the form of RDF triple representations. Both legacy data and new
data have been made available in RDF triple format and this representation has
also made it worthwhile and feasible to create mappings between RDF data that
originates from different legacy sources, leading to potentially very large RDF
repositories. Initiatives such as Linked Open Data5 are working on creation,
publication and interlinking of huge RDF graphs.

Traditionally, RDF spaces are being searched using an RDF query language
such as SeRQL [2] or SPARQL [15]. These languages allow the formulation of
fine-grained queries by their ability to match whole graphs and to create complex
conditions on the variables to be bound in the query. This level of complexity
5 http://linkeddata.org/

36

2

and flexibility is very useful in many situations, especially when the query is
created automatically in the context of an application. However, for end-users
who want to explore the knowledge represented in an RDF store, this level
of detail is often more of a hindrance: querying the repository is not possible
without a detailed knowledge of its structure and the names and semantics of
all the properties and classes involved. This is especially the case for large and
unknown data structures which may have thousands of classes and properties,
for example Linked Life Data6 (5 billion statements), or FactForge7 (2 billion
statements).

In this paper we investigate whether advanced Information Retrieval (IR)
methods can bring a new dimension to the task of searching huge RDF graphs.
We propose a complementary approach based on word space model, more con-
cretely Random Indexing (RI) [14], for building a semantic index for a large RDF
graph. Traditionally, a semantic index captures the similarity of terms based on
their contextual distribution in a large document collection, and the similarity
between documents based on the similarities of the terms contained within. By
creating a semantic index for an RDF graph, we are able to determine contextual
similarities between graph nodes (e.g., URIs and literals) and based on these,
between arbitrary subgraphs. These similarities can be used for finding a ranked
list of similar URIs/literals for any given input term (a literal or a URI), which
can then be used for exploring the repository or enriching SPARQL queries.

We evaluate our approach on subsets of the Linked Life Data (LLD) reposi-
tory – a large integrated repository which contains 5 billion RDF statements from
various sources covering the biomedical domain, including UniProt8, PubMed9,
EntrezGene10 and many more11. Our evaluation is based on human judgment
by clinical research scientists (from AstraZeneca pharmaceutical company) who
were involved in two stages: firstly, to generate a set of keywords of interest to
them, and secondly to judge on the quality of the output of the Random Index-
ing method, which generated a set of similar terms (literals and URIs) for each
topic of interest.

2 Related work

A considerable amount of work has been done in the area of using Information
Retrieval methods for the task of selecting and retrieving RDF triples. However,
most of these approaches do not take advantage of the latent semantics included
in an RDF Graph, as their primary intention is finding the RDF files on the
Web relevant to the given keyword and/or a URI. These systems are semantic
search engines such as Swoogle [9] or Sindice ([18]). They collect the Semantic
6 www.linkedlifedata.com
7 http://factforge.net
8 www.uniprot.org/
9 http://www.ncbi.nlm.nih.gov/PubMed/

10 www.ncbi.nlm.nih.gov/sites/entrez?db=gene
11 see the full list at: www.linkedlifedata.com/sources

Random Indexing for Finding Similar Nodes within Large RDF graphs

37

3

Web resources from the Web and then index the keywords and URIs against
the RDF files containing those keywords and URIs, using the inverted index
scheme. These search engines use traditional weighting mechanisms such as TF-
IDF, and in [11] the authors introduce the ReConRank algorithm, which adapts
the well-known PageRank algorithm to Semantic Web data. This method ranks
the nodes in a topical subgraph that is selected based on keyword matching from
the RDF files. In other words, it ranks the results of a query based on the RDF
links in the results. The subgraph that the algorithm identifies includes both the
subject nodes related to the query, and also the context of the subject nodes
(i.e. the provenances or sources of the subjects), in order to improve the quality
of ranking.

In comparison to these approaches we use the neighbouring nodes as semantic
context for each node in an RDF graph. The nodes and their contexts are used
as virtual documents for Random Indexing.

In [16], the authors describe an approach for generating a virtual document
for each URI reference in an RDF triple store (or, equivalently, each node in an
RDF graph). The virtual document contains the local name and labels of the URI
reference, other associated literals such as those in rdfs:comment, and the names
of neighbouring nodes in the RDF graph. These virtual documents are then used
for ontology matching and also for generating object recommendations for users
of Falcons [3]. In comparison to our approach, their neighbouring operations
involve only one-step neighbours without including properties. Our approach
includes properties, and parts of the TBox, and also can operate on an arbitrarily
large graph of neighbouring nodes.

Finally, to the best of our knowledge, none of the similar approaches investi-
gate the usage of methods that can discover latent semantics, such as Random
Indexing.

3 Semantic Index

Latent Semantic Analysis (LSA) [8] is one of the pioneer methods which has
been used for finding synonyms. The assumption behind this and other statistical
semantics methods is that words which appear in the similar context (with the
same set of other words) are synonyms. Synonyms tend not to co-occur with one
another directly, so indirect inference is required to draw associations between
words which are used to express the same idea [4]. This method has been shown
to approximate human performance in many cognitive tasks such as the Test of
English as a Foreign Language (TOEFL) synonym test, the grading of content-
based essays and the categorisation of groups of concepts (see [4]). However, one
problem with this method is scalability: it starts by generating a term∗document
matrix which grows with the number of terms and the number of documents and
will thus become very large for large corpora. For finding the final LSA model,
Singular Value Decomposition (SVD) and subsequent dimensionality reduction is
commonly used. This technique requires the factorization of the term-document
matrix which is computationally costly and does not scale well. Also, calculating

Random Indexing for Finding Similar Nodes within Large RDF graphs

38

4

the LSA model is not easily end efficiently doable in an incremental or out-of
memory fashion. The Random Indexing (RI) method [17] circumvents these
problems by avoiding the need of matrix factorization in the first place.

RI can be seen as an approximation to LSA which is shown to be able to
reach similar results (see [14] and [5]). RI can be incrementally updated and also,
the term ∗ document matrix does not have to be loaded in memory at once –
loading one row at the time is enough for computing context vectors. Instead of
starting with the full term-document matrix and then reducing the dimension-
ality, RI starts by creating almost orthogonal random vectors (index vectors) for
each document. This random vector is created by setting a certain number of
randomly selected dimensions to either +1 or -1. Each term is represented by a
vector (term vector) which is a combination of all index vectors of the document
in which it appears. For an object consisting of multiple terms (e.g. a document
or a search query with several terms), the vector of the object is the combination
of the term vectors of its terms.

Random Indexing relies on the Johnson-Lindenstrauss lemma:

Lemma 1. Given 0 < ε < 1, a set X of m points in RN , and a number n >
n0 = O(log(m)

ε2), there exists a mapping f : RN → Rn such that (1− ε)||u− v|| ≤
||f(u)− f(v)|| ≤ (1 + ε)||u− v||, for all u, v ∈ X.

and particularly on the proof provided by Johnson and Lindenstrauss in their
1984 article [13], where they show that if one chooses at random a rank n or-
thogonal projection, then, with positive probability, the projection restricted to
X will satisfy the condition in the Lemma. RI relies on the observation that, in
a high dimensional space, a random set of vectors is always almost orthogonal.

In order to apply RI to an RDF graph we first generate a set of documents
which represent this graph, by generating one virtual document for each URI in
the graph (Section 3.1). Then, we generate a semantic index from the virtual
documents (Section 3.2). This semantic index is then being searched in order to
retrieve similar literals/URIs (Section 3.3).

3.1 Generating virtual documents

The task of deriving a set of documents from a huge RDF graph starts with
generating a representative subgraph for each URI of interest. We shall refer to
such an URI as a representative URI.

A representative subgraph represents the context of a URI i.e. the set of
other URIs and literals directly or indirectly connected to that URI. For a rep-
resentative URI S, the representative subgraph of order N is a set of all paths
of triples (S, P1, O1;O1, P2, O2; · · · ;ON−1, PN , ON). If ON is not a literal we
also include all triples ON , PN+1, LJ where LJ is a literal. In other words, we
apply the Breadth-First-Search starting with the representative node, and ex-
tend this to the Depth Search which is defined by N. In addition, we include
or exclude certain parts of the TBox: direct classes for instances are excluded

Random Indexing for Finding Similar Nodes within Large RDF graphs

39

5

(PN ! = rdf : type), while other annotation properties such as rdfs : label are in-
cluded. In the experiments reported in this paper, the representative subgraphs
are of order 1 (N = 1).

We create virtual documents by including all paths from representative sub-
graphs where:

– all URIs of nodes or appearing inside literals are included unchanged;
– for literals we remove punctuation and stop words, and then lowercase the

text; we also remove number literals, gene and protein sequences, complex
names, and HTML tags.

3.2 Generating semantic index

There are several parameters which can influence the process of generating se-
mantic index, or vectors using the RI method:

– Seed length Number of +1 and -1 entries in a sparse random vector.
– Dimensionality Dimension of the semantic vector space – predefined num-

ber of dimensions to use for the sparse random vectors.
– Minimum term frequency Minimum frequency of a term to get included

in the index.

Our experiments study how variations of these parameters influence the quality
of the results and how sensitive the method is to that variation.

3.3 Search

Once the semantic index has been created, it can be used to find similarities be-
tween URIs, literals, and RDF subgraphs. We use the cosine function to calculate
the similarity between the input term (literal or URI) vector and the existing
vectors in the generated vector space model. We can perform the following kinds
of searches:

1. finding similarities between two terms: given a keyword, find similar literals
and URIs; this can be used in several ways for example for refinement of
SPARQL queries (see [7]); also, it can be used as an alternative way of
browsing and finding URIs or literals related to a topic of interest (expressed
through a keyword or a set of keywords)

2. finding documents related to a specific term: this task would be useful for
suggesting a set of representative URIs related to a given keyword.

3. finding documents related to a document : this task would be useful for sug-
gesting a set of representative URIs related to a set of URIs.

4. finding terms related to the specific documents: this can be used for describing
a representative URIs through a set of literals and URIs.

While in the context of large RDF graphs such as LLD, we find all of these
searches useful, in the experiments we present next, we focus on term-term search
(Item 1) only. As the LLD dataset covers the life sciences domain, we have
conducted a study with the clinicians from AstraZeneca, who are domain experts
and understand the knowledge available in this large dataset.

Random Indexing for Finding Similar Nodes within Large RDF graphs

40

6

4 Experiments

Our goal in using the Random Indexing method is to investigate whether it can
offer an alternative way of searching large RDF spaces, by suggesting literals
or URIs which are similar to the topic of interest. We conduct an evaluation
experiment with clinical research scientists from AstraZeneca, with the aim to
assess this.

4.1 Dataset

Linked Life Data is a dataset covering the life sciences domain, and the latest
version 0.6 contains 5,052,047,661 statements in total (for a comparison, one
year ago it contained 4,179,999,703 statements). Advanced IR methods based on
Vector Space Model (VSM) are computationally expensive, and therefore, before
we apply the Random Indexing method on the whole dataset, we evaluate it on
two smaller subsets of LLD.

We have generated the two subsets as follows. For 1528 seed URIs (the URIs
representing all MEDLINE articles from December 2009) we retrieve neighbour-
ing subgraphs (of order 1) recursively until we reach certain predefined limit of
statements, and we refer to these as LLD1 and LLD2. Table 1 shows the sizes
of LLD1 and LLD2.

LLD 1 LLD2
number of statements 595798 4573668
number of virtual documents 64644 473742
number of terms 417753 1713349

Table 1. Sizes of LLD1 and LLD2 datasets

4.2 Evaluation measures

In order to calculate the correctness of the retrieved terms, there are standard
Information Retrieval measures such as precision, recall and Mean Average Pre-
cision (MAP). Precision is defined as the number of relevant documents retrieved
divided by the total number of documents retrieved and is usually calculated for
certain number of retrieved documents (e.g., Precision@10, Precision@20). Re-
call is the number of relevant documents retrieved divided by the total number
of existing relevant documents (which should have been retrieved).

Mean Average Precision (MAP) is by far one of the most popular measures
in IR evaluation because, for each system and set of topics, it provides a sin-
gle value to measure its performance [6]. Average Precision (AP) is computed
for each topic by first calculating precision for each relevant document that is
retrieved and then averaging these values. Mean Average Precision is then the

Random Indexing for Finding Similar Nodes within Large RDF graphs

41

7

mean of these values for all keywords. Furthermore, by the nature of the averag-
ing process, MAP is more sensitive to ranking than precision at a specific point,
favouring systems which return more relevant documents at the top of the list
than at the bottom, whereas precision does not make this distinction as long as
the results are within the cut-off range.

As our task is to retrieve most relevant literals and URIs first, we used
MAP@10. Recall is extremely difficult to measure due to the number of terms
in our datasets (see Table 1). In addition, our task is to help domain experts
explore large RDF graphs, which is similar to Web search in the sense that there
is a vast amount of terms to be searched through, and also a significant number
which is relevant for each input term. Hence, for these kinds of tasks, users care
more about precision than about recall. Indeed, they care most about the top
ranked results, which is exactly what is captured by MAP.

Relevance of retrieved terms was evaluated by two clinical research scientists.
All scientists looked at all retrieved terms. Relevant were considered only those
terms which both scientists marked as relevant. In order to measure agreement
between scientists on this particular task, we measured the Inter Annotator
Agreement (IAA) between the two clinicians based on the words which both of
them marked as relevant/irrelevant.

IAA has been used mainly in the classification tasks, where two or more
annotators are given a set of instances and are asked to classify those instances
into some pre-defined categories. The two commonly used IAA measures are
observed agreement and Kappa (κ) [12].

Observed agreement is the portion of the instances on which the annota-
tors agree. For our case, with the two annotators and two categories (relevant
and irrelevant), it is defined as

Ao =
a + d

a + b + c + d
(1)

where a refers to the number of terms both annotators agreed as relevant, d refers
to the number of terms both agreed as irrelevant, b refers to the number of terms
annotator 1 marked as relevant, and annotator 2 as irrelevant, c refer to the
number of terms annotator 1 marked as irrelevant, and annotator 2 as relevant.

A certain amount of agreement is expected by chance which is not captured
by the observed agreement. The Kappa measure is a chance-corrected agreement.
Kappa is defined as the observed agreements Ao minus the agreement expected
by chance Ae and is normalized as a number between -1 and 1.

k =
Ao −Ae

1−Ae
(2)

k = 1 means perfect agreement, k = 0 means the agreement is equal to
chance, k = −1 means ‘perfect’ disagreement.

There are two different methods for estimating Ae: in Cohen’s Kappa, each
annotator has a personal distribution, based on his distribution of categories.
In Siegel & Castellans Kappa, there is one distribution for all annotators,

Random Indexing for Finding Similar Nodes within Large RDF graphs

42

8

derived from the total proportion of categories assigned to all annotators (see
[10] for more details and for the comparison of the two). We used Cohen’s Kappa
in our experiments.

4.3 Experimental setup

We have performed our experiment through the following steps:

1. Extracting topics of interest represented as query terms which are present
in both LLD1 and LLD2. In order to avoid exposing the scientists to learning
SPARQL, we have formed a team of one computer scientist and one clinical
research scientist. The computer scientist was executing the SPARQL query
and browsing through the links and URIs, while the clinical research scien-
tist was only looking at the abstracts which the computer scientist selected.
As a result, we obtained 18 keywords which all appeared in both LLD1 and
LLD2 datasets. We split this set into two halves as shown in Table 2 , and
then perform the following two steps in two iterations: first, Group 1 is used
for training the model, and Group 2 for testing it. In the second iteration,
the two sets are swapped.

Group 1 Group 2
acetylcholinesterase Posttraumatic Stress Disorder
synergistic effect trial

cholinergic signaling bladder cancer
PTSD Adverse events

antagonist trauma
efficacy antioxidant

clinical trial magnesium
cognitive cystectomy

lung 5-HT receptors
Table 2. Topics of interest divided into two groups for training/testing the Random
Indexing method

2. Training the model: we generated RI models for several variations of the
following RI parameters for both LLD1 and LLD2:

– vector dimension: 500, 1000, 1500, 1800, 2500
– seed length: 10, 50, 100, 300, 500, 1000
– term frequency: 1, 2, 5, 8, 10

This resulted in 290 runs (145 per dataset12). We then searched for similar
words for each topic of interest from the training set, and presented them
to clinicians who accessed the relevance. The combinations for parameters
which lead to the best results (measured through MAP) were considered as
the optimal setting for testing the method in the next step.

3. Testing the model: for the models generated using the optimal parameters
retrieved in the previous step, we retrieved 10 similar words for each topic

12 5 runs are missing from this count, corresponding to the situation where the seed
size is 1000, and the vector dimensionality is 500, which is impossible

Random Indexing for Finding Similar Nodes within Large RDF graphs

43

9

of interest from the testing set and calculated MAP. The correctness of the
retrieved terms was assessed by clinical research scientists to whom we gave
the terms in the form of a survey (see below).

Human assessment The retrieved keywords for each topic of interest in both
training and testing sets were assessed by humans. We merged the results from
all searches into one pool, and gave this list to the scientists in the form of a
survey. When the similar term was a URI, we have extracted the label from LLD
and showed it in brackets. This is to ensure that the scientists can concentrate
on meaning of these rather than looking and searching LLD in order to find the
label. An example task looked similar to this:

Is ’trauma’ related to (delete URIs/words which are not related):

arteriopathy
back-projection
barotraumas
gunshot
http://linkedlifedata.com/resource/umls/id/C0003048 (Animal

Experimentation)
http://linkedlifedata.com/resource/umls/id/C0004601 (Back Injuries)
http://linkedlifedata.com/resource/umls/id/C0005604 (Birth trauma)
............

The most difficult task when designing this experiment was to define the
meaning of relevant. Relevant, in this context, is any word related to the given
keyword. This is a quite broad definition, which has, as it has been reported by
clinical research scientists who were involved in this experiment, posed a number
of difficulties due to many different levels of relevance. One of them stated that it
would not be easy to repeat the same tasks and mark the same words as relevant
if they had to repeat the same task again. We consider those that are not deleted
as relevant. Only those words which have been marked as relevant twice (by two
different clinicians) were eventually used when evaluating our results.

4.4 Results

In this section we first look into the results of training the model and finding
the best parameters with two separate groups independently. Then, we look at
the results of testing the RI method using these best parameters.

Training the model We expect to see variations of MAP, for different values
of dimensionality, seed length, and minimum term frequency parameters. Our
goal is to find the combination of parameters for which MAP is highest, so as to
use those in the testing phase.

Figure 1 shows the distribution of MAP across all cases, and for each group
used for training. It seems that the keywords from Group 1 were more challenging
for the method, as MAP values are much lower on average. However, as we can

Random Indexing for Finding Similar Nodes within Large RDF graphs

44

Random Indexing for Finding Similar Nodes within Large RDF graphs

45

Random Indexing for Finding Similar Nodes within Large RDF graphs

46

12

Fig. 4. The effect of the variation of dimensionality on MAP, across two datasets,
for Group 1 (left) and Group 2 (right) used as training sets. The distribution of MAP
across all categories of dimensionality is the same (independent samples Kruskal-Wallis
test, p=0.676 and p=1.0 for LLD1 and LLD2 respectively, Group 1; p=0.587 and
p=0.996 for LLD1 and LLD2, Group 2).

Fig. 5. The effect of the variation of seed length on MAP, across two datasets, for
Group 1 (left) and Group 2 (right) used as training sets. The distribution of MAP
across all categories of minimum term frequency is the same (independent samples
Kruskal-Wallis test, p=0.931 and 0.997 for LLD1 and LLD2 respectively, Group 1;
p=0.961 and 0.998 for LLD1 and LLD2, Group 2).

The variation of seed length parameter value seems not to cause any signif-
icant changes to MAP across both datasets, and hence, we consider the lowest
value of this parameter as the optimal one, due to the fact that the the computa-
tional resources required to build and search the semantic space are proportional
to the value of seed length. Table 4 outlines optimal parameters: those that we
chose to use in the testing phase.

Random Indexing for Finding Similar Nodes within Large RDF graphs

47

13

Group 1 Group 2
Dataset LLD1 LLD2 LLD1 LLD2
Min frequency 2 10 1 10
Seed length 10 10 10 10
Dimensionality 500 500 1500 500
MAP 0.55 0.61 0.65 0.61

Table 4. Optimal parameters chosen for Group 1 and Group 2 used as training sets

Finally, the size of the dataset had a significant influence on MAP (Mann-
Whitney U Test, p < 0.0001) for both Group 1 and 2 meaning that the larger
set (LLD2) resulted in producing the higher value of MAP for Group 1, while
for Group 2 the results were better with the smaller dataset (LLD1).

Testing the model In what follows we explore whether the model built
using the optimal parameters just presented can be used to effectively test the
model. In our context, testing the model means evaluating the set of related
terms (literals and URIs) returned by our method for the set of testing keywords
given as input.

We ran the search method using Group 2 as a testing set against the RI model
trained with Group 1, and then Group 1 as a testing set against the RI model
trained with Group 2. Results are shown in Table 5. The RI method results in
as good or better MAP for Group 2 in comparison to MAP for the best trained
model (Group 1 column in Table 4), while for Group 1 the resulting MAP for
LLD2 is as good as that of the best trained model (Group 2 column in Table 4),
while for LLD1 it is lower for 0.15. This is due to the distribution of keywords in
Group 1, due to which MAP for the RI model with optimal parameters is only
0.05 higher (0.55).

In the testing phase, MAP across both groups reached 0.565 and 0.61 for
LLD1, and LLD2 respectively.

Group 2 Group 1
Dataset LLD1 LLD2 LLD1 LLD2
Min frequency 2 10 1 10
Seed length 10 10 10 10
Dimensionality 500 500 1500 500
MAP 0.63 0.61 0.5 0.61

Table 5. Testing the Random Indexing method using Group 2 and Group 1 as testing
sets

Also important to observe is the fact that when the data corpus increases
(e.g. LLD2 vs LLD1) the method becomes very stable, and observed MAP values
in the training process are reproduced in the subsequent test phase. Arguably
this is due to the small difference in MAP across parameters, but it still shows
that RI is a stable method even in this unusual use-case we are dealing with.

Human assessment. In order to assess overall difficulty of the tasks which
we solve using the RI method, we calculated Inter-annotator agreement, and
indeed Observed agreement and Cohen’s Kappa agreement (see Section 4.2).
The observed agreement across all keywords was 0.81, and the Cohen’s Kappa
was 0.61 which indicates that the given task of selecting relevant keywords for a
topic of interest was indeed difficult for domain experts.

Random Indexing for Finding Similar Nodes within Large RDF graphs

48

14

The code and datasets from the described experiment, including generated
virtual documents and semantic spaces, can be downloaded from the LarKC
Wiki13.

Performance The parameter values affect not only the quality of results
but also the required resources and the indexing time. Increasing the value of
dimensionality and seed length almost exponentially increases the time to gen-
erate the semantic space (from 0.67 minutes for 500 dimensions to 3 minutes
for 2500, LLD1; from 3.78 minutes for 500 to 11.5 minutes for 2500 dimensions,
LLD2). The higher the value for seed length and dimensionality, the higher the
requirements for the computational resources and RAM in particular14. Appli-
cation of RI to the whole LLD dataset poses the scalability issues related to the
size of our corpus. While indexing is a one-off operation (that takes 1̃6 hours
on MDC computer with 256G RAM), the search for ‘lung’ after the space is
generated takes 14 minutes. Therefore, in our related work reported elsewhere
([1]) we looked at the parallelisation of the RI search algorithm in order to make
exploring large RDF graphs using the contextual similarities of the comprising
nodes applicable in real time applications.

5 Conclusion and future work

We described the application of the Random Indexing method for the task of
searching large and unknown RDF graphs. We tested our method on the subsets
of the Linked Life Data, by training it using the variation of parameters, and
then involving domain experts to judge on the relevance of retrieved terms. None
of the parameters had a significant influence on MAP, apart from the size of the
dataset. However, the values of MAP reaching 0.565 and 0.61 for LLD1, and
LLD2 datasets respectively, indicate that the generation of virtual documents as
described in this paper and generating the semantic index using the RI method
has promising results. The reason for the stability of the RI method might have
been the span of the parameters which we used, and hence in our future work
we will expand the variation span and also repeat the runs across the same
parameter variations in order to increase the significance of results.

Acknowledgments We would like to thank creators of SemanticVectors15 li-
brary which is used in the experiments reported in this paper. This research has
been supported by the EU-funded LarKC16 (FP7-215535) project.

References

1. Assel, M., Cheptsov, A., Czink, B., Damljanovic, D., Quesada, J.: MPI Realization
of High Performance Search for Querying Large RDF Graphs using Statistical

13 http://wiki.larkc.eu/LarkcProject/statisticalSemantics
14 The experiments are conducted on the MDC super-computer: 2 IBM x3950M2, 32

Cores (4 quad core Intel Xeon@2.93GHz per node), 256 Gbytes of main memory,
production cluster for Java software and serial code.

15 http://code.google.com/p/semanticvectors/
16 http://www.larkc.eu/

Random Indexing for Finding Similar Nodes within Large RDF graphs

49

15

Semantics . In: Proceedings of the 1st Workshop on High-Performance Computing
for the Semantic Web, Collocated with the 8th Extended Semantic Web Conference
(ESWC 2011). Heraklion, Greece (June 2011)

2. Broekstra, J., Kampman, A.: Serql: A second generation rdf query language. In:
In Proc. SWAD-Europe Workshop on Semantic Web Storage and Retrieval. pp.
13–14 (2003)

3. Cheng, G., Ge, W., Qu, Y.: Falcons: Searching and Browsing Entities on the Se-
mantic Web. In: Proceedings of WWW2008. pp. 1101–1102 (2008)

4. Cohen, T., Schvaneveldt, R., Widdows, D.: Reflective random indexing and indi-
rect inference: A scalable method for discovery of implicit connections. Journal of
Biomedical Informatics (2009)

5. Cohen, T.: Exploring medline space with random indexing and pathfinder net-
works. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA
Symposium pp. 126–130 (2008)

6. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in
Practice. Addison Wesley, 1 edn. (February 2009)

7. Damljanovic, D., Petrak, J., Cunningham, H.: Random Indexing for Searching
Large RDF Graphs. In: Poster Session at the Proceedings of the 7th Extended
Semantic Web Conference (ESWC 2010). Lecture Notes in Computer Science,
Springer-Verlag, Heraklion, Greece (June 2010)

8. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by
latent semantic analysis. Journal of the American Society for Information Science
41, 391–407 (1990)

9. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: Pro-
ceedings of the 13th ACM international conference on Information and knowledge
management. pp. 652–659. ACM, New York, NY, USA (2004)

10. Eugenio, B.D., Glass, M.: The kappa statistic: a second look. Computational Lin-
guistics 1(30) (2004), (squib)

11. Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for se-
mantic web data with context. In: Second International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2006). Athens, GA, USA (2006)

12. Hripcsak, G., Heitjan, D.: Measuring agreement in medical informatics reliability
studies. Journal of Biomedical Informatics 35, 99–110 (2002)

13. Johnson, W.B., Lindenstrauss, J.: Extensions to lipschiz mapping into hilbert
space. Contemporary Mathematics 26 (1984)

14. Karlgren, J., Sahlgren, M.: From words to understanding. In: Uesaka, Y., Kanerva,
P., Asoh, H. (eds.) Foundations of Real-World Intelligence, pp. 294–308. Stanford:
CSLI Publications (2001)

15. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation - 15 January 2008, W3C (2008)

16. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching.
In: Proceedings of WWW2006. pp. 23–31 (2006)

17. Sahlgren, M.: An introduction to random indexing. In: Methods and Applications
of Semantic Indexing Workshop at the 7th International Conference on Terminol-
ogy and Knowledge Engineering, TKE 2005. Citeseer (2005)

18. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: Proceedings of the 6th International Semantic Web Conference. Busan, Korea
(2007)

Random Indexing for Finding Similar Nodes within Large RDF graphs

50

An organizational environment for in silico
experiments in molecular biology

Yuan Lin1, Marie-Angélique Laporte1,3, Lucile Soler4, Isabelle Mougenot1,2,
and Thérèse Libourel1,2

1 LIRMM, UMR5506 CNRS-UM2, 161, rue Ada, 34095 Montpellier, Cedex 5, France
firstname.lastname@lirmm.fr

2 UMR ESPACE DEV IRD-UM2, 500 rue J.F. Breton, 34093 Montpellier, Cedex 5,
France

firstname.lastname@univ-montp2.fr
3 Centre d’Ecologie Fonctionnelle et Evolutive, UMR5175 CNRS, 1919, route de

Mende, 34293 Montpellier, Cedex 5, France
firstname.lastname@cefe.cnrs.fr

4 CIRAD-PERSYST, Campus International de Baillarguet, 34398 Montpellier cedex
5, France

firstname.lastname@cirad.fr

Abstract. Molecular biologists, just like geneticists, make use of various
experimental mechanisms and devices to conduct research and to validate
or invalidate their theories or initial hypotheses. Mechanisms powered
by information technology, called in silico, put data and analysis tools
at the centre of the experiments, and are thus different from in vivo, ex
vivo and in vitro mechanisms.
Multiple resources (data sources as well as analysis tools) are widely
available and, very often, allow various modes of operation, requiring cer-
tain expertise for their optimal use. This is especially true when drawing
up complex analysis scenarios based on the sequential use of appropri-
ate processing tools. To facilitate the construction of these experimenta-
tion mechanisms, we propose a scientific workflow infrastructure which
uses an organizational environment to allow abstract planning of the ex-
perimentation, followed by its concretization. The concretization phase
includes a verification of the conformity of the planned process chains
composition to avoid any error during execution.

Keywords: Scientific workflow, analysis pipeline, specification language, val-
idation aspects of service composition.

1 Introduction

Life sciences often rely on the chaining of data and application resources to
express the experimentation process. Valuable resources for biology, while avail-
able in ever-increasing quantities, remain, for the most part, cost-expensive and
time-consuming to acquire and thus their reuse becomes almost a necessity.

51

To design these complex experiments, scientists often need to locate suitable
resources and then to organize or reorganize them. In addition, each experiment
deserves to be saved so that it can be re-executed several times, either in various
different configurations or with diverse test data. In such a context, the use of
a scientific workflow proves to be an invaluable help. Several dedicated software
applications for this purpose now exist, most notably in the financial sector, and
research in the field is relatively advanced. A first study [7] presented our ap-
proach based on the concept of the scientific workflow environment. Its objective
is to help the user to:

– design experimentation process chains (in as abstract a manner as possible),
– better organize resources (data and processes) which will be elements in the

concretization of these process chains,
– capitalize on the existing by constructing new processes from previously

devised experimentation plans.

This article develops our research advances in terms of resource organiza-
tion and semi-automatic verification of validity of workflows designed within a
prototype.

This article is structured as follows: section 2 presents a brief state of the
art, section 3 proposes an architecture for implementing a scientific workflow and
section 4 provides a glimpse of the organization brought about. Section 5 covers
the proposed verification of conformity, section 6 illustrates with an example
the validation of conformity of a concrete process chain, and section 7 presents
perspectives in progress.

2 State of the art

A study was conducted based on characteristics we deemed relevant [8]:

– The existence of a meta level for describing and creating process chains. In
fact, the generic aspect conferred by meta-modelling appears to be funda-
mental for all of us.

– Taking the experimental aspect into account. The unique characteristics of
scientific data and processes should show through at the formalism level.

We present here only two representative projects, Kepler[1] and Taverna[6],
which gain a certain amount of popularity among workflow scientists.

2.1 KEPLER

KEPLER 5 is a complete scientific workflow environment based on the Ptolemy
II platform of the University of Berkeley. As far as process chains are concerned,

5 http://kepler-project.org/

An organizational environment for in silico experiments in molecular biology

52

KEPLER adopts a human organization metaphor. It is Actor-Based and con-
siders all components of a process chain as actors. Actors (services) are accessed
via a structure corresponding to the business ontology of the concerned domain.

The workflow is represented using a graphical language in the form of a
graph linking ports (input/output parameters) of actors via channels. One or
more actors in charge, Directors, plan tasks for other actors of the organization;
they do so based on the available ontology. The execution plan of a process chain
(or a portion of a process chain) is therefore created by a Director of the system.
Any necessary adaptations are achieved by intermediary sender and receiver
programs, which ensure the compatibility of data transferred over a channel.
The process chain is saved in the form of MoML (Modelling Markup Language)
files. (MoML is an XML-based language.) At the environment-interface level, a
specific zoom feature is associated with the concept of an opaque actor (cf. figure
1). An opaque actor appearing in a process chain can be opened, thus revealing
its constituent details.

Fig. 1. Overview of a process chain in the KEPLER environment

2.2 Taverna

Taverna is a workflow project created by the myGrid team in England and used
mainly in the life sciences. A workflow in Taverna is considered as a process
graph in which processes are connected by data links or control links. Processes
used are essentially web services (which can be supplemented by local libraries,
manuscript scripts, etc.). During process composition, the user manually couples
input/output parameters of web services or invokes shim services, specific adap-
tors existing from couplings constructed and tested for experiments. In addition,
the process chain is saved in the form of a SCUFL (Simple Conceptual Unified
Flow Language) file. (SCUFL is an XML-based language.)

An organizational environment for in silico experiments in molecular biology

53

Fig. 2. A concrete workflow in Taverna (taken from the myExperiment Taverna sharing
site)

2.3 Other related works of interest

The Taverna and Kepler projects both provide generic models for instantiation
and composition of services. Additionally, some other approaches are also highly
relevant to scientific workflow management:

– The project BioMoby [17], as a first attempt to assist process chaining by
using scientific resources, which are described and classified in the MOBY
Central.

– PISE ans its revised system Mobyle [18] that provides a web environment
(a Web Portal) to define and execute bioinformatics analyses. Registered
analysis programs are pre-classified in a hierarchy, as well as some frequently-
used workflows. Experts can easily find them by using the search function
panel that is integrated in the web site.

– The project ProtocolDB [19] proposed to model scientific workflows at two
different layers (design protocol/ implementation protocol). An implementa-
tion protocol for a given design protocol is realized by mapping design tasks
to different implementation tasks (scientific resources like database queries/
tools), and by connecting them together.

– In [20–22], scientific workflow modeling is supported by resource discovery
approaches.

In this manuscript we focus mainly on scientific workflows and the way they
are modeled and implemented. Our proposal introduces an additional level of

An organizational environment for in silico experiments in molecular biology

54

abstraction, whose purpose is to describe the business domain prior to creat-
ing the process chains. This additional modelling level is predicted to facilitate
the construction of process chains by allowing biologists to use their expertise
of their domain, but without requiring them to have expert and often precise
knowledge of the underlying resources and their locations. It also plays the role
of a prescription model, to which instantiation and service composition models
have to conform.

3 Workflow architecture

Our efforts have been guided by the business point of view, that of the experi-
menters. Designing an experimental protocol corresponds to general model with
three stages: 1) Definition: abstract definition of a process chain corresponding
to an experimentation sequence (planning the experiments), 2) Instantiation:
a more specific definition after identifying the various elements of the chain
(data/processes), 3) Execution: customized execution (according to strategies
corresponding to the requirements).

Based on this experimental life cycle, and inspired by the architectural styles
proposed by OMG [11], we propose the following 3-level architectural vision (cf.
figure 3):

Static

Intermediate

Dynamic

Workflow Meta-Model

Business model Business model Business model

Instantiated model Instantiated model

Centralized / Decentralized execution

.....

.........

Conforms

Business description
of the process chain

Instance of

Model instantiated
from a business model

Choice of the
execution strategy

Language used to define a
workflow business model

Fig. 3. 3-level architecture of a workflow component

The static level concerns the design phase. It is a matter of constructing
(abstract) business-process models using a simple language. The intermediate
level represents an instantiation and pre-verification phase. Using the business

An organizational environment for in silico experiments in molecular biology

55

process model, the user constructs the real process chain by selecting and locating
the processes and data most appropriate to the planned experimentation. The
pre-verification is semi-automatized (cf. section 4). The dynamic level concerns
the actual execution phase. It takes place based on the various strategies defined
by both the user and the operational configurations.

The static level has been studied in some detail in our [7, 8]. We have ana-
lyzed various language standards such as UML (activity diagram) [9] and SPEM
[10], as also various existing projects such as BioSide [5], Meta-model WDO-It!
[12] and CIMFlow [4]. Following this study, we proposed a simple but complete
language. It is based on a language defined by a meta-model whose abstract
elements, tasks or processes, are connected by unidirectional links and by the
intermediary of ports. To facilitate the manipulation of abstract process chains,
a corresponding graphical language was created within a prototype (cf. the top
part of the figure 4). By using this workflow definition language, a simple exam-
ple is modelled and shown in the lower part of the figure 4 6.

pagepageDataRoleTask data

Atomic task Role Data Port (parameter) Data link

pagepageProtein
sequence

Similarity search pagepageAlignment

Visualization pagepageImage

Tree reconstruction pagepageTree

1

2

Abstract model

Fig. 4. Some essential elements of our graphical language and a simple example

We currently focus on the intermediate level, which consists of two essential
stages:

– instantiation of the abstract model with existing resources (data/processes);
– validation of the concrete model instantiated from the organizational envi-

ronment.

4 Organizational environment

To carry out the experimental protocols, the abstract model instantiation stage
consists of finding and reusing existing resources. To facilitate this search, we
base ourselves on the concept of organizational environment. This environment
relies on the description of resources (data and processes) in the form of metadata

6 This example is also used in the later sections, we will explain it in detail during the
following sections.

An organizational environment for in silico experiments in molecular biology

56

(expressed in XML schema format). The resource descriptions are hierarchized
in resource categories and in concrete resources. As shown in figure 5, it consists
of:

– an organization relating to processes. It manages the hierarchy of descrip-
tions of process categories and of concrete processes. The concept of Con-
verter corresponds to the concept of a specific process responsible for adapt-
ing data between different formats of the same data category.

– an organization relating to data. It manages a hierarchy of descriptions of
data categories, of concrete data and of the various associated data formats7.

Environment

Organization of
data

Data
category

Concrete
data

* **
specification

linked to

*1
1

1

is in
format

Data format

1 1

sub format

*

*

InputCategories

*

*

InputFormats

Organization of
processes

Process
category

Concrete
process

Normal
process Converter

linked to
*

*

*
specification

1

1

*

*

OutputFormats

*

OutputCategories*

*

1

Fig. 5. Organizational environment

To illustrate this concept of the environment, we take an example from the
world of molecular biology (cf. figure 6). The upper part of each hierarchy (pro-
cesses and data) represent a set of categories (shown as ovals) sorted according
to the generalization/specialization relationship. The descriptions of concrete
resources (data or processes) are then associated to their category.

The description of a concrete data describes its format, whereas that of a
concrete process corresponds to its signature, which we formalize thus:

Definition 1. Formalized signature of a concrete process

Name (Input parameter list) : (Output parameter list), where each parameter is
described by the doublet (Data category : data format).

A set of data formats (Fasta, xml, MultiFasta, Clustal, Newick, Jpeg) is also
presented. Figure 6 is therefore complemented by the description of signatures
of some example concrete processes:
7 Remark: It should be noted that several data categories can share the same format.

An organizational environment for in silico experiments in molecular biology

57

Blastp(ProteinSeq:Fasta) : (SeqPairs:xml)

ClustalW (ProteinDataBank:MultiFasta) : (MultipleAlignment:Clustal)

InteractiveSelection(SeqPairs:xml) : (ProteinDataBank:MultiFasta)

Logo(MultipleAlignment:Clustal) : (Image:jpeg)

PhyML(MultipleAlignment:Clustal) : (PhylogeneticTree:Newick)

Fig. 6. Illustration of an organizational environment in a biological context

An organizational environment for in silico experiments in molecular biology

58

5 Conformities

5.1 The problem

As already mentioned, the second important stage of the intermediate level con-
sists of validating the concrete model instantiated from the abstract model.

Let us take an example described by using the workflow language, corre-
sponding to an abstract process chain model that a biologist designs with the
intention of characterizing a protein sequence which interests him in the context
of his putative functional domains.

At the concrete level, the idea is to begin by using the Blast similarity-search
tool to compare the protein sequence under consideration with a data bank of
protein sequences and to thus identify segments with high similarity shared
both by the protein sequence under consideration and by various sequences in
the sequence data bank. These similar segments indicate the possible presence
of functional domains. The biologist then continues his study by reusing the
results output from the Blast tool [2], either to construct a phylogenetic tree
and retrace the evolutionary history of the sequence via the PhyML tool [3] or
to display the preserved positions common to all the similar segments via the
Logo tool [13]. This simplified example of a process chain in molecular biology
allows us to highlight the difficulties encountered by the biologist in using the
results output by one tool as input to another tool. The difficulties relate, at the
same time, to the nature of the data (here characterized as data category), to the
format of this data, and, finally, to the biologists expertise. In the example, we
make willing use of the discrepancy which arises between the Blast tool, which
outputs a collection of simple alignments, and the PhyML and Logo tools, which
require multiple alignments to run. In fact, Blast leads to multiple discrepancies
two-by-two, involving the sequence under consideration and one of the sequences
from the sequence data bank which is similar to it; whereas PhyML and Logo
use the shared similarity by a set of sequences which includes the sequence under
consideration. This example highlights what we will subsequently term semantic
incompatibility.

In its upper part, the figure 7 shows the abstract process chain and in
the lower the concrete chain obtained after locating data descriptions S1 and
adapted processes Blastp and PhyML. The problem which we designate as one
of validation of the instantiated (concrete) model consists of verifying the com-
patibility of each composition. A composition corresponds to the link between an
output parameter p1 of a process T and an input parameter p2 of the process
following T; we denote it (p1 → p2).

5.2 Identifying situations of compatibility

Verification is undertaken by analyzing the signatures of linked processes. To do
so, we have to take two important aspects into account:

– The syntactic aspect : relating to the data formats used by the parameters.

An organizational environment for in silico experiments in molecular biology

59

Fig. 7. Problem at hand

– The semantic aspect : relating to the processs functionality. It not only de-
pends on the processs name but also on the signification of the input/output
parameters.

For two processes T1(dc1:fo1) : (dc2:fo2, dc3:fo3) and T2(dc4:fo4) : (dc5:fo5),
let us suppose that there exists a composition, denoted p1→p2, between the p1
(dc3:fo3) output parameter of process T1 and the p2 (dc4:fo4) input parameter
of process T2.

Syntactic and semantic compatibilities are defined as follows:

Definition 2. Syntactic compatibility

p1 → p2 is syntactically compatible if (fo3 = fo4) ∨ (fo3 is a sub-format

of fo4), denoted p1
Syn→ p2. Two parameters are syntactically compatible if they

use the same data format or if they use an output format which is a sub-format
of the input format. Else p1

Syn9 p2.

Definition 3. Semantic compatibility

p1 → p2 is semantically compatible if (dc3 = dc4) ∨ (dc3 is a sub-category
of dc4), denoted p1 Sem→ p2. Two parameters are semantically compatible if they
use the same category, or if they use an output category which is a sub-category
of the input category. Else p1Sem9 p2.

The verification of a compositions compatibility is thus done at two levels:
syntactic and semantic. Three types of situations can arise:

– Situation 1 (p1 Sem→ p2) ∧ (p1
Syn→ p2): p1 and p2 are compatible at the

semantic and syntactic levels. This is the ideal situation in our context; we
designate it as valid.

– Situation 2 (p1 Sem→ p2) ∧ (p1
Syn9 p2): p1 and p2 are compatible at the

semantic level but not at the syntactic level. The composition is syntactically
adaptable. An adaptation between the two data formats will be necessary
(cf. converters).

An organizational environment for in silico experiments in molecular biology

60

– Situation 3 p1 Sem9 p2 : The two parameters are not semantically compatible.
In such a case, it is pointless to proceed to verify their syntactic compatibility
(in fact, for us, two parameters with different significations cannot be paired).
The composition is semantically adaptable.

From these definitions, we develop our proposed approach for resolving the
incompatibilities.

6 Validation of the experimental chain

Of the three compatibility situations identified, the latter two require an adap-
tation stage before going on to the execution phase. It is a matter of finding one
or more intermediate processes which can overcome the compositions incompat-
ibility. For situations 2 and 3, two types of adaptations are proposed:

– semantic adaptation (for situation 3). The incompatibility of situation 3
represents the case where the two parameters of a composition use incom-
patible data categories. The adaptation here consists of finding a possible
intermediate process chain between these two categories.

– syntactic adaptation (for situation 2). In situation 2, where the composition
is already semantically compatible, the problem can be expressed as a di-
vergence between the data formats used by the two connected parameters.
All that is required is to find converters to convert one data format into the
other.

These adaptations are based on the organizational environment. The search
for intermediate processes can be equated to a search for itineraries between
two incompatible data categories or formats. We will illustrate this using the
example and the organizational environment constructed earlier (cf. figure 6).

Let us consider again the previous example. The verification conducted on
the instantiation of the abstract model detects a semantic incompatibility in the
composition between Blastp and Logo or between Blastp and PhyML due to dif-
ference in categories Pairs of sequences and Multiple Alignment (Incompatibility
situation 3). The (semantic) adaptation will be applied; it consists of finding in
what we call the (semantic) resource graph the path allowing the conversion of
categories.

The construction of the (semantic) resource graph consists of extracting,
from the organizational environment, the descriptions of processes and of data
categories referenced by their parameters. Such a (semantic) resource graph gen-
erated from the environment described in the figure 6 is shown in the figure 8.

A graph traversal algorithm is used to find all the possible paths between
the two concerned data categories (Pairs of sequences and Multiple Alignment).
A single path is found in the graph: Pairs of sequences → InteractiveSelection
→ ProteinDataBank → ClustalW → Multiple Alignment. The two processes,
InteractiveSelection and ClustalW, will therefore be added to the incompatible
chain (cf. figure 9).

An organizational environment for in silico experiments in molecular biology

61

Fig. 8. (Semantic) resource graph generated from the organizational environment of
the figure 6

... ...

pagepageProtein sequences
(Fasta)

pagepagePairs of sequences
(XML)

pagepageImage

pagepageTree

1

2
Blastp

ProteinSeq : Fasta

SeqPairs : XML

PhyML

MultipleAlignment : Clustal Tree : Newick

Logo

Image : jpegMultipleAlignment : Clustal

pagepagePairs of sequences
(XML)

pagepageImage

pagepageTreePhyML

MultipleAlignment : Clustal Tree : Newick

Logo

Image : jpegMultipleAlignment : Clustal

Interactive
selection

SeqPairs : XML

ProteinDataBank : XML

ClustalW

ProteinDataBank : MultiFasta

MultipleAlignment : Clustal

Fig. 9. Semantic adaptation

Once this adaptation is done, there still remains the existing syntactic in-
compatibility of the composition between the InteractiveSelection and ClustalW
processes because even though InteractiveSelection outputs the same data cate-
gory that is accepted for input by ClustalW, their data formats are different (xml
and MultiFasta). Syntactic adaptation consists of finding specific converters, or
compositions of converters, necessary for these conversions. We will not cover
this stage in detail; it is simply enough to understand that converters (or their
composition) can be added to obtain the required validity.

7 Conclusion and perspectives

A prototype (http://www.lirmm.fr/ lin/project/) illustrating the key aspects of
our approach for designing and validating scientific process chains is currently
being developed. This prototype serves as a basis for an inductive experimen-
tal approach using data of BAC and EST nucleic sequences as well as physical
and genetic maps for identifying and characterizing genetic markers relating to
sex of the Nile tilapia (Oreochromis niloticus). Over a longer term, we intend
to integrate the current prototype into a platform with a search engine based
on resource descriptions to be able to undertake the execution using real re-

An organizational environment for in silico experiments in molecular biology

62

sources, after requisite validation of experimentation chain. It will eventually
also use open-source controlled vocabularies such as PFO (Protein Feature On-
tology)[14], SO (Sequence Ontology)[15], and GO (Gene Ontology)[16] to enrich
data categories by additional representations and thus extend the descriptive
capacities of the organizational environment.

References

1. I. Altintas, B. Ludäscher, S. Klasky, and M. A. Vouk. S04 - introduction to scientific
workflow management and the kepler system. In SC, page 205, 2006.

2. S. Altschul, W. Gish, W. Miller, E. Myers and D. Lipman. Basic local alignment
search tool. In Journal of Molecular Biology, vol 215, pages 403-410, 1990.

3. S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to estimate large
phylogenies by maximum likelihood, in Systematic Biology, vol 52, pages 696-704,
2003.

4. L. Haibin, F. Yushun, CIMFlow: A Workflow Management System Based on Inte-
gration Platform Environment. In Proceedings of 7th IEEE International Confer-
ence on Emerging Technologies and Factory Automation. Barcelona : ETFA, 1999:
187-193.

5. M. Hallard & al. Bioside : faciliter l’acceès des biologistes aux ressources bio-
informatiques, JOBIM, Montreéal 2004, p 64.

6. D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble, M. R. Pocock, P. Li, and T.
Oinn. Taverna: a tool for building and running workflows of services. Nucleic Acids
Research, 34(Web-Server-Issue):729732, 2006.

7. T. Libourel, Y. Lin, I. Mougenot, C. Pierkot, JC. Desconnets, A Platform Ded-
icated to Share and Mutualize Environmental Applications. Proceedings of 12th
International Conference on Enterprise Information Systems, Madere, 2010.

8. Y. Lin, T. Libourel, I. Mougenot, A Workflow Language for the Experimental
Sciences, Proceedings of 11th International Conference on Enterprise Information
Systems, Milan, 2009.

9. Object Management Group (OMG), OMG Unified Modeling LanguageTM (OMG
UML), Infrastructure Version 2.3. OMG Document Number: formal/2010-05-03.

10. Object Management Group (OMG), SPEM - Software & Systems Process
Engineering Meta-Model Specification, Version 2.0. OMG Document Number:
formal/2008-04-01.

11. Object Management Group (OMG), Meta Object Facility (MOF) Core Spec-
ification OMG Available Specification Version 2.0, OMG Document Number:
formal/06-01-01.

12. P. Pinheiro da Silva, L. Salayandia, A.Q. Gates, WDO-It! A Tool for Building Sci-
entific Workflows from Ontologies (2007). Departmental Technical Reports (CS).
Paper 201.

13. T. D. Schneider and R. M. Stephens, Sequence Logos: A New Way to Display
Consensus Sequences. In Nucleic Acids Res., vol 18, pages 6097-6100, 1990.

14. G.A. Reeves, K.Eilbeck, M.Magrane, C.O’Donovan, L.Montecchi-Palazzi, M.A.
Harris, S.E. Orchard, R.C. Jimenez, A.Prlic, T. J. P. Hubbard, H.Hermjakob,
J.M. Thornton. The Protein Feature Ontology: a tool for the unification of protein
feature annotations. In Bioinformatics, vol 24, pages 2767-2772, 2008.

15. K.Eilbeck, S.E Lewis, C.J Mungall, M.Yandell, L.Stein, R.Durbin, M.Ashburner.
The Sequence Ontology: a tool for the unification of genome annotations. In
Genome Biology, vol 6, pages R44, 2005.

An organizational environment for in silico experiments in molecular biology

63

16. M.Ashburner, C.A. Ball, J.A. Blake, D.Botstein, H.Butler, J. Michael Cherry, A.P.
Davis, K.Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L.Issel-Tarver,
A.Kasarskis, S.Lewis, J.C. Matese, J. E. Richardson, M.Ringwald, G.M. Rubin,
G.Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. In Nature Genetics, vol 25, pages 25-29, 2000.

17. Michael DiBernardo, Rachel Pottinger, Mark Wilkinson: Semi-automatic web ser-
vice composition for the life sciences using the BioMoby semantic web framework.
Journal of Biomedical Informatics 41(5): 837-847 (2008).

18. Bertrand Néron, Hervé Ménager, Corinne Maufrais, Nicolas Joly, Julien Maupetit,
Sébastien Letort, Sébastien Carrère, Pierre Tufféry, Catherine Letondal: Mobyle: a
new full web bioinformatics framework. Bioinformatics 25(22): 3005-3011 (2009).

19. Michel Kinsy, Zoé Lacroix, Christophe Legendre, Piotr Wlodarczyk, Nadia Yacoubi
Ayadi: ProtocolDB: Storing Scientific Protocols with a Domain Ontology. WISE
Workshops 2007: 17-28

20. Zoé Lacroix: Resource Discovery, Second International Workshop, RED 2009,
Lyon, France, August 28, 2009. Revised Papers Springer 2010.

21. Zoé Lacroix, Cartik R. Kothari, Peter Mork, Rami Rifaieh, Mark Wilkinson, Ju-
liana Freire, Sarah Cohen Boulakia: Biological Resource Discovery. Encyclopedia
of Database Systems 2009: 220-223.

22. Nadia Yacoubi Ayadi, Zoé Lacroix, Maria-Esther Vidal: A Deductive Approach
for Resource Interoperability and Well-Defined Workflows. OTM Workshops 2008:
998-1009.

An organizational environment for in silico experiments in molecular biology

64

A Directory of Heterogeneous Services1

Zijie Cong, Alberto Fernández, Carlos A. Soto

CETINIA, University Rey Juan Carlos, Móstoles, Spain

zijie@ia.urjc.es, alberto.fernandez@urjc.es, casotob@ia.urjc.es

Abstract.
This paper presents a directory of heterogeneous web services, which addresses

the issue of service discovery involving heterogeneous description languages

such as OWL-S, SAWSDL, WSDL and plain text. Service descriptions are

mapped into a unified description model, which captures various important

elements in different service description approaches. Our directory then

performs service registration, automatic discovery and manual browsing

utilizing these unified models. A preliminary evaluation shows a satisfying

result.

Keywords: service directory, service discovery, matchmaking, semantic web

services, service oriented architecture.

1 Introduction

In Service-Oriented Architectures, web services can be described in various

models, from highly expressive semantic web service description languages such as

OWL-S and WSMO to plain text. The possibility and capability of automatic service

discovery is limited by the diversity of service description models.

A directory of heterogeneous web services is presented in this paper, which

addresses the issue of service discovery involving various service description models.

Common approaches use the same description language for both advertisements and

requests.

Services description in different description languages are mapped into a unified

model, which dedicates to service matchmaking purpose, before registration. This

unified model captures many important features of existing description languages,

such as the semantic I/Os, category information and syntactic description. It is

independent of the original service description language, thus it can be modified and

expanded with minimal effort while avoiding the complication of mapping a less

expressive description language, such as keywords, to a highly expressive description

language with additional information requirement. A matchmaking algorithm is

1 Work partially supported by the Spanish Ministry of Science and Innovation through

grants TIN2009-13839-C03-02 and CSD2007-0022 (CONSOLIDER-INGENIO

2010)

65

performed over this model, thus providing heterogeneous service discovery

capabilities.

The rest of the paper is organized as follows: In section 2, we describe the general

structure of the directory, and the mapping from existing service description

languages to a unified model. In section 3, the matchmaking process is explained in

detail, and the implementation and preliminary evaluation of some components is

shown in section 4. The related works and conclusion are then presented in section 5

and 6, respectively.

2 Service Directory Architecture

The architecture of our service directory is depicted in Fig. 1. There are two types of

agents that interact with the directory, the one who offers the service (Service

Provider) and the consumer of services (Service Requester). As we will see in section

 4, they can access the directory through a REST service or a human-oriented web

interface.

Service providers register services in the directory providing the following

information:

• Service Description: the service description specified by the provider is essential

because it will contain all the information related to the service offered (it can

include the service category). In our framework we allow several service

description models. They include semantic models (OWL-S [16], WSMO [3]),

syntactic models (WSDL [4]), hybrid (SAWSDL [6]), as well as other lighter

approaches (keyword-, cloud-, and text-based service descriptions).

• Grounding: the service provider must attach the information required to access

the service by a client (for example a WSDL file).

• Category (optional): the category of the service can be explicitly defined in this

section according to the NAICS [18] classification. As we will see later, service

category is complemented with information provided in the service description

section, such as explicit annotation (e.g. in some versions of OWL-S) or

extracted from a textual description.

Service descriptions and category are combined and converted into a common

format (AT-GCM) and stored in a Service Registry. The common format (section 2.1)
comprises the relevant characteristics of the original models, from a service

matchmaking point of view. The Mapping to AT-GCM module generates the AT-

GCM version of the service from the service description and the category.

The AT-GCM, the Grounding, and the original Service Description provided by the

Service Provider are stored as an entry in the service registry database.

When client agents (service requesters) want to use the service directory for

finding a service, they send the necessary information (Query Description) to obtain a

list of matching services (sorted list by their degree of match with the query). Query

descriptions are specified using one of the available description languages. Note that

our framework is able to return services described in a different language to the query.

For instance, it may return an OWL-S service while the query is specified using

WSDL.

A Directory of Heterogeneous Services

66

Fig. 1. Service Directory Architecture

When the service directory receives a query description, the query is transformed

into the ATM-GCM format (Mapping to AT-GCM) and passed to the Matchmaker.

Then, the matchmaker compares the query against the AT-GCM versions of the

services stored in the database and returns a ranked list of services to the client. This

process is detailed in section 3.

2.1 A unified model for representing service descriptions

Setting out from existing conceptual comparisons between semantic web service

descriptions ([11, 12, 20, 22], and considering lighter approaches too, we obtained a

General Common Model (AT-GCM2) with the following elements: inputs, outputs,

preconditions, effects, keywords, textual description, category and tag cloud.

Detailed description about the model and the mappings from original models to the

AT-GCM can be found in [2]. Here we summarise that description.

Definition 1. Let N be a set of concepts of domain ontologies, a general common

model (AT-GCM) for service discovery is a tuple <IGCM, OGCM, PGCM, EGCM, KGCM,

CGCM, T GCM, TCGCM >, where:

• IGCM = <Isyn, Isem> is the set of syntactic (Isyn∈{a, .., z}
*
) and semantic (Isem⊆

N) inputs of the service.

• OGCM = <Osyn, Osem> is the set of syntactic (Osyn∈{a, ..., z}
*
) and semantic

(Osem⊆ N) outputs.

• PGCM is the set of preconditions. PGCM ⊆ N

• E GCM is the set of effects. EGCM ⊆ N

• KGCM = <Ksyn, Ksem> is the pair of sets of syntactic and semantic keywords,

where Ksyn⊆ {a, …, z}
*
,

Ksem⊆ N.

2 AT stands for Agreement Technologies, meaning agreement among different service

description models. It is also the name of one of our funding projects (CSD2007-

0022).

A Directory of Heterogeneous Services

67

• CGCM is a set of categories of the service, described semantically (Csem⊆ N)

(e.g. NAICS or UNSPSC).

• TGCM is a textual description of the service.

• TCGCM is a tag cloud. TCGCM = {<t, n>| t ∈ {a, …, z}
*
, n ∈ N}.

Table 1 shows how the different elements of the AT-GCM can be obtained from

each source service description model. The first column specifies the element of the

AT-GCM, while each cell contains the value mapped from the model shown in the

first row.

There are many straightforward mappings that consist of simple associations

between parameters in both models. For instance, in OWLS/WSMO IGCM=< Ø ,

pt(I)> because they only provide semantically described inputs I (Isem), where

pt(I)={ t | t=parameterType(i) ∀i∈I}.
However, some fields (e.g. tag-clouds, keywords) may not be explicitly described

by a given model but they can be obtained from the rest of the description.

Table 1. Service(S)-to- AT-GCM mapping

GCM
OWL-S /

WSMO
SAWSDL WSDL

Keyword

(tag)

Tag

Cloud
Text

IGCM <Ø, pt(I)> <Isyn,Isem > <I, Ø> <Ø, Ø> <Ø, Ø> <Ø, Ø>

OGCM <Ø, pt(O)> <Osyn,Osem> <O, Ø> <Ø, Ø> <Ø, Ø> <Ø, Ø>

PGCM P Ø Ø Ø Ø Ø

EGCM E Ø Ø Ø Ø Ø

CGCM C Cat(T) Cat(T) Cat(T) Cat(T) Cat(T)

TGCM T T T Ø Ø S

TCGCM
∆(T) ∪ N(I)

∪ N(O)

∆(T) ∪ Isyn ∪

Osyn

∆(T) ∪ I ∪
O

{<t, 1>|

t∈ Ksyn}
S ∆(S)

KGCM

<τ(∆(T)) ∪

N(I)∪N(O),

pt(I)∪ pt(O)>

<τ(∆(T)) ∪ Isyn

 ∪ Osyn,

N(Isem)∪N(Osem)>

<τ(∆(T)) ∪

Isyn∪ Osyn,

φ>

K <τ(S),Ø> <τ(∆(S)),Ø>

Fig. 2 sumarises the characteristics of the AT-GCM that can be obtained from each

original service description model.

ISemISyn OSemOSyn P EKSemKSyn CTTCGCM

OWL_S / WSMO

SAWSDL

WSDL

Keywords

Tag Cloud

Text

Fig. 2 AT-GCM characteristics covered by service description models

A Directory of Heterogeneous Services

68

2.2 Model Expansion

Useful information about services may not always be explicitly defined by the

providers in their service descriptions. Such information could, however, be

discovered from other elements in the description and/or by using external resources.

In this section, we briefly introduce the expansion of AT-GCM using existing

elements and external resources.

A complete schema is shown in Fig. 3.

Fig. 3 Mapping to AT-GCM

2.2.1 Extracting tag-clouds and keywords from text

Although, as illustrated in Fig. 2, most service description languages include neither

syntactic keywords nor tag-cloud, these two elements can be extracted from other

parts of description such as text, inputs and outputs.

Function ∆(T) (Table 1) extracts the k most relevant keywords from T. The

relevance of each word in textual information is their TF-IDF weights [24] calculated
using other textual information of services registered in our directory.

Before computing the TF-IDF weight of the word, a set of stop-words is filtered

out from the text to accelerate the process. As nouns and verbs are more semantically

significant than other parts of speech, words falling into the rest of lexical categories

are also filtered out. This process is done using WordNet [17].
WordNet is a lexical database for English language. It groups English words into

sets of synonyms called synsets, with various semantic relations between these

synsets. These semantic relations include hyponym, hypernym, domain, cause,

member, holonym, meronym similar, antonym, instance etc. With these semantic

relations, WordNet can be considered as an ontology.

A Directory of Heterogeneous Services

69

We also use WordNet to lemmatization words. Comparing to other popular

stemming algorithms such as Porter’s [23] stemming algorithm, WordNet

significantly reduces over-stemming errors, which could lead to false positive results.

In addition, the set of input concept names N(I) and output concept names N(O) in

semantic descriptions (OWL-S, WSMO, SAWSDL) are considered for the cloud with

non-character symbols removed and converted to lowercase. In the case of keyword-

based service descriptions (where no text is included), a plain cloud is created with

frequency 1 for every keyword in the description.

Syntactic keywords can be easily obtained from tag clouds (either original or

calculated with ∆), by simply adopting the words in the cloud (function τ(TC), being
TC a tag-cloud).

The set of input and output concept parameter types (pt(I) and pt(O)) are also

adopted as semantic keywords.

2.2.2 Category Discovery

Our directory is organized using service’s category information based on the North

American Industry Classification System (NAICS). Services need to provide at least

one NAICS category to be registered in our directory.

Among all service description languages considered by our directory, only OWL-S

provides a mechanism to include NAICS category information in the service

description, but also commonly ignored by service providers.

To associate an appropriate category with the service, we first extract keywords

related to each category from NAICS 2007 Index file. During each service

registration, if no category information is provided by the service provider nor defined

in the service description, category extractor calculates the similarity between

keywords extracted from service description and keywords of each NAICS 2007

category to find the most suitable categories for the service.

The similarity is measured by mapping each keyword from both NAICS categories

and service description to WordNet synsets, and the similarity is defined as:

c

cS

k

kK ∩

where KS denotes the keywords extracted from service description S, and kc denotes

sets of keywords of each NAICS 2007 category c.

3 Service Matchmaking

Service matchmaking is an essential part of our service directory. The similarity

between two service descriptions (request and advertisement) is based on the

similarities of each pair of corresponding elements in their AT-GCMs. Only elements

existing in both descriptions are considered, the rest are ignored.

A Directory of Heterogeneous Services

70

We further classify the elements in AT-CGM into three categories: semantic

elements, syntactical elements and category information. Each type of element is

associated with an ontology, and a generic ontological similarity algorithm is applied

to calculate the similarity between each pair of corresponding elements of service

request (SR) and advertisement (SA).

• Semantic elements are associated directly with their original ontologies used

in the service description.

• Syntactic information is associated with external lexical databases such as

WordNet, which can also be considered as an ontology.

• The category of a service is often an element in certain classification systems,

such elements are usually organized in a hierarchy, which can be considered as

an ontology also.

Table 2 summarizes the AT-GCM components in each category and the associated

ontology:

Table 2 Categorizing AT-GCM components

Category Component Ontology

Semantic Elements Isem, Osem, Ksem [From service description]

Syntactic Elements Ksyn, Isyn, Osyn, TC WordNet

Category Information C NAICS-07

Fig. 4 illustrates the complete matching schema.

Syn. Outputs

Syn. Inputs

Syn.
Keywords

Category

TagCloud

Semantic
Matching

Category
Matching

NAICS

07

WordN

et

Sem. Outputs

Sem. Inputs

Sem.
Keywords

Syn. Outputs

Syn. Inputs

Syn.
Keywords

Category

TagCloud

Sem. Outputs

Sem. Inputs

Sem.
Keywords

Service Request Service Advertisement

Aggregation DegreeOfMatch

 Fig. 4. Service Matchmaking based on AT-GCM

A Directory of Heterogeneous Services

71

3.1 Semantic Elements Matching

Semantic elements in AT-GCMs include semantic inputs, semantic outputs and

semantic keywords. For instance, in an AT-GCM obtained from an OWL-S

description, the semantic elements are Isem, Osem and Ksem=(Isem ∪ Osem).

The matching process of semantic concepts in web services takes one concept from

service request (CR) and service advertisement (CA) and returns their degree of match.

The degree of match between these semantic concepts is based on their

subsumption relation in the ontology. In this paper, we adopt the four degrees of

match proposed by Paolucci et al. in [19]: exact (CA=CR), plug-in (CR subsumes CA),
subsumes (CA subsumes CR) and fail (otherwise).

To obtain a numerical similarity between two concepts, we further calculate the

length of the shortest ancestral path between these two concepts, which was

introduced by Y. Li et al. in [15]:

where α ≥ 0 and β ≥ 0 are parameters scaling the contribution of the shortest path

length (l) between the two concepts and the depth (h) of the least common subsumer

in the concept hierarchy, respectively.

We combine this function with the four degrees of match commented above into a

unique numerical real value between 0 and 1, being exact = 1, plug-in ∈ (0.5,1),
subsumes ∈ (0,0.5) and fail = 0:

3.1.1 Semantic Outputs/Inputs

In line with Paolucci’s proposal in [19], a semantic output matches if and only if for

each output of the request there is a matching output in the service description, i.e. the

service provides all the outputs required.

For two sets of semantic outputs, O
R
sem and O

A
sem, the similarity between these two

outputs is calculated using function:

In function OSemMatch O
R

denotes the semantic outputs from service request.

Therefore, if the service request requires no outputs (|O
R
sem|=0), it returns 1, exact

match, regardless of the outputs produced by service advertisement O
A
sem. Otherwise,

the semantic match is obtained by taking, for each output in the request, the best

A Directory of Heterogeneous Services

72

match against the ones in the advertisement. The worst case (minimum value) is then

chosen to combine the best matches.

For semantic inputs, an analogous approach is followed, but with the order of the

request and advertisement reversed.

3.1.2 Semantic Keywords

For semantic keywords from service request, K
R
sem (R) and from service

advertisement, K
A
sem (A) the degree of match between two sets of semantic keywords

is calculated using measure proposed in [5]:

with , and a analogously.

Alternative semantic similarity measures can be used, such as the measure

described by Hau et al. in [7].

3.2 Syntactic Elements Matching

Syntactic elements in AT-GCM include syntactic keywords, tag-cloud, syntactic I/Os

and text. To achieve uniformity and simplicity, we would like to adopt the similarity

measures defined in the last section to suit the syntactic elements too.

However, these elements have no associated ontological concepts explicitly

defined in the service description. Thus, these elements need to be mapped into

concepts of a certain lexical database with subsumption relation defined, such as

Word:et.

3.2.1 Syntactic Keywords

Syntactic keywords are first mapped to WordNet synsets, with hypernym/hyponym

relations defined between synsets, we simply adopt function KSemMatch defined in

the last section:

where K
R
synsets and K

A
synsets denote WordNet synsets associated with keywords in the

service request and service advertisement respectively, and δ denotes weight of a

keyword, which is always 1 at current stage.

Similarity between tag-clouds is calculated in the same way with weights

(frequencies):

where δr and δa denotes the frequency of term r (in R) and a (in A) respectively.

A Directory of Heterogeneous Services

73

3.2.2 Syntactic Inputs/Outputs

Degree of match of WordNet synsets mapped from syntactic inputs and outputs are

calculated in the same way as their semantic counterparts.

3.3 Category Matching

As stated in section 2, our directory uses NAICS 07 as services categorization

standard. With 2341 categories in total, NAICS 07 standard organizes these categories

in a 5-level hierarchy.

Each category is considered as a concept in this category taxonomy, the calculation

of the similarity between two categories is done by using:

3.4 Aggregation Function

Finally, service matching must combine the similarity value for each of these

fields.

simIsyn, simIsem simOsem, simOsyn, simTC , simKsyn, simKsem, simC denote the similarity

of syntactic/semantic inputs, syntactic/semantic outputs, tag-cloud, syntactic/semantic

keywords and category respectively between a service request and a service

advertisement. An aggregation function is a function that combines these similarity

values.

For the moment, a general approach is taken: a weighted sum of each similarity,

where the weighting parameters are the contribution of the corresponding components

of the AT-GCM. The contribution of each component is calculated using a logistic

function:

w(n
c
) =

1

(1+ e
(1−

nc

0.5N
)

)

where nc denotes the number of elements in component C (for example, number of

semantic outputs), and N denotes the average number of elements in both service

models.

Function w is a logistic function, which makes the weights of the components with

number of elements close to the average increase rapidly. Also, logistic function

prevents the over-influence caused by components with excessive number of

elements.

A Directory of Heterogeneous Services

74

4 Implementation and Evaluation

The directory service implementation consists of a web server to perform various

operations defined in section 2 (register and search services). The server may be

accessible through a web interface implemented on the same server, or through REST

operations to receive and respond to customer requests.

We used SQLite3 database to facilitate the implementation in future distributions of

the service directory.

The service directory receives search requests and responds to them through JSON

[9] data exchange, including a list of descriptions of the matching services and their

corresponding grounding so that they can be invoked if desired.

Web Interface (PHP)

Service Search

Service Register

Directory

Other Tools

ActionScript

C++

Delphi

Java

Visual Basic
...

REST
Service

Directory

Fig. 5. Service Directory Interaction

The implemented Web Interface also uses REST to interact with the service

directory. Fig. 5 shows the interaction of our proposed service directory with the Web

Interface and other languages. When the directory receives a client request (GET) it

carries out the operation using the specific parameters included in the request and

answers using JSON objects. The client can use the received information to show it or

invoke the services.

4.1 Evaluation

Based on OWLS-TC4 4.0, we performed two experiments to evaluate the precision of

category extraction and syntactic keywords matching.

3 http://www.sqlite.org/
4 http://www.semwebcentral.org/projects/owls-tc/

A Directory of Heterogeneous Services

75

As both experiments involve syntactic matching, the relevance is relatively

subjective. Therefore, the precision of the results is calculated against human

judgement.

Category Extraction

We selected 78 services from the OWLS-TC, and 5 NAICS-07 categories were

extracted using techniques described in section 2.2. Then we manually evaluated how

many extracted categories were acceptable (agree with human judgement). The

measure is essentially a precision at 5:

where |Cextracted| = 5.

In comparison, we also performed an experiment in category extraction without

WordNet, i.e, character-wise matching was performed over stemmed keywords from

service description and category index.

The results showed an average precision of 0.698 from our approach and 0.2734

from using pure syntactic matching.

 Fig. 6. Precision and number of keywords extracted

In general, the precision of extraction with WordNet is higher than pure syntactic

matching. However, Fig. 6 shows that as the number of keywords increases, WordNet

approach’s precision decrease.

This could be due to the fact that the number of WordNet synsets associated with

keywords increases rapidly hence overgeneralized the domain of the service An other

possible cause could be that the experiment was performed with a relatively small

amout of samples, thus noises are very obivious, for example, only one service has 13

keywords extracted and its value cloud be an exceptional extreme value.

A Directory of Heterogeneous Services

76

Syntactic Keywords Matching

We selected 8 service requests from the OWLS-TC’s Request and Relevance Sets,

and using relevance information provided by OWLS-TC as the benchmark, our

syntactic matching algorithm has an average precision of 80.5%.

Again, this results could be not reliable due to the small number of samples used.

Therefore, further larger scale experiments will be one of our future works

5 Related Work

Some (not many) other efforts have been made trying to align or compare different

service description approaches. As we mentioned in section 2.1, we set out from

existing conceptual comparisons between popular semantic web service languages

[11, 12, 20, 22] to obtain a general model description of services that facilitates their

discovery.

Most of the current approaches to Semantic Web Services matching, particularly

those based on OWL-S, are based on subsumption reasoning on concepts included in

the descriptions (e.g. [14, 19]). Klusch et. al [10] present a hybrid matchmaker that

complements logic based reasoning with approximate matching techniques from

Information Retrieval. In this sense we propose a hybrid approach, which combines

subsumption checking, concepts similarity, and information retrieval. However, we

focus on the integration of several different service description.

The directory service using a common model (AT-GCM) in the same direction as

iServe [21] uses the minimum service model to address interoperability, the

difference is that our board to consider Tag-Cloud, and keywords free text for use in

the directory.

Ambite et al introduced a system (DEIMOS) for constructing semantic web service

from online sources automatically in [1]. DEIMOS uses an existing semantic web

service as a seed, by calculating the syntactic similarity and a brute-force invocation-

observation learning process, DEIMOS semantically annotated an external source.

Differently to our approach they use only inputs/outputs to characterise services.

Also, they use the Local-As-View (LAV) [13] datalog rules to describe the sources.
We use RDF instead, although this does not reduce expressivity against LAV, in fact

DEIMOS generates an RDF graph from LAV descriptions.

In addition, A. Heß introduced a web service classification approach using

machine-learning techniques in [8]. Even though the evaluation showed a remarkable

accuracy, no information about computational efficiency was shown. As techniques

such as Naïve-Bayes and SVM could be noticeably computationally expensive, this

approach might not be entirely suitable for service discovery in a large, open

environment.

A Directory of Heterogeneous Services

77

6 Conclusion

In this paper we have dealt with the problem of service discovery in open systems.

We proposed an architecture that considers the alignment of service description

models, and the transformation of them into a unified common model. We do not only

consider explicit information specified in structured service descriptions, but we

enrich descriptions with additional information extracted using text processing.

Although we provided with an alignment mechanism for a set of service description

languages, other languages can be easily integrated into. In fact, if such new model

fits into the proposed AT-GCM only the adequate mappings have to be specified.

Regarding computational aspects, note that the mapping of service advertisements

to the AT-GCM can be done at registration time, so we only need to process the

service request at run time (as well as the matchmaking algorithm).

We also proposed the combination of service matching and concept similarity into

an integrated service-matching framework.

The implementation and a preliminary evaluation showed a satisfying result

regarding category and keywords extraction. Further evaluations, such as F-measure

and recall of extracted categories as well as precision/recall of service are part of our

future plans.

7 References

1. Ambite, J.L., Darbha, S., Goel, A., Knoblock, C.A., Lerman, K., Parundekar, R., Russ, T.:

Automatically constructing semantic web services from online sources. In: Bernstein, A.,

Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.)

ISWC 2009. LNCS, vol. 5823, pp. 17–32. Springer, Heidelberg, 2009.

2. Balta, A., and A. Fernandez. Towards Service Matchmaking of Heterogeneous Service

Descriptions. Worshop on Service-Oriented Computing: Agents, Semantics, and

Engineering (SOCASE@AAMAS2010), Toronto, 2010.

3. Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M., K¨onig-

Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J.,

and Stollberg, M. Web Service Modeling Ontology (WSMO). W3C Member Submission,

2005. http://www.w3.org/Submission/WSMO/.

4. Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. Web Services Description

Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001

5. Ehrig M. Ontology Alignment: Bridging the Semantic Gap. Springer. 2007.

6. Farrell, J. and Lausen, H. Semantic Annotations for WSDL and XML Schema

(SAWSDL). W3C Recommendation 28 August 2007. http://www.w3.org/TR/sawsdl/

7. Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web

Services. In: Proceedings of the Workshop Towards Dynamic Business Integration co-

located with the 14th International World Wide Web Conference (WWW), 2005.

8. Heß, A., Johnston, E., Kushmerick, N.: Machine Learning for Annotating Semantic Web

Services. In: Semantic Web Services: Papers from the 2004 AAAI Spring Symposium

Series. AAAI Press , 2004.

9. JSON, JavaScript Object Notation. http://www.json.org/, 2011

10. Klusch, M., Fries, B., and Sycara, K. OWLS-MX: A hybrid Semantic Web service

matchmaker for OWL-S services, Web Semantics: Science, Services and Agents on the

World Wide Web, Volume 7, Issue 2, April 2009, Pages 121-133.

A Directory of Heterogeneous Services

78

11. Kourtesis, D., and Paraskakis, I. Combining SAWSDL, OWL-DL and UDDI for

Semantically Enhanced Web Service Discovery. Springer Berlin / Heidelberg. Pages 614-

628. 2008.

12. Lara, R., and Polleres, A. D4.2v0.1 Formal Mapping and Tool to OWL-S, WSMO

working draft 17 december 2004. http://www.wsmo.org/2004/d4/d4.2/v0.1/

13. Levy, A.Y.: Logic-based techniques in data integration. In: Minker, J. (ed.) Logic-Based

Artificial Intelligence. Kluwer Publishers, Dordrecht, 2000.

14. Li, L. and Horrocks, I. A software framework for matchmaking based on semantic web

technology. Int. J. of Electronic Commerce, 8(4):39–60, 2004.

15. Li, Y, Bandar, Z.A. and McLean, D. An approach for measuring semantic similarity

between words using multiple information sources. IEEE Trans- actions on knowledge

and data engineering, pages 871–882, 2003.

16. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDemott, D., McIlraith, D., Narayanan,

D., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K.. OWL-S:

Semantic Markup for Web Services. W3C Member Submission, 2004. Available from

http://www.w3.org/Submission/OWL-S/.

17. Miller, G.A. WordNet: a lexical database for English, Communications of the ACM, pages

39-41, 1995. Association for Computational Linguistics.

18. NAICS Association. NAICS code searching. http://www.naics.com/search.htm, 2004.

19. Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. Semantic Matching of Web

Service Capabilities. In ISWC, pages 333–347. Springer Verlag, 2002.

20. Paolucci, M., Wagner M., and Martin M. Grounding OWL-S in SAWSDL. Springer

Berlin / Heidelberg. Pages 416-421. 2007.

21. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J. and Domingue, J.

iServe: a Linked Services Publishing Platform, Workshop: Ontology Repositories and

Editors for the Semantic Web at 7th Extended Semantic Web Conference, 2010.

22. Polleres, A., and Lara, R. A Conceptual Comparison between WSMO and OWL-S,

WSMO Working Group working draft, 2005. http://www.wsmo.org/2004/d4/d4.1/v0.1/.

23. Porter, M. F. An algorithm for suffix stripping, Program, vol. 14, no. 3, 130-137, 1980.

24. Salton, G. Automatic Text Processing: The Transformation, Analysis, and Retrieval of

Information by Computer. Addison-Wesley, 1989.

A Directory of Heterogeneous Services

79

A Framework for Resource Annotation and
Classification in Bioinformatics

Nadia Yacoubi Ayadi†, Malika Charrad†, Soumaya Amdouni‡ and Mohamed
Ben ahmed†

† National School of Computer Science,
University of Manouba, 2010 Tunisia

nadia.yacoubi@asu.edu, malika.charrad@riadi.rnu.tn,
mohamed.benahmed@riadi.rnu.tn

‡ High Institute of Management, Bardo City, Tunisia

Abstract. Semantic annotation is commonly recognized as one of the
cornerstones of the semantic Web. In the context of Web services, seman-
tic annotations can support effective and efficient discovery of services,
and guide their composition into workflows. Because semantic annotation
is a time consuming and expensive task, (semi-)automatic approaches for
semantic annotation extraction are required. In this paper, we propose a
semi-automatic extraction approach of lightweight semantic annotations
from textual description of Web services. In contrast with most of the
existing semi-automatic approaches for semantic annotations of Web ser-
vices which rely on a predefined domain ontology, we investigate the use
of NLP techniques to derive service properties given a corpus of textual
description of bioinformatics services. We evaluate the performance of the
annotation extraction method and the importance of lightweight anno-
tations to classify bioinformatics Web services in order to bootstrap the
service discovery process. Our framework relies an unsupervised cluster-
ing approach based on a simultaneous clustering algorithm that enables
to determine biclusters of Web services and semantic annotations highly
correlated.

Keywords: Semantic Annotation, Semantic Web Service, Block Clus-
tering, Bioinformatics

1 Introduction

During the last decade, semantic Web services (SWS) [20] technology have been
proposed and investigated to support effective and efficient service discovery,
composition and invocation by machines. Despite the appealing characteristics
of semantic Web services principles, their uptake on a Web-scale has been signifi-
cantly less prominent than initially anticipated [21]. In fact, research on semantic
Web services has mostly focused on devising domain-independent Web service
description ontologies such as OWL-S [19] and WSMO [22]. Semantic Annota-
tions for WSDL (SAWSDL) [15] adopts a bottom-up approach by adding seman-
tics to existing Web service standards through mapping syntactic definitions to

80

2 N. Yacoubi Ayadi et al.

a set of ontological concepts. All of these approaches rely on a pre-determined
domain ontology to explicit service semantics. Reasoning tasks performed with
semantic Web service descriptions is mainly conditioned by the quality of this
domain ontology [4]. The existence of a domain ontology to capture domain
knowledge in an explicit and formal way is crucial. In several fields, many domain
ontologies have been developed for several purposes. The complexity of reason-
ing tasks increases when semantic service descriptions are generated by means
of several domain ontologies. In the bioinformatics field, the OBO foundary1

lists around 60 ontologies for life sciences including molecular biology, anatomy,
biochemistry, environment, neuroscience, etc. (for a survey, see [24]). None of
these ontologies is suitable to annotate bioinformatics Web services; although,
they are rich in semantics but not enough generic to capture high-level concepts
and their semantic relationships.

In this paper, we propose a bottom-up approach to extract domain-dependant
lightweight semantic annotation from textual description of Web services. Such
annotations of Web services aims to capture static (i.e., domain concepts) and
procedural knowledge (i.e., tasks) of a domain. Despite their importance, few do-
main ontologies exist for the purpose of Web services annotation, and thus, build-
ing such ontologies is a challenging task. Natural language documentations of
Web services are short textual descriptions intended to close the ”semantic gap”
between low-level technical features of Web services (e.g., data types, port types,
or data formats) and the high-level, meaning-bearing features a user is interested
in and refers to when discovering a Web service. Hence, our semi-automatic ap-
proach combines different extraction patterns to generate lighweight annotations
describing service properties such as inputs, outputs, or functionnalities. We no-
tice that our extraction method provides a good starting point for ontology
building.

Therefore, we rely on a simultaneous clustering algorithm, namely CROKI2
[13], to identify clusters (groups) of services that are described by a specific
subset of highly correlated annotations. Simultaneous clustering step has two
benefits. Firsly, clustering Web services based on semantic annotations would
greatly boost the ability of Web services search engines to select suitable services
given a discovery query. Secondly, it enables to detect implicit associations (rela-
tionships) between highly correlated annotations which is crucial in an ontology
building process. In fact, the co-occurrence of a subset of annotations within a
subset of Web services reflects implicit relationships that could be taxonomic
or non taxonomic between these annotations. To the best of our knowledge, no
approach was developed using block-clustering, however, most of the approaches
enables either annotations clustering [16, 1] or services clustering [17, 12].

The paper is organized as follows. The section 2 reviews related work con-
ducted in the fields of automatic annotation of Web services and block clustering.
Section 3 presents our framework for semantic annotation and clustering of Web
services. In the section 4, we present and discuss the results of our experimen-
tations. Section 5 concludes the paper and outlines our future work.

1 http://www.obofoundry.org/

A Framework for Resource Annotation and Classification in Bioinformatics

81

A Framework for Resource Annotation and Classification in Bioinformatics 3

2 Related Work

2.1 Semantic annotation learning for Semantic Web services

Converting an existing Web service into a semantic Web service requires signifi-
cant effort and must be repeated for each new Web service. We review in this sec-
tion research work that focus on learning semantic annotations by exploiting tex-
tual descriptions, WSDL files or even Web forms. Hess and al. proposes ASSAM
(Automated Semantic Annotation with Machine Learning), a semi-automatic
WSDL annotator application. ASSAM [14] relies on a pre-determined domain
ontology and uses a machine learning algorithm to provide users with sugges-
tions on how to describe the elements in the WSDL file. However, because of the
intensive expert user intervention, applicability of such solution for large-scale
annotation of web services could be impractical despite of the fact that these
solutions tend to provide high-quality annotations. Sabou et al. [23] proposes
an automatic extraction method based on Natural Language Processing (NLP).
Experimentations was conducted in the bioinformatics field by learning an on-
tology from the documentation of Web services in the context of the myGrid
project. The evaluation of the extracted ontology shows that the approach is a
helpful tool to support process of building domain ontologies for Web services.
Our approach relies on [23]’s approach by using also NLP processing techniques
to generate semantic annotations of Web services.

Also, within the bioinformatics space, Afzal et al. [2] developed a text mining
approach based on literature to learn semantic profile of bioinformatics resources.
The approach identifies a set of semantic classes of descriptors that could be
attached to a bioinformatics resource: data, data resource, task, and algorithm.
The instances of these classes were collected by harvesting a corpus of scientific
papers along with related sentences containing the resource name. However, the
case study conducted in [2] shows that the coverage broad of the myGrid ontology
used as annotation support is partially limited especially to capture functional
service descriptions. The quality of extracted descriptors was only measured from
the curator’s perspective view which is not accurate in the semantic Web context
where Web services are supposed to be discovered and composed by agents.

Ambite and al. [3] present an approach to automatically discover and cre-
ate semantic Web services. The idea behind their approach is to start with a
set of known sources and the corresponding semantic descriptions and then dis-
cover similar sources, extract the source data, build semantic descriptions of the
sources, and then turn them into semantic Web services. Authors implemented
the Deimos system and evaluated it across five domains. In contrast to our
work, the goal of Deimos is to build a semantic description that is sufficiently
detailed to support automatic retrieval and composition. Our work aims to gen-
erate lightweight annotations useful to classify Web services and bootstrap the
service discovery process in the bioinformatics field.

A Framework for Resource Annotation and Classification in Bioinformatics

82

4 N. Yacoubi Ayadi et al.

2.2 Web service Clustering

With the expectable growth of the number of available Web services and service
repositories, the need for mechanisms that enable the automatic organization
and discovery of services becomes increasingly important. In this context, most
of the existing research rely on a one-way clustering, either annotations clustering
[16, 1] or services clustering [12, 17]. When clustering algorithms are used, each
service in a given services cluster is described using all annotations. Similarly,
each annotation in an annotation cluster characterizes all services. For instance,
Based on their approach presented in [2], Afzal and al. propose in [1] to use
lexical kernel metrics to identify semantically related networks of resources by
computing similarity between annotations. However, the goal of our work is to
identify groups of services that are more described by a specific subset of annota-
tions which refers to find biclusters of services and annotations highly correlated
in order to bootstrap the service discovery process. We rely on simultaneous
clustering which is an approach enabling to find local pattern where a subset of
subjects might be similar to each other based on only a subset of attributes. Si-
multaneous clustering, usually designated by biclustering, co-clustering or block
clustering aims to find sub-matrices, which are subgroups of rows and subgroups
of columns that exhibit a high correlation. A number of algorithms that perform
simultaneous clustering on rows and columns of a matrix have been proposed to
date. This type of algorithms has been proposed and used in many fields, such
as bioinfomatics [18], Web mining [8] and text mining [6]. Table 1 outlines a
comparison between one-way clustering and simultaneous clustering.

Table 1. Comparison between Clustering and Simultaneous clustering

Clustering Simultaneous Clustering

- applied to either the rows or the - performs clustering in the two
columns of the data matrix separately dimensions simultaneously
⇒ global model. ⇒ local model.
- produce clusters of rows or seeks blocks of rows and
clusters of columns. columns that are interrelated.
- Each subject in a given subject - Each subject in a bicluster is selected
cluster is defined using all the using only a subset of the variables
variables. Each variable in a variable and each variable in a bicluster is selected
cluster characterizes all subjects. using only a subset of the subjects.
- Clusters are exhaustive - The clusters on rows and columns should

not be exclusive and/or exhaustive

3 General Framework

The proposed framework is comprised of two main steps. The first one aims to
perform a semi-automatic semantic annotation extraction from Web services tex-
tual documentations. Semantic annotations enables to describe service properties

A Framework for Resource Annotation and Classification in Bioinformatics

83

A Framework for Resource Annotation and Classification in Bioinformatics 5

such as functionalities, inputs, outputs, and other domain-dependant features.
One particluarity of textual Web service description is that they employ natural
language in a specific way. In fact, such texts belong to what was defined as sub-
languages [23]. A sublanguage is a specialized form of natural language which
is used within a particular domain and characterized by a specialized vocab-
ulary, semantic relations, and syntax (e.g., medical test report). The semantic
annotation extraction step exploits the linguistic regularities of a sublanguage
to identify semantic service properties. The second step of our approach consists
on Web service clustering in terms of semantic annotations. This step allows
to discover subgroups (biclusters) of Web services and subgroups of semantic
annotations that exhibit a high correlation by applying the CROKI2 algorithm
[13]. In following, we present in further details the two steps.

3.1 Semantic Annotation Extraction of Web services

The semantic annotation extraction phase allows to identify two types of knowl-
edge: domain concepts and procedural knowledge describing services tasks. First,
a morphosyntactic analysis of textual description of Web services is performed.
In this step, a sentence splitter and a tokeniser components are used to extract
sentences and basic linguistic entities. Then, a POS (Part-Of-Speech) Tagger is
performed to associate to each word (token) a grammatical category and thus
distinguish the morphology of various entities. For example, the sentence be-
low, the tagger identify a verb (i.e., compute), three nouns (i.e., structure, RNA,
sequence), an adjective (i.e., secondary), and a preposition (i.e., for).

compute (VB) Secondary (JJ) Structure (NN) for (Prep) RNA (NN) sequence (NN).

We distinguish different types of syntactic patterns depending on the se-
mantic annotation type. Syntactic patterns describe selectional constraints that
exploit sublanguages particularities. We distinguish syntactic patterns that allow
to extract inputs and outputs of services, services tasks, and domain-dependant
features which are strongly related to the bioinformatics domain:

1. Identifying service tasks is crucial for the service discovery and
composition issue. We observed that, in majority of textual descriptions
of Web services, verbs identify the functionnality performed by a Web service.
In our work, we consider different classes of verbs which inform on the service
task. For example, VBRetrieval is the class of verbs that indicates a retrieval
process (e.g., get, retrieve, fetch, search, find, return, query). A frequently
occuring pattern which involves this verbs class and the preposition from
can be used to easily determine the output and the retrieved resource as
described by the following selectional pattern:

VBRetrieval <Output> from <Source>.

A Framework for Resource Annotation and Classification in Bioinformatics

84

6 N. Yacoubi Ayadi et al.

Other verb classes were recognized, such as VBExtraction which is a class of
verbs denoting an extraction process, VBExtraction={extract, scan, identify,
locate, analyse}.

2. Identifying inputs and outputs of Web services. Inputs and outputs
of Web services denote domain concepts which are generally depicted by
nouns in the corpus. However, to get high-quality annotations, we create a
list of biological terms comprised by a set of single word terms. When two
or more biological concepts are used together, we interpret them as a sin-
gle biological concept and update the list by adding it, i.e., gene expression,
transcription factors, protein structure, tertiary protein structure, amino acid
sequence, chromosome segment, etc. We define different heuristics that iden-
tify the roles of concepts (input or output) depending on the structure of
the sentence. Some extraction patterns are presented in Table 2. Therefore,
our extraction patterns identifies cases when several concepts are related via
logical operators such as ”and”, ”or”. In this case, the same role is assigned
to each concept.

Table 2. Examples of Extraction Patterns identifying inputs and outputs of Web
services

Extraction Pattern

accepts|consumes|takes input|requires|Operates On % <InputService>

VBRetreival|build % <OutputService> given|for % <InputService>

% Given <InputService> %

% returns <OutputService> %

% <OutputService> is returned %

% compares <InputService> to <InputService> %

% compares <InputService> against %

3. Identifying domain-dependant features. We define a set of extraction
patterns that focus on bioinformatics-dependant features. For example, we
propose patterns to identify data formats (e.g., FASTA, GFF, GIF, etc.) re-
lated to inputs/outputs formats. An example of such patterns is described as
follows: % computes <OutputService> for % <InputService> described
with <dataFormat> %.

3.2 Web services Clustering

We propose to use a simultaneous clustering approach to classify Web services
in terms of semantic annotations. Our approach aims to find biclusters of Web
services and annotations by applying CROKI2 algorithm [13]. We propose an
accelerated version of this algorithm in [7]. The general purpose of a block clus-
tering algorithm is described as follows. Given the data matrix A, with set of
rows X = (X1, ..., Xn) and set of columns Y = (Y1, ..., Yn), aij , 1 ≤ i ≤ n and

A Framework for Resource Annotation and Classification in Bioinformatics

85

A Framework for Resource Annotation and Classification in Bioinformatics 7

1 ≤ j ≤ n is the value in the data matrix A corresponding to row i and column j.
Simultaneous clustering algorithms aim to identify a set of biclusters Bk(Ik, Jk),
where Ik is a subset of the rows X and Jk is a subset of the columns Y. Ik rows
exhibit similar behavior across Jk columns, or vice versa and every bicluster Bk

satisfies some criteria of homogeneity.

Croki2 algorithm. The Croki2 algorithm is applied to the contingency table
composed of services and annotations to identify a row partition P = (P1, ..., PK)
composed of K clusters and a column partition Q = (Q1, ..., QL) composed of L
clusters that maximizes X 2 value of the new contingency table (P,Q) obtained by
regrouping rows and columns in respectively K and L clusters. Croki2 consists in
applying K-means algorithm on rows and on columns alternatively to construct
a series of couples of partitions (Pn, Qn) that optimizes Chi2 value of the new
contingency table T1(P,Q) defined by this expression:

T1(k, l) =
∑
i∈Pk

∑
j∈Ql

aij

k ∈ [1, ...,K] and l ∈ [1, ..., L].
Marginal frequencies in table T1 are :

fkl =
∑
i∈Pk

∑
j∈Ql

fij

fk. =
∑
i∈Pk

fi.

f.l =
∑
j∈Ql

f.j

Biclusters validity. The application of Croki2 algorithm leads to an exhaustive
enumeration of biclusters. It is possible to select only biclusters satisfying certain
criteria such as a user-specified bicluster size, bicluster homogeneity and bicluster
relevancy [13].

– Homogeneity H is the inertia conserved by the bicluster divided by the initial
inertia.

H = Bkl/Tkl

Tkl =
∑
i∈Pk

∑
j∈Ql

fi.f.j(fij/fi.f.j − 1)2

and
Bkl = gk.g.l(gkl/gk.g.l − 1)2

The value of this ratio is between 0 and 1. A high value of this ratio indicates
that the bicluster is homogenous.

A Framework for Resource Annotation and Classification in Bioinformatics

86

8 N. Yacoubi Ayadi et al.

– Relevancy R is the inertia conserved by the bicluster divided by the global
inertia.

R = Bkl/B

Bkl = gk.g.l(gkl/gk.g.l − 1)2

B =
∑
k,l

Bkl

This ratio indicates whether the bicluster is relevant.

4 Experimentations

4.1 Experimental Dataset

Our experimental corpus consists of 100 bioinformatics services descriptions from
the biocatalogue2, a new curated life science Web services repository. The devel-
opment of Biocatalogue shows the dramatic increase of bioinformatics Web ser-
vices and tools with 2053 services and 148 providers3. Biocatalogue allows users
to discover Web services through keyword-based retrieval or category browsing.
Annotations manually attached to Web services are either textual descriptions or
lists of tags. Tagging Web services with a set of lexical tokens defined by users
is not a perfect way to enable an efficient service discovery. Manual resource
tagging is an error prone and time consuming task. Figure 1 shows the top-20
tags used on biocatalogue. In total, 951 tags were created by users to describe
services. The use of tags to describe Web services raises several issues such as
the ambiguity of their significance (e.g., BioMoby or soaplab in Figure 1), the
variability of the spelling for several tags that may refer to the same concept.
Finally, the lack of explicit knowledge representations in folksonomies (a set of
tags) to express whenever the tag describes for example a service task, service
input or output which prevents their use towards a significant resource discov-
ery. In our work, Web services are semantically annotated based on their textual
descriptions. Extracted semantic annotations enable to automatically construct
a semantic service profile. In following, we evaluate respectively the annotation
extraction module and the block clustering algorithm.

4.2 Annotation Extraction Performance

We designed an annotation extraction module using the GATE [10] framework.
We used the ANNIE plugin (A Nearly-New IE system) which contains a to-
keniser, a gazetteer (system of lexicons), a POS Tagger, a sentence Splitter, and
a Named Entity (NE) transducer. The various extraction patterns described in
section 3.1. were implemented using JAPE [11], a rich and flexible rule mecha-
nism which is part of the GATE framework. The NE transducer applies JAPE
2 http://www.biocatalogue.org
3 Last Access on 22th april 2011

A Framework for Resource Annotation and Classification in Bioinformatics

87

A Framework for Resource Annotation and Classification in Bioinformatics 9

Fig. 1. Top-20 tags in Biocatalogue

rules to input service descriptions in order to generate semantic annotations.
Indeed, JAPE (Java Annotation Patterns) engine provides finite state transduc-
tion over annotations based on regular expressions. A JAPE grammar consists
of a set pattern/action rules. A JAPE rule has a Left-Hand-Side (LHS) and
a Right-hand-Side (RHS). The LHS specifies the annotation pattern that may
contain regular expression operators (e.g., *, ?, +). The RHS consists of anno-
tation manipulation statements. Annotations matched on the LHS of a rule are
referred to on RHS by means of labels that are attached to patten elements. The
gazetteer lookup modules, part of the JAPE engine, enable to identify domain
concepts in the textual description based on a set of lists of tokens. We have
created different lexicons lists containing bioconcepts, service tasks, dataformats
and identifiers (e.g., EntrezGene ID, KEGG ID). Figure 2 illustrates an example
of JAPE rule for input service annotation.

We evaluate the results of our experimentations in terms of three metrics:
precision, recall and F-measure as depicted in Table 3. The three metrics are
calculated as follows.

Precision =
Correct+ 1/2Partial

Correct+ Spurious+ 1/2Partial

Recall =
Correct+ 1/2Partial

Correct+Missing + 1/2Partial

F −measure =
(β2 + 1)P ∗R
β2R+ P

GATE provides an automatic tool for automatic evaluation, named Annota-
tionDiff to compare a set of annotations generated manually and the set of the
annotations generated by our extraction method. To measure the performance
of the extraction method, we manually identified semantic annotations from the
service descriptions corpus. Then, using the AnnotationDiff Tool, we compared
this set of annotations with the ones that were extracted through extraction
patterns.

A Framework for Resource Annotation and Classification in Bioinformatics

88

10 N. Yacoubi Ayadi et al.

Fig. 2. An example of a JAPE rule

Table 3. Precision, Recall and F-measure

Annotation Type Precision Recall F-measure

Service Name 1 0.83 0.90

Service Input 0.9 0.87 0.88

Service Output 0.9 0.87 0.88

Service Task 0.95 0.97 0.95

A Framework for Resource Annotation and Classification in Bioinformatics

89

A Framework for Resource Annotation and Classification in Bioinformatics 11

4.3 Block Clustering Evaluation

The application of Croki2 algorithm leads to an exhaustive enumeration of bi-
clusters. The data used to evaluate the Croki2 algorithm consists on 98 services
and 78 annotations only. The choice of meaningful ones is based on homogeneity
and Relevancy as described in the previous section. Given that CROKI2 algo-
rithm uses k-means to cluster rows and columns, the number of clusters needs
to be specified by user. Therefore, we extend the use of some validity indices,
namely BH [5], proposed initially for one-way clustering to CROKI2 bicluster-
ing algorithm [9, 7]. Accelerated CROKI2 algorithm have been implemented in
R environment.

Fig. 3. Example of biclusters

Table 4. Biclusters and their corresponding Relevance and Homogeneity

Bicluster Relevancy Homogeneity

1 6% 37%

2 9% 100%

3 7% 100%

4 8% 100%

5 10% 54%

6 9% 100%

Best biclusters have high values of homogeneity and relevancy (fig.3 and Ta-
ble 4). For example, biclusters 2, 3, 4 and 6 are the most homogeneous (H=100%)

A Framework for Resource Annotation and Classification in Bioinformatics

90

12 N. Yacoubi Ayadi et al.

and bicluster 5 is the most relevant (R=10%). Services and annotations that
compose each selected bicluster are highly correlated. Each service in a bicluster
is described by a subset of annotations and each annotation in a bicluster de-
scribe only services belonging to the same bicluster. All biclusters are significant
from the bioinformatics view. For example, bicluster 1 is comprised by services
related to pathway and protein interactions, bicluster 2 is composed of services
related only to pairwise sequence alignment, in contrast with bicluster 5 which
is comprised by services related to pairwise and multiple sequence alignment.

5 Conclusion

This work is part of our ongoing research work. We propose a semi-automatic
approach to learn lightweight semantic annotations given a corpus of textual
descriptions of Web services. The conducted experimentations show that the
approach allows to generate high-quality annotations, mostly because of the
fine-grained extraction rules of the approach and the regularity of the sublan-
guage used to describe Web services in the bioinformatics domain. Our approach
consists on a good starting point towards building domain ontologies. As future
work, we aim to develop a methodology of domain ontologies building devoted to
semantic annotations of Web services by harvesting textual descriptions, WSDL
files, and even existing domain ontologies. The main goal of the methodology
would be the automatic construction of semantic Web services. Therefore, one
motivation of this work is to facilitate the resource discovery within the bioin-
formatics domain. Thus, we rely on a block clustering algorithm to determine
a set of biclusters of services coupled with a set of semantic annotations highly
correlated. The results demonstrate the potential of block clustering to model
the relatedness between both resources and annotations which is very prominent
in the context of service discovery.

References

1. Hammad Afzal, James Eales, Robert Stevens, and Goran Nenadic. Mining seman-
tic networks of bioinformatics e-resources from the literature. In Semantic Web
Applications and Tools for Life Sciences (SWAT4LS) Workshop, 2009.

2. Hammad Afzal, Robert Stevens, and Goran Nenadic. Mining Semantic Descrip-
tions of Bioinformatics Web Resources from the Literature. In Proceedings of
European Semantic Web Conference, pages 535–549, 2009.

3. José Luis Ambite, Sirish Darbha, Aman Goel, Craig A. Knoblock, Kristina Lerman,
Rahul Parundekar, and Thomas A. Russ. Automatically constructing semantic web
services from online sources. In International Semantic Web Conference, volume
5823 of Lecture Notes of Computer Science, pages 17–32. Springer, 2009.

4. Nadia Yacoubi Ayadi, Zoé Lacroix, and Maria-Esther Vidal. Bionmap: a deductive
approach for resource discovery. In Proceedings of International Conference on
Information Integration and Web-based Applications Services (iiWAS’08), pages
477–482. ACM, 2008.

A Framework for Resource Annotation and Classification in Bioinformatics

91

A Framework for Resource Annotation and Classification in Bioinformatics 13

5. Frank B. Baker and Lawrence J. Hubert. Measuring the power of hierachical cluster
analysis. Journal of the American Statistical Association, pages 31–38, 1975.

6. Charles-Edmond Bichot. Co-clustering Documents and Words by Minimizing the
Normalized Cut Objective Function. Journal of Mathematical Modelling and Al-
gorithms (JMMA), 9(2):131–147, June 2010.

7. Malika Charrad. Analyse croisée des sites Web par des méthodes de bipartition-
nement. Editions Universitaires Européenne, 2011.

8. Malika Charrad, Yves Lechevallier, Mohamed Ben Ahmed, and Gilbert Saporta.
Block clustering for web pages categorization. In Proceedings of Intelligent Data
Engineering and Automated Learning (IDEAL’2009), number 5788 in Lecture
Notes in Computer Science, pages 260–267. Springer, 2009.

9. Malika Charrad, Yves Lechevallier, Mohamed Ben Ahmed, and Gilbert Saporta.
On the number of clusters in block clustering algorithms. In Proceedings of FLAIRS
Conference. AAAI Eds, 2010.

10. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework
and graphical development environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics, 2002.

11. H. Cunningham, D. Maynard, and V. Tablan. JAPE : a java annotation patterns
engine (second edition). department of computer science, university of sheffield,
2000.

12. Khalid Elgazzar, Ahmed E. Hassan, and Patrick Martin. Clustering wsdl docu-
ments to bootstrap the discovery of web services. In Proceedings of IEEE Interna-
tional Conference on Web Services (ICWS’10), pages 147–154, 2010.

13. G. Govaert. Classification croisée. PhD thesis, Paris 6, 1983.
14. Andreas He, Eddie Johnston, and Nicholas Kushmerick. ASSAM: A tool for semi-

automatically annotating semantic web services. In Proceedings of International
Semantic Web Conference (ISWC’04), volume 3298 of LNCS, pages 320–334, 2004.

15. Jacek Kopecky, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: Se-
mantic annotations for WSDL and XML schemas. IEEE Internet Computing,
11(6):60–67, 2007.

16. Victor Kunin and Christos A. Ouzounis. Clustering the annotation space of pro-
teins. BMC Bioinformatics, 6:24, 2005.

17. Jiangang Ma, Yanchun Zhang, and Jing He. Efficiently finding web services using a
clustering semantic approach. In Proceedings of Context enabled source and service
selection, integration and adaptation Workshop, pages 51–58. ACM, 2008.

18. SC. Madeira and AL. Oliveira. Biclustering algorithms for biological data analysis:
A survey. IEEE Transactions on Computational Biology and Bioinformatics, pages
24–45, 2004.

19. David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo
Paolucci, Katia Sycara, Deborah L. Mcguinness, Evren Sirin, and Naveen Srini-
vasan. Bringing semantics to web services with OWL-S. World Wide Web,
10(3):243–277, 2007.

20. Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services.
IEEE Intelligent Systems, 16:46–53, 2001.

21. C. Pedrinaci and J. Domingue. Toward the next wave of services: Linked services
for the web of data. Journal of Universal Computer Science, 16(13):1694–1719,
2010.

22. Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael
Stollberg, Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web Service
Modeling Ontology. Applied Ontology, 1(1):77–106, 2005.

A Framework for Resource Annotation and Classification in Bioinformatics

92

14 N. Yacoubi Ayadi et al.

23. Marta Sabou, Chris Wroe, Carole Goble, and Gilad Mishne. Learning domain
ontologies for web service descriptions: an experiment in bioinformatics. In Pro-
ceedings of the 14th international conference on World Wide Web, pages 190–198.
ACM, 2005.

24. Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J.
Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-
Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel, and
Suzanna Lewis. The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology, 25(11):1251–1255, November
2007.

A Framework for Resource Annotation and Classification in Bioinformatics

93

LDM: Link Discovery Method for new Resource
Integration

Nathalie Pernelle1 and Fatiha Saïs1

LRI(CNRS UMR 8623 & Paris-Sud 11 University), INRIA Saclay,
4 rue Jacques Monod, Parc Club Orsay Université, F-91893 Orsay Cedex, France

{Nathalie.Pernelle, Fatiha.Sais}@lri.fr

Abstract. In this paper we address the problem of resource discovery in the
Linked Open Data cloud (LOD) where data described by different schemas is
not always linked. We propose an approach that allows discovery of new links
between data. These links can help to match schemas that are conceptually rel-
evant with respect to a given application domain. Furthermore, these links can
be exploited during the querying process in order to combine data coming from
different sources. In this approach we exploit the semantic knowledge declared in
different schemas in order to model: (i) the influences between concept similari-
ties, (ii) the influences between data similarities, and (iii) the influences between
data and concept similarities. The similarity scores are computed by an iterative
resolution of two non linear equation systems that express the concept similar-
ity computation and the data similarity computation. The proposed approach is
illustrated on scientific publication data.

1 Introduction

The appearance of Web of documents (WWW) [1] has upset the way we create and
share knowledge by breaking down barriers of publishing and accessing documents.
Hypertext links allow users to navigate on the graph of documents and Web search en-
gines to index the documents and answer to user queries. However, hyperlinks do not
express explicit links between the various entities described in Web of documents. With
the initiative of Open Linked Data cloud [3], the number of data providers on the Web
is in a continuous growth leading to a global data space of billions of assertions where
data and documents can be linked. However, until now the published data is very hetero-
geneous in the sense that it is incomplete, inconsistent, described according to different
schemas and contains duplicates. In order to be able to automatically exploit this huge
amount of heterogeneous data, an important work integration must be performed.

In this paper we focus our interest on the problem of resource discovery in the
Linked Open Data cloud (LOD) where data described by different schemas is not al-
ways linked. We propose an approach1 that allows discovery of new links between data.
These links can help to match schemas that are conceptually relevant with respect to a
given application domain.

1 in the setting of the ANR (the French National Research Agency) project GeOnto.

94

Ontology alignment plays a key role for semantic interoperability of this data. Many
approaches have been proposed for automatically identifying mappings between ele-
ments (concepts and relations) described in heterogeneous ontologies [18, 14]. These
approaches may exploit lexical and structural information, user inputs, prior matches or
external resources. When concept and relation instances are available, it is also possible
to exploit them to findmoremappings between ontologies. In [7], the common instances
of concepts are exploited to compute mappings between concepts. Since, data is not de-
scribed using the same URIs even when it describes the same entities, these common
instances cannot be obtained straightforwardly. Conversely, discovering that two pieces
of data refer to the same world entity is also a key issue for data integration.We propose
an approach which simultaneously addresses both problems of ontology alignment and
data linking. Thus, the results of data linking step is exploited to improve the results
of ontology alignment step and vice versa. These two steps are performed alternatively
until a fix point is reached. The two methods exploit the semantic knowledge that is
declared in different schemas (ontologies) in order to model: (i) the influences between
concept similarities, (ii) the influences between data similarities, and (iii) the influences
between data and concept similarities. The similarity scores are computed using an
iterative resolution of two non linear equation systems that express, respectively, the
concept similarity computation and the data similarity computation.

Applying this approach allows one to infer mappings of equivalence between con-
cepts of different schemas as well as to infer owl:same-as relations between instances
that refer to the same entity. The obtained schema mappings allow discovery new re-
sources and inferring if they are relevant with respect to a given application domain.

The paper is organized as follows: in section 2 we present the related work in data
linking and ontology reconciliation fields. In section 3, we present the ontology and data
model and give a short presentation of N2R method on which our work relies. Section
4 presents the proposed approach of link discovery. Finally, we conclude and give some
future work in section 5.

2 Related Work

We denote by “web data” the network formed by the set of structured datasets described
in RDF (Resource Description Framework) and linked by explicit links. Large amount
of structured data have been published, including in the project Linking Open Data
cloud (LOD).

Datasets are expressed in terms of one or several ontologies for establishing the
vocabulary describing data. Web data requires linking together the various sources
of published data. Given the big amount of published data, it is necessary to provide
methods for automatic data linking. Several tools [17, 13, 10] have recently been pro-
posed to solve partially this problem, each with its own characteristics. For instance,
[10] have developed a generic framework for integrating linking methods in order to
help users finding the link discovery methods that are more suitable for their relational
data. They introduced LinQL, an extension of SQL that integrates querying with string
matching (e.g. weighted jaccard measure) and/or semantic matching (i.e. using syn-
onyms/hyponyms)methods. This approach takes advantage of the DBMS query engine

LDM: Link Discovery Method for new Resource Integration

95

optimizations and it can easily be used to test elementary similarity measures. Never-
theless, this approach is not designed to propagate similarity scores between entities,
i.e. their approach is not global.

Some other works address the problem of link discovery in the context semantic
Web services. In [11], the authors propose to match a user request with semantic web
service descriptions by using a combination of similarity measures that can be learnt on
a set of labeled examples.

Our proposal in this paper can also be compared to approaches studying the ref-
erence reconciliation problem, i.e., detecting whether different data descriptions refer
to the same real world entity (e.g. the same person, the same paper, the same protein).
Different approaches have been proposed. [5, 19, 2, 6] have developed supervised refer-
ence reconciliation methods which use supervised learning algorithm in order to learn
parameters and help the duplicate detection. Such supervised approaches cannot be used
in contexts where data amount is big and data schemas are different and incomplete.

In [16] we have developed an automatic method of reference reconciliation which is
declarative and unsupervised reference reconciliation method. Besides, in this method
we assumed that the data sets conform to the same schema, i.e. the problem of ontology
reconciliation is already solved. Some ontology reconciliation approaches [7, 12] have
proposed to exploit a priori reconciled instances in the ontology reconciliation process.
When we aim at online reference and ontology reconciliation in the context of Linked
Open Data, we cannot use these traditional reconciliation approaches, where solving
the problem of reference reconciliation assumes the resolution of the ontology recon-
ciliation and vice versa. Furthermore, up to our knowledge, there is no approach which
deals with the two problems of discovering links in the ontology level and in the data
level, simultaneously.

3 Preliminaries

In this section we will present the ontology and data model that we consider in this
work. We will then present the Numerical method for Reference Reconciliation (N2R)
[16] on which relies our link discovery approach.

3.1 Ontology and its Constraints

The considered OWL ontology consists of a set of concepts (unary relations) organized
in a taxonomy and a set of typed properties (binary relations). These properties can
also be organized in a taxonomy of properties. Two kinds of properties can be distin-
guished in OWL: the so-called relations (owl:objectProperty), the domain and the range
of which are concepts and the so-called attributes (owl:DatatypeProperty), the domain
of which is a concept and the range of which is a set of basic values (e.g. Integer, Date,
Literal). In Figure 1, we give an extract O1 of the ontology that is used to describe the
RDF data of the local data source of publications (see source 1 Figure 2) which we will
use to illustrate our proposal.

We allow the declaration of constraints expressed in OWL-DL or in SWRL in order
to enrich the domain ontology by additional and useful knowledge. The constraints that
we consider are of the following types:

LDM: Link Discovery Method for new Resource Integration

96

Fig. 1. An extract O1 of the local Ontology for publications

Source S1:
Article(S1_a1); title(S1_a1,“Implementing the TEA algorithm on sensors”); Person(S1_p1); Per-
son(S1_p2); year(S1_a1, “2004”); name(S1_p1,“Olga V. Gavrylyako”); name(S1_p2,“Shuang
Liu”); pageFrom(S1_a1,“64”); pageTo(S1_a1,“69”);

Conference(S1_c1); confName(S1_c1, “Proceedings of the 42nd Annual Southeast Regional
Conference, 2004, Huntsville, Alabama, USA, April 2-3, 2004”); confYear(S1_c1, “2004”);
city(S1_c1, “Alabama”)
authoredBy(S1_a1,S1_p1); authoredBy(S1_a1,S1_p2); published(S1_a1,S1_c1);

Article(S1_a2); title(S1_a2,“Weighted Hyper-sphere SVM for Hypertext Classifica-
tion”); Person(S1_p3); Person(S1_p4); year(S1_a2, “2008”); name(S1_p3,“Shuang Liu”);
name(S1_p4,“Guoyou Shi”); pageFrom(S1_a2,“733”); pageTo(S1_a2,“740”);

Conference(S1_c2); confName(S1_c2, “Advances in Neural Networks - ISNN 2008, 5th Interna-
tional Symposium on Neural Networks, ISNN 2008, Beijing, China, September 24-28, 2008, Pro-
ceedings, Part I”); confYear(S1_c2, “2008”) city(S1_c2, “Beijing”) authoredBy(S1_a2,S1_p3);
authoredBy(S1_a2,S1_p4); published(S1_a2,S1_c2);

Source S2:
Article(S2_a1); title(S2_a1,“Implementing the TEA algorithm on sensors.’); Person(S2_p1); Per-
son(S2_p2); year(S2_a1, “2004”); name(S2_p1,“Olga V. Gavrylyako”); name(S2_p2,“Shuang
Liu”); pageFrom(S2_a1,“64”); pageTo(S2_a1,“69”);

Conference(S2_c1); confName(S2_c1, “42nd Annual Southeast Regional Conference,
2004”); confYear(S2_c1, “2004”); city(S2_c1,“Alabama”) authoredBy(S2_a1,S2_p1); au-
thoredBy(S2_a1,S2_p2); published(S2_a1,S2_c1);

Fig. 2. an extract of RDF data

– Constraints of disjunction between concepts: DISJOINT(C,D) is used to declare
that the two concepts C and D are disjoint. In the ontology O1 we declare that all
the concepts Article, Conference and Person are pairwise disjoint.

LDM: Link Discovery Method for new Resource Integration

97

– Constraints of functionality of properties: PF(P) is used to declare that the property
P (relation or attribute) is a functional property. InO1, we declare that all the prop-
erties are functional except the relation authoredBy which means that one article
may have several authors.

– Constraints of inverse functionality of properties: PFI(P) is used to declare that the
property P (relation or attribute) is an inverse functional property. These constraints
can be generalized to a set {P1, . . . , Pn} of relations or attributes to state a com-
bined constraint of inverse functionality that we will denote PFI(P1, . . . , Pn). In
O1, we declare that the combinations (title, year) and (confName, confY ear)
are inverse functional. For example, PFI(title, year) expresses that one title and
one year cannot be associated to several articles (i.e. both are needed to identify an
article).

3.2 Data description and its constraints.

A piece of data has a reference, which has the form of a URI (e.g. http://dblp.
l3s.de/d2r/resource/authors/A._Joe_Turner), and a description,which
is a set of RDF facts involving its reference. An RDF fact can be either: (i) a concept-
fact C(i), where C is a concept and i is a reference, (ii) a relation-factR(i1, i2), where
R is a relation and i1 and i2 are references, or (iii) an attribute-fact A(i, v), where A
is an attribute, i a reference and v a basic value (e.g. integer, string, date). We consider
the Unique Name Assumption (UNA) which can be declared or not on a data source.
Declaring UNA on a data source means that two different data descriptions having two
different references, then we infer that they refer to distinct entities.

The data description that we consider is composed of RDF facts coming from the
data sources which are enriched by applying the OWL entailment rules. Figure 2, pro-
vides examples of data coming from two RDF data sources S1 and S2, which conform
to the same ontology describing the scientific publication domain previouslymentioned.

In the N2R method which we will present in section 3.3, we consider that the
descriptions of data coming from different sources conform to the same OWL ontol-
ogy (possibly after ontology reconciliation). In the link discovery method, that we will
present in section 4, the assumption of prior ontology reconciliation is not fulfilled, i.e.
the considered data source do not conform to the same ontology.

3.3 N2R: a Numerical method for Reference Reconciliation

N2R is a numerical method which allows inferring reconciliation decisions between
reference coming from different sources that conform to the same ontology, i.e. the
problem on ontology reconciliation is already solved.

N2R [16] has two main distinguishing characteristics. First, it is fully unsupervised:
it does not require any training phase frommanually labeled data to set up coefficients or
parameters. Secondly, it is based on equations that model the influences between simi-
larities. In the equations, each variable represents the (unknown) similarity between two
references while the similarities between values of attributes are expressed by constants.
These constants are obtained, either by (i) exploiting a dictionnary of synonyms (e.g.

LDM: Link Discovery Method for new Resource Integration

98

WordNet thesaurus, the dictionnary of synonyms generated by L2R method [15]); or
(ii) using standard similarity measures on strings or on sets of strings [4]. Furthermore,
ontology and data knowledge (disjunctions and UNA) is exploited by N2R in a filtering
step to reduce the number of reference pairs that are considered in the equation system.
The functions modeling the influence between similarities are a combination of maxi-
mum and average functions in order to take into account the constraints of functionality
and inverse functionality declared in the OWL ontology in an appropriate way.

N2R can also take as input a set of reference pairs that are reconciled (sim =1)
by another method (e.g. L2R [15] in the LN2R approach) or given by a user like the
owl:same-as links available in the Open Linked Data cloud.

The equations modeling the dependencies between similarities. For each pair of
references, its similarity score is modeled by a variable xi and the way it depends on
other similarity scores, is modeled by an equation: xi = fi(X), where i ∈ [1..n] and n
is the number of reference pairs for which we apply N2R, andX = (x1, x2, . . . , xn) is
the set of their corresponding variables. Each equation xi = fi(X) is of the form:

fi(X) = max(fi−df (X), fi−ndf(X))

The function fi−df (X) is the maximum of the similarity scores of the value pairs
and the reference pairs of attributes and relations with which the i-th reference pair
is functionally dependent. The maximum function allows propagating the similarity
scores of the values and the references having a strong impact. The function fi−ndf (X)
is defined by a weighted average of the similarity scores of the value pairs (and sets)
and the reference pairs (and sets) of attributes and relations with which the i-th reference
pair is not functionally dependent. See [16] for the detailed definition of fi−df (X) and
fi−ndf (X).

Iterative algorithm for reference pairs similarity computation. Solving this equation
system is done by an iterative method inspired from the Jacobi method [8], which is
fast converging on linear equation systems. To compute the similarity scores, we have
implemented an iterative resolution method. At each iteration, the method computes
the variable values by using those computed in the precedent iteration. Starting from an
initial vector X0 = (x0

1, x
0
2, ..., x

0
n), the value of the vector X at the k-th iteration is

obtained by the expression:Xk = F (Xk−1). At each iteration k we compute the value
of each xk

i : xk
i = fi(x

k−1

1
, xk−1

2
, ...xk−1

n) until a fix-point with a precision ε is reached.
The fix-point is reached when: ∀i, |xk

i − xk−1

i | <= ε.
In order to illustrate the iterative resolution of the equation system, we consider an

extract of RDF data given in Figure 2 corresponding to the set of RDF facts where the
references S1_a1, S1_c1, S2_a1 and S2_c1 are involved. By considering the disjunc-
tions between concepts ofO1 and the UNA in S1 and S2, we obtain an equation system
of six variables:

x1 = Simr(S1_a1, S2_a1) ; x2 = Simr(S1_c1, S2_c1) ;
x3 = Simr(S1_p1, S2_p1) ; x4 = Simr(S1_p1, S2_p2) ;
x5 = Simr(S1_p2, S2_p1) ; x6 = Simr(S1_p2, S2_p2).
We give bellow, the similarity scores of basic values obtained by using the Jaccard

similarity measure. For clarity reasons, we denote the value of an attribute A associ-
ated to a reference i as: A.val(i). For example, the confY ear value associate to the

LDM: Link Discovery Method for new Resource Integration

99

reference S2_c2 is denoted confY ear.val(S2_c2) which equals to “2008”. The sim-
ilarity score of the two conference names that are needed in the equation system and
that belong to]0, 1[is:
Simv(confName.val(S1_c1), confName.val(S2_c1)) = 0.43. All the similarity
scores of basic values, that are needed in the computation, are either equal to 1 or equal
to 0.

The weights that are used in the weighted average of equations are computed in
function of the number of common attributes and common relations of the reference
pairs. The similarity computation is illustrated by the equation system (see Table 1)
obtained from the data descriptions shown in Figure 2 which conforms to the ontology
O1. The detailed equations expressing the similarity computation of two articles and
two conferences are as follows:
x1 = max(1

2
(Simv(title.val(S1_a1), title.val(S2_a1)) + Simv(year.val(S1_a1),

year.val(S2_a1))), 1

6
(x2 + SJ({S1_p1, S1_p2}, {S2_p1, S2_p2}),

Simv(pageFrom.val(S1_a1), pageTo.val(S2_a1)))
with SJ is the SoftJaccardo similarity measure between sets of objects (see section
4.2)

x2 = max(x1,max(1
2
(Simv(confName.val(S1_c1), confName.val(S2_c1))+

Simv(confY ear.val(S1_c1), confY ear.val(S2_c1))), 1

4
(Simv(city.val(S1_c1),

city(S2_c1)))

x3 = 1

2
∗ x1 + 1

2
∗ Simv(name.val(S1_p1), name.val(S2_p1))

The equation system and the different iterations of the resulting similarity compu-
tation are provided in Table 1. We assume that fix-point precision ε equals to 0.005.

Iterations 0 1 2 3
x1 = max(1

2
(1 + 1), 1

6
(x2 +XS1 + 1 + 1)) 0 1 1 1

x2 = max(x1,max(1
2
(0.43 + 1), 1

4
(1) 0 0.71 1 1

x3 = 1

2
(x1 + 1) 0 0.5 1 1

x4 = 1

2
(x1 + 1) 0 0.5 1 1

x5 = 1

2
(x1 + 0) 0 0 0.5 0.5

x6 = 1

2
(x1 + 0) 0 0 0.5 0.5

Table 1. Example of iterative similarity computation

The solution of the equation system is X = (1, 1, 1, 1, 0.5, 0.5). This corresponds
to the similarity scores of the six reference pairs. The fix-point has been reached after
three iterations. If we fix the reconciliation threshold Trec at 0.80, then we obtain four
reconciliation decisions: two articles, two conferences and two pairs of persons.

4 Link Discovery Method (LDM)

We present in this section our LDM approach which aims to discover a LOD source
that shares concepts and data with a data source described dy a domain ontology. Our

LDM: Link Discovery Method for new Resource Integration

100

approach compares a local dataset on which domain knowledge can be declared and a
LOD dataset by using a combined ontology reconciliation and reference reconciliation
method. Since data that is provided by the LOD source and by the domain application
source is not described using the same ontology, we have adapted N2R method in order
to be able to compute data similarities when data do not belongs to non disjoint con-
cepts but to similar concepts. Furthermore, we have defined how similarities between
concepts of two ontologies can be computed when some of their references are common
(i.e. same URI or owl:same-as links that have been previously asserted) or similar. The
main steps of our link discovering approach are as follows:

1. application of an ontology mapping tool to obtain: (i) the set of equivalent/ compa-
rable properties and (i) initial similarity scores for some concept pairs;

2. building of the two equation systems: the conceptual equation system which ex-
presses the similarity computation between pairs of concepts in function of their
labels, their structural similarity and their references; and the instance level equa-
tion system one which expresses the similarity computation between pairs of ref-
erences in function of their common description and the similarity of the concepts
they are instance of;

3. iterative resolution of the conceptual equation system until a fix point is reached;
4. iterative resolution of the instance level equation system until a fix point is reached.

The two steps (3) and (4) are iterated until a global fix point is reached, i.e., neither
the resolution of the conceptual equation system nor the resolution of the instance level
equation system does update the similarity scores.

In the following subsections, we will first describe the elementary similarity mea-
sures that are used to compute similarities. Then, we present the two equation systems
that have been defined to compute concept similarities and data similarities. Finally, we
illustrate our LDM approach on data and ontologies of publication domain.

4.1 Initialization

We first use an alignment tool which exploits lexical and structural information to find
similarity scores between ontology elements (concepts and properties). Given a local
ontology O1 and a LOD ontology O2, the used alignment tool finds a set of mappings
and each mapping is described by the tuple {e1, e2, co, rel}where e1 is aligned with the
confidence co to the element e2 using the type of correspondence rel (e.g. equivalence,
subsumption, overlap, closeness, etc.). These scores are used to initialize the similarity
score simInit of each pair of concepts and to find a set of properties (relations or at-
tributes) that are very similar (rel = equivalence or subsumption, co ≥ th and th is
a high threshold). These properties are then considered as equivalent.

4.2 Elementary similarity measures

We present in this section the elementary measures used to compute similarity scores
between pairs of concepts of two ontologies. These elementary similarity measures take
into account the lexical and the structural knowledge declared in the two ontologies.

LDM: Link Discovery Method for new Resource Integration

101

Most of these elementary similarity measures are based on the SoftJaccard similarity
measure which computes similarity between sets of basic values or between sets of ob-
jects (e.g., references, concepts).

SoftJaccard: a similarity measure for sets of objects. In [16], we have defined the
SoftJaccard similarity measure which is an adaptation of the Jaccard similarity mea-
sure in the sense that: (i) instead of considering only basic values we consider sets of
basic values and (ii) instead of considering the equality between values we consider a
similarity score with respect to a threshold θ.

Let S1 and S2 be two sets of elements which can be basic values or objects.
To compute the similarity score between S1 and S2 we compute, first, the set
CLOSET (S1, S2, θk) which represents the set of element pairs of S1 × S2 having
a similarity score simT ≥ θ.
CLOSET (S1, S2, θ) = {ej | ej ∈ S1 and ∃ek ∈ S2 s.t. SimT (ej, ek) > θ},
with T a parameter which indicates if the sets S1 and S2 contain basic values, then
T = v or contain objects, then T = o. When T = v, the function Simv corresponds
to a similarity measure between basic values like Jaccard, Jaro − Winkler, and so
on [4]. When T = o, the function Simo corresponds to a similarity score that can be
provided by a tool dedicated to object comparison like N2R tool [16] for references or
TaxoMap [9] tool for concepts.

SoftJaccardT (S1, S2, θ) =
| CLOSE(S1, S2, θ) |

| S1 |
, with | S1 |≥| S2 |

Similarity measures used to compare concepts. To compute the similarity scores be-
tween concepts we exploit both the conceptual content which means the sets of ances-
tors and the sets of descendants but also the sets of shared properties with respect to
a given equivalence relation. The similarity score between concepts is also function of
the similarity scores of their references, i.e. instance level content.

Similarity of concept labels. In OWL ontologies sets of labels are usually associ-
ated to the concepts. In case of concepts where the labels are not given, we consider
their corresponding URIs. Let L1 be the set of labels of a concept c1 and L2 be the
set of labels of the concept c2. The label similarity simlabel is computed by apply-
ing the SoftJaccard similarity measure on the two sets of basic values L1 and L2:
simlabel(c1, c2) = SoftJaccardv(L1, L2, θ1).

Similarity of concept ancestors. For two concepts, we also compute the similarity of
their ancestor sets in the two ontologies. Let A1 be the set of ancestors of the concept
c1 and A2 be the set of ancestors of c2. The ancestor similarity simanc is computed
by applying SoftJaccard similarity measure on the two sets of concept ancestors (i.e.
objects) which is defined as follows: simanc(c1, c2) = SoftJaccardo(A1, A2, θ2)

Similarity of concept descendants. The similarity score of two concepts also de-
pends on the similarity scores of their descendants in the two ontologies. Let D1

be the set of descendants of the concept c1 and D2 be the set of descendants of
c2. The descendant similarity simdesc is computed by applying SoftJaccard sim-
ilarity measure on the two sets of concept descendants which is defined as follows:

LDM: Link Discovery Method for new Resource Integration

102

simdesc(c1, c2) = SoftJaccardo(D1, D2, θ3)

Similarity of shared properties of concepts. The similarity of two concepts depends
on the proportion of equivalent properties compared to the full number of properties
defined for both concepts. Let R1d (resp. R2d) be the set of properties such that the
concept c1 (resp. c2) is subsumed by the (equivalent) property domain and let R1r
(resp. R2r) the set of properties such that the c1 (resp. c2) is subsumed by one of the
range of the (equivalent) property. The relation similarity simrel is defined as follows :

simrel(c1, c2) =
| (R1d ∩R2d) ∪ (R1r ∩R2r) |

| (R1d ∪R2d ∪R1r ∪R2r) |

Similarity of concept references. The similarity score of two concepts also depends
on the set of their references. Let I1 (resp. I2) be the set of instances of c1 (resp. c2),
the similarity of c1 and c2 depends on the similarity scores obtained for the pairs of ref-
erences of I1 × I2 and it is computed by applying the SoftJaccard similarity measure
on the sets I1 and I2 of references (i.e. objects). simref(c1, c2) is defined as follows:
simref (c1, c2) = SoftJaccardo(I1, I2, θ4).

4.3 Equation modeling the dependencies between similarities in LDM approach

In LDM approach the similarity of each pair of references is expressed by a variable xi

in the instance level equation system. Its value depends on the common description of
the pair of references w.r.t the equivalent/ comparable properties (cf. N2R). It depends
also on the similarity scores of the concepts sci that are instantiated by the pair of
references. An equation of the instance level equation systemxi = gi(X), where i ∈
[1..n] and n is the number of reference pairs andX = (x1, . . . , xn), is of the form:

gi(X) =
1

2
(sci, fi(X))

with sci is the similarity score computed by the resolution of the conceptual equation
system presented in the following. The function fi(X) is expressed as in N2R method
and we consider that knowledge on the (inverse) functionality of the shared properties
declared in the local ontology is also fulfilled in the LOD ontology.

The similarity of each pair of concepts (c, c′) is expressed by a variable xcj in the
conceptual equation system. Its value depends on the initial similarity score provided
by the alignment tool, the similarity of their labels, the set of their equivalent / com-
parable properties and the similarity of their references represented respectively by the
constants simj−init, simj−label, simj−rel and simj−ref . It depends also on the simi-
larity of their ancestors and their descendants represented by the variables XSCj−anc

andXSCj−desc computed using SotfJaccard function.
An equation xcj = hj(XC), where j ∈ [1..m] and m is the number of concept

pairs andXC = (xc1, . . . , xcm), is of the form:

hj(XC) = max(simj−init,

1
5
(XSCj−anc +XSCj−desc + simj−rel + simj−label + simj−ref))

LDM: Link Discovery Method for new Resource Integration

103

The values of the constants simj−init, simj−label, simj−rel and simj−ref are
computed using the similarity functions described in the above subsection.

The sizem of the conceptual equation system is | C1×C2 |, whereC1 (resp.C2) is
the set of concepts of the ontologyO1 (resp.O2). The size of the instance level equation
system depends on the number k of comparable relations and on the size of their cor-
responding domain instances and range instances. Let ri1 and ri2 be two comparable
relations. LetEi1 (resp.Ei2) be the set of domain instances of ri1 (resp. of ri2) and Ei3

(resp.Ei4) be the set of range instances of ri3 (resp. ri4). It also depends on the number
of comparable attributes k′ and on the size of their corresponding domain instances.
Let aj1 and aj2 be two comparable attributes. Let Ej1 (resp. Ej2) be the set of domain
instances of aj1 (resp. of aj2). The number n of variables of the instance level equation
system is:

n =|
i=k⋃

i=1

((Ei1 × Ei2) ∪ (Ei3 × Ei4)) ∪ (
j=k′⋃

j=1

(Ej1 × Ej2)) |

The computation complexity of the LDM method is O((n2 ∗ itref) + (m2 ∗ itc)), with
itref is the number of iterations of the instance level equation system and itc is the
number of iterations of the conceptual equation system.

One of the most distinguishing characteristic of LDM is its ability to propagate
similarities at different levels: (i) between pairs of concepts, (ii) between pairs of refer-
ences and (iii) between sets of references and sets of concepts. By using two separated
equation systems we avoid the propagation between references when we compute the
concept similarity scores and we avoid also the propagation between concepts when
we compute the reference similarity scores. Thus, we decrease the size of the equation
system and we allow a user to visualize and validate the intermediate equation system
results.

4.4 Illustrative example

We present in Figure 3 an extract of the DBLP ontology which is used to describe the
DBLP data published in the LOD. The considered data set only contains a collection
of conference proceedings and the collection of their corresponding research papers in
computer science. In order to illustrate our approach of link discovery, we will compare
the local RDF data of the source S1 given in Figure 2 with the extract of DBLP dataset
of the LOD given in Figure 4.

The initialization step provides the following initial similarity scores for the concept
pairs:
siminit(Article, InProceedings) = 0.3; siminit(Article, P roceedings) = 0.1;
siminit(Article, Agent) = 0.1; siminit(Person, InProceedings) = 0.0;
siminit(Person, Proceedings) = 0.0; siminit(Person,Agent) = 0.3;
siminit(Conference, InProceedings) = 0.2;
siminit(Conference, Proceedings) = 0.2; siminit(Conference,Agent) = 0.1

LDM: Link Discovery Method for new Resource Integration

104

Fig. 3. An extract O2 of LOD DBLP ontology

LOD source S2:
InProceedings(S2_a1); label(S2_a1,“Implementing the TEA algorithm on sensors’);
Agent(S2_p1); Agent(S2_p2); issued(S2_a1, “2004”); name(S2_p1,“Olga V. Gavrylyako”
); name(S2_p2,“Shuang Liu”);

Proceedings(S2_c1); label(S2_c1, “42nd Annual Southeast Regional Conference, 2004”);
creator(S2_a1,S2_p1); creator(S2_a1,S2_p2); partOf(S2_a1,S2_c1);
InProceedings(S2_a2); label(S2_a2,“New Chaos Produced from Synchronization of Chaotic
Neural Networks”); Agent(S2_p3); issued(S2_a2, “2008”);
name(S2_p3,“Zunshui Cheng”);

Proceedings(S2_c2); label(S2_c2, “Advances in Neural Networks - ISNN 2008, 5th
International Symposium on Neural Networks”); creator(S2_a2,S2_p3); partOf(S2_a2,S2_c2);

Fig. 4. An extract of DBLP data set on the LOD

Since, there are no subsumption relations inO1 and in O2 the conceptual equations
do not take into account the similarity scores of the ancestors and of the descendants.
For example, the equation expressing the similarity of the two concepts Article and
InProceedings is: xc1 = max(0.3, 1

3
(2
3
+ 0 + sim1−ref)). In this example, the con-

ceptual equation system consists of nine variables (xc1, . . . , xc9).
The instance level equation system consists of twenty-five equations representing

all the reference pairs where the common description is not empty. For example, the
equations expressing:

– The similarity of the two references S1_a1 (Ar-
ticle) and S2_a1 (InProceedings) is: x1 =
1

2
(sc1,max(1

2
(Simv(label.val(S2_a1), title.val(S1_a1))+Simv(issued.val(S2_a1),

year.val(S1_a1)), 1

4
(SJ({S1_p1, S1_p2}, {S2_p1, S2_p2}) + x14)

– The similarity of the two references S1_c1 (Conference) and S2_c1(Proceedings)
is : x14 = 1

2
(sc14,max(x1,

1

2
(Simv(label.val(S2_c1), confName.val(S1_c1)))

– The similarity of the two references S1_p1 (Person) and S2_p1 (Agent) is:
x5 = 1

2
((sc5, 1

2
(x1 + Simv(name.val(S1_p1), name.val(S2_p1))

LDM: Link Discovery Method for new Resource Integration

105

– The similarity of the two references S1_p1 (Conference) and S2_p1 (InProceed-
ings) is: x18 = 1

2
(sc18,max(Simv(confName.val(S1_c1), label.val(S2_a1))

In Table 2 we show the iterative resolution of the conceptual equation system ES1

modeling the similarity of all the pairs of concepts of the ontologies O1 and O2. The
column siminit represents the initial similarity score computed by an external concept
alignment tool, like TaxoMap [9]. The Table 3 shows the results of the iterative resolu-
tion of the instance level equation system ES2 of the pairs of references coming from
the local source S1 of Figure 2 which conforms to the local ontology O1 and the S2
LOD source which conforms to the LOD DBLP ontology O2.

Variables of ES1 siminit Resolution1– iteration1
xc1 = (Article, InProceedings) 0.3 max(0.3, 1

3
(4
6
)) = 0.3

xc2 = (Article, Proceedings) 0.1 max(0.1, 1

3
(1
6
)) = 0.1

xc3 = (Article, Agent) 0.1 max(0.1, 1

3
(0)) = 0.1

xc4 = (Person, InProceedings) 0.0 max(0, 1

3
(0)) = 0.0

xc5 = (Person, Proceedings) 0.0 max(0, 1

3
(0)) = 0.0

xc6 = (Person, Agent) 0.3 max(0.3, 1

3
(1)) = 0.33

xc7 = (Conference, InProceedings) 0.2 max(0.2, 1

3
(1
4
)) = 0.2

xc8 = (Conference, Proceedings) 0.2 max(0.2, 1

3
(2
4
)) = 0.25

xc9 = (Conference, Agent) 0.1 max(0.1, 1

3
(0)) = 0.1

Resolution2– it1
xc1= 0.33
xc2= 0.1
xc3= 0.1
xc4= 0.0
xc5= 0.0
xc6= 0.427
xc7= 0.2
xc8= 0.33
xc9= 0.1

Table 2. The two resolutions of the conceptual equation system ES1

The Resolution1 step of ES1 corresponds to the first iterative resolution of ES1

where simref of all the concepts equals to 0. The fix-point of ε = 0.05 is reached in two
iterations. The Resolution1 step of ES2 corresponds to the first iterative resolution of
ES2 where sci of all the references equals to siminit (c.f. Table 2) . The fix-point of
ε = 0.05 is reached in three iterations. The Resolution2 step of ES1 corresponds to
the second iterative resolution of ES1 where simref of all the concepts equals to the
similarity scores computed by ES2 at the last iteration of Resolution1. The fix-point
of ε = 0.05 is also reached in two iterations. TheResolution2 step ofES2 corresponds
to the second iterative resolution of ES2 where sci of all the references equals to the
similarity scores computed by ES1 at the last iteration of Resolution1. The fix point
of ε = 0.05 is reached in two iterations.

The global fix-point is reached after three resolutions. At Resolution3 2 of the
two systems ES1 and ES2 we obtain the same similarity scores than the last iteration
of their corresponding Resolution2 step. The results obtained by ES1 show that the
method obtains the best similarity scores for the most possible equivalent concepts:
(Article, InProceedings), (Person,Agent) and (Conference, Proceedings). In
an analogous way, the results obtained by ES2 show that the best similarity scores
are obtained for the most possible owl:same-as references. If we fix the reconciliation

2 The scores are not shown here, they are equal to those obtained in the Resolution2 of ES1

and ES2.

LDM: Link Discovery Method for new Resource Integration

106

Variables of ES2 Resolution1– iteration 1 Res1–it2 Res1–it3 Res2–it1
x1 = (S1_a1,S2_a1) 1

2
(0.3 + max(1

2
(2), 1

4
(0)) = 0.66 0.66 0.66 0.665

x2 = (S1_a2,S2_a1) 1

2
(0.3 + max(1

2
(0), 1

4
(0)) = 0.15 0.165 0.175 0.19

.

x5 =(S1_p1,S2_p1) 1

2
(0.33 + 1

2
(1)) = 0.415 0.58 0.58 0.62

x6 = (S1_p2,S2_p1) 1

2
(0.33 + 1

2
(0)) = 0.165 0.33 0.33 0.379

.

x14 = (S1_c1,S2_c1) 1

2
(0.25 +max(0, 1

2
(0.438)) = 0.219 0.455 0.455 0.477

.

x18 = (S1_c1,S2_a1) 1

2
(0.2 + max(0)) = 0.1 0.1 0.1 0.1

.
Table 3. The resolution of the instance level equation system ES2

threshold at 0.45 we infer the reconciliation of the two papers (S1_a1, S2_a1), of the
two persons (S1_p1, S2_p1) and of the two conferences (S1_c1, S2_c1).

In this example we have shown the applicability of the approach even when the
considered ontologies are not syntactically close and when they have very poor structure
(no subsumption relations) which means that the ancestors and the descendants are not
considered.

5 Conclusion and Future Work

In this paper we have presented a Link Discovering Method (LDM) which allows dis-
covery of new data sources that are published in the Open Linked Data cloud (LOD).
Our approach is based on the idea of comparing a local dataset on which domain knowl-
edge can be declared and a LOD dataset by using a combined ontology reconciliation
and reference reconciliationmethod. By using our LDMmethod onemay discovermore
owl:same-as links with datasets available on the LOD.

One of the most distinguishing characteristic of our link discovery approach resides
on its ability to propagate similarities at different levels: (i) between pairs of concepts,
(ii) between pairs of references and (iii) between sets of references and sets of concepts.
By using two separated equation systems we avoid the propagation between references
when we compute the concept similarity scores and we avoid also the propagation be-
tween concepts when we compute the reference similarity scores.

As a very short term perspective, we plan to test our LDM approach on real data
sets and evaluate the quality of its results and its scalability. It will be worth to com-
pare LDM method with those of existing link discovery methods like [10]. As future
work, we plan to extend the approach to be able, in addition of the equivalent proper-
ties, take into account the other properties in oder to consider richer data descriptions.
Moreover, we aim also to extend the LDMmethod to compute also similarities between
the properties of the considered ontologies.

LDM: Link Discovery Method for new Resource Integration

107

References

1. Berners-Lee, T., Cailliau, R., Groff, J.F., Pollermann, B.: World-wide web: The information
universe. Electronic Networking: Research, Applications and Policy 1(2), 74–82 (1992)

2. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity
measures. In: KDD. pp. 39–48 (2003)

3. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf.
Syst. 5(3), 1–22 (2009)

4. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance metrics for
name-matching tasks. In: IIWeb. pp. 73–78 (2003)

5. Cohn, D.A., Atlas, L.E., Ladner, R.E.: Improving generalization with active learning. Ma-
chine Learning 15(2), 201–221 (1994)

6. Dong, X., Halevy, A.Y., Madhavan, J.: Reference reconciliation in complex information
spaces. In: SIGMOD Conference. pp. 85–96 (2005)

7. Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology alignment with ola. In: Sure, Y.,
Corcho, O., Euzenat, J., Hughes, T. (eds.) Proc. 3rd ISWC2004 workshop on Evaluation of
Ontology-based tools (EON), Hiroshima (JP). pp. 59–68 (2004)

8. Golub, G.H., Loan, C.F.V.: Matrix computations (3rd ed.). Johns Hopkins University
Press, Baltimore, MD, USA (1996), http://portal.acm.org/citation.cfm?
id=248979

9. Hamdi, F., Safar, B., Niraula, N.B., Reynaud, C.: Taxomap in the oaei 2009 alignment con-
test. In: Proceedings of the 4th International Workshop on Ontology Matching (OM-2009)
collocated with the 8th International Semantic Web Conference (ISWC-2009) Chantilly,
USA, October 25, 2009 (2009)

10. Hassanzadeh, O., Kementsietsidis, A., Lim, L., Miller, R.J., Wang, M.: A framework for
semantic link discovery over relational data. In: Proceedings of the 18th ACM Conference
on Information and Knowledge Management, CIKM 2009, Hong Kong, China, November
2-6, 2009. pp. 1027–1036 (2009)

11. Kiefer, C., Bernstein, A.: The creation and evaluation of isparql strategies for matchmaking.
In: The Semantic Web: Research and Applications, 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings. pp. 463–477
(2008)

12. Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: A dynamic multistrategy ontology alignment frame-
work. IEEE Transactions on Knowledge and Data Engineering 21, 1218–1232 (2009)

13. Nikolov, A., Uren, V.S., Motta, E., Roeck, A.N.D.: Handling instance coreferencing in the
knofuss architecture. In: Proceedings of the 1st IRSW2008 International Workshop on Iden-
tity and Reference on the Semantic Web, Tenerife, Spain, June 2, 2008 (2008)

14. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal 10(4), 334–350 (2001)

15. Saïs, F., Pernelle, N., Rousset, M.C.: L2r: A logical method for reference reconciliation. In:
AAAI. pp. 329–334 (2007)

16. Saïs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method for data
reconciliation. J. Data Semantics 12, 66–94 (2009)

17. Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and
interlink. In: Proc. IJCAI 2009 workshop on Identity, reference, and knowledge representa-
tion (IR-KR), Pasadena (CA US) (2009)

18. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches pp. 146–171 (2005)
19. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for information

integration. Inf. Syst. 26(8), 607–633 (2001)

LDM: Link Discovery Method for new Resource Integration

108

Repairing Provenance Policy Violations by Inventing
Non-Functional Nodes

Saumen Dey1, Daniel Zinn2, and Bertram Ludäscher12

1 Dept. of Computer Science, University of California, Davis
2 Genome Center, University of California, Davis

Abstract. In scientific collaborations, provenance is increasingly used to ex-
plain, debug, reproduce, and determine the validity and quality of data products.
In such environments, it can be infeasible or undesirable to publish the complete
provenance of all the final output data products. We have developed PROPUB,
a system that allows users to publish a customized version of their data prove-
nance, based on a set of publication and customization requests, while observing
certain provenance publication policies, expressed as logic integrity constraints.
The user’s customization requests may violate one or more integrity constraints.
In previous work, we removed additional parts of the provenance graph (i.e., not
directly requested by the user) to repair policy violations. In this paper, we present
an alternative approach which ensures that all relevant nodes are retained in the
provenance graph. The key idea is to introduce new (non-functional) nodes that
are used to represent lineage dependencies, without revealing information that the
user wants to protect. With this new approach, a user may now explore different
provenance publication strategies, and choose the most appropriate one before
publishing sensitive provenance data.

1 Introduction

In the emerging paradigm of collaborative, data-intensive science, sharing data products
even prior to publication is desirable [1,2]. Yet, without a proper scientific publication
associated with openly published data, its validity and accuracy might be questionable.
This is problematic in an open environment, where published data by one scientist is
used by another scientist as input for further data analyses. In such an environment, data
provenance (the lineage and processing history of data) can help to ensure data quality
[3,4,5,6,7]. It is thus desirable to publish data products together with their provenance.

In many cases, however, provenance data can be sensitive and may contain private
information or intellectual property that should not be revealed [7,8,5]. Consequently,
a balancing act (Figure 1) is necessary between (i) the desire to publish provenance
data so that collaborators can understand and rely on the shared data products, and (ii)
the need to protect sensitive information, e.g., due to privacy concerns or intellectual
property issues.

We view provenance as a bipartite, directed, acyclic graph, capturing which data
nodes were consumed and produced, respectively, by invocation (i.e., computation)
nodes. Our model thus corresponds to the Open Provenance Model (OPM) which cap-
tures the dependencies between data artifacts and invocations [9,10].

109

The Balancing Act

Provenance
Publishing

Privacy &
Relevancy
Concerns

Fig. 1. In collaborative settings, scientists publish provenance for an improved understanding of
the result data. With increasing privacy concerns, collaborators have to choose the right balance
between providing sufficient provenance data and protecting sensitive information.

To sanitize provenance graphs, a scientist can remove sensitive data nodes or in-
vocations nodes from the provenance graph. Alternatively, she can abstract a set of
sensitive nodes by grouping them into a single, abstract node. This update may violate
some of the integrity constraints of the provenance graph [11]. For example, grouping
multiple nodes into one abstraction node may introduce new dependencies which were
absent in the initial provenance graph. Hiding nodes may also make some nodes in the
final graph appear independent of each other even though they are dependent in the ini-
tial graph. Thus, one can no longer trust that the published provenance data is “correct”
(e.g., there are no false dependencies) or “complete” (e.g., there are no false indepen-
dencies). Therefore, we propose a system that allows a publisher to provide a high-level
specification what parts of the provenance graph are to be published and which parts are
to be sanitized, while guaranteeing that at the same time certain provenance publication
constraints are observed.

2 Motivating Example

Figure 2(a) shows the provenance graph (PG) taken from the First Provenance Chal-
lenge [12]. Data nodes are depicted as circles and invocation nodes (representing com-
putations) as boxes; dependencies among them are shown as directed edges. These
edges capture the lineage of data and thus are typically drawn from right (newer nodes)
to left (older nodes). For example, d16 was generated by an invocation s2, and was in
turn used by invocation c2, denoted by, respectively s2

gen by←− d16 and d16
used←− c2.

Let us assume, the user wants to publish data products d18 and d19 along with their
lineage data. Then, she will issue the publication requests as shown in Figure 2(a). A
recursive query is used to retrieve all data and invocation nodes upstream from d18 and
d19 and we get a modified provenance graph (PG′) as shown in Figure 2(b). Note that
the lineage of d20 up to s3 is not relevant for d18 and d19 and hence not included in PG′.
Further assume that before publishing PG′, the user also requests a set of customiza-
tions as shown in Figure 2(b).

Figure 3 shows the provenance graph we get after applying all the customization
requests. We see that this provenance graph violates three provenance policies: There

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

110

!"#

!$%#

!$$#

!$&#

'$!
!$(#

!$)#

*$! !$+# ,$!

*&! !$-# ,&!

*(! !$.# ,(!

!$/#

!$"#

!&%#

"#$%&'(!%&)*+,*!

%&)*+,*-./01!
%&)*+,*-./21!

(a) Provenance graph (PG) and publish request

!"#

!$%#

!$$#

!$&#

'$!
!$(#

!$)#

*$! !$+# ,$!

*&! !$-# ,&!

!$.#

!$"#

"#$#%&'()!

"*+,-".,!

/'0)!

/'0)! "*+,-".,10234!526!
"*+,-".,1+24!526!
"*+,-".,1&24!526!

"#$#%&'()10226!
"#$#%&'()10276!

/'0)10286!
/'0)1.26!!
/'0)1.76!

(b) User requests: anonymize, abstract, hide

Fig. 2. (a) User requests to publish the provenance of {d18, d19}; and (b) customization requests
to anonymize data nodes {d11, d12}, to abstract nodes {m1, d14, s1}, and to hide {c1, d18, c2}

!"#$!"%$

&'! !"($"#!

!)$

!"*$

!""$

!"'$

!")$

$%&'(!

)%*(!+,,-,! ./'0(!123(*(23(2&(!

!!24&!

!!253! 26! 27(!"!"!

2&3!"!

Fig. 3. Provenance graph after applying all user requests. Provenance policies No-Type Error
(NTE), No-Cyclic Dependency (NCD) and No-False Independence (NFI) are violated, while
No-Write Conflict (NWC) and No-False Dependence (NFD) are satisfied.

is a cycle between d13 and g1, a type error for the edge from s2 to g1 (the graph should
be bipartite), and there is no dependency between d19 and d16, violating, respectively,
the No-Cyclic Dependency (NCD), No-Type Error (NTE) and No-False Independence
(NFI) policies. On the other hand, the provenance policies No-Write Conflict (NWC)
and No-False Dependence (NFD) are not violated by these customization requests.

Outline and Contributions. In Section 3, we first describe the provenance model, user
requests, provenance policies, and logical architecture of PROPUB. This overall frame-
work was proposed recently in [11]. In Section 4 we present our main contribution, i.e.,
a new way to repair policy violations, not by removing additional nodes (as in our prior
work), but by introducing new (non-functional) nodes that represent the original lineage
dependencies, without revealing information that the user wants to protect. We describe
in detail how policy violations will be repaired such that all relevant nodes are retained
in the final provenance graph. Related work is discussed in Section 5 and Section 6
presents some concluding remarks and suggestions for future work.

3 Provenance Publisher (PROPUB)

In our recent work, we developed the system PROPUB [11], which uses a declarative
approach to publish customized policy-aware provenance. PROPUB accepts the initial
provenance graph and two types of input specifications. (i) User Requests: the publica-
tion and customization requests, and (ii) Provenance Policies: the integrity constraints

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

111

Relation Name Description
used(I, D) An edge specifying that the invocation I used the data artifact D.
gen by(D, I) An edge to indicate that the data artifact D was generated by invocation I.
actor(I, A) An invocation node I, which was executed by actor A.
data(D, R) A data artifact node, whose value can be retrieved using the reference R.
dep(X, Y) An auxiliary relation and defined as dep = used ∪ gen by and to specify that

node X depends on node Y , irrespective of the node types.

Table 1. Provenance Model for PROPUB

User Request Description
ur:lineage(D) Selects the complete lineage for the data artifact D
ur:anonymize(N) Erases the actor/process identify or the data reference from the node N

ur:hide(N) Removes the invocation or data node N
ur:abstract(N, G) Collapses all nodes N to the abstract group G
ur:retain(N) Keeps the node N in the customized provenance

Table 2. User requests for lineage publication and customization

to be observed. PROPUB then applies all user requests on the initial provenance graph
and checks for policy violations. In case there is a violation, it applies repairs and gen-
erates the customized provenance graph.

Provenance Model. The provenance model used in PROPUB is based on OPM, the
Open Provenance Model [13] and our earlier work [14]: A provenance (or lineage)
graph is an acyclic graph PG = (V,E), where the nodes V = D ∪ I represent either
data items D or actor invocations I. The graph G is bipartite, i.e., the edges E = Euse∪
Egby are either used edges Euse ⊆ I × D or generated-by edges Egby ⊆ D × I. Here,
a used edge (i, d) ∈ E means that invocation i has read d as part of its input, while a
generated-by edge (d, i) ∈ E means that d was output data, written by invocation i.
We use the schema shown in Table 1.

User Requests. The user requests supported by the PROPUB framework are summa-
rized in Table 2. The PROPUB system expects user requests to be asserted as relational
facts that can then be used by a Datalog rule engine. An user request can be a publi-
cation request or a customization request. A customization user request can request to
remove a node or an edge or to keep that in the final graph.

Provenance Policies. The provenance graph supported by PROPUB is a bipartite di-
rected acyclic graph. Also, an invocation can read many data artifacts, but a data ar-
tifact is written by exactly one invocation. We developed three provenance policies to
verify if these structural properties are satisfied in the provenance graph PG′∆u, which
we get after applying all the customization requests on PG′. PROPUB has two more
provenance policies to ensure the correctness and completeness of information. These
provenance policies are briefly defined in Table 3.

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

112

Provenance Policy Description
No-Write Conflict (NWC) A data artifact can be written by only one invocation.

No-Cyclic Dependency (NCD) There is no cycle between any two nodes X and Y.
No-Type Error (NTE) Two nodes with a direct dependency are of different types.

No-False Dependence (NFD) Two nodes are dependent in PG′∆u only if they are dependent
in PG′.

No-False Independence (NFI) Two nodes are independent in PG′∆u only if they are indepen-
dent in PG′.

Table 3. Provenance Policies

Constraint Description
ic:wc(X, Y) Write conflict: invocations X and Y are creating the same data node.
ic:cd(X, Y) Cyclic dependency between nodes X and Y.
ic:te(X, Y) Type error: nodes X and Y are connected via used or gen by edges, but don’t have

the corresponding node types.
ic:fd(X, Y) False dependency: node Y depends on X in PG′∆u, but not in PG′.
ic:fi(X, Y) False independence: node Y depends on X in PG′, but not in PG′∆u.

Table 4. Integrity constraint relations used to detect policy violations

We use a set of integrity constraints (ICs) to check whether the provenance policies
defined in Table 3 are satisfied. Table 4 lists the “witness relations” that are defined by
rules (not shown) and which are used to detect particular IC violations.3

3.1 Logical Architecture

The logical architecture of the PROPUB system is shown in Figure 4. The user submits a
set of publication and customization requests U0. The module Direct-Conflict-Detection
detects direct conflicts among the given user-requests. For example, a hide and a retain
request on the same node is an obvious conflict. The user needs to update her original
requests until all direct conflicts are resolved, resulting in a conflict-free user request
U. The Lineage-Selection module computes the sub graph PG′, which contains all to-
be-published data items (specified using the ‘lineage’ predicate) together with their
complete provenance.

The Request-Policy-Evaluation module calculates the updates (∆u: inform of insert
and delete) needed to apply all the user requests from U on PG′. It applies ∆u on
PG′ and get a customized provenance graph PG′∆u. Then it checks if all the selected
provenance policies (PP) are observed by evaluating respective integrity constraints. In
case some of the policies are violated, this module calculates updates (∆p: inform of
insert and delete) needed to repair the violations. In a final conflict resolution step using
the module Implied-Conflict-Detection-Resolution, the system detects all such implied

3 For example., we can detect whether a data node is created by different invocations X and Y
and record this as ic:wc(X, Y).

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

113

!"#$%
&#'(#")"%!*%

+$,-#./.0#%
1$/23%+1%

45.#/6#%7#8#09,.%

:5$#0)%;,.<50)%
:#)#09,.%

!"#$%&#'()&*'
+&,-&).)'('

!"#$%&#'
/*012'3/4'

&#'(#")%=%+,850>%
?-/8(/9,.%

@A285#B%;,.<50)%
:#)#09,.%=%
&#",8(9,.%

;("),A5C#B%
+$,-#./.0#%

1$/23%

5$"60.&#'
3"6$7$&)'

1(/$/.)##B%
+,8505#"%

8-9'3/:'8-9'
(9'3'

()&*'+&,-&).'
;"<=$7.'

>?<"*&#'()&*'
+&,-&).)''

D,.,$#B%!"#$%
&#'(#")"%

+$,-#./.0#%%
+,850>%E+F%

Fig. 4. PROPUB Architecture

conflicts by comparing ∆u and ∆p. In case an implicit conflict is detected, it selects
another subset from the given U and PP following the user preferences. These steps are
repeated until there is no more policy violations. It then applies ∆p on PG′∆u to get
the customized provenance graph (CG) ready to be published.

4 Repairing Policy Violations

If we apply the customization user requests on PG′, we get an intermediate provenance
graph PG′∆u as we shown in Figure 2(a), 2(b) and 3. But, PG′∆u may violate one
or more provenance policies. In case the PG′∆u violates a structural policy (NWC,
NCD, and NTE), it will no more be a proper provenance graph. Also, in case it violates
a non-structural policy (NFI and NFD), PG′∆u may contain incorrect information or
may become incomplete. Thus, user will not be able to publish PG′∆u. To resolve this
issue, we apply the customization requests U on PG′ in a strategic way such that it
confirms to all the provenance policies.

Our strategy is primarily based on two ideas (i) inventing non-functional nodes, and
(ii) converting user requests using other forms of user requests.

Inventing Non-functional Nodes. In case PG′∆u has a structural violation, PROPUB
resolves the violation by adding a new non-functional node. A non-functional node is
added to maintain the structure of provenance graph. Presence of a non-functional node
in the final customized graph may represent one data or invocation node or a set of data
and invocation nodes. No mapping is maintained between the non-functional node and
the nodes it replaced. Also, it will not carry any URL. Thus, no one will be able to
reach to the value of a data artifact or the source code of an actor from a non-functional

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

114

(a) Policy Violation (b) Fix

Fig. 5. (a) direct dependency between data nodes causing a type error (NTE violation); (b)
PROPUB resolves this by inventing a non-functional invocation node.

node. PROPUB invents minimum numbers of non-functional nodes to resolve a policy
violation.

PROPUB uses the same strategy to resolve NFD policy violations. The fix to the
violation of this policy is complex and may need more than one non-functional node to
be added. In spite of this complexity, PROPUB resolves the violation using the minimum
numbers of non-functional nodes.

Converting User Requests. A publisher can use ur:hide requests to hide individual
nodes or the partial structure of the provenance graph. When we apply these user re-
quests all the selected nodes and the associated edges are removed from the provenance
graph PG′ and a set of independence may be created which violates the NFI policy. We
can use the inventing new non-functional node strategy as discussed above and replace
the selected node by a non-functional node to resolve this policy violation. But, this
approach keeps the structure of the original provenance graph in the final provenance
graph. Instead, PROPUB converts these ur:hide user requests into an equivalent set of
ur:abstract user requests so that all the selected nodes are removed and no unintended
dependencies are removed.

4.1 Repairing Structural Policy Violations

No-Type Error. This policy is violated in case there is a direct dependency between
two nodes of same type (i.e. a dependency between two data artifacts or a dependency
between two invocations). PROPUB invents a non-functional invocation node in case
the policy violation is between two data artifacts as shown in Fig. 5. In the similar way,
PROPUB invents a non-functional data node in case the policy violation is between two
invocation nodes. We used the rules as shown below to create the non-functional nodes
and fix the violations of this policy.

del_dep(X,Y) :- ic:te(X,Y).
add_data(f(X,Y),T) :- ic:te(X,Y), d_actor(X,_), T=‘ic:te’.
add_actor(f(X,Y),T) :- ic:te(X,Y), d_data(X,_), T=‘ic:te’.
add_dep(X,f(X,Y)) :- ic:te(N1,N2), X is N1.
add_dep(f(X,Y),Y) :- ic:te(N1,N2), Y is N2.

No-Write Conflict. This policy is violated in case there are N(N ≥ 2) gen by edges
for a data node. To resolve this violation PROPUB removes incorrect gen by edges for
the violated data node and keeps only one gen by edge, which is there in PG. But, this

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

115

(a) Policy Violation (b) Fix

Fig. 6. In (a) there are two gen by edges with the data node causing the No-Write conflict policy
violation and PROPUB resolves this by inventing a non-functional data node as shown in (b).

(a) Policy Violation (b) Fix

Fig. 7. In (a) there is a cycle between the data node and the invocation node and PROPUB resolves
this by inventing the non-functional invocation node as shown in (b).

may violate the NFI policy as it removes dependencies for N − 1 invocation nodes.
To get around this side effect PROPUB invents N − 1 non-functional data nodes and
creates N − 1 gen by edges as shown in Fig. 6. Lastly, it copies all the used edges for
the violated data node over to all N − 1 non-functional data nodes. Following rules are
used to create the non-functional nodes and fix the violations of this policy:

del_data(D) :- ic:wc(D).
del_dep(D,I) :- ic:wc(D), d_gen_by(D,I).
add_data(f(D,I),T) :- ic:wc(D), d_gen_by(D,I), T=‘ic:wc’.
add_dep(f(D,I),I) :- ic:wc(D), d_gen_by(D,I).
add_dep(I,f(D,I1)) :- ic:wc(D), d_gen_by(D,I1), d_used(I,D).

No-Cyclic Dependency. This policy is violated in case a node is reachable from itself.
In Fig. 7, there is a cycle between a invocation node and a data node. To fix this violation
PROPUB invents a non-functional invocation node and creates a used edge between the
data node and the non-functional invocation node. Then it removes all the gen by edges
from the invocation node (except the one with the data node with which it has the
cycle) and copies them over to the non-functional invocation node. In the similar way,
PROPUB resolves this violation between two invocation nodes.

4.2 Repairing No-False Independence (NFI) Policy Violations

This policy is violated in case two nodes are not dependent in PG′∆u even though
they are in PG′. This may occur in case the ur:hide user requests are applied on PG′ as
shown in Fig. 8. One way to resolve this violation is to insert direct dependencies, which

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

116

(a) User Requests: ur:hide nodes (b) Policy Violation

(c) Fix

Fig. 8. PG′ and user requests ur:hide are shown in (a). In (b) some dependencies are removed
between nodes in PG′∆u. PROPUB then resolves this in two steps (i) transforms these ur:hide
requests into equivalent ur:abstract requests and (ii) applies these ur:abstract requests on PG′

and gets the customized graph is shown in (c).

are there in PG′ but missing in PG′∆u, between any two nodes in PG′∆u. But, this pro-
cess may add too many edges and the graph may become unreadable. One optimization
to this process is to develop transitive dependencies to reduce the total number of new
edges needed. This may be computation intensive. PROPUB uses a different strategy
to fix this violation. Following rules are used to transform the ur:hide requests into an
equivalent set of ur:abstract requests:

hide_connected(X,Y) :- ur:hide(X), ur:hide(Y), dep(X,Y).
hide_connected(X,X) :- ur:hide(X).
hide_connected(X,Y) :- hide_connected(Y,X).
hide_connected(X,Y) :- hide_connected(X,Z), hide_connected(Z,Y).
smaller(X) :- hide_connected(X,Y), X < Y.
minimum(X) :- ur:hide(X), not(smaller(X)).
abstract_hide(X,G) :- hide_connected(X,G), minimum(G).

The customization user requests ur:abstract removes nodes from PG′, but does
not violate the NFI policy. To avoid the NFI polic violations PROPUB transforms the
ur:hide user requests into an equivalent set of ur:abstract user requests. These will be
applied to PG′ in the same way the User issued ur:abstract requests are applied.

4.3 Repairing No-False Dependence (NFD) Policy Violations

This policy is violated in case two nodes are dependent in PG′∆u even though they are
not in PG′. This may occur in case the ur:abstract user requests are applied on PG′ as
shown in Fig. 9. In Fig. 9(a) we have a partial provenance graph showing the ur:abstract
requests and the nodes with direct dependencies with one or more nodes selected to be
abstracted. This figure shows that in PG′ the data artifact ‘1’ depends on data artifact
‘a’ and ‘b’. In the similar way, the data node ‘2’ depends on invocation nodes ‘b’ and
‘c’ and so on. Now, if we apply these ur:abstract requests by collapsing all the selected
nodes into a abstracted node then in PG′∆u the data artifact ‘1’ become depended on
nodes ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’ and thus making PG′∆u incorrect, as shown in Fig. 9.

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

117

!" #"

!"

$"

%"

&" '"

("

)" *"

+"

#!$%&#'%"

(a) The ur:abstract user
requests

!" #"

!"

$"

%"

&" '"

("

)" *"

+"

(b) The dependencies cre-
ated by applying these
ur:abstract user requests

Fig. 9. In (a) we show the boundary of one ur:abstract user requests set and the nodes with a
direct dependency with one or more nodes selected to be abstracted. After these ur:abstract user
requests are applied on PG′ we get a new set of dependencies as shown in (b).

To avoid this policy violations PROPUB takes a systematic three stages approach to
apply the ur:abstract user requests. Instead of collapsing into one abstracted node, it
invents a number of non-functional data and invocation nodes to maintain the depen-
dencies between any two nodes in PG′∆u as they are in PG′. This systematic approach
ensures that the minimum number of non-functional nodes are invented. In the first
stage, PROPUB develops two sets in and out. The in is a set of data nodes which is
used by some of the invocation nodes selected to be abstracted and invocation nodes
which generated some of the data nodes selected to be abstracted. The out is a set
of data nodes which is generated by one of the invocation node selected to abstracted
and invocation nodes which used some of the data nodes selected to abstracted. It also
calculates the dependencies for each of the node in set out on the nodes of the set in.

Now, PROPUB creates non-functional data nodes for each of the invocation nodes
from the sets in and out. One non-functional data node is created for exactly one in-
vocation node from the set in through a gen by edge. One non-functional data node
is created for more then one invocation node from the set out through used edges in
case these invocations have the same dependencies on the set in. At this stage, a non-
functional data node is connected either to a node from the set in or to one or many
nodes from the set out. For example, invocation node ‘4’ ‘5’ and depends on invoca-
tion nodes ‘b’ and ‘c’ and PROPUB will create only one non-functional data node and
two used edges. This is shown in Fig. 10(a).

In the second stage, it calculates the list of dependencies of all nodes from the set
out to the nodes from in. PROPUB creates one non-functional invocation node for each
of these unique dependency lists and it creates gen by edges for nodes from the set
out which has the same dependency list. Then it creates used edges to connect to the
nodes in in set from any of these non-functional invocation nodes. It will connect with
respective non-functional data node created in the last stage in case an edge needs to be
created with an invocation either from in or out. This outcome is shown in Fig. 10(b).

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

118

!" #"

!"

$"

%"

&" '"

("

)" *"

+"

(a) Stage 1

!" #"

!"

$"

%"

&" '"

("

)" *"

+"

(b) Stage 2

!" #"

!"

$"

%"

&" '"

("

)" *"

+"

(c) Fix Stage 3

Fig. 10. Repairing No-False Dependence Policy Violations

Algorithm: CALCULATECUSTOMPG
INPUT: provenance graph PG, user requests U and provenance policies PP
OUTPUT: customized provenance graph CG

1. Test for Direct Conflicts // as explained in Section 3.1
2. IF there are Direct Conflicts THEN
3. RETURN false // User can resubmit after changing U
4. ELSE
5. Compute PG′// as explained in Section 3.1
6. Transform ur:hide user requests into ur:abstract user requests // as explained in Section 4.2
7. Apply all ur:abstract user requests on PG′ to get PG′∆u// as explained in Section 4.3
8. Resolve NCC violations on PG′∆u// as explained in Section 4.1
9. Resolve NWC violations on modified PG′∆u// as explained in Section 4.1
10. Resolve NFT violations on modified PG′∆u// as explained in Section 4.1
11. CG = PG′∆u// Final customized provenance graph
12. RETURN CG

Fig. 11. Computing CG using the Inventing Non-Functional Nodes approach

In the final stage, PROPUB combines nodes if possible. For example, in Fig. 10(b)
the path from node ‘6’ to node ‘e’ has three consecutive non-functional nodes with no
other dependencies. These three nodes can be replaced by only one non-functional data
node. The result is shown in Fig. 10(c). Now, PROPUB removes all the nodes selected
to be abstracted and associated edges from PG′.

4.4 Algorithm

The algorithm mentioned in Fig. 11 finds the customized provenance graph, if available.
In this approach, we add non-functional nodes to repair policy violations. In Figure 3
we show that PG′∆u has a structural policy violation between nodes g1 and s2. Using
this approach, we introduce a non-functional data node d such that d is dependent on
g1; and s2 is dependent on d. Now, to fix the cycle between d13 and g1 we introduce
the non-functional invocation node g2 and create a dependency (gen by) edge from d15
to g2. Then, we get the final CG as shown in Figure 12. Note that we are now able to
keep all the relevant nodes in CG.

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

119

!"#$

!"%$

!"#

!&$

!"'$

!""$

!"($

!"&$!$#

!#%&'#

!#%()#
!#%')#

!#%*#!#%+,#

-./+0-'+1)"23#!"4#
-./+0-'+1/"3#!"4#
-./+0-'+15"3#!"4#

-%6%7589,1)""4#
-%6%7589,1)":4#

;8),1)"<4#
;8),1'"4#
;8),1':4#

/:#!$

!")$!:#

Fig. 12. Customized Provenance Graph after repairing all policy violations

5 Related Work

In [3,4,5,6,7], it has been observed that provenance can be used, e.g., to interpret results,
diagnose errors, fix bugs, improve reproducibility, and generally to build trust on the
final data products and the underlying processes. In addition, provenance can be used to
enhance exploratory processes [15,16,17], and techniques have been developed to deal
with provenance efficiently [18,19].

In many cases, provenance carries sensitive information, which can cause privacy
concerns related to a data, actor, or workflow specification. Studying provenance, one
can capture the functionality (being able to guess the output of the actor given a set of
inputs) of an actor (module), or the execution flow of a workflow [8].

The security view approach [5] limits the available provenance to a user by pro-
viding a partial view of the workflow through a role-based access control mechanism,
and by defining a set of access permissions on actors, channels, and input/output ports
as specified by the workflow owner at design time. The ZOOM∗UserViews approach
[20] allows to define a partial, zoomed-out view of a workflow, based on a user-defined
distinction between relevant and irrelevant actors. Provenance information is restricted
by the definition of that partial view of the workflow.

In our recent work [11], we developed PROPUB, which uses a declarative approach
to publish customized policy-aware provenance. In this paper, we developed a new way
to repair policy violations, not by removing additional nodes (as in [11]), but by in-
troducing new (non-functional) nodes that represent the original lineage dependencies,
without revealing information that the user wants to protect. We described in detail how
policy violations will be repaired such that all relevant nodes are retained in the final
provenance graph.

6 Conclusions

We discussed the need for provenance in scientific collaboration. Provenance data helps
to build trust in the published results and data. However, provenance can also contain
sensitive data and/or too much irrelevant detail. Thus, scientists should be able to “cus-
tomize” provenance data before sharing it.

Our current PROPUB system is based on the open provenance model (OPM). We
plan to extend PROPUB to include model extensions, e.g., to support structured data

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

120

structures, in particular nested collections [19]. Furthermore, PROPUB currently sug-
gests only one specific modified graph based on a given U and PP. In future work, we
plan to investigate how to extend this approach to rank alternative solutions, thus sup-
porting scientists even more in finding the desirable balance between revealing prove-
nance information and preserving privacy when sharing data with collaborators.

References

1. Nature: Special Issue on Data Sharing. Volume 461. (September 2009)
2. Missier, P., Ludäscher, B., Bowers, S., Dey, S., Sarkar, A., Shrestha, B., Altintas, I., Anand,

M., Goble, C.: Linking multiple workflow provenance traces for interoperable collaborative
science. In: Workflows in Support of Large-Scale Science (WORKS), 2010 5th Workshop
on, IEEE 1–8

3. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Computing
Surveys (CSUR) 37(1) (2005) 1–28

4. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM
SIGMOD Record 34(3) (2005) 31–36

5. Chebotko, A., Chang, S., Lu, S., Fotouhi, F., Yang, P.: Scientific workflow provenance query-
ing with security views. In: Web-Age Information Management, 2008. WAIM’08. The Ninth
International Conference on, IEEE (2008) 349–356

6. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A Survey.
Computing in Science and Engineering 10(3) (2008) 11–21

7. Davidson, S., Khanna, S., Roy, S., Boulakia, S.: Privacy issues in scientific workflow prove-
nance. In: Proceedings of the 1st International Workshop on Workflow Approaches to New
Data-centric Science, ACM (2010) 1–6

8. Davidson, S.B., Khanna, S., Panigrahi, D., Roy, S.: Preserving Module Privacy in Workflow
Provenance. CoRR abs/1005.5543 (2010)

9. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., et al.: The open provenance model core specification (v1. 1). Future
Generation Computer Systems (2010)

10. Anand, M., Bowers, S., Ludascher, B.: Provenance browser: Displaying and querying sci-
entific workflow provenance graphs. In: Data Engineering (ICDE), 2010 IEEE 26th Interna-
tional Conference on, IEEE (2010) 1201–1204

11. Dey, S., Zinn, D., Ludäscher, B.: PROPUB: Towards a Declarative Approach for Publishing
Customized, Policy-Aware Provenance. In: Scientific and Statistical Database Management
Conference (to appear). (2011)

12. Moreau, L., Ludäscher, B., Altintas, I., Barga, R., Bowers, S., Callahan, S., Chin, J., Clifford,
B., Cohen, S., Cohen-Boulakia, S., et al.: Special issue: The first provenance challenge.
Concurrency and Computation: Practice and Experience 20(5) (2008) 409–418

13. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N., Miles,
S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Bussche, J.V.: OPM: The Open
Provenance Model Core Specification (v1.1). http://openprovenance.org/ (De-
cember 2009)

14. Anand, M., Bowers, S., McPhillips, T., Ludäscher, B.: Exploring scientific workflow prove-
nance using hybrid queries over nested data and lineage graphs. In: Scientific and Statistical
Database Management, Springer (2009) 237–254

15. Davidson, S., Freire, J.: Provenance and scientific workflows: challenges and opportunities.
In: SIGMOD Conference, Citeseer (2008) 1345–1350

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

121

16. Freire, J., Silva, C., Callahan, S., Santos, E., Scheidegger, C., Vo, H.: Managing rapidly-
evolving scientific workflows. Provenance and Annotation of Data (2006) 10–18

17. Silva, C., Freire, J., Callahan, S.: Provenance for visualizations: Reproducibility and beyond.
Computing in Science & Engineering (2007) 82–89

18. Heinis, T., Alonso, G.: Efficient Lineage Tracking For Scientific Workflows. In: Proceedings
of the 2008 ACM SIGMOD conference. (2008) 1007–1018

19. Anand, M., Bowers, S., Ludäscher, B.: Techniques for efficiently querying scientific work-
flow provenance graphs. In: Proceedings of the 13th International Conference on Extending
Database Technology, ACM (2010) 287–298

20. Biton, O., Cohen-Boulakia, S., Davidson, S.: Zoom* userviews: Querying relevant prove-
nance in workflow systems. In: Proceedings of the 33rd international conference on Very
large data bases, VLDB Endowment (2007) 1366–1369

Repairing Provenance Policy Violations by Inventing Non-Functional Nodes

122

C-Set : a Commutative Replicated Data Type
for Semantic Stores

Khaled Aslan1 and Pascal Molli1 and Hala Skaf-Molli1 and Stephane Weiss2

1 University of Nantes, France
2 INRIA Rennes, France

Abstract. Web 2.0 tools are currently evolving to embrace semantic
web technologies. Blogs, CMS, Wikis, social networks and real-time no-
tifications, integrate ways to provide semantic annotations and therefore
contribute to the linked data and more generally to the semantic web
vision. This evolution generates a lot of semantic datasets of different
qualities, different trust levels and partially replicated.
This raises the issue of managing the consistency among these replicas.
This issue is challenging because semantic data-spaces can be very large,
they can be managed by autonomous participants and the number of
replicas is unknown.
A new class of algorithms called Commutative Replicated Data Type are
emerging for ensuring eventual consistency of highly dynamic content
on P2P networks. In this paper, we define C-Set a CRDT specifically
designed to be integrated in Triple-stores. C-Set allows efficient P2P
synchronisation of an arbitrary number of autonomous semantic stores.

Keywords: scalability, synchronisation, peer-to-peer, consistency, replication

1 Introduction

Web 2.0 tools are currently evolving to embrace semantic web technologies.
Blogs, CMS, Wikis, social networks and real-time notifications, integrate ways
to provide semantic annotations and therefore contribute to the linked data [1]
and more generally to the semantic web vision. This evolution generates a lot
of semantic datasets of different qualities, different trust levels and partially
replicated.

The problem of updating and synchronizing data in the semantic web has
been raised by Berners-Lee in [10]. Efficient synchronization of semantic stores
organized in a peer-to-peer network can leverage problems of scalability and
allows different autonomous participant to collaboratively combine, improve and
enrich semantic datasets.

Synchronizing semantic stores is challenging. Semantic data-spaces can be
very large, they can be managed by autonomous participants and the number
of replicas is unknown, potentially high. Only few replication algorithms can
fulfill these constraints and they all belong to the optimistic replication class

123

of algorithms [9]. An optimistic replication model considers an unknown num-
ber of sites, each site has a copy a shared object. An object can be modified
by applying locally an operation. Next, this operation is broadcasted to other
sites in order to be re-executed. The system is correct if it ensures the eventual
consistency property [5] i.e. all replicas are identical when the system is idle.
Thomas write rule [5] was the first algorithm to ensure eventual consistency in
duplicated databases. However, Thomas write rule requires the knowledge of the
number of participants (in order to provide a safe garbage collection scheme).
This constraint is not compatible with our context.

Recently, a new class of optimistic replication algorithms called CRDTs is
emerging [7,14]. CRDT stands for Commutative Replicated Data Types. CRDTs
propose to define new abstract data type that provides commutative operations.
CRDTs ensure eventual consistency regardless of the order of operations at re-
ception. CRDT has been defined for arrays, linear sequence and tree.

In this paper, we define a specific data type for sets called C-Set that can
be applied for a triple store and we prove that this type ensures eventual con-
sistency. With a traditional set, operations insert/delete do not commute. C-Set
provides commutative insert, delete operations, does not require causal recep-
tion of operation and can leverage some problems of garbage collection. C-Set
is designed to be integrated within a semantic store in order to provide P2P
synchronisation of autonomous semantic store.

The paper is organized as follow: Section 2 presents backgrounds and related
works. Section 3 defines a new CRDT type for set designed for triple stores. Sec-
tion 4 discusses our approach. Section 5 summarizes contributions and presents
future work.

2 Background and related work

Many previous work on replication in semantic P2P systems focused on sharing
RDF resources. They did not enable collaborative working for maintaining RDF
stores. In the context of data sharing, some sites publish their RDF data while
other sites consume this data. So there is no concurrent modifications and/or
operations. While collaborative systems consider a shared object between the
peers. This imply that the peers can modify the object concurrently and then
they can run a consolidation algorithm to ensure the consistency of the shared
object.

Tim Berners-Lee and Dan Connolly proposed an ontology for the distribution
of differences between RDF graphs called Delta [10]. In their approach they rely
on the standard serialization of RDF graphs into text files then running a diff
between the resulted text files. However, the authors do not detail how eventual
consistency can be efficiently reached by their algorithms.

RDFGrowth [12] and Publish/Subscribe Networks [4] focus on semantic data
sharing where only one peer can modify the shared knowledge while others can
read them. However, as it was mentioned earlier, sharing is different from col-
laboration. In sharing, some peers publish data while others can only read these

C-Set : a Commutative Replicated Data Type for Semantic Stores

124

data and concurrent updates are not managed. In collaborative working envi-
ronments, some peers publish data, others can read and write these data and a
synchronization algorithm integrates concurrent updates. Collaborative environ-
ments improve the quality of data, the experience of the collaborative Wikipedia
demonstrates this.

Edutella [6] proposes a RDF-based metadata infrastructure for P2P applica-
tions. It focuses on querying RDF metadata stored in distributed RDF repos-
itories. The objective is providing access to distributed digital educational re-
sources. Edutella distinguishes between two kinds of peers, simple and super
peer. Simple peers provide data resource along with its schema. Super peers are
used for several purposes, including data mediation, integration and query rout-
ing. Edutella proposes a replication service. However, it is not mentioned how
to replicate and synchronize metadata.

RDFSync [11] synchronizes a target RDF graph with a source one. RDF
graphs are decomposed unequivocally into minimal subsets of triples (Minimum
Self-Contained Graphs MSGs) and canonically represented by ordered lists of
the identifiers (hashes) of its composing MSGs. The synchronization algorithm
performs a diff between the source and the target of the ordered list of MSGs.
RDFSync can perform three kinds of synchronization, in the Target Growth Sync
(TGS) the target becomes equal to the merge of both graphs, in the Target Erase
Sync (TES) the target deletes unknown information by the source and finally
in Target Change Sync (TCS) the target becomes equal to the source. Figure 1
shows an example of RDF graph synchronization using RDFSync.

Fig. 1: RDF synchronization using RDFSync

C-Set : a Commutative Replicated Data Type for Semantic Stores

125

RDFPeers [3] is a scalable distributed RDF repository. It is based on a struc-
tured P2P network. To enable faults tolerance, RDFPeers uses partial replication
of RDF data. Every RDF triple is stored at three nodes of the network. However,
it is not explicitly specified what happens in the case of concurrent updates on
copies.

Thomas write rule [5] present techniques by which a number of loosely cou-
pled processes can maintain duplicate copies of a database, despite the unrelia-
bility of their only means of communication. The copies of the database can be
kept consistent. However, in order to remove the old deleted entries ”garbage
collection” they propose the following scheme: each site could notify the other
sites whenever it hears about a deletion. If these notifications are transmitted in
order with the ”normal” sequence of modifications, then upon receipt of such a
notification a site can be sure that the sending site has delivered any outstanding
assignments to the deleted entry, has marked it as deleted, and will not generate
any new assignments to it. This implies the knowledge of all the sites in the
system. This constraint is not compatible with the P2P networks context.

In summary, P2P Semantic Web replication researches focus on knowledge
sharing and querying. No algorithm have been designed for collaborative editing
of RDF graphs. Consequently, they do not take into account concurrent updates
on RDF graphs.

3 C-Set definition

site 1
{}

site 2
{}

site 3
{}

op1 = ins(x)

!!

op2 = ins(x)

""

##

{x} {x} {x}

{x} op3 = del(x)

$$

{}

{} {x}

Fig. 2: A Traditional set counter-exemple

A CRDT is a data structure where all concurrent operations commute, so they
do not require merge algorithms or integration procedure to enforce consistency.
The replicas of a CRDT converge automatically, without complex concurrency
control. Examples of algorithms that implement this data type are Woot [7],

C-Set : a Commutative Replicated Data Type for Semantic Stores

126

TreeDoc [8], Logoot [13] and Logoot-Undo [14]. None of the existing algorithms
handles the set data type.

A set with operations insert(element) and delete(element) is not a CRDT.
The counter-example is presented in figure 2. The example illustrates how three
sites can receive operations op1, op2, op3 in different order. Site 1 executes the
sequence [op1; op2; op3] while Site 3 executes the sequence [op1; op3; op2]. If the
execution of operations does not commute, then eventual consistency is violated
i.e. the set on site 1 is empty while the set on site 3 contains {x}.

3.1 C-Set Data Structure

We want to define a CRDT for sets data type, where each element in this set
corresponds to an RDF triple. We represent the set S of elements as a set
of a couple of (e : element, x : Z). We define on this set four operations :
ins(e : element), del(e : element), rins((e : element, k : Z)) and rdel((e :
element, k : Z)) detailed in the following section.

3.2 C-Set Algorithms

The operation ins(e : element) can be executed locally immediately. It gener-
ates and sends remote insert operation rins((e : element, k : Z)) that is executed
remotely. In our model we give the ins operation precedence over the del oper-
ation. So whenever an ins operation is executed it compensate the effect of all
the previously received del operations.

ins(e : element):
if (∃k ∈ Z : (e, k) ∈ S) then
if (k ≤ 0)

S = (S/{(e, k)}) ∪ {(e, 1)};
send(rins((e, +|k| + 1)));

else if (k > 0)
S = (S/{(e, k)}) ∪ {(e, k + 1)};
send(rins((e, +1)));

endif
endif

else
S = S ∪ {(e, 1)};
send(rins((e, +1)));

endif

Algorithm 1: ins algorithm

rins((e : element, k : Z∗)):
if (∃i ∈ Z : (e, i) ∈ S) then

S = (S/{(e, i)}) ∪ {(e, k + i)};
else
S = S ∪ {(e, k)};

endif

Algorithm 2: rins algorithm

The operation del(e : element) is executed locally. It generates and sends the
remote delete operation rdel((e : element, k : Z∗)) that is executed remotely.

C-Set : a Commutative Replicated Data Type for Semantic Stores

127

del(e : element):
if (∃k ∈ Z : (e, k) ∈ S)

if (k ≤ 0) then
S = (S/{(e, k)}) ∪ {(e, k − 1)};
send(rdel((e,−1)));

else // k>0
S = S/{(e, k)};
send(rdel((e,−k)));

endif
endif

Algorithm 3: del algorithm

rdel((e : element, k : Z∗)):
if (∃i ∈ Z : (e, i) ∈ S)

S = (S/{(e, i)}) ∪ {(e, i + k)};
else

S = S ∪ {(e, +k)};
endif

Algorithm 4: rdel algorithm

Figure 3 shows an execution example of C-Sets. The first execution corre-
sponds to the example presented in figure 2. Site 1 executes sequence [op1; op2; op3]
which in fact executes [(+1)+ (+1)+ (−1)] on the counter associated to x value
in the C-Set. When the same operations are executed in a different order on site
3, the sequence [op1; op3; op2] force the computation of [(+1) + (−1) + (+1)] on
the counter associated to x value in the C-Set. Of course both sites converges.
An alternative execution is also presented in figure 3. This execution illustrates
how the operation op3 can trigger the sending of operation rdel(x,−2).

site 1
{}

site 2
{}

site 3
{}

op1 = ins(x)

!!

op2 = ins(x)

""

##

{(x, +1)} {(x, +1)} {(x, +1)}

{(x, +2)} op3 = del(x)

rdel(x,−1)

$$

{}

{(x, +1)} {(x, +1)}

site 1
{}

site 2
{}

site 3
{}

op1 = ins(x)

!!

op2 = ins(x)

""

%% {(x, +1)}

{(x, +1)} {(x, +1)} {(x, +2)}

{(x, +2)} op3 = del(x)

rdel(x,−2)
&&{} {}

Fig. 3: C-Set : Two convergent executions

The proof that C-Set preserves eventual consistency is straightforward. On
each site, C-Set generates sequence of additions of elements that belong to (Z, +).
As addition in (Z, +) is commutative, C-Set converge.

C-Set : a Commutative Replicated Data Type for Semantic Stores

128

4 Discussions

site 1
{}

site 2
{}

site 3
{}

op1 = ins(x)

'' !!{(x, +1)} {(x, +1)} {(x, +1)}

op2 = del(x)

rdel(−1)
$$

((

op3 = del(x)

rdel(−1)

$$

{} {}

{(x,−1)} {(x,−1)}

Fig. 4: C-Set and Tombstones

C-Sets is a CRDT data type for sets that ensures eventual consistency. However,
as shown in figure 4, C-Set, as the Thomas write rule, relies on tombstones. This
means that a deleted element remains in the store. In the example in figure 4
the final value {(x,−1} is clearly a tombstone. Garbage collecting tombstones
is a challenging issue in a dynamic P2P network as in our context. It requires
each site to have knowledge about the state of all the others sites. Consequently
it makes the synchronisation dependant of the number of sites and requires
procedures to join and leave synchronisation groups.

An interesting property of C-Sets is that tombstones can be removed locally
on one site without communication with others sites when counters associated
to set elements are equal to 0. Tombstones will remain if same elements are
concurrently deleted on several sites which is not the more frequent scenario.
Extensive experimentation is needed to prove the efficiency of this hypothesis.

5 Conclusion and perspectives

In this paper we presented C-Set : a CRDT for sets that ensure eventual con-
sistency. C-Set is designed to be integrated within a semantic store in order
to provide P2P synchronisation of autonomous semantic store. C-Sets is more
efficient than Thomas write rule, especially in managing the delete operations.

Future work will integrate C-Set within an existing semantic store. Next, we
will be able to to evaluate the overhead of C-Sets using real-world semantic web
data such as DBpedia [2].

C-Set : a Commutative Replicated Data Type for Semantic Stores

129

References

1. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems, 4(2):1–22,
January 2009.

2. Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - A crystallization point
for the Web of Data. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(3):154–165, September 2009.

3. Min Cai and Martin Frank. RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network. In Proceedings of the 13th international
conference on World Wide Web, pages 650–657. ACM, 2004.

4. P.A. Chirita, Stratos Idreos, Manolis Koubarakis, and Wolfgang Nejdl. Publish/-
subscribe for rdf-based p2p networks. The Semantic Web: Research and Applica-
tions, pages 182–197, 2004.

5. P. Johnson and R. Thomas. RFC677: The maintenance of duplicate databases.
1976.

6. Wolfgang Nejdl, Boris Wolf, Changtao Qu, and Stefan Decker. EDUTELLA: a
P2P networking infrastructure based on RDF. Proceedings of the, 2002.

7. Gérald Oster, Pascal Urso, Pascal Molli, and Abdessamad Imine. Data Consistency
for P2P Collaborative Editing. In Conference on Computer-Supported Cooperative
Work, 2006.

8. Nuno Preguica, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A Com-
mutative Replicated Data Type for Cooperative Editing. 2009 29th IEEE Interna-
tional Conference on Distributed Computing Systems, pages 395–403, June 2009.

9. Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Surveys,
37(1):42–81, March 2005.

10. Berners-Lee Tim and Connolly Dan. Delta: an ontology for the distribution of
differences between RDF graphs. http://www.w3.org/DesignIssues/Diff, 2004.

11. Giovanni Tummarello, Christian Morbidoni, R. Bachmann-Gmur, and Orri Erling.
RDFSync: efficient remote synchronization of RDF models. Proceedings of the
ISWC/ASWC2007, pages 537–551, 2007.

12. Giovanni Tummarello, Christian Morbidoni, Joakim Petersson, Paolo Puliti, and
F. Piazza. RDFGrowth, a P2P annotation exchange algorithm for scalable Seman-
tic Web applications. The First International Workshop on Peer-to-Peer Knowl-
edge Management, 2004.

13. Stéphane Weiss, Pascal Urso, and Pascal Molli. Logoot : a scalable optimistic
replication algorithm for collaborative editing on p2p networks. In International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2009.

14. Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot-undo: Distributed col-
laborative editing system on p2p networks. IEEE Transactions on Parallel and
Distributed Systems, 21(8), 2010.

C-Set : a Commutative Replicated Data Type for Semantic Stores

130

