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Abstract. Multi-Context Systems (MCS) are instances of a nonmonotonic for-
malism for interlinking heterogeneous knowledge bases in a way such that the
information flow is in equilibrium. Recently, algorithms for evaluating distributed
MCS have been proposed which compute global system models, called equilib-
ria, by local computation and model exchange. Unfortunately, they suffer from
a bottleneck that stems from the way models are exchanged, which limits the
applicability to situations with small information interfaces. To push MCS to more
realistic and practical scenarios, we present a novel algorithm that computes at
most k ≥ 1 models of an MCS using asynchronous communication. Models are
wrapped into packages, and contexts in an MCS continuously stream packages to
generate at most k models at the root of the system. We have implemented this
algorithm in a new solver for distributed MCS, and show promising experimental
results.

1 Introduction

During the last decade, there has been an increasing interest, fueled by the rise of the
world wide web, in interlinking knowledge bases to obtain comprehensive systems
that access, align and integrate distributed information in a modular architecture. Some
prominent examples of such formalisms are MWeb [1] and distributed ontologies in
different flavors [12], which are based on a uniform format of the knowledge bases.

Nonmonotonic multi-context systems (MCS) [5], instead, are a formalism to interlink
heterogeneous knowledge bases, which generalizes the seminal multi-context work of
Giunchiglia, Serafini et al. [10, 13]. Knowledge bases, called contexts, are associated
with belief sets at a high level of abstraction in a logic, which allows to model a range
of common knowledge formats and semantics. The information flow between contexts
is governed by so called bridge rules, which may – like logics in contexts – be non-
monotonic. The semantics of an MCS is given by models (also called equilibria) that
consist of belief sets, one for each context where the information flow is in equilibrium.

For MCS where the contexts are distributed and accessible by semantic interfaces
while the knowledge base is not disclosed (a predominant setting), algorithms to compute
the equilibria by local computation and model exchange were given in [6] and [2]. They
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incorporate advanced decomposition techniques, but still, these algorithms suffer from a
bottleneck that stems from the way in which models are exchanged and that limits the
applicability to situations with small information interfaces.

For example, suppose context C1 accesses information from several other con-
texts C2, . . . , Cm, called its neighbors. Consider a simple setting where the information
flow is acyclic, meaning that none of the neighbors (directly or indirectly) accesses
information from C1. Furthermore, assume that n2, . . . , nm are the numbers of partial
equilibria that exist at the neighbors, respectively. Intuitively, a partial equilibrium at a
context is an equilibrium of the subsystem induced by information access. By the current
approach for distributed evaluation, all the partial equilibria are returned to the parent
context C1.

Before any local model computation can take place at the parent, it needs to join,
i.e., properly combine the partial equilibria obtained from its neighbors. This may result
in n2 × n3 × · · · × nm partial models to be constructed (each one providing a different
input for local model computation) which may not only require considerable computation
time but also exhaust memory resources. If so, then memory is exhausted before local
model computation at C1 has even been initiated, i.e., before any (partial) equilibrium is
obtained.

Note however that, if instead of the above procedure, each neighbor would transfer
back a just a portion of its partial equilibria, then the computation at C1 can avoid such
a memory blow up; in general it is indispensable to trade more computation time, due
to recomputations, for less memory if eventually all partial equilibria at C1 shall be
computed. This is the idea underlying a new streaming evaluation method for distributed
MCS. It is particularly useful when a user is interested in obtaining just some instead
of all answers from the system, but also for other realistic scenarios where the current
evaluation algorithm does not manage to output under resource constraints in practice
any equilibrium at all.

In this paper we pursue the idea sketched above and turn it into a concrete algorithm
for computing partial equilibria of a distributed MCS in a streaming fashion. Its main
features are briefly summarized as follows:
• the algorithm is fully distributed, i.e., instances of its components run at every context

and communicate, thus cooperating at the level of peers;
• upon invocation at a context Ci, the algorithm streams, i.e. computes, k ≥ 1 partial

equilibria at Ci at a time; in particular setting k = 1 allows for consistency checking
of the MCS (sub-)system.
• issuing follow-up invocations one may compute the next k partial equilibria at context

C1 until no further equilibria exist; i.e., this evaluation scheme is complete.
• local buffers can be used for storing and exchanging local models (partial belief states)

at contexts, avoiding the space explosion problem.
We have implemented this algorithm yielding a new solver for distributed MCS, and

report promising experimental results.
To the best of our knowledge, a similar streaming algorithm has neither been de-

veloped for the particular case of computing equilibria of a MCS, nor more generally
for computing models of distributed knowledge bases. Thus, our results are not only of
interest in the setting of heterogeneous MCS, but they are relevant in general for model
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computation and reasoning over distributed (potentially homogeneous) knowledge bases
like e.g. distributed SAT instances.

The rest of the paper is organized as follows. Section 2 recalls some background
on multi-context systems, while basic details on the current DMCS algorithm(s) for
evaluating MCS are summarized in Section 3. The new streaming algorithm is presented
in detail in Section 4 including a discussion on parallelization, and Section 5 reports some
initial experimental results obtained with a corresponding prototype implementation.
Finally, we conclude in Section 6.

2 Multi-Context Systems

We first recall some basic notions of nonmonotonic MCS [5]. For simplicity and in order
to get to the essence of the distributed algorithm, we focus here on a subclass of MCS in
which knowledge bases consist of propositional clause sets (under different semantics).

A logic is a tuple L = (KBL, BSL, ACCL), where
– KBL is a set of admissible knowledge bases, each being a finite set of clauses

h1 ∨ · · · ∨ hk ← b1 ∧ · · · ∧ bn (1)

where all hi and bj are literals (i.e., atoms or negated atoms) over a propositional
signature ΣL;

– BSL is the set of possible belief sets, where a belief set is a satisfiable set of literals;
it is total, if it is maximal under ⊆; and

– ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of acceptable belief sets.
In particular, classical logic results if ACCL(kb) are the total belief sets that satisfy kb as
usual, and Answer Set Programming (ASP) if all hi are positive literals and ACCL(kb)
are the answer sets of kb.

A multi-context system (MCS) M = (C1, . . . , Cn) consists of contexts Ci =
(Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi

is a knowledge base, and bri is a set of Li-bridge rules of the form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . ,not (cm : pm) (2)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck
, 1 ≤ k ≤ m, and kb ∪

{s} ∈ KBi for each kb ∈ KBi.
Informally, bridge rules allow to modify the knowledge base by adding s, depending

on the beliefs in other contexts.

Example 1. Let M = (C1, . . . , Cn) be an MCS such that for a given integer m > 0,
we have n = 2m+1 − 1 contexts, and let ` > 0 be an integer. For i < 2m, a context
Ci = (Li, kbi, bri) of M consists of ASP logics Li,

kbi = {a1
i ∨ · · · ∨ a`

i ← ti} and (3)

bri =
{

ti ← (2i : a1
2i) · · · ti ← (2i : a`

2i)
ti ← (2i + 1 : a1

2i+1) · · · ti ← (2i + 1 : a`
2i+1)

}
,
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and for i ≥ 2m, we let Ci have

kbi = {a1
i ∨ · · · ∨ a`

i ← ti} ∪ {ti} and bri = ∅ . (4)

Intuitively, M is a binary tree-shaped MCS with depth m and ` + 1 is the size of
the alphabet in each context. Fig. 1a shows such an MCS with n = 7 contexts and
depth m = 2; the internal contexts have knowledge bases and bridge rules as in (3),
while the leaf contexts are as in (4). The directed edges show the dependencies of the
bridge rules.

The semantics of an MCS M is defined in terms of particular belief states, which
are tuples S = (S1, . . . , Sn) of belief sets Si ∈ BSi. Intuitively, Si should be a belief
set of the knowledge base kbi; however, also the bridge rules bri must be respected. To
this end, kbi is augmented with the conclusions of all r ∈ bri that are applicable in S.
Formally, for any r of form (2) let head(r) = s and B(r) = {(ck : pk) | 1≤ k≤m}.
We call r applicable in S = (S1, . . . , Sn), if pi ∈Sci

, for 1≤ i≤ j, and pk 6∈Sck
, for

j < k≤m; for any set of bridge rules R, let app(R,S) denote the set of all r ∈ R
applicable in S. Then S is an equilibrium of M , iff for all 1≤ i ≤ n, Si ∈ ACCi(kbi ∪
{head(r) | r ∈ app(bri, S)}).
Example 2. The multi-context system M from Ex. 1 has equilibria S = (S1, . . . , Sn)
with Si = {ak

i , ti}, for 1 ≤ k ≤ `.

Without loss of generality, we assume the signatures Σi of the contexts Ci are
pairwise disjoint, and let Σ =

⋃
i Σi.

Partial Equilibria. For a context Ck, the equilibria of the sub-MCS it generates are of
natural interest, which are partial equilibria of the global MCS [6].

The sub-MCS is generated via recursive belief access. The import neighborhood of a
context Ck in an MCS M = (C1, . . . , Cn) is the set In(k) = {ci | (ci : pi) ∈ B(r), r ∈
brk}, and its import interface is V (k) = {p | (c : p)∈B(r), r ∈ brk}, Moreover, the
import closure IC (k) of Ck is the smallest set I such that (i) k ∈ I and (ii) for all j ∈ I ,
In(j) ⊆ I . and its recursive import interface is V∗(k) = V (k) ∪ {p ∈ V (j) | j ∈
IC (k)}.

Based on the import closure, we define partial equilibria. Let ε /∈
⋃n

i=1 BSi. A
partial belief state of M is a tuple S = (S1, . . . , Sn), such that Si ∈ BSi ∪ {ε}, for
1≤ i≤n; S is a partial equilibrium of M w.r.t. a context Ck iff i ∈ IC (k) implies Si ∈
ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and if i 6∈ IC (k), then Si = ε, for all
1 ≤ i ≤ n.

Example 3. Continuing with Ex. 1, for m = 2 and ` = 3, we get an MCS with seven
contexts M = (C1, . . . , C7). A partial equilibrium of M w.r.t. context C2 is the partial
belief state S = (ε, {a1

2, t2}, ε, {a3
4, t4}, {a2

5, t5}, ε, ε).
If one is only interested in consistency, (partial) equilibria of Ck may be projected

to V ∗(k), hiding all literals outside. In accordance with this only belief sets projected
to V ∗(k) would need to be considered.

For combining partial belief states S = (S1, . . . , Sn) and T = (T1, . . . , Tn), their
join S ./T is given by the partial belief state (U1, . . . , Un), where (i) Ui = Si, if Ti = ε∨
Si = Ti, and (ii) Ui = Ti, if Ti 6= ε ∧ Si = ε, for all 1 ≤ i ≤ n. Here S ./ T is void, if
some Si, Ti are from BSi but different.
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3 DMCS Algorithms

There are two algorithms for computing (partial) equilibria of Multi-Context systems:
(i) DMCS, a basic algorithm that needs explicit cycle-breaking during evaluation [6];
and (ii) DMCSOPT, an algorithm that operates on a pre-processed query plan [2].

Both DMCS and DMCSOPT aim at computing all partial equilibria starting from a
particular context in an MCS. They run independently at each context in an MCS, and
allow to project belief states to a relevant portion of the signature of the import closure.
Upon request, they compute local models based on partial equilibria from neighboring
contexts. The difference between the algorithms is that DMCS has no knowledge about
the dependencies in an MCS and needs to detect cycles during evaluation using a history
of visited contexts, whereas DMCSOPT assumes that there exists an acyclic query plan
that has been created prior to evaluation-time using a decomposition technique based on
biconnected components. Additionally, DMCSOPT includes information in the query
plan to project partial equilibria to a minimum during evaluation. On the other hand,
DMCS needs to get this information as input; this projection information in form of a set
of relevant interface variables cannot be changed while the overall computation proceeds
along the dependencies of the input MCS.

The algorithms use lsolve, an algorithm that completes combined partial equilibria
from neighboring context with local belief sets. Formally, given a partial equilibrium
S, lsolve(S) imports truth values of bridge atoms from neighboring contexts, solves
the local theory, and returns all models. In the next section, we show a new algorithm
that removes the restriction of DMCS and DMCSOPT to compute all partial equilibria
to computing up to k partial equilibria, and if at least k partial equilibria exist, this
algorithm will compute k of them.

4 Streaming Algorithm for DMCS

Given an MCS M , a starting (root) context Cr, and an integer k, we aim at finding
at most k partial equilibria of M w.r.t. Cr in a distributed and streaming way. While
the distributed aspect has been investigated in the DMCS and DMCSOPT algorithms,
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adding the streaming aspect is not easy as one needs to take care of the communication
between contexts in a nontrivial way. In this section, we present our new algorithm
DMCS-STREAMING which allows for gradual streaming of partial equilibria between
contexts. Section 4.1 describes a basic version of the algorithm, which concentrates on
transferring packages of k equilibria with one return message. The system design is
extendable to a parallel version, whose idea is discussed in Section 4.2.

4.1 Basic Streaming Procedure

In DMCSOPT, the reply to a request of a parent contains all partial equilibria from
one context. This means that communication between contexts is synchronous—one
request gets exactly one answer. While this is the easiest way to send solutions, it
is very ineffective with larger MCS instances, as a small increase in the size of the
alphabet may force the creation of many (partial) equilibria, which in turn may exceed
memory limitations. The goal of this work is to develop an algorithm which allows for
asynchronous communication for belief state exchange, i.e., one request for a bounded
number of k (partial) equilibria may result in at most k solutions. This way we can
restrict memory needs and evaluate multi-context systems that could not be handled by
previous algorithms.

The basic idea is as follows: each pair of neighboring contexts can communicate in
multiple rounds, and each request has the effect to receive at most k partial equilibria.
Each communication window of k partial equilibria ranges from the k1-th partial equi-
libria to the k2-th (= k1 + k − 1). A parent context Ci requests from a child context Cj

a pair (k1, k2), and then receives at a future time point a package of at most k partial
equilibria. Receiving ε indicates that Cj has fewer than k1 models.

Important subroutines of the new algorithm DMCS-STREAMING take care of re-
ceiving the requests from parents, receiving and joining answers from neighbors, local
solving and returning results to parents. They are reflected in four components: Handler,
Solver, Output, and Joiner (only active in non-leaf contexts); see Fig. 1b for an archi-
tectural overview.

All components except Handler communicate using message queues: Joiner has
j queues to store partial equilibria from j neighbors, Solver has one queue to hold
joined equilibria from Joiner, and Output has a queue to carry results from Solver. As
our purpose is to bound space usage, each queue has a limit on the number of entries.
When a queue is full (resp., empty), the enqueuing writer (resp., dequeuing reader)
is automatically blocked. Furthermore, getting an element also removes it from the
queue, which makes room for other partial equilibria to be stored in the queue later. This
property frees us from synchronization technicalities.

Algorithms 2 and 3 show how the two main components Solver and Joiner work.
They use the following primitives:

– lsolve(S): works as lsolve in DMCSOPT, but in addition may return only one
answer at a time and be able to tell whether there are models left.

– get first(`1, `2, k): send to each neighbor from c`1 to c`2 a query for the first k partial
equilibria, i.e., k1 = 1 and k2 = k; if all neighbors in this range return some models
then store them in the respective queues and return true; otherwise, return false .
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Algorithm 1: Handler(k1, k2: package range) at Ci

Output.k1 := k1, Output.k2 := k2, Solver.k2 := k2, Joiner.k := k2 − k1 + 1
call Solver

Algorithm 2: Solver() at Ci

Data: Input queue: q, maximal number of models: k2

count := 0
while count < k2 do

(a) if Ci is a leaf then S := ∅
(b) else call Joiner and pop S from q

if S = ε then count := k2

(c) while count < k2 do
pick the next model S? from lsolve(S)
if S? 6= ε then push S? to Output.q and count := count + 1
else count := k2

refresh() and push ε to Output.q

– get next(`, k): pose a query asking for the next k equilibria from neighbor Cc`
;

if Cc`
sends back some models, then store them in the queue q` and return true;

otherwise, return false . Note that this subroutine needs to keep track of which range
has been already asked for to which neighbor by maintaining a set of counters. When
a counter wrt. a neighbor Cc`

is set to value t, then the latest request to Cc`
asks for

the t’th package of k models, i.e., models in the range given by k1 = (t− 1)× k +1
and k2 = t× k. For simplicity, we do not go into further details.

– refresh(): reset all counters and flags of Joiner to their starting states, e.g., first join
to true , all counters to 0.

The process at each context Ci is triggered when a message from a parent arrives at
the Handler. Then Handler notifies Solver to compute up to k2 model, and Output to
collect the ones in the range from k1 to k2 and return them to the parent. Furthermore,
it sets the package size at Joiner to k = k2 − k1 + 1 in case Ci needs to query further
neighbors (cf. Algorithm 1).

When receiving a notification from Handler, Solver first prepares the input for its
local solver. If Ci is a leaf context then the input S simply is the empty set assigned
in Step (a); otherwise, Solver has to trigger Joiner (Step (b)) for input from neighbors.
With input fed from neighbors, the subroutine lsolve is used in Step (c) to compute at
most k2 results and send them to the output queue.

The Joiner, only activated for intermediate contexts as discussed, gathers partial
equilibria from the neighbors in a fixed ordering and stores the joined, consistent input
to a local buffer. It communicates just one input at a time to Solver upon request. The
fixed joining order is guaranteed by always asking the first package of k models from
all neighbors at the beginning in Step (d). In subsequent rounds, we just query the first
neighbor that can return further models (Step (e)). When all neighbors run out of models
in Step (f), the joining process reaches its end and sends ε to Solver.
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Algorithm 3: Joiner() at Ci

Data: Queue q1, . . . , queue qj for In(i) = {c1, . . . , cj}, buffer for partial equilibria: buf ,
flag first join

while true do
if buf is not empty then pop S from buf , push S to Solver.q and return
if first join then

(d) if get first(1, j, k) = false then push ε to Solver.q and return
else first join := false

else
` := 1

(e) while get next(`, k) = false and ` ≤ j do ` := ` + 1
if 1 < ` ≤ j then get first(1, `− 1, k)

(f) else if ` > j then push ε to Solver.q and return

for S1 ∈ q1, . . . , Sj ∈ qj do add S1 ./ · · · ./ Sj to buf

Algorithm 4: Output() at Ci

Data: Input queue: q, starting model: k1, end model: k2

buf := ∅ and count := 0
while count < k1 do

pick an S from Output.q
if S = ε then count := k2 + 1
else count := count + 1

while count < k2 + 1 do
wait for an S from Output.q
if S = ε then count := k2 + 1
else count := count + 1 and add S to buf

if buf is empty then send ε to parent else send content of buf to parent

Note that while proceeding as above guarantees that no models are missed, it can in
general lead to multiple considerations of combinations (inputs to Solver). Using a fixed
size cache might mitigate these effects of recomputation, but since limitless buffering
again quickly exceeds memory limits, recomputation is an unavoidable part of trading
computation time for less memory.

The Output component simply reads from its queue until it receives ε (cf. Algo-
rithm 4). Upon reading, it throws away the first k1 − 1 models and only keeps the ones
from k1 onwards. Eventually, if fewer than k1 models have been returned by Solver,
then Output will return ε to the parent.

Example 4. Consider an instance of the MCS in Example 1 with m = 1, ` = 5, i.e.,
M = (C1, C2, C3). Querying C1 with a package size of k = 1, first causes the query to
be forwarded to C2 in terms of a pair k1 = k2 = 1. As a leaf context, C2 invokes the
local solver and eventually gets five different models. However, it just returns one partial
equilibrium back to C1, e.g., (ε, {a1

2}, ε). Note that t2 is projected away since it does
not appear among the atoms of C2 accessed in bridge rules of C1. The same happens
at C3 and we assume that it returns (ε, ε, {a2

3}) to C1. At the root context C1, the two
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single partial equilibria from its neighbors are consistently combined into (ε, {a1
2}, {a2

3}).
Taking this as an input to the local solving process, C1 can eventually compute 5 answers,
but in fact just returns one of them to the user, e.g., S = ({a1

1, t1}, {a1
2}, {a2

3}).

The following proposition shows the correctness of our algorithm.

Proposition 1. Let M = (C1, . . . , Cn) be an MCS, i ∈ {1, . . . , n} and let k ≥ 1 be
an integer. On input (1, k) to Ci.Handler, Ci.Output returns up to k different partial
equilibria with respect to Ci, and in fact k if at least k such partial equilibria exist.

4.2 Parallelized Streaming

As the reader may have anticipated, the strategy of ignoring up to k1 models and then
collecting the next k is not likely to be the most effective. The reason is that each context
uses only one Solver, which in general has to serve more than one parent, i.e., requests
for different ranges of models of size k. When a new parent context requests models, we
have to refresh the state of Solver and Joiner and redo from scratch. This is unavoidable,
unless a context satisfies the specific property that only one parent can call it.

Another possibility to circumvent this problem is parallelization. The idea is to serve
each parent with a set of the Handler, Joiner, Solver and Output components. In this
respect, the basic interaction between each unit is still as shown in Fig. 1b, with the
notable difference that each component now runs in an individual thread. The significant
change is that Solver does not control Joiner but rather waits at its queue to get new
input for the local solving process. The Joiner independently queries the neighbors,
combines partial equilibria from neighbors, and puts the results into the Solver queue.

The effect is that we do not waste recomputation time for unused models. However, in
practice, unlimited parallelization also faces a similar problem of exhausting resources as
observed in DMCSOPT. While DMCSOPT runs out of memory with instances whose
local theories are large, unlimited parallel instances of the streaming algorithm can
exceed the number of threads/processes that the operating system can support, e.g., in
topologies that allow contexts to reach other context using alternative paths such as the
diamond topology. In such situations, the number of threads generated is exponential in
the number of pairs of connected contexts, which prohibits scaling to large system sizes.

A compromise between the two extreme approaches is to have a bounded parallel
algorithm. The underlying idea is to create a fixed-size pool of multiple threads and
components, and when incoming requests cannot be served with the available resources,
the algorithm continues with the basic streaming procedure, i.e., to share computa-
tional resources (the components in the system) between different parents at the cost of
recomputation and unused models. This approach is targeted for future work.

5 Experimental Results

We present initial experimental results for a SAT-solver based prototype implementation
of our streaming algorithm DMCS-STREAMING written in C++.1 The host system was

1 Available at http://www.kr.tuwien.ac.at/research/systems/dmcs/
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topology / parameter # DMCSOPT DMCS-STREAMING
k = 0 k = 10 k = 100

T1 / (10, 10, 5, 5) 18 1.21 0.24 0.39 6.80
T2 / (10, 10, 5, 5) 308 7.46 0.34 0.27 0.65
T3 / (50, 10, 5, 5) 32 8.98 2.28 3.22 139.83
T4 / (50, 10, 5, 5) 24 5.92 2.27 1.80 156.18
T5 / (100, 10, 5, 5) 16 24.87 9.10 5.43 —
T6 / (100, 10, 5, 5) 4 13.95 6.94 86.26 —

T7 / (10, 40, 20, 20) — — — 0.15 0.76
T8 / (10, 40, 20, 20) — — — 0.14 0.68
T9 / (50, 40, 20, 20) — — — 1.66 8.45
T10 / (50, 40, 20, 20) — — — 1.64 8.04
T11 / (100, 40, 20, 20) — — — 5.04 27.84
T12 / (100, 40, 20, 20) — — — 5.00 26.30

R1 / (10, 10, 5, 5) 12 2.17 0.99 2.44 —
R2 / (10, 10, 5, 5) 16 3.11 3.31 0.17 143.83
R3 / (50, 10, 5, 5) 21 15.49 13.43 — —
R4 / (50, 10, 5, 5) 12 10.30 6.43 — —

R5 / (10, 40, 20, 20) — — — 0.86 6.27
R6 / (10, 40, 20, 20) — — — 0.51 5.66
R7 / (50, 40, 20, 20) — — — 3.06 29.81
R8 / (50, 40, 20, 20) — — — 4.29 43.94

Table 1: Runtime in secs, timeout 180 secs (—)

using two 12-core AMD Opteron 2.30GHz processors with 128GB RAM running Ubuntu
Linux 10.10. We compare the basic version of the algorithm DMCS-STREAMING with
DMCSOPT.

We used clasp 2.0.0 [9] and relsat 2.02 [3] as back-end SAT solvers. Specifically,
all generated instantiations of multi-context systems have contexts with ASP logics.
We use the translation defined in [6] to create SAT instances at contexts Ck, clasp to
compute all models in case of DMCSOPT, and relsat2 to enumerate models in case of
DMCS-STREAMING.

For initial experimentation, we created random MCS instances with fixed topologies
that should resemble the context dependencies of realistic scenarios. We have generated
instances with binary tree (T ) and ring (R) topologies. Binary trees grow balanced, i.e.,
every level is complete except for the last level, which grows from the left-most context.

A parameter setting (n, s, b, r) specifies (i) the number n of contexts, (ii) the local
alphabet size |Σi| = s (each Ci has a random ASP program on s atoms with 2k answer
sets, 0 ≤ k ≤ s/2), (iii) the maximum interface size b (number of atoms exported), and
(iv) the maximum number r of bridge rules per context, each having ≤ 2 body literals.

2 The use of relsat is for technical reasons, and since clasp and relsat use different enumeration
algorithms, the subsequent results are to be considered preliminary.
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Table 1 shows some experimental results for parameter settings (n, 10, 5, 5) and
(n, 40, 20, 20) with system size n ranging from 10 to 100. For each setting, running times
on two instances are reported. Each row Xi (X ∈ {T, R}) displays pure computation
time (no output) for rings (R) and binary trees (T ), where the # columns show the
number of projected partial equilibria computed at C1 (initiated by sending the request
to C1 for the respective algorithms with the optimized query plan mentioned in [2]). With
respect to DMCS-STREAMING, we run the algorithm with three request package sizes,
namely k = {0, 10, 100}. The package size k = 0 amounts to an unbounded package,
which means that the DMCS-STREAMING model exchange strategy is equivalent to
DMCSOPT. For k > 0, we reported the running time until the first k unique models are
returned, or all answers in case the total number of models is smaller than k.

We have observed several improvements. The new implementation appears to be
faster than DMCSOPT when computing all partial equilibria (k = 0). This can be
explained by the fact that in DMCSOPT we call the clasp binary and parse models using
I/O streams, while DMCS-STREAMING tightly integrates relsat into the system, hence
saving a significant amount of time used just for parsing models.

Getting the first k answers also runs faster in general. When we increase the size
of the local theories, DMCSOPT and DMCS-STREAMING with k = 0 are stuck.
However, DMCS-STREAMING can, with a reasonable small package size k, still return
up to k answers in an acceptable time. When the package size increases, it usually
takes longer or even timeouts. This can be explained by recomputation of models when
requesting the next package of k models. We also observed this behavior in the ring
topology with parameter setting (50, 10, 5, 5), where DMCS-STREAMING timed out
with k ∈ {10, 100}.

For the same reason, one would expect that asking for the next packages of k unique
models might take more than linear amount of time compare to the time required to get
the first package.

Comparing the two topologies, observe that rings are cyclic and thus the algorithm
makes guesses for the values of the bridge atoms at the cycle-breaking context, and
eventually checks consistency of the guess with the models computed locally at the same
context. Hence, the system size that our algorithm can evaluate ring topology is smaller
than that for the tree topology, which is acyclic.

6 Conclusion

Our work on computing equilibria for distributed multi-context systems is clearly re-
lated to work on solving constraint satisfaction problems (CSP) and SAT solving in a
distributed setting; Yokoo et al. [14] survey some algorithms for distributed CSP solving,
which are usually developed for a setting where each node (agent) holds exactly one
variable, the constraints are binary, communication is done via messages, and every node
holds constraints in which it is involved. This is also adopted by later works [15, 8] but
can be generalized [14]. The predominant solution method are backtracking algorithms.
In [11], a suite of algorithms was presented for solving distributed SAT (DisSAT), based
on a random assignment and improvement flips to reduce conflicts. However, the algo-
rithms are geared towards finding a single model, and an extension to streaming multiple
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(or all) models is not straightforward; for other works on distributed CSP and SAT, this
is similar. A closer comparison, in which the nature of bridge rules and local solvers as
in our setting is considered, remains to be done.

Very recently, a model streaming algorithm for HEX-programs (which generalize
answer set programs by external information access) has been proposed [7]. It bares some
similarities to the one in this paper, but is rather different. There, monolithic programs
are syntactically decomposed into modules (akin to contexts in MCS) and models are
computed in a modular fashion. However, the algorithm is not fully distributed and
allows exponential space use in components. Furthermore, it has a straightforward
strategy to combine partial models from lower components to produce input for the
upper component.

Currently, we are working on a conflict driven version of model streaming, i.e., in
which clauses (nogoods) are learned from conflicts and exploited to reduce the search
space, and on an enhancement by parallelization. We expect that this and optimizations
tailored for the local solver and context setting (e.g., aspects of privacy) will lead to
further improvements.
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