
Lightweight Communication Platform for
Heterogeneous Multi-context Systems: A

Preliminary Report ?

Vladimír Dziuban, Michal Čertický, Jozef Šiška, and Michal Vince

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava,

Slovakia{dziuban,certicky,siska,vince}@ii.fmph.uniba.sk

Abstract. This paper describes an ongoing implementation of a lightweight
communication platform that uses RESTful TCP/IP requests to transfer
FIPA ACL based messages between agents. The platform is intended for
heterogeneous systems composed of numbers of simple agents as opposed
to usual FIPA implementations. Agents can be written in any language
and can communicate with each other without the need for a central
platform.

1 Introduction

Multi-context systems describe information from different viewpoints (contexts)
and the relationship between them in the form of bridge rules. Heterogeneous
multi-context systems [1] allow different logics or completely different formalisms
to be used in different contexts.

When building truly heterogeneous multi-context systems in a decentralised
fashion, components built on different formalism can be implemented in different
languages and must cooperate and communicate with each other. FIPA [5] de-
fines standards for such interoperability of heterogeneous agents. However most
implementations involve complex, mostly java-based, platforms, usually hosting
multiple agents. To facilitate simpler and more agile development of small agents
in different languages, a more lightweight approach is needed.

We present an ongoing implementation of a de-centralised lightweight com-
munication framework for heterogeneous agents that implements a subset of
FIPA specifications, while allowing simple development of small standalone agents.
Agents in the framework are standalone processes, that communicate using FIPA
ACL messages[2], transported through RESTful[7], peer-to-peer TCP/IP con-
nections.

There is no full featured platform with its associated services. However, the
framework provides a simple agent management system [3] in the form of a

? We acknowledge support from VEGA project of Slovak Ministry of Education
and Slovak Academy of Sciences no. 1/0688/10 and Comenius University grant no.
UK/486/2010.



V. Dziuban et al .

discovery service that allows each agent to identify other agents on the local
network along with the services they provide. This allows creation of systems
consisting of multitude of small heterogeneous agents scattered through the local
network without the need for a central server / registry. Communication with
agents on remote networks or with other FIPA platforms / implementations with
different message transport systems can be achieved through the use of gateway
agents that forward messages and agent information. Implementations in Python
and C++ are available and Java implementation is planned.

Example 1. Consider a heterogeneous multi-context system used to organize
seminars of a research group. It consists of three types of agents:

– Personal Java-based agents running on the mobile phone/PDA of every
group member, providing information about him and his schedule,

– sensoric C++ agents that use webcameras to observe certain rooms at the
university,

– timetable agent that provides access to the university timetable and room
reservations,

– and a logic based scheduling agent (written in Python as a frontend to a
logic based formalism such as an ASP solver.)

Now imagine, that one of the group members wants to organize a meeting with
his colleagues. He simply orders his personal agent to arrange this meeting. This
agent then contacts all the other personal agents, and finds out (using the GPS on
their devices) which of them are currently out of town. If the sufficient number
of them are available, he asks the scheduling agent for the most appropriate
time and place/room for the meeting. The scheduling agent collects information
from the sensoric agents to find out which rooms are empty and also checks if
they aren’t reserved for the next 2 hours. After receiving this information, the
invitation can be sent to all the personal agents of available members of the
group.

The rest of this paper is structured as follows: in the next section we de-
scribe the presented communication platform; the third section describes our
implementation; the fourth section contains a short comparison to other FIPA
platforms; and the last section presents future plans and concluding remarks.

2 Communication Platform

This section describes a lightweight communication platform. Such a platform
consists of agents that can send messages to each other. Agents are usually
standalone processes / programs and can run on different computers. Messages
conform to FIPA ACL specification[2] and are transported through a stateless
TCP/IP connection to the recipient.

Each agent has a globally unique agent name that is used to identify the
agent and a list of services that the agent provides.

ISSN 1613-0073 c© 2011 for the individual papers by the papers’ authors. 40



Title Suppressed Due to Excessive Length

An agent has access to two basic services: discovery service that serves as
a very simple AMS and a message transport service. These are implemented
per process/program and are thus shared between multiple agents running in a
single process.

Discovery service monitors the local network and notifies the agent of the
appearance or disappearance of other agents. It maintains a list of known agents
and their locators.

2.1 Message Transport Service

A transport service with a single protocol is used. The protocol uses RESTful
TCP/IP connections to another agent (not necessarily the final recipient of the
message) to deliver requests. There are two types of requests defined: a POST
request that delivers a single message, or a POLL requests, that ask the other
agent for any pending messages for the connecting agent.

The transport specific address of an agent is an IP address and port tuple and
there are two transport-specific properties: polling mode and level of indirection.

Level of indirection represents how many times would the message be for-
warded, would it be sent to this address. Each agent that acts as a proxy/gateway
for another increases this number when it announces the target agent on a local
network. If the discovery service reports multiple addresses for a single agent, one
of those with lowest level of indirection should be used when sending messages.

If the polling mode is enabled for an address, then the message should not
be send, but kept in a queue at the sending agent until the receiving agent asks
for messages with the POLL request or the message expires (either through a
pre-set timeout or because of a size limit of the queue.)

This can be used by agents that don’t have a stable or accessible address on
the network, such as on a mobile device that roams between different network
connections. Such an agent would normally register with a gateway agent, which
would announce it on the local network, collecting all messages and delivering
them later through the connection created by the first agent’s POLL requests.

2.2 Gateway agents

A discovery service, as described in the previous section, can reliably work only
on a local network. Similarly the message transport can deliver messages only
to agents on the local network or with a publicly accessible IP address (e.g. not
behind NAT.) These restrictions can be worked around by the introduction of
special gateway agents.

A gateway agent (GA) is a special agent that acts as a proxy for agents from
other networks. GA maintains a list of registered remote agents. When a remote
agent registers, GA announces remote agent’s presence on the local network with
its own transport specific address. Thus any message sent to the remote agent
from the local network is sent to GA, which looks up the remote agent in its
database and delivers (forwards) it.

There are two basic ways to use gateway agents:

ISSN 1613-0073 c© 2011 for the individual papers by the papers’ authors. 41



V. Dziuban et al .

– remote agents register directly with gateway agents
– a bridge agent registers all agents on his local network with a gateway agent

on a remote network (and vice versa).

Similarly, a gateway agent that acts as a bridge to other message transport
systems can be created, thus enabling interoperability with other FIPA compli-
ant platforms.

3 Implementation

This section presents the implementation of the communication platform.
The aim of our implementation is a simple and lightweight framework, that

can be used also on devices with little memory and computational power, e.g.
cell pohones, embedded devices, etc.

Our architecture is currently implemented in Python and C++, which were
selected for their simplicity and speed respectively. In the future we plan to
provide an implementation in JAVA, as a language most commonly associated
with multi-agent system development, that might encourage further development
of heterogenous agent applications. In the current implementation, single or
multiple instances of the agent can be used per process, being served by the
same discovery and message transport service

In the discovery service, multicast protocol (there are also plans to add
Avahi/Zeroconf support) is used to announce the arrival of a new agent to the
network. Following registration routine is then handled by message transport ser-
vice by sending a request message in ACL to the new agent and inform message
with agent’s properties as an answer to this request.

Message transport service is responsible for marshalling and demarshalling
messages, sending and receiving over TCP/IP protocol and posting them to the
main loop of the corresponding agent.

Agent’s mainloop is event driven, with four main types of events:

– agentAdded triggered when a new agent registers a service
– agentRemoved triggered when the agent leaves the network
– agentChanged triggered when the agent changes his serivces
– messageReceived triggered when message is reveived.

MessageReceived is then further marshalled by communicative act[4] to Infor-
mMessage, RequestMessage, QueryIfMessage, etc or to SystemMessage.

We are currently working on the implementation of gateway agents.

4 Comparison to Other Work

There are many different FIPA compliant frameworks, most of them are im-
plemented in JAVA and their platforms offer many services. This makes them
computationally and memory intensive, therefore running them on small devices
with little memory and slow processors is very difficult, often even impossible.

ISSN 1613-0073 c© 2011 for the individual papers by the papers’ authors. 42



Title Suppressed Due to Excessive Length

Our solution does not implement agent platform or platform services. The
latter can be however implemented in form of standalone agents. This approach
is needed to ensure, that agents are more lightweight and can be deployed easily
and with as few preliminary arrangements as possible.

SPADE[8, 6] might be an example of a more lightweight approach, although
SPADE agents run on a platform with standard FIPA AMS and DF components.
It is written in Python and uses XMPP protocol for message transportation.
Each agent is a client with a registered Jabber ID and all communication is
conducted by sending Jabber messages that contain FIPA ACL expressions.
The platform however requires a central jabber/XMPP server.

5 Conclusion and Future Work

In this paper we have presented a lightweight communication platform designed
especially to allow easy implementation of heterogeneous multi-context systems.
The platform uses FIPA ACL messages transported through simple RESTful
peer to peer TCP/IP connections. Each agent also has a discovery service that
acts as a simple agent management system.

The platform also allows the creation of gateway agents that can be used to
interconnect agents from different networks or based on other FIPA platforms
using different message transports.

Each agent keeps a local agent directory via his discovery service, which might
not scale well for larger systems. Gateway agents could take the role of directory
services, especially since they can be dynamically created/registered. Ordinary
agents will use local network discovery services only to find gateway agents and
use them as a full featured agent management system/directory facilitator.

A possible improvement of the dynamic aspects of the platform is the abil-
ity to preserve its structural integrity by automatic reorganization of local-area
components. Basic idea behind this is making every agent capable of starting a
gateway service whenever one is needed (i.e. when the number of local gateway
agents is critically low) and obtaining the needed database from other remaining
local gateway agents. This makes it possible to maintain the connectivity with
external networks or platforms even after the loss of several gateway agents.

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context sys-
tems. In: AAAI. pp. 385–390. AAAI Press (2007)

2. Foundation for Intelligent Physical Agents: FIPA ACL Message Structure Specifi-
cation. http://www.fipa.org/specs/fipa00061/index.html (2000)

3. Foundation for Intelligent Physical Agents: FIPA Agent Management Specification.
http://www.fipa.org/specs/fipa00023/index.html (2000)

4. Foundation for Intelligent Physical Agents: FIPA Communicative Act Library Spec-
ification. http://www.fipa.org/specs/fipa00037/index.html (2000)

5. Foundation for Intelligent Physical Agents: FIPA Standard Specification.
http://www.fipa.org/repository/standardspecs.html (2000)

ISSN 1613-0073 c© 2011 for the individual papers by the papers’ authors. 43



V. Dziuban et al .

6. Gregori, M.E., Cámara, J.P., Bada, G.A.: A jabber-based multi-agent system plat-
form. In: Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems. pp. 1282–1284. AAMAS ’06, ACM, New York, NY,
USA (2006), http://doi.acm.org/10.1145/1160633.1160866

7. Representational state transfer.
http://en.wikipedia.org/wiki/Representational_State_Transfer

8. Spade2: Smart python agent development environment.
http://code.google.com/p/spade2/

ISSN 1613-0073 c© 2011 for the individual papers by the papers’ authors. 44


