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Preface

Context interpretation and context-based reasoning are key factors in the development
of intelligent autonomous systems in a variety of applications. The ability to repre-
sent contextual factors, interpret them and combine them with other sources of knowl-
edge are some of the challenges to enable intelligent systems achieve correct behavior.
Much work has been done in application areas that make use of contextual information,
such as pervasive computing, logic-based sensor fusion and data integration, distributed
problem solving and societal issues in Multi-Agent Systems. As well, theoretical foun-
dations for context-based reasoning have been studied.

However, there is still a great deal to do in context modeling, since generic con-
text models for context-aware application development need to be further explored, as
does the role of context reasoning in particular regarding distributed evaluation and in
conjunction with more recently emerging areas such as ontologies, including Semantic
Web data, social features and reasoning about mental states, as well as approaches to
belief change.

Context-dependent data can arise from different sources; for example it may be
gathered by sensors or collected from different knowledge sources in different formats.
The incompleteness and heterogeneous nature of such data and the need for state-based
context interpretation in dynamic systems suggest that non-monotonic reasoning tech-
niques could be a powerful tool for effective context-dependent reasoning. Since in
many applications the data stems from distributed sources, distributed reasoning mech-
anisms are a highly relevant subject of research. Likewise, declarative approaches to
societal reasoning or agent coordination may provide the backbone for contextual rea-
soning in various application domains. Given the increasing interest in hybrid knowl-
edge representation formalisms as basis of the Semantic Web, it is also very interesting
to consider proposals that assume hybrid formalisms combining Description Logics
and Logic Programming as the basic representation framework for reasoning with (dis-
tributed) contexts.

Log-IC 2011 provided a forum for researchers investigating context-aware applica-
tions and context-based or distributed reasoning to share and compare their views on the
efficacy of different context representation and context interpretation frameworks. Like
the first Log-IC workshop (in Potsdam, 2009), it was held in conjunction with LPNMR
(organized in Vancouver, Canada, May 16-19, 2011) with the additional advantage of
reaching out to the logic programming community, facilitating collaboration between
different formalisms for context-based reasoning.

Besides regular and short papers accepted for presentation, the workshop program
consisted of invited talks by Pedro Cabalar (Corunna University, Spain), Thomas Eiter
(TU Wien, Austria), and Torsten Schaub (University of Potsdam, Germany). These pro-
ceedings contain abstracts of the invited talks and the four papers that were accepted for
publication by our Programme Committee. Acceptance was based on a blind review-
ing process where every submission had been evaluated by three reviewers. Research



topics covered by contributions in this volume include various aspects of context-based
reasoning, for instance privacy preservation, model streaming, and inconsistency man-
agement, as well as issues of inter-context communication.

The organizers wish to thank the all the authors who submitted papers, our invited
speakers, the members of the Programme Committee, the reviewers, all participants
and everyone who contributed to the success of this workshop. We are also grateful to
the LPNMR local Organization Chair Aaron Hunter and the people of EasyChair for
making our lives easier in organizing the workshop.

May 2011 Alessandra Mileo
Michael Fink

Organizers
Log-IC 2011
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Temporal Equilibrium Logic?

Pedro Cabalar

Department of Computer Science
University of Corunna (Spain)

cabalar@udc.es

Abstract. This talk introduces the Temporal Equilibrium Logic, a combination
of standard Linear Temporal Logic with a formalism called Equilibrium Logic,
used to to characterise logic programming under the answer set semantics. The
talk will explain the basic syntax and semantics together with some elementary
properties and recent results. Some motivating examples will show the potential
utility of nonmonotonic temporal reasoning for different application scenarios like
action domains or context evolution.

Short Biography. Pedro Cabalar is an associate professor of the Department
of Computer Science at the University of Corunna, Spain, and organizes the
MSc and PhD degrees in Computing research offered by that department. He
graduated in 1993 in Computer Science in the Politechnic University of Madrid and
received his PhD degree from the University of Corunna in 2001, on the topic of
causality in action domains. His research is mostly related to logical approaches for
Knowledge Representation in Artificial Intelligence, being particularly interested
in Nonmonotonic Reasoning and Logic Programming under the Answer Set
semantics. He has both published and actively participated as Program Committee
or reviewer in main conferences (ICLP, LPNMR, KR, AAAI, ECAI, JELIA),
journals (TPLP, AIJ, AMAI) and specialized workshops (NMR, ASP, ASPOCP)
of these areas. He has also conducted several research projects in Answer Set
Programming, in coordination with other groups in Spain.

? I am especially grateful to David Pearce, Agustı́n Valverde, Felicidad Aguado, Gilberto Pérez,
Conchi Vidal and Martı́n Diéguez for their direct implication in many of the results related to
this talk, and to the workshop organisers Alessandra Mileo and Michael Fink for their kind
invitation.
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Nonmonotonic Multi-Context Systems in Dynamic
Environments?

Thomas Eiter

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

eiter@kr.tuwien.ac.at

Abstract. Multi-context systems (MCS) have been developed as a means for
interlinking stand-alone knowledge bases, called contexts, via bridge rules for
information exchange. Expressive MCS can host heterogeneous components with
different (possibly nonmonotonic) semantics, and allow to capture a range of
application logics, providing a versatile framework for interlinking heterogenous
knowledge bases. A underlying assumption of MCS is, however, that the under-
lying collection of knowledge bases and their interlinkage is fixed. This hinders,
however, to usage of MCS in an open or dynamic environment, where the available
knowledge bases might change. To improve on this aspect, recent work at TU
Wien developed Dynamic MCS, which consist of schematic contexts where part
of the information interlinkage can remain open at design time; a concrete linkage
is established by a configuration step at run time. In this talk, we present dynamic
MCS, methods for distributed configuration, and some results of an experimental
implementation.

Short Biography. Thomas Eiter is a full professor (since 1998) in the Faculty of
Informatics at Vienna University of Technology (TU Wien), Austria, where he
leads the Knowledge Based Systems Group. His current research interests include
knowledge representation and reasoning, logic programming, complexity in AI,
knowledge-based agents, database foundations, and logic in computer science. He
serves on the boards of several international journals and program committees in
his fields (e.g., co-chair of KR 2012). He is a Fellow of the European Coordinating
Committee for Artificial Intelligence (ECCAI), and a Corresponding Member of
the Austrian Academy of Sciences.

? This research is partially supported by Austrian Science Fund (FWF) grant P20841, Vienna
Science and Technology Fund (WWTF) grant ICT08-020, and the FP7 ICT Project Ontorule
(FP7 231875).
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Knowledge-intensive Stream Reasoning

Roberto Bisiani2, Martin Gebser3, Holger Jost3, Davide Merico2, Alessandra Mileo1,
Philippe Obermeier1, Orkunt Sabuncu3, and Torsten Schaub3

1 DERI, Gallway
2 University of Milan-Bicocca

3 University of Potsdam
torsten@cs.uni-potsdam.de

Abstract. Nonmonotonic reasoning is context-dependent [1]. For instance, Reiter-
style defaults capture patterns of inference of the form “in the absence of informa-
tion to the contrary conclude” [2]. Thus, conclusions are tentative, and they may
become retracted in view of further information (or changing contexts). In other
words, conclusions are context-dependent and contexts change over time. Unlike
this, today’s ASP systems focus on problem solving and thus disregard changing
contexts.
On the other hand, there is a the practically highly significant area of stream
processing (or stream reasoning) that lacks complex reasoning tasks [3]. Given
that a Data Stream may be regarded as a Changing Context, stream reasoning
constitutes a highly promising application area of Nonmonotonic Reasoning and
in particular it’s computational embodiment, viz. Answer Set Programming.
To underpin this claim, we report upon an extensive work on indoor position esti-
mation [4]. Although there are well established quantitative methods in robotics
and neighboring fields for addressing this problems, they lack knowledge repre-
sentation and reasoning capacities. Such capabilities are not only useful in dealing
with heterogeneous and incomplete information but moreover they allow for a
better inclusion of semantic information and more general homecare and patient-
related knowledge. We address this problem and investigate how state-of-the-art
localization and tracking methods can be combined with Answer Set Program-
ming. We report upon a case-study and provide a first experimental evaluation
of knowledge-based position estimation both in a simulated as well as in a real
setting.
Moreover, we illustrate by means of the problem of Online Job Scheduling a new
reactive approach to Answer Set Programming, introduced in [5]. This approach
aims at reasoning about real-time dynamic systems running online in changing
environments. Moreover, we decsribe the first genuine implementation of a reactive
ASP solver, oclingo, freely available at http://potassco.sourceforge.net/labs.html.

This is joint work with Roberto Bisiani, Martin Gebser, Holger Jost, Davide
Merico, Alessandra Mileo, Philippe Obermeier, and Orkunt Sabuncu.

Speaker’s Short Biography. Torsten Schaub received his diploma and disserta-
tion in informatics in 1990 and 1992, respectively, from the Technical University
of Darmstadt, Germany. He received his habilitation in informatics in 1995 from
the University of Rennes I, France. From 1990 to 1993 he was a Researcher at the



Technical University at Darmstadt. From 1993 to 1995, he was a Research Asso-
ciate at IRISA/INRIA at Rennes. From 1995 to 1997, he was University Professor
at the University of Angers. At Angers he founded the research group FLUX
dealing with the automatisation of reasoning from incomplete, contradictory, and
evolutive information. Since 1997, he is University Professor for knowledge pro-
cessing and information systems at the University of Potsdam. In 1999, he became
Adjunct Professor at the School of Computing Science at Simon Fraser Univer-
sity, Canada; and since 2006 he is also an Adjunct Professor in the Institute for
Integrated and Intelligent Systems at Griffiths University, Australia. His research
interests range from the theoretic foundations to the practical implementation
of methods for reasoning from incomplete and/or inconsistent information, in
particular Answer set programming.

References

1. Marek, V., Truszczyński, M.: Nonmonotonic logic: context-dependent reasoning. Artifical
Intelligence. Springer-Verlag (1993)

2. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980) 81–132
3. Ceri, S., Daniel, F., Matera, M., Raffio, A.: Providing flexible process support to project-

centered learning. IEEE Transactions on Knowledge and Data Engineering 21(6) (2009)
894–909

4. Mileo, A., Schaub, T., Merico, D., Bisiani, R.: Knowledge-based multi-criteria optimization
to support indoor positioning. Annals of Mathematics and Artificial Intelligence (2011) To
appear.

5. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In
Delgrande, J., Faber, W., eds.: Proceedings of the Eleventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’11). Volume 6645 of Lecture Notes in
Artificial Intelligence., Springer-Verlag (2011) 54–66

T. Schaub et al.
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Model Streaming for
Distributed Multi-Context Systems?

Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Multi-Context Systems (MCS) are instances of a nonmonotonic for-
malism for interlinking heterogeneous knowledge bases in a way such that the
information flow is in equilibrium. Recently, algorithms for evaluating distributed
MCS have been proposed which compute global system models, called equilib-
ria, by local computation and model exchange. Unfortunately, they suffer from
a bottleneck that stems from the way models are exchanged, which limits the
applicability to situations with small information interfaces. To push MCS to more
realistic and practical scenarios, we present a novel algorithm that computes at
most k ≥ 1 models of an MCS using asynchronous communication. Models are
wrapped into packages, and contexts in an MCS continuously stream packages to
generate at most k models at the root of the system. We have implemented this
algorithm in a new solver for distributed MCS, and show promising experimental
results.

1 Introduction

During the last decade, there has been an increasing interest, fueled by the rise of the
world wide web, in interlinking knowledge bases to obtain comprehensive systems
that access, align and integrate distributed information in a modular architecture. Some
prominent examples of such formalisms are MWeb [1] and distributed ontologies in
different flavors [12], which are based on a uniform format of the knowledge bases.

Nonmonotonic multi-context systems (MCS) [5], instead, are a formalism to interlink
heterogeneous knowledge bases, which generalizes the seminal multi-context work of
Giunchiglia, Serafini et al. [10, 13]. Knowledge bases, called contexts, are associated
with belief sets at a high level of abstraction in a logic, which allows to model a range
of common knowledge formats and semantics. The information flow between contexts
is governed by so called bridge rules, which may – like logics in contexts – be non-
monotonic. The semantics of an MCS is given by models (also called equilibria) that
consist of belief sets, one for each context where the information flow is in equilibrium.

For MCS where the contexts are distributed and accessible by semantic interfaces
while the knowledge base is not disclosed (a predominant setting), algorithms to compute
the equilibria by local computation and model exchange were given in [6] and [2]. They

? This research has been supported by the Austrian Science Fund (FWF) project P20841 and by
the Vienna Science and Technology Fund (WWTF) project ICT 08-020.



incorporate advanced decomposition techniques, but still, these algorithms suffer from a
bottleneck that stems from the way in which models are exchanged and that limits the
applicability to situations with small information interfaces.

For example, suppose context C1 accesses information from several other con-
texts C2, . . . , Cm, called its neighbors. Consider a simple setting where the information
flow is acyclic, meaning that none of the neighbors (directly or indirectly) accesses
information from C1. Furthermore, assume that n2, . . . , nm are the numbers of partial
equilibria that exist at the neighbors, respectively. Intuitively, a partial equilibrium at a
context is an equilibrium of the subsystem induced by information access. By the current
approach for distributed evaluation, all the partial equilibria are returned to the parent
context C1.

Before any local model computation can take place at the parent, it needs to join,
i.e., properly combine the partial equilibria obtained from its neighbors. This may result
in n2 × n3 × · · · × nm partial models to be constructed (each one providing a different
input for local model computation) which may not only require considerable computation
time but also exhaust memory resources. If so, then memory is exhausted before local
model computation at C1 has even been initiated, i.e., before any (partial) equilibrium is
obtained.

Note however that, if instead of the above procedure, each neighbor would transfer
back a just a portion of its partial equilibria, then the computation at C1 can avoid such
a memory blow up; in general it is indispensable to trade more computation time, due
to recomputations, for less memory if eventually all partial equilibria at C1 shall be
computed. This is the idea underlying a new streaming evaluation method for distributed
MCS. It is particularly useful when a user is interested in obtaining just some instead
of all answers from the system, but also for other realistic scenarios where the current
evaluation algorithm does not manage to output under resource constraints in practice
any equilibrium at all.

In this paper we pursue the idea sketched above and turn it into a concrete algorithm
for computing partial equilibria of a distributed MCS in a streaming fashion. Its main
features are briefly summarized as follows:
• the algorithm is fully distributed, i.e., instances of its components run at every context

and communicate, thus cooperating at the level of peers;
• upon invocation at a context Ci, the algorithm streams, i.e. computes, k ≥ 1 partial

equilibria at Ci at a time; in particular setting k = 1 allows for consistency checking
of the MCS (sub-)system.
• issuing follow-up invocations one may compute the next k partial equilibria at context

C1 until no further equilibria exist; i.e., this evaluation scheme is complete.
• local buffers can be used for storing and exchanging local models (partial belief states)

at contexts, avoiding the space explosion problem.
We have implemented this algorithm yielding a new solver for distributed MCS, and

report promising experimental results.
To the best of our knowledge, a similar streaming algorithm has neither been de-

veloped for the particular case of computing equilibria of a MCS, nor more generally
for computing models of distributed knowledge bases. Thus, our results are not only of
interest in the setting of heterogeneous MCS, but they are relevant in general for model

M. Dao-Tran et al.
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computation and reasoning over distributed (potentially homogeneous) knowledge bases
like e.g. distributed SAT instances.

The rest of the paper is organized as follows. Section 2 recalls some background
on multi-context systems, while basic details on the current DMCS algorithm(s) for
evaluating MCS are summarized in Section 3. The new streaming algorithm is presented
in detail in Section 4 including a discussion on parallelization, and Section 5 reports some
initial experimental results obtained with a corresponding prototype implementation.
Finally, we conclude in Section 6.

2 Multi-Context Systems

We first recall some basic notions of nonmonotonic MCS [5]. For simplicity and in order
to get to the essence of the distributed algorithm, we focus here on a subclass of MCS in
which knowledge bases consist of propositional clause sets (under different semantics).

A logic is a tuple L = (KBL, BSL, ACCL), where
– KBL is a set of admissible knowledge bases, each being a finite set of clauses

h1 ∨ · · · ∨ hk ← b1 ∧ · · · ∧ bn (1)

where all hi and bj are literals (i.e., atoms or negated atoms) over a propositional
signature ΣL;

– BSL is the set of possible belief sets, where a belief set is a satisfiable set of literals;
it is total, if it is maximal under ⊆; and

– ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of acceptable belief sets.
In particular, classical logic results if ACCL(kb) are the total belief sets that satisfy kb as
usual, and Answer Set Programming (ASP) if all hi are positive literals and ACCL(kb)
are the answer sets of kb.

A multi-context system (MCS) M = (C1, . . . , Cn) consists of contexts Ci =
(Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi

is a knowledge base, and bri is a set of Li-bridge rules of the form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . ,not (cm : pm) (2)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck
, 1 ≤ k ≤ m, and kb ∪

{s} ∈ KBi for each kb ∈ KBi.
Informally, bridge rules allow to modify the knowledge base by adding s, depending

on the beliefs in other contexts.

Example 1. Let M = (C1, . . . , Cn) be an MCS such that for a given integer m > 0,
we have n = 2m+1 − 1 contexts, and let ` > 0 be an integer. For i < 2m, a context
Ci = (Li, kbi, bri) of M consists of ASP logics Li,

kbi = {a1
i ∨ · · · ∨ a`

i ← ti} and (3)

bri =
{

ti ← (2i : a1
2i) · · · ti ← (2i : a`

2i)
ti ← (2i + 1 : a1

2i+1) · · · ti ← (2i + 1 : a`
2i+1)

}
,

Model Streaming for Distributed Multi-Context Systems
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and for i ≥ 2m, we let Ci have

kbi = {a1
i ∨ · · · ∨ a`

i ← ti} ∪ {ti} and bri = ∅ . (4)

Intuitively, M is a binary tree-shaped MCS with depth m and ` + 1 is the size of
the alphabet in each context. Fig. 1a shows such an MCS with n = 7 contexts and
depth m = 2; the internal contexts have knowledge bases and bridge rules as in (3),
while the leaf contexts are as in (4). The directed edges show the dependencies of the
bridge rules.

The semantics of an MCS M is defined in terms of particular belief states, which
are tuples S = (S1, . . . , Sn) of belief sets Si ∈ BSi. Intuitively, Si should be a belief
set of the knowledge base kbi; however, also the bridge rules bri must be respected. To
this end, kbi is augmented with the conclusions of all r ∈ bri that are applicable in S.
Formally, for any r of form (2) let head(r) = s and B(r) = {(ck : pk) | 1≤ k≤m}.
We call r applicable in S = (S1, . . . , Sn), if pi ∈Sci

, for 1≤ i≤ j, and pk 6∈Sck
, for

j < k≤m; for any set of bridge rules R, let app(R,S) denote the set of all r ∈ R
applicable in S. Then S is an equilibrium of M , iff for all 1≤ i ≤ n, Si ∈ ACCi(kbi ∪
{head(r) | r ∈ app(bri, S)}).
Example 2. The multi-context system M from Ex. 1 has equilibria S = (S1, . . . , Sn)
with Si = {ak

i , ti}, for 1 ≤ k ≤ `.

Without loss of generality, we assume the signatures Σi of the contexts Ci are
pairwise disjoint, and let Σ =

⋃
i Σi.

Partial Equilibria. For a context Ck, the equilibria of the sub-MCS it generates are of
natural interest, which are partial equilibria of the global MCS [6].

The sub-MCS is generated via recursive belief access. The import neighborhood of a
context Ck in an MCS M = (C1, . . . , Cn) is the set In(k) = {ci | (ci : pi) ∈ B(r), r ∈
brk}, and its import interface is V (k) = {p | (c : p)∈B(r), r ∈ brk}, Moreover, the
import closure IC (k) of Ck is the smallest set I such that (i) k ∈ I and (ii) for all j ∈ I ,
In(j) ⊆ I . and its recursive import interface is V∗(k) = V (k) ∪ {p ∈ V (j) | j ∈
IC (k)}.

Based on the import closure, we define partial equilibria. Let ε /∈ ⋃n
i=1 BSi. A

partial belief state of M is a tuple S = (S1, . . . , Sn), such that Si ∈ BSi ∪ {ε}, for
1≤ i≤n; S is a partial equilibrium of M w.r.t. a context Ck iff i ∈ IC (k) implies Si ∈
ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and if i 6∈ IC (k), then Si = ε, for all
1 ≤ i ≤ n.

Example 3. Continuing with Ex. 1, for m = 2 and ` = 3, we get an MCS with seven
contexts M = (C1, . . . , C7). A partial equilibrium of M w.r.t. context C2 is the partial
belief state S = (ε, {a1

2, t2}, ε, {a3
4, t4}, {a2

5, t5}, ε, ε).
If one is only interested in consistency, (partial) equilibria of Ck may be projected

to V ∗(k), hiding all literals outside. In accordance with this only belief sets projected
to V ∗(k) would need to be considered.

For combining partial belief states S = (S1, . . . , Sn) and T = (T1, . . . , Tn), their
join S ./T is given by the partial belief state (U1, . . . , Un), where (i) Ui = Si, if Ti = ε∨
Si = Ti, and (ii) Ui = Ti, if Ti 6= ε ∧ Si = ε, for all 1 ≤ i ≤ n. Here S ./ T is void, if
some Si, Ti are from BSi but different.

M. Dao-Tran et al.
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3 DMCS Algorithms

There are two algorithms for computing (partial) equilibria of Multi-Context systems:
(i) DMCS, a basic algorithm that needs explicit cycle-breaking during evaluation [6];
and (ii) DMCSOPT, an algorithm that operates on a pre-processed query plan [2].

Both DMCS and DMCSOPT aim at computing all partial equilibria starting from a
particular context in an MCS. They run independently at each context in an MCS, and
allow to project belief states to a relevant portion of the signature of the import closure.
Upon request, they compute local models based on partial equilibria from neighboring
contexts. The difference between the algorithms is that DMCS has no knowledge about
the dependencies in an MCS and needs to detect cycles during evaluation using a history
of visited contexts, whereas DMCSOPT assumes that there exists an acyclic query plan
that has been created prior to evaluation-time using a decomposition technique based on
biconnected components. Additionally, DMCSOPT includes information in the query
plan to project partial equilibria to a minimum during evaluation. On the other hand,
DMCS needs to get this information as input; this projection information in form of a set
of relevant interface variables cannot be changed while the overall computation proceeds
along the dependencies of the input MCS.

The algorithms use lsolve, an algorithm that completes combined partial equilibria
from neighboring context with local belief sets. Formally, given a partial equilibrium
S, lsolve(S) imports truth values of bridge atoms from neighboring contexts, solves
the local theory, and returns all models. In the next section, we show a new algorithm
that removes the restriction of DMCS and DMCSOPT to compute all partial equilibria
to computing up to k partial equilibria, and if at least k partial equilibria exist, this
algorithm will compute k of them.

4 Streaming Algorithm for DMCS

Given an MCS M , a starting (root) context Cr, and an integer k, we aim at finding
at most k partial equilibria of M w.r.t. Cr in a distributed and streaming way. While
the distributed aspect has been investigated in the DMCS and DMCSOPT algorithms,
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adding the streaming aspect is not easy as one needs to take care of the communication
between contexts in a nontrivial way. In this section, we present our new algorithm
DMCS-STREAMING which allows for gradual streaming of partial equilibria between
contexts. Section 4.1 describes a basic version of the algorithm, which concentrates on
transferring packages of k equilibria with one return message. The system design is
extendable to a parallel version, whose idea is discussed in Section 4.2.

4.1 Basic Streaming Procedure

In DMCSOPT, the reply to a request of a parent contains all partial equilibria from
one context. This means that communication between contexts is synchronous—one
request gets exactly one answer. While this is the easiest way to send solutions, it
is very ineffective with larger MCS instances, as a small increase in the size of the
alphabet may force the creation of many (partial) equilibria, which in turn may exceed
memory limitations. The goal of this work is to develop an algorithm which allows for
asynchronous communication for belief state exchange, i.e., one request for a bounded
number of k (partial) equilibria may result in at most k solutions. This way we can
restrict memory needs and evaluate multi-context systems that could not be handled by
previous algorithms.

The basic idea is as follows: each pair of neighboring contexts can communicate in
multiple rounds, and each request has the effect to receive at most k partial equilibria.
Each communication window of k partial equilibria ranges from the k1-th partial equi-
libria to the k2-th (= k1 + k − 1). A parent context Ci requests from a child context Cj

a pair (k1, k2), and then receives at a future time point a package of at most k partial
equilibria. Receiving ε indicates that Cj has fewer than k1 models.

Important subroutines of the new algorithm DMCS-STREAMING take care of re-
ceiving the requests from parents, receiving and joining answers from neighbors, local
solving and returning results to parents. They are reflected in four components: Handler,
Solver, Output, and Joiner (only active in non-leaf contexts); see Fig. 1b for an archi-
tectural overview.

All components except Handler communicate using message queues: Joiner has
j queues to store partial equilibria from j neighbors, Solver has one queue to hold
joined equilibria from Joiner, and Output has a queue to carry results from Solver. As
our purpose is to bound space usage, each queue has a limit on the number of entries.
When a queue is full (resp., empty), the enqueuing writer (resp., dequeuing reader)
is automatically blocked. Furthermore, getting an element also removes it from the
queue, which makes room for other partial equilibria to be stored in the queue later. This
property frees us from synchronization technicalities.

Algorithms 2 and 3 show how the two main components Solver and Joiner work.
They use the following primitives:

– lsolve(S): works as lsolve in DMCSOPT, but in addition may return only one
answer at a time and be able to tell whether there are models left.

– get first(`1, `2, k): send to each neighbor from c`1 to c`2 a query for the first k partial
equilibria, i.e., k1 = 1 and k2 = k; if all neighbors in this range return some models
then store them in the respective queues and return true; otherwise, return false .

M. Dao-Tran et al.

ISSN 1613-0073 c© 2011 for the individual papers by the papers’ authors. 16



Algorithm 1: Handler(k1, k2: package range) at Ci

Output.k1 := k1, Output.k2 := k2, Solver.k2 := k2, Joiner.k := k2 − k1 + 1
call Solver

Algorithm 2: Solver() at Ci

Data: Input queue: q, maximal number of models: k2

count := 0
while count < k2 do

(a) if Ci is a leaf then S := ∅
(b) else call Joiner and pop S from q

if S = ε then count := k2

(c) while count < k2 do
pick the next model S? from lsolve(S)
if S? 6= ε then push S? to Output.q and count := count + 1
else count := k2

refresh() and push ε to Output.q

– get next(`, k): pose a query asking for the next k equilibria from neighbor Cc`
;

if Cc`
sends back some models, then store them in the queue q` and return true;

otherwise, return false . Note that this subroutine needs to keep track of which range
has been already asked for to which neighbor by maintaining a set of counters. When
a counter wrt. a neighbor Cc`

is set to value t, then the latest request to Cc`
asks for

the t’th package of k models, i.e., models in the range given by k1 = (t− 1)× k +1
and k2 = t× k. For simplicity, we do not go into further details.

– refresh(): reset all counters and flags of Joiner to their starting states, e.g., first join
to true , all counters to 0.

The process at each context Ci is triggered when a message from a parent arrives at
the Handler. Then Handler notifies Solver to compute up to k2 model, and Output to
collect the ones in the range from k1 to k2 and return them to the parent. Furthermore,
it sets the package size at Joiner to k = k2 − k1 + 1 in case Ci needs to query further
neighbors (cf. Algorithm 1).

When receiving a notification from Handler, Solver first prepares the input for its
local solver. If Ci is a leaf context then the input S simply is the empty set assigned
in Step (a); otherwise, Solver has to trigger Joiner (Step (b)) for input from neighbors.
With input fed from neighbors, the subroutine lsolve is used in Step (c) to compute at
most k2 results and send them to the output queue.

The Joiner, only activated for intermediate contexts as discussed, gathers partial
equilibria from the neighbors in a fixed ordering and stores the joined, consistent input
to a local buffer. It communicates just one input at a time to Solver upon request. The
fixed joining order is guaranteed by always asking the first package of k models from
all neighbors at the beginning in Step (d). In subsequent rounds, we just query the first
neighbor that can return further models (Step (e)). When all neighbors run out of models
in Step (f), the joining process reaches its end and sends ε to Solver.
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Algorithm 3: Joiner() at Ci

Data: Queue q1, . . . , queue qj for In(i) = {c1, . . . , cj}, buffer for partial equilibria: buf ,
flag first join

while true do
if buf is not empty then pop S from buf , push S to Solver.q and return
if first join then

(d) if get first(1, j, k) = false then push ε to Solver.q and return
else first join := false

else
` := 1

(e) while get next(`, k) = false and ` ≤ j do ` := ` + 1
if 1 < ` ≤ j then get first(1, `− 1, k)

(f) else if ` > j then push ε to Solver.q and return

for S1 ∈ q1, . . . , Sj ∈ qj do add S1 ./ · · · ./ Sj to buf

Algorithm 4: Output() at Ci

Data: Input queue: q, starting model: k1, end model: k2

buf := ∅ and count := 0
while count < k1 do

pick an S from Output.q
if S = ε then count := k2 + 1
else count := count + 1

while count < k2 + 1 do
wait for an S from Output.q
if S = ε then count := k2 + 1
else count := count + 1 and add S to buf

if buf is empty then send ε to parent else send content of buf to parent

Note that while proceeding as above guarantees that no models are missed, it can in
general lead to multiple considerations of combinations (inputs to Solver). Using a fixed
size cache might mitigate these effects of recomputation, but since limitless buffering
again quickly exceeds memory limits, recomputation is an unavoidable part of trading
computation time for less memory.

The Output component simply reads from its queue until it receives ε (cf. Algo-
rithm 4). Upon reading, it throws away the first k1 − 1 models and only keeps the ones
from k1 onwards. Eventually, if fewer than k1 models have been returned by Solver,
then Output will return ε to the parent.

Example 4. Consider an instance of the MCS in Example 1 with m = 1, ` = 5, i.e.,
M = (C1, C2, C3). Querying C1 with a package size of k = 1, first causes the query to
be forwarded to C2 in terms of a pair k1 = k2 = 1. As a leaf context, C2 invokes the
local solver and eventually gets five different models. However, it just returns one partial
equilibrium back to C1, e.g., (ε, {a1

2}, ε). Note that t2 is projected away since it does
not appear among the atoms of C2 accessed in bridge rules of C1. The same happens
at C3 and we assume that it returns (ε, ε, {a2

3}) to C1. At the root context C1, the two
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single partial equilibria from its neighbors are consistently combined into (ε, {a1
2}, {a2

3}).
Taking this as an input to the local solving process, C1 can eventually compute 5 answers,
but in fact just returns one of them to the user, e.g., S = ({a1

1, t1}, {a1
2}, {a2

3}).
The following proposition shows the correctness of our algorithm.

Proposition 1. Let M = (C1, . . . , Cn) be an MCS, i ∈ {1, . . . , n} and let k ≥ 1 be
an integer. On input (1, k) to Ci.Handler, Ci.Output returns up to k different partial
equilibria with respect to Ci, and in fact k if at least k such partial equilibria exist.

4.2 Parallelized Streaming

As the reader may have anticipated, the strategy of ignoring up to k1 models and then
collecting the next k is not likely to be the most effective. The reason is that each context
uses only one Solver, which in general has to serve more than one parent, i.e., requests
for different ranges of models of size k. When a new parent context requests models, we
have to refresh the state of Solver and Joiner and redo from scratch. This is unavoidable,
unless a context satisfies the specific property that only one parent can call it.

Another possibility to circumvent this problem is parallelization. The idea is to serve
each parent with a set of the Handler, Joiner, Solver and Output components. In this
respect, the basic interaction between each unit is still as shown in Fig. 1b, with the
notable difference that each component now runs in an individual thread. The significant
change is that Solver does not control Joiner but rather waits at its queue to get new
input for the local solving process. The Joiner independently queries the neighbors,
combines partial equilibria from neighbors, and puts the results into the Solver queue.

The effect is that we do not waste recomputation time for unused models. However, in
practice, unlimited parallelization also faces a similar problem of exhausting resources as
observed in DMCSOPT. While DMCSOPT runs out of memory with instances whose
local theories are large, unlimited parallel instances of the streaming algorithm can
exceed the number of threads/processes that the operating system can support, e.g., in
topologies that allow contexts to reach other context using alternative paths such as the
diamond topology. In such situations, the number of threads generated is exponential in
the number of pairs of connected contexts, which prohibits scaling to large system sizes.

A compromise between the two extreme approaches is to have a bounded parallel
algorithm. The underlying idea is to create a fixed-size pool of multiple threads and
components, and when incoming requests cannot be served with the available resources,
the algorithm continues with the basic streaming procedure, i.e., to share computa-
tional resources (the components in the system) between different parents at the cost of
recomputation and unused models. This approach is targeted for future work.

5 Experimental Results

We present initial experimental results for a SAT-solver based prototype implementation
of our streaming algorithm DMCS-STREAMING written in C++.1 The host system was

1 Available at http://www.kr.tuwien.ac.at/research/systems/dmcs/
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topology / parameter # DMCSOPT DMCS-STREAMING
k = 0 k = 10 k = 100

T1 / (10, 10, 5, 5) 18 1.21 0.24 0.39 6.80
T2 / (10, 10, 5, 5) 308 7.46 0.34 0.27 0.65
T3 / (50, 10, 5, 5) 32 8.98 2.28 3.22 139.83
T4 / (50, 10, 5, 5) 24 5.92 2.27 1.80 156.18
T5 / (100, 10, 5, 5) 16 24.87 9.10 5.43 —
T6 / (100, 10, 5, 5) 4 13.95 6.94 86.26 —

T7 / (10, 40, 20, 20) — — — 0.15 0.76
T8 / (10, 40, 20, 20) — — — 0.14 0.68
T9 / (50, 40, 20, 20) — — — 1.66 8.45
T10 / (50, 40, 20, 20) — — — 1.64 8.04
T11 / (100, 40, 20, 20) — — — 5.04 27.84
T12 / (100, 40, 20, 20) — — — 5.00 26.30

R1 / (10, 10, 5, 5) 12 2.17 0.99 2.44 —
R2 / (10, 10, 5, 5) 16 3.11 3.31 0.17 143.83
R3 / (50, 10, 5, 5) 21 15.49 13.43 — —
R4 / (50, 10, 5, 5) 12 10.30 6.43 — —

R5 / (10, 40, 20, 20) — — — 0.86 6.27
R6 / (10, 40, 20, 20) — — — 0.51 5.66
R7 / (50, 40, 20, 20) — — — 3.06 29.81
R8 / (50, 40, 20, 20) — — — 4.29 43.94

Table 1: Runtime in secs, timeout 180 secs (—)

using two 12-core AMD Opteron 2.30GHz processors with 128GB RAM running Ubuntu
Linux 10.10. We compare the basic version of the algorithm DMCS-STREAMING with
DMCSOPT.

We used clasp 2.0.0 [9] and relsat 2.02 [3] as back-end SAT solvers. Specifically,
all generated instantiations of multi-context systems have contexts with ASP logics.
We use the translation defined in [6] to create SAT instances at contexts Ck, clasp to
compute all models in case of DMCSOPT, and relsat2 to enumerate models in case of
DMCS-STREAMING.

For initial experimentation, we created random MCS instances with fixed topologies
that should resemble the context dependencies of realistic scenarios. We have generated
instances with binary tree (T ) and ring (R) topologies. Binary trees grow balanced, i.e.,
every level is complete except for the last level, which grows from the left-most context.

A parameter setting (n, s, b, r) specifies (i) the number n of contexts, (ii) the local
alphabet size |Σi| = s (each Ci has a random ASP program on s atoms with 2k answer
sets, 0 ≤ k ≤ s/2), (iii) the maximum interface size b (number of atoms exported), and
(iv) the maximum number r of bridge rules per context, each having ≤ 2 body literals.

2 The use of relsat is for technical reasons, and since clasp and relsat use different enumeration
algorithms, the subsequent results are to be considered preliminary.
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Table 1 shows some experimental results for parameter settings (n, 10, 5, 5) and
(n, 40, 20, 20) with system size n ranging from 10 to 100. For each setting, running times
on two instances are reported. Each row Xi (X ∈ {T, R}) displays pure computation
time (no output) for rings (R) and binary trees (T ), where the # columns show the
number of projected partial equilibria computed at C1 (initiated by sending the request
to C1 for the respective algorithms with the optimized query plan mentioned in [2]). With
respect to DMCS-STREAMING, we run the algorithm with three request package sizes,
namely k = {0, 10, 100}. The package size k = 0 amounts to an unbounded package,
which means that the DMCS-STREAMING model exchange strategy is equivalent to
DMCSOPT. For k > 0, we reported the running time until the first k unique models are
returned, or all answers in case the total number of models is smaller than k.

We have observed several improvements. The new implementation appears to be
faster than DMCSOPT when computing all partial equilibria (k = 0). This can be
explained by the fact that in DMCSOPT we call the clasp binary and parse models using
I/O streams, while DMCS-STREAMING tightly integrates relsat into the system, hence
saving a significant amount of time used just for parsing models.

Getting the first k answers also runs faster in general. When we increase the size
of the local theories, DMCSOPT and DMCS-STREAMING with k = 0 are stuck.
However, DMCS-STREAMING can, with a reasonable small package size k, still return
up to k answers in an acceptable time. When the package size increases, it usually
takes longer or even timeouts. This can be explained by recomputation of models when
requesting the next package of k models. We also observed this behavior in the ring
topology with parameter setting (50, 10, 5, 5), where DMCS-STREAMING timed out
with k ∈ {10, 100}.

For the same reason, one would expect that asking for the next packages of k unique
models might take more than linear amount of time compare to the time required to get
the first package.

Comparing the two topologies, observe that rings are cyclic and thus the algorithm
makes guesses for the values of the bridge atoms at the cycle-breaking context, and
eventually checks consistency of the guess with the models computed locally at the same
context. Hence, the system size that our algorithm can evaluate ring topology is smaller
than that for the tree topology, which is acyclic.

6 Conclusion

Our work on computing equilibria for distributed multi-context systems is clearly re-
lated to work on solving constraint satisfaction problems (CSP) and SAT solving in a
distributed setting; Yokoo et al. [14] survey some algorithms for distributed CSP solving,
which are usually developed for a setting where each node (agent) holds exactly one
variable, the constraints are binary, communication is done via messages, and every node
holds constraints in which it is involved. This is also adopted by later works [15, 8] but
can be generalized [14]. The predominant solution method are backtracking algorithms.
In [11], a suite of algorithms was presented for solving distributed SAT (DisSAT), based
on a random assignment and improvement flips to reduce conflicts. However, the algo-
rithms are geared towards finding a single model, and an extension to streaming multiple
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(or all) models is not straightforward; for other works on distributed CSP and SAT, this
is similar. A closer comparison, in which the nature of bridge rules and local solvers as
in our setting is considered, remains to be done.

Very recently, a model streaming algorithm for HEX-programs (which generalize
answer set programs by external information access) has been proposed [7]. It bares some
similarities to the one in this paper, but is rather different. There, monolithic programs
are syntactically decomposed into modules (akin to contexts in MCS) and models are
computed in a modular fashion. However, the algorithm is not fully distributed and
allows exponential space use in components. Furthermore, it has a straightforward
strategy to combine partial models from lower components to produce input for the
upper component.

Currently, we are working on a conflict driven version of model streaming, i.e., in
which clauses (nogoods) are learned from conflicts and exploited to reduce the search
space, and on an enhancement by parallelization. We expect that this and optimizations
tailored for the local solver and context setting (e.g., aspects of privacy) will lead to
further improvements.
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Abstract. Multi-context systems are a formalism for interlinking knowledge
based system (contexts) which interact via (possibly nonmonotonic) bridge rules.
Such interlinking provides ample opportunity for unexpected inconsistencies.
These are undesired, and come in different categories: some are serious and
must be inspected by a human operator, while some should simply be repaired
automatically. However, no one-fits-all solution exists, as these categories depend
on the application scenario. To tackle inconsistencies in a general way, we thus
propose a declarative policy language for inconsistency management in multi-
context systems. We define syntax and semantics, give methodologies for applying
the language in real world applications, and discuss a possible implementation.

1 Introduction

Powerful knowledge based applications can be built by interlinking smaller existing
knowledge based systems. Multi-context systems (MCSs) [5], based on [18, 6], are a
generic formalism that captures heterogeneous knowledge bases (contexts) which are
interlinked using (possibly nonmonotonic) bridge rules.

The advantage of building a system from smaller parts however poses the challenge
of unexpected inconsistencies due to unintended interaction of system parts. Such
inconsistencies are undesired, as (under common principles) inference becomes trivial.
Explaining reasons for inconsistency in MCSs has been investigated in [13]: several
independent inconsistencies can exist in a MCS, and each inconsistency usually comes
with more than one possibility to repair it.

For example, imagine a hospital information system which links several databases
and suggests treatments for patients. A simple inconsistency which can be automatically
ignored would be if a patient enters her birth date correctly at the front desk, but swaps
two digits filling in a form at the X-ray department. An entirely different story is, if we
have a patient who needs treatment, but all options conflict with some allergy of the
patient. Here attempting an automatic repair may not be a viable option: a doctor should
inspect the situation and make a decision.
? This research has been supported by the Vienna Science and Technology Fund (WWTF) project

ICT08-020.



In the light of such scenarios, tackling inconsistency requires individual strategies
and targeted (re)actions, depending on the type of inconsistency and on the application.
We thus propose IMPL, a declarative policy language providing a means to specify incon-
sistency management strategies for MCSs. Briefly, our contributions are as follows.
• We define the syntax of IMPL, inspired by answer set programs (ASPs) [17]. In

particular, we specify input for policy reasoning, in terms of reserved predicates.
These predicates encode inconsistency analysis results in terms of [13]. Furthermore,
we specify action predicates that can be derived in rules. Actions provide a means to
counteract inconsistency by modifying the MCS, and may involve interaction with a
human operator.
• We define IMPL semantics in terms of a three-step process which calculates models

of a policy, then determines effects of actions which are present in such model (this
possibly involves user interaction), and finally applies these effects to the MCS.
• We provide methodologies for integrating IMPL into application scenarios, and discuss

useful language extensions and a potential realization using the acthex formalism [2].

2 Preliminaries

Multi-context systems (MCSs). A heterogeneous nonmonotonic MCS [5] consists of
contexts, each composed of a knowledge base with an underlying logic, and a set of
bridge rules which control the information flow between contexts.

A logic L = (KBL,BSL,ACCL) is an abstraction which captures many monotonic
and nonmonotonic logics, e.g., classical logic, description logics, or default logics. It
consists of the following components, the first two intuitively define the logic’s syntax,
the third its semantics:
• KBL is the set of well-formed knowledge bases of L. We assume each element of

KBL is a set of “formulas”.
• BSL is the set of possible belief sets, where a belief set is a set of “beliefs”.
• ACCL : KBL → 2BSL assigns to each KB a set of acceptable belief sets.
Since contexts may have different logics, this allows to model heterogeneous systems.

Example 1. For propositional logic Lprop under the closed world assumption over
signature Σ, KB is the set of propositional formulas over Σ; BS is the set of deductively
closed sets of propositional Σ-literals; and ACC(kb) returns for each kb a singleton set,
containing the set of literal consequences of kb under the closed world assumption. ut

A bridge rule models information flow between contexts: it can add information to a
context, depending on the belief sets accepted at other contexts. Let L = (L1, . . . , Ln)
be a tuple of logics. An Lk-bridge rule r over L is of the form

(k : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where k and ci are context identifiers, i.e., integers in the range 1, . . . , n, pi is an element
of some belief set of Lci

, and s is a formula of Lk. We denote by hb (r) the formula s in
the head of r.

A multi-context system M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi
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a knowledge base, and br i is a set of Li-bridge rules over (L1, . . . , Ln). By IN i =
{hb (r) | r ∈ bri} we denote the set of possible inputs of context Ci added by bridge
rules. For each H ⊆ IN i it is required that kbi ∪H ∈ KBLi . Similar to IN i, OUT i

denotes output beliefs of context Ci, which are those beliefs p in BSi that occur in some
bridge rule body in brM as “(i:p)” or as “not (i:p)” (see also [13]). By brM =

⋃n
i=1 br i

we denote the set of all bridge rules of M , and by ctxM = {C1, . . . , Cn} the set of all
contexts of M .

Example 2 (generalized from [13]). Consider a MCS M1 in a hospital which comprises
the following contexts: a patient database Cdb , a blood and X-Ray analysis database Clab ,
a disease ontology Conto , and an expert system Cdss which suggests proper treatments.
Knowledge bases are given below; initial uppercase letters are used for variables and
description logic concepts.

kbdb = {person(sue, 02/03/1985 ), allergy(sue, ab1 )},
kblab = {customer(sue, 02/03/1985 ), test(sue, xray , pneumonia),

test(Id , X, Y )→ ∃D : customer(Id , D)),
customer(Id , X) ∧ customer(Id , Y )→ X = Y },

kbonto = {Pneumonia uMarker v AtypPneumonia},
kbdss = {give(Id , ab1 ) ∨ give(Id , ab2 )← need(Id , ab).

give(Id , ab1 )← need(Id , ab1 ).
¬give(Id , ab1 )← not allow(Id , ab1 ),need(Id ,Med).}.

Context Cdb uses propositional logic (see Example 1) and provides information that Sue
is allergic to antibiotics ‘ab1 ’. Context Clab is a database with constraints which stores
laboratory results connected to Sue: pneumonia was detected in an X-ray. Constraints
enforce, that each test result must be linked to a customer record, and that each customer
has only one birth date. Conto specifies that presence of a blood marker in combination
with pneumonia indicates atypical pneumonia. This context is based on AL, a basic
description logic [1]: KBonto is the set of all well-formed theories within that description
logic, BSonto is the powerset of the set of all assertions C(o) where C is a concept
name and o an individual name, and ACConto returns the set of all concept assertions
entailed by a given theory. Cdss is an ASP that suggests a medication using the give
predicate.

We next give schemas for bridge rules of M1.

r1 = (lab : customer(Id ,Birthday))← (db : person(Id ,Birthday)).
r2 = (onto : Pneumonia(Id)) ← (lab : test(Id , xray , pneumonia)).
r3 = (onto : Marker(Id)) ← (lab : test(Id , bloodtest ,m1 )).
r4 = (dss : need(Id , ab)) ← (onto : Pneumonia(Id)).
r5 = (dss : need(Id , ab1 )) ← (onto : AtypPneumonia(Id)).
r6 = (dss : allow(Id , ab1 )) ←not (db : allergy(Id , ab1 ).

Rule r1 links the patient records with the lab database (so patients do not need to enter
their data twice). Rules r2 and r3 provide test results from the lab to the ontology. Rules
r4 and r5 link disease information with medication requirements, and r6 associates
acceptance of the particular antibiotic ‘ab1 ’ with a negative allergy check on the patient
database. ut
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Equilibrium semantics [5] selects certain belief states of a MCS M = (C1, . . . , Cn) as
acceptable. A belief state is a sequence S = (S1, . . . , Sn), s.t. Si ∈BSi. A bridge rule (1)
is applicable in S iff for 1≤ i≤ j: pi ∈ Sci and for j < l ≤m: pl /∈ Scl

. Let app(R,S)
denote the set of bridge rules in R that are applicable in belief state S. Then a belief state
S = (S1, . . . , Sn) of M is an equilibrium iff, for 1 ≤ i ≤ n, the following condition
holds: Si ∈ ACCi(kbi ∪ {hd(r) | r ∈ app(br i, S)}).

In our running example we use bridge rules with variables, here we disregard the
issue of instantiating these rules [16]. We denote by r[X|c] the ground version of bridge
rule r where variable X has been substituted by constant c.

Example 3 (ctd). MCS M1 has one equilibrium S = (Sdb , Slab , Sonto , Sdss), where
Sdb = kbdb , Slab = {customer(sue, 02/03/1985 ), test(sue, xray , pneumonia)},
Sonto = {Pneumonia(sue)}, and Sdss = {need(sue, ab), give(sue, ab2 ),¬give(sue,
ab1 )}. Moreover, the following bridge rules of M1 are applicable under S: r1[Id |sue,
Birthday |02/03/1985 ], r2[Id |sue], and r4[Id |sue]. ut
Explaining Inconsistency in MCSs. Inconsistency in a MCS is the lack of an equilib-
rium[13]. Note that no equilibrium may exist even if all contexts are ‘paraconsistent’ in
the sense that ACC is never empty. No information can be obtained from an inconsis-
tent MCS, e.g., inference tasks like brave or cautious reasoning on equilibria become
trivial. To analyze, and eventually repair, inconsistency in a MCS, we use the notions
of consistency-based diagnosis and entailment-based inconsistency explanation [13],
which characterize inconsistency by sets of involved bridge rules.

Intuitively, a diagnosis is a pair (D1, D2) of sets of bridge rules which represents a
concrete system repair in terms of removing rules D1 and making rules D2 unconditional.
The intuition for considering rules D2 as unconditional is that the corresponding rules
should become applicable to obtain an equilibrium. One could consider more fine-grained
changes of rules such that only some body atoms are removed instead of all. However,
this increases the search space while there is little information gain: every diagnosis
(D1, D2) as above, together with a witnessing equilibrium S, can be refined to such
a generalized diagnosis. Dual to that, inconsistency explanations (short: explanations)
separate independent inconsistencies. An explanation is a pair (E1, E2) of sets of bridge
rules, such that the presence of rules E1 and the absence of heads of rules E2 necessarily
makes the MCS inconsistent. In other words, bridge rules in E1 cause an inconsistency
in M which cannot be resolved by considering additional rules already present in M
or by modifying rules in E2 (in particular making them unconditional). See [13] for
formal definitions of these notions, relationships between them, and more background
discussion.

Example 4 (ctd). Consider a MCS M2 given by our example MCS M1 with different
knowledge bases kbdb = {person(sue, 03/02/1985 ), allergy(sue, ab1 )} (i.e., month
and day of the birth date are swapped) and kblab containing an additional finding
test(sue, bloodtest ,m1 ). M2 is inconsistent with E±

m(M2) = {e1, e2} and D±
m(M2) =

{d1, d2, d3, d4}, where e1 = ({r′1}, ∅), e2 = ({r′2, r′3, r′5}, {r′6}), d1 = ({r′1, r′2}, ∅), d2 =
({r′1, r′3}, ∅), d3 = ({r′1, r′5}, ∅), d4 = ({r′1}, {r′6}), and where r′1 = r1[Id |sue, Birth-
day |03/02/1985 ], and r′j = rj [Id |sue], j ∈ {2, 3, 5, 6}. E±

m(M2) characterizes two
inconsistencies in M2, namely e1: Clab does not accept any belief set because constraint
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customer(Id , X)∧ customer(Id , Y )→X = Y is violated; furthermore e2: if we as-
sume e1 is repaired, then Conto accepts AtypPneumonia(sue) in its unique accepted
belief set, therefore r5[Id |sue] imports the need for ab1 into Cdss which makes Cdss

inconsistent due to Sue’s allergy. ut

3 Policy Language IMPL

Dealing with inconsistency in an application scenario is difficult, because even if in-
consistency analysis provides information how to restore consistency, it is not obvious
which choice of system repair is rational. It may not even be clear whether it is wise at
all to repair the system by changing bridge rules.

Example 5 (ctd). Repairing e1 by ignoring the birth date (which differs at the granularity
of months) may be the desired reaction and could very well be done automatically. On
the contrary, repairing e2 by ignoring either the allergy or the illness is a decision that
should be left to a doctor, as every possible repair could cause serious harm to Sue. ut
Therefore, managing inconsistency in a controlled way is crucial. To address these
issues, we propose a declarative policy language IMPL, which provides a means to create
policies for dealing with inconsistency in MCSs. Intuitively, an IMPL policy specifies
(i) which inconsistencies are repaired automatically and how this shall be done, and
(ii) which inconsistencies require further external input, e.g., by a human operator, to
make a decision on how and whether to repair the system. Note that we do not rule out
automatic repairs, but — contrary to previous approaches — automatic repairs are done
only if a given policy specifies to do so, and only to the extent specified by the policy.

Since a major point of MCSs is to abstract away context internals, IMPL treats
inconsistency by modifying bridge rules. For the scope of this work we delegate any
potential repair by modifying the kb of a context to the user. The effect of applying
an IMPL policy to an inconsistent MCS M is a modification (A, R), which is a pair of
sets of bridge rules which can be (but not necessarily are) part of brM , and which are
syntactially compatible with M . Intuitively, a modification specifies bridge rules A to be
added to M and bridge rules R to be removed from M , similar as for diagnoses without
restriction to the original rules of M .

In the following we formally define syntax and semantics of IMPL.

3.1 Syntax.

We assume disjoint sets C, V, Ord , Built , and Act , of constants, variables, ordinary
predicate names, built-in predicate names, and action names, resp. An atom is of the
form p(t1, . . . , tk), 0 ≤ k, ti ∈T , where the set of terms T is defined as T = C ∪V ,
and p is a (built-in or ordinary) predicate name or an action name. As usual, an atom is
ground if ti ∈ C for 0 ≤ i ≤ k. The set AAct of action atoms has p∈Act , while AOrd ,
respectively ABuilt , denotes the set of ordinary atoms having p∈Ord , respectively the
set of built-in atoms with p∈Built .
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Definition 1. An IMPL policy is a set of rules of the form

h← a1, . . . , aj , not aj+1, . . . , not ak. (2)

where h is an atom from AOrd ∪ AAct or ⊥, every ai is from AOrd ∪ ABuilt , for
1 ≤ i ≤ k, and ‘not‘ is negation as failure.

Given a rule r, we denote by H(r) its head, by B+(r) = {a1, . . . , aj} its positive body
atoms, and by B−(r) = {aj+1, . . . , ak} its negative body atoms. A rule is ground if it
contains ground atoms only. A ground rule with k = 0 is a fact.

An IMPL policy P is intended to be evaluted provided some input IM respresenting
relevant information about a given MCS M . The idea is that its evaluation yields certain
actions to be taken upon inconsistency, which effect modifications of the MCS with the
goal of restoring consistency. For representing basic inputs and actions, we consider
specific predicate and action names. Corresponding atoms follow a particular syntax and
semantics. We first present their syntax and provide intuitions of their semantics.
Reserved Predicates. Atoms with reserved predicate names provide a policy with
information about the system at hand, and about results of inconsistency analysis on that
system. Essentially, these atoms describe bridge rules, diagnoses, and explanations of a
given MCS. Note that elements of these descriptions, like contexts, bridge rules, beliefs,
etc., are assumed to be represented by suitable constants. For brevity, when referring
to an element represented by a constant c, we identify it with the constant (omitting
‘represented by constant’).
• ruleHead(r, c, s) denotes that the head of bridge rule r at context c is the formula s.
• ruleBody+(r, c, b) (resp., ruleBody−(r, c, b)) denotes that bridge rule r contains

body literal ‘(c : b)’ (resp., body literal ‘not (c : b)’).
• modAdd(m,r) (resp., modDel(m,r)) denotes that modification m adds (resp., deletes)

bridge rule r (r is represented using ruleHead and ruleBody).
• diag(m) denotes that modification m is a minimal diagnosis in M .
• explNeed(e, r) (resp., explForbid(e, r)) denotes that the minimal explanation (E1,

E2)∈E±
m(M) identified by constant e contains bridge rule r∈E1 (resp., E2).

• member(ms, m) denotes that modification m belongs to a set of modifications ms .
• #id(t, c, i) is a builtin predicate with the intention to handle the assignment of ‘fresh’

constants (not appearing in the input to a policy) as identifiers more easily (i.e., it
facilitates limited value invention). Intuitively, #id(t, c, i) is true iff c is a constant, i
is a non-negative integer constant (from a fixed, finite range, see also Sec. 3.2), and
t = ci, for a particular constant ci.

Further knowledge used as input for policy reasoning can easily be defined using addi-
tional (auxiliary) predicates. For instance, to encode preference relations (e.g., as in [14])
between system parts, diagnoses, or explanations, an atom preferredContext(c1, c2)
could denote that context c1 is considered more reliable than context c2. The extensions
of such auxiliary predicates need to be defined by the rules of the policy (ordinary
predicates) or provided by the implementation (built-in predicates), i.e., the ‘solver’ used
to evaluate the policy.

As for notation, given a set of ground atoms IM and a constant c, we denote
by ruleI(c) the bridge rule identified by c and characterized in I by ruleHead and
ruleBody± atoms. Similarly, we denote by modificationI(c) = (A, R) the modification
c characterized in I by modAdd , modDel , ruleHead and ruleBody± atoms.
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Example 6 (ctd). Explanation e1 in M2 can be represented as Ie1 = {ruleHead(r′1, clab ,
‘customer(sue, 03/02/1985 )′), ruleBody+(r′1, cdb , ‘person(sue, 03/02/1985 )′), expl -
Need(e1, r

′
1)}. Then, ruleIe1

(r′1) denotes bridge rule r′1. ut
Note, that reserved predicates, except for the built-in #id , are also allowed to occur in
the head of policy rules.

Actions. Let us turn to the syntax and intuitive semantics of action atoms built from
predefined action names. (We prefix action names from Act with @). We assume that
actions are independent from one another and each action yields a modification of the
MCS. This modification can depend on external input, e.g., obtained by user interaction.

We distinguish three categories of actions: (a) actions that affect individual bridge
rules, (b) actions that affect multiple bridge rules, and (c) actions that involve user
interaction (and affect individual or multiple bridge rules).

The following actions affect individual bridge rules.
• @delRule(r) removes bridge rule r from the MCS (r is represented using ruleHead

and ruleBody).
• @addRule(r) adds bridge rule r to the MCS.
• @addRuleCondition+(r, c, b) (resp., @addRuleCondition−(r, c, b)) adds body lit-

eral (c : b) (resp., not (c : b)) to bridge rule r.
• @delRuleCondition+(r, c, b) (resp., @delRuleCondition−(r, c, b)) removes body

literal (c : b) (resp., not (c : b)) from bridge rule r.
• @makeRuleUnconditional(r) makes bridge rule r unconditional.
The following actions (potentially) affect multiple bridge rules.
• @applyMod(m) applies modification m to the MCS.
• @applyModAtContext(m, c) applies those modifications of m to the MCS which

modify bridge rules at context c. Subsequently, we call this the projection of modifica-
tion m to context c.

The following actions involve user interaction.
• @guiSelectMod(ms) displays a GUI for choosing from the set of modifications ms .

The chosen modification is applied to the MCS.
• @guiEditMod(m) displays a GUI for editing modification m. The resulting modifi-

cation is applied to the MCS.
• @guiSelectModAtContext(ms, c) projects modifications in ms to c, displays a GUI

for choosing among them and applies the chosen modification to the MCS.
• @guiEditModAtContext(m, c) projects modification m to context c, displays a GUI

for editing it, and applies the resulting modification to the MCS.
The core fragment of IMPL consists of actions @delRule , @addRule , @guiSelectMod ,
and @guiEditMod , which are sufficient for realizing all actions described above. Actions
not in the core fragment exist for convenience of use: they provide a means for projection
and modifying only parts of rules which otherwise would need to be encoded using
auxiliary predicates and core actions.

Example 7. Given a set of ground atoms IM , making bridge rules r with foo(r) ∈ IM

unconditional can be achieved using a single rule with the action:
@makeRuleUnconditional(R)← foo(R).

The following IMPL policy fragment achieves the same using only core actions:
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% associate new constant with R to get identifier for rule derived from R
aux (Rid , R)← foo(R), #id(Rid , R, 1).
% copy existing rule heads (don’t copy body literals)
ruleHead(Rid , C, S)← ruleHead(R,C, S), aux (Rid , R).
% trigger actions
@delRule(R)← aux (Rid , R).
@addRule(Rid)← aux (Rid , R).

(Here and in the following, lines starting with % indicate comments.) ut
Example 8 (ctd). Figure 1 shows three policies for managing inconsistency in M2. Let
us briefly illustrate their intended behaviour (before turning to a formal definition of
semantics next). P1 deals with inconsistencies at Clab : if an explanation concerns only
bridge rules at Clab , an arbitrary diagnosis is applied at Clab , other inconsistencies are
not handled. Intuitively, applying P1 to M2 yields M3 (any chosen diagnosis removes
exactly r′1 at Clab): M3 is still inconsistent due to e2 but no longer due to e1. P2 extends
P1 by adding an ‘inconsistency alert formula’ alert to Clab iff an inconsistency was
automatically repaired at Clab . Finally, P3 is a different approach which displays a
choice of all minimal diagnoses to the user if at least one diagnosis exists.

Note, that we did not combine automatic actions and user-interactions; this would
require more involved policies or an iterative methodology (cf. Sec. 4). ut

3.2 Semantics

The semantics of IMPL is defined in three steps: (i) policy answer sets are defined for
a policy together with some input, each answer set represents a set of actions (to be
executed); (ii) every action has associated effects in terms of a modification (A, R), they
can be nondeterministic (and thus only determined by executing the action). Finally
(iii) materializing the effects of a set of (executed) actions is defined by combining their
effects, i.e., modifications (componentwise union), and applying the respective changes
to the MCS at hand. We next describe these steps more formally.
Action Determination. We define IMPL policy answer sets similar to the stable model
semantics [17]. Given a MCS M , we associate with it a finite (nonempty) set of constants
CM ⊂ C, used as identifiers for representing its elements by means of the (ordinary)
reserved predicates, as well as a finite set of integer constants CN ⊂ C. Furthermore, let
Cid be a set of ‘fresh’ constants, i.e., disjoint from CM ∪ CN , containing exactly one
constant ci ∈C for every (pair of constants) c∈CM and i∈CN , and let id be a fixed
(built-in) one-to-one mapping from CM × CN to Cid .

For a policy P , let cons(P )⊂C denote the set of constants appearing in P . The
policy base BP of P (given M ) is the set of ground atoms that can be built using ordinary
reserved predicate and action names, as well as any auxiliary ordinary predicate and
action names appearing in P , and constants from CP,M = cons(P ) ∪ CM ∪ CN ∪ Cid .

The grounding of P , grnd(P ) is given by grounding its rules wrt. CP,M in the usual
way. An interpretation is a set of ground atoms I ⊆ BP .

For an atom a∈BP , as usual I |= a iff a∈ I , and for a ground built-in atom a
of the form #id(t1, t2, t3), it holds that I |= a iff (t2, t3) is in the domain of id and
t1 = id(t2, t3). For a ground rule r, (i) I |= B(r) iff I |= a for every a∈B+(r) and
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P1 =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

% domain predicate for eplanations
expl(E)← explNeed(E, R). expl(E)← explForbid(E, R).
% find out whether one explanation only concerns bridge rules at Clab

incNotLab(E)← explNeed(E, R), ruleHead(R, C, F ), C 6= clab .
incNotLab(E)← explForbid(E, R), ruleHead(R, C, F ), C 6= clab .
incLab← expl(E), not incNotLab(E).
% guess a unique diagnosis to apply
in(D)← not out(D), diag(D), incLab. out(D)← not in(D), diag(D), incLab.
useOne← in(D). ⊥← in(A), in(B), A 6= B. ⊥← not useOne, incLab.
% apply diagnosis projected to Clab if one was selected
@applyModAtContext(D, clab)← useDiag(D).

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
P2 =

8<:
% inconsistency alert
ruleHead(ralert , clab , alert).
@addRule(ralert)← incLab.

9=; ∪P1

P3 =

8<:
% let the user choose from all diagnoses if there is a diagnosis
member(md , X)← diag(X).
@guiSelectMod(md).

9=;
Fig. 1: Example IMPL policies for managing inconsistency in M2.

I 6|= a for all a∈B−(r), and (ii) I |= r iff I |= H(r) or I 6|= B(r). Then, I is a model
of P , denoted I |= P , iff I |= r for all r∈ grnd(P ). The FLP-reduct [15] of P wrt. an
interpretation I , denoted fP I , is the set of all r ∈ grnd(P ) such that I |= B(r).

Definition 2 (Policy Answer Sets). Let P be an IMPL policy P , and let IM ⊆BP be
an input for P . An interpretation I ⊆BP is a policy answer set of P for IM iff I is a
⊆-minimal model of fP I ∪ IM . By AS(P, IM ) we denote the set of all policy answer
sets of P for IM .

Effect Determination. We define the effects of action predicates @a∈Act by nondeter-
ministic functions f@a. Nondeterminism is required to due to external input, resp. user
interaction. An action is evaluated wrt. a policy answer set.

Definition 3. Given a policy answer set I , and an action α = @a(t1, . . . , tk) in I , an
effect of α wrt. I , denoted effI(α), is a modification (A, R) = f@a(I, t1, . . . , tk).

Action predicates of the IMPL core fragment have the following semantic functions. (For
brevity we omit semantics of actions that are not in the core fragment.)
• f@delRule(I, r) = (∅, {ruleI(r)}).
• f@addRule(I, r) = ({ruleI(r)}, ∅).
• f@guiSelectMod(I,ms) = modificationI(m), for some modification m such that

m∈{m |member(ms, m)∈ I} (the user’s selection after being displayed the choice
among modifications {modificationI(m) |member(ms, m)∈ I}).
• f@guiEditMod(I, m) = (A′, R′), where (A′, R′) is some modification (resulting from

the user interaction after being displayed an editor for the modification (A, R) =
modificationI(m)).

Note, that no order of evaluating actions is specified or required. We say that a set EI of
modifications is an effect set for a policy answer set I , iff it contains exactly one effect
effI(α) for every α in I .
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Effect Materialization Once the effects of actions have been determined, an overall
modification is calculated by componentwise union over all individual modifications.
Finally, this overall modification is materialized in the MCS.

Definition 4. Given a MCS M and a policy answer set I , a materialization of I in
M is a MCS M ′ obtained from M by replacing its set of bridge rules brM by the set
brM \R∪A, where (A,R) =

⋃
(A,R)∈EI

(A, R), for an effect set EI for I .

Note that by definition addition of bridge rules has precedence over removal.3

Eventually, we can define modifications of a MCS that are accepted by a correspond-
ing policy for managing inconsistency. Skipping a straightforward formal definition, let
us say that a set of ground atoms IM is a proper input for an IMPL policy P wrt. a MCS
M , if it properly encodes M , D±

m(M), and E±
m(M) using reserved predicates.

Definition 5. Given a MCS M , an IMPL policy P , and a proper input IM for P wrt. M ,
then a modified MCS M ′ is an admissible modification of M wrt. policy P iff M ′ is the
materialization of some policy answer set I ∈AS(P ∪ IM ).

Example 9 (ctd). For brevity we do not give a full account of a proper IM2 . Intuitively
IM2 =

⋃
a∈{e1,e2,d1,d2,d3,d4} Ia where Iei

represents explanation ei and Idi
represents

diagnosis di, e.g., Ie1 is described in Ex. 6. Evaluating P2 ∪ IM2 yields four policy
answer sets; one is I1 = IM2 ∪{expl(e1), expl(e2), incNotLab(e2), incLab, in(d1),
out(d2), out(d3), out(d4), useOne, ruleHead(ralert , clab , alert), @addRule(ralert),
@applyModAtContext(d1, clab)}. Evaluating P3 ∪ IM2 yields exactly one policy an-
swer set, which is I2 = IM2 ∪{@guiSelectMod(diag)}.

From I1 we obtain a single admissible modification of M wrt. P2: add bridge rule
ralert and remove r′1. Determining the effect of I2 involves user interaction; thus multiple
materializations of I2 exist. For instance, if the user chooses to ignore Sue’s allergy (and
birth date) by selecting d4 (and probably imposing additional monitoring for Sue), we
obtain an admissible modification of M which adds bridge rule r′6 and removes r′1. ut

4 Methodologies of Applying IMPL and Realization

For applying IMPL and integrating it with a MCS and user interaction, we next develop
methodologies, based on a simple system design shown in Figure 2. Due to space
constraints, we only give an informal discussion.

We represent the MCS as containing a store of modifications. The semantics evalu-
ation component performs reasoning tasks on the MCS and invokes the inconsistency
manager in case of an inconsistency. This inconsistency manager uses the inconsistency
analysis component4 to provide input for the policy engine which calculates policy
answer sets of a given IMPL policy wrt. the MCS and its inconsistency analysis result.
This policy evaluation step results in action executions potentially involving user in-
teractions and causes changes to the store of modifications, which are subsequently
materialized. Finally the inconsistency manager hands control back to the semantics
evaluation component. Let us discuss principal modes of operation and their merits next.

3 There is no particular reason for this choice of precedence; one just has to be aware of it when
specifying a policy.

4 For realizations of this component we refer to [3, 13].
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Fig. 2: Policy integration data flow and control flow block diagram.

Reason and Manage once. This mode of operation evaluates the policy once, if the
effect materialization does not repair inconsistency in the MCS, no further attempts are
made and the MCS stays inconsistent. This mode while simple may not be satisfying in
practice.

We can improve on the approach by extending actions with priority: the result of
a single policy evaluation step then is a sequence of sets of actions, corresponding
to several attempts for repairing the MCS. This can be exploited for writing policies
that ensure repairs, by first attempting a ‘sophisticated’ repair possibly involving user
interaction, and — if this fails — to simply apply some diagnosis to ensure consistency
while the problem may be further investigated.

Reason and Manage iteratively. We now consider a mode where failure to restore
consistency simply invokes policy evaluation again on the modified but still inconsistent
system. This is useful if user interaction involves trial-and-error, especially if multiple
inconsistencies occur — some might be more difficult to counteract than others.

Another positive aspect of iterative policy evaluation is, that policies may be struc-
tured, e.g., as follows: (a) classify inconsistencies into automatically vs manually re-
pairable; (b) apply actions to repair one of the automatically repairable inconsistencies;
if such inconsistencies do not exist (c) apply user interaction actions to repair one (or all)
of the manually repairable inconsistencies. Such policy structuring follows a divide-and-
conquer approach, trying to focus on individual sources of inconsistency and to disregard
interactions between inconsistencies as much as possible. If user interaction consists of
trial-and-error bugfixing, fewer components of the system are changed in each iteration,
and the user starts from a situation where only critical (i.e. not automatically repairable)
inconsistencies are present in the MCS. Moreover, such policies may be easier to write
and maintain.

Termination of iterative methodologies is not guaranteed. However one can enforce
termination by limiting the number of iterations, possibly by extending IMPL with a
control action that configures this limit.

In iterative mode, passing information from one iteration to the next can be useful.
This can be accomplished by extending IMPL with add and delete actions which modify
an iteration-persistent knowledge base, which is given to a policy as further input facts,
represented using an additional dedicated predicate.
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Realization in acthex The acthex formalism [2] extends answer set programs with
external computations in bodies of rules, and action in heads of rules. Actions have
an effect on an environment and this effect can use information from the answer set in
which the action is present. Using acthex for realizing IMPL is a good choice because
acthex already natively provides several features necessary for IMPL: external atoms
can be used to access external information, and acthex actions come with weights for
creating ordered execution schedules for actions occurring withinin the same answer
set of an acthex program. Based on this, IMPL can be implemented by a rewriting to
acthex, with acthex actions implementing IMPL actions, and acthex external predicates
providing information about the MCS to the IMPL policy.

Using acthex to implement IMPL facilitates further extensions of IMPL, since new
actions and external atoms can be added to acthex with little effort.

5 Conclusion

A language related to IMPL is the action language IMPACT [22], a declarative formalism
for actions in distributed and heterogeneous multi-agent systems. While most parts of
IMPL could be embedded in IMPACT, the latter is a very rich general purpose formalism,
which is difficult to manage compared to the special purpose language IMPL. Furthermore,
user interaction is not directly supported in IMPACT.

Policy languages have been studied in detail in the fields of access control, e.g.,
surveyed in [4], and privacy restrictions [11]. Notably, PDL [10] is a declarative
policy language based on logic programming which maps events in a system to actions.
It is richer than IMPL wrt. action interdependencies, whereas actions in IMPL have a
richer internal structure and depend on the content of a policy answer set. Similarly,
inconsistency analysis input in IMPL has a deeper structure than events in PDL.

In the context of relational databases, logic programs have been used for specifying
repairs for databases that are inconsistent wrt. a set of integrity constraints [19, 12,
20]. Thus, they may be considered fixed policies without user interaction akin to an
IMPL policy simply applying diagnoses in a homogenous MCS. Note however that one
motivation for developing IMPL is that attempting automatic repair may not always be a
viable option to deal with inconsistency in a MCS. In order to specify repair strategies for
inconsistent databases in a more flexible way, active integrity constraints (AICs) [7–9]
and inconsistency management policies (IMPs) [21] have been proposed. AICs extend the
notion of integrity constraints by introducing update actions, for inserting and deleting
tuples, to be performed if the constraint is not satisfied; whereas an IMP is a function
defined wrt. a set of functional dependencies that maps a given relation R to a ‘modified’
relation R′ obeying some basic axioms.

A conceptual difference between IMPL and the above approaches to database repair
and inconsistency management is that IMPL policies aim at restoring consistency by
modifying bridge rules leaving the knowledge bases unchanged rather than considering a
(fixed) set of constraints and repairing the database. Moreover, IMPL policies operate on
heterogeneous knowledge bases and may involve user interaction. Nevertheless, database
repair programs, AICs and (certain) IMPs may by mimicked for particular classes of
integrity constraints by corresponding IMPL policies given suitable encodings.
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Ongoing work comprises the actual implementation of IMPL. Recalling that we cur-
rently just consider bridge rule modifications for system repairs, an interesting issue for
further research is to drop this convention. This would mean to also allow modifications
of knowledge bases of (some) contexts for repair, and to extend IMPL accordingly.
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Abstract. This paper describes an ongoing implementation of a lightweight
communication platform that uses RESTful TCP/IP requests to transfer
FIPA ACL based messages between agents. The platform is intended for
heterogeneous systems composed of numbers of simple agents as opposed
to usual FIPA implementations. Agents can be written in any language
and can communicate with each other without the need for a central
platform.

1 Introduction

Multi-context systems describe information from different viewpoints (contexts)
and the relationship between them in the form of bridge rules. Heterogeneous
multi-context systems [1] allow different logics or completely different formalisms
to be used in different contexts.

When building truly heterogeneous multi-context systems in a decentralised
fashion, components built on different formalism can be implemented in different
languages and must cooperate and communicate with each other. FIPA [5] de-
fines standards for such interoperability of heterogeneous agents. However most
implementations involve complex, mostly java-based, platforms, usually hosting
multiple agents. To facilitate simpler and more agile development of small agents
in different languages, a more lightweight approach is needed.

We present an ongoing implementation of a de-centralised lightweight com-
munication framework for heterogeneous agents that implements a subset of
FIPA specifications, while allowing simple development of small standalone agents.
Agents in the framework are standalone processes, that communicate using FIPA
ACL messages[2], transported through RESTful[7], peer-to-peer TCP/IP con-
nections.

There is no full featured platform with its associated services. However, the
framework provides a simple agent management system [3] in the form of a
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discovery service that allows each agent to identify other agents on the local
network along with the services they provide. This allows creation of systems
consisting of multitude of small heterogeneous agents scattered through the local
network without the need for a central server / registry. Communication with
agents on remote networks or with other FIPA platforms / implementations with
different message transport systems can be achieved through the use of gateway
agents that forward messages and agent information. Implementations in Python
and C++ are available and Java implementation is planned.

Example 1. Consider a heterogeneous multi-context system used to organize
seminars of a research group. It consists of three types of agents:

– Personal Java-based agents running on the mobile phone/PDA of every
group member, providing information about him and his schedule,

– sensoric C++ agents that use webcameras to observe certain rooms at the
university,

– timetable agent that provides access to the university timetable and room
reservations,

– and a logic based scheduling agent (written in Python as a frontend to a
logic based formalism such as an ASP solver.)

Now imagine, that one of the group members wants to organize a meeting with
his colleagues. He simply orders his personal agent to arrange this meeting. This
agent then contacts all the other personal agents, and finds out (using the GPS on
their devices) which of them are currently out of town. If the sufficient number
of them are available, he asks the scheduling agent for the most appropriate
time and place/room for the meeting. The scheduling agent collects information
from the sensoric agents to find out which rooms are empty and also checks if
they aren’t reserved for the next 2 hours. After receiving this information, the
invitation can be sent to all the personal agents of available members of the
group.

The rest of this paper is structured as follows: in the next section we de-
scribe the presented communication platform; the third section describes our
implementation; the fourth section contains a short comparison to other FIPA
platforms; and the last section presents future plans and concluding remarks.

2 Communication Platform

This section describes a lightweight communication platform. Such a platform
consists of agents that can send messages to each other. Agents are usually
standalone processes / programs and can run on different computers. Messages
conform to FIPA ACL specification[2] and are transported through a stateless
TCP/IP connection to the recipient.

Each agent has a globally unique agent name that is used to identify the
agent and a list of services that the agent provides.
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An agent has access to two basic services: discovery service that serves as
a very simple AMS and a message transport service. These are implemented
per process/program and are thus shared between multiple agents running in a
single process.

Discovery service monitors the local network and notifies the agent of the
appearance or disappearance of other agents. It maintains a list of known agents
and their locators.

2.1 Message Transport Service

A transport service with a single protocol is used. The protocol uses RESTful
TCP/IP connections to another agent (not necessarily the final recipient of the
message) to deliver requests. There are two types of requests defined: a POST
request that delivers a single message, or a POLL requests, that ask the other
agent for any pending messages for the connecting agent.

The transport specific address of an agent is an IP address and port tuple and
there are two transport-specific properties: polling mode and level of indirection.

Level of indirection represents how many times would the message be for-
warded, would it be sent to this address. Each agent that acts as a proxy/gateway
for another increases this number when it announces the target agent on a local
network. If the discovery service reports multiple addresses for a single agent, one
of those with lowest level of indirection should be used when sending messages.

If the polling mode is enabled for an address, then the message should not
be send, but kept in a queue at the sending agent until the receiving agent asks
for messages with the POLL request or the message expires (either through a
pre-set timeout or because of a size limit of the queue.)

This can be used by agents that don’t have a stable or accessible address on
the network, such as on a mobile device that roams between different network
connections. Such an agent would normally register with a gateway agent, which
would announce it on the local network, collecting all messages and delivering
them later through the connection created by the first agent’s POLL requests.

2.2 Gateway agents

A discovery service, as described in the previous section, can reliably work only
on a local network. Similarly the message transport can deliver messages only
to agents on the local network or with a publicly accessible IP address (e.g. not
behind NAT.) These restrictions can be worked around by the introduction of
special gateway agents.

A gateway agent (GA) is a special agent that acts as a proxy for agents from
other networks. GA maintains a list of registered remote agents. When a remote
agent registers, GA announces remote agent’s presence on the local network with
its own transport specific address. Thus any message sent to the remote agent
from the local network is sent to GA, which looks up the remote agent in its
database and delivers (forwards) it.

There are two basic ways to use gateway agents:
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– remote agents register directly with gateway agents
– a bridge agent registers all agents on his local network with a gateway agent

on a remote network (and vice versa).

Similarly, a gateway agent that acts as a bridge to other message transport
systems can be created, thus enabling interoperability with other FIPA compli-
ant platforms.

3 Implementation

This section presents the implementation of the communication platform.
The aim of our implementation is a simple and lightweight framework, that

can be used also on devices with little memory and computational power, e.g.
cell pohones, embedded devices, etc.

Our architecture is currently implemented in Python and C++, which were
selected for their simplicity and speed respectively. In the future we plan to
provide an implementation in JAVA, as a language most commonly associated
with multi-agent system development, that might encourage further development
of heterogenous agent applications. In the current implementation, single or
multiple instances of the agent can be used per process, being served by the
same discovery and message transport service

In the discovery service, multicast protocol (there are also plans to add
Avahi/Zeroconf support) is used to announce the arrival of a new agent to the
network. Following registration routine is then handled by message transport ser-
vice by sending a request message in ACL to the new agent and inform message
with agent’s properties as an answer to this request.

Message transport service is responsible for marshalling and demarshalling
messages, sending and receiving over TCP/IP protocol and posting them to the
main loop of the corresponding agent.

Agent’s mainloop is event driven, with four main types of events:

– agentAdded triggered when a new agent registers a service
– agentRemoved triggered when the agent leaves the network
– agentChanged triggered when the agent changes his serivces
– messageReceived triggered when message is reveived.

MessageReceived is then further marshalled by communicative act[4] to Infor-
mMessage, RequestMessage, QueryIfMessage, etc or to SystemMessage.

We are currently working on the implementation of gateway agents.

4 Comparison to Other Work

There are many different FIPA compliant frameworks, most of them are im-
plemented in JAVA and their platforms offer many services. This makes them
computationally and memory intensive, therefore running them on small devices
with little memory and slow processors is very difficult, often even impossible.
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Our solution does not implement agent platform or platform services. The
latter can be however implemented in form of standalone agents. This approach
is needed to ensure, that agents are more lightweight and can be deployed easily
and with as few preliminary arrangements as possible.

SPADE[8, 6] might be an example of a more lightweight approach, although
SPADE agents run on a platform with standard FIPA AMS and DF components.
It is written in Python and uses XMPP protocol for message transportation.
Each agent is a client with a registered Jabber ID and all communication is
conducted by sending Jabber messages that contain FIPA ACL expressions.
The platform however requires a central jabber/XMPP server.

5 Conclusion and Future Work

In this paper we have presented a lightweight communication platform designed
especially to allow easy implementation of heterogeneous multi-context systems.
The platform uses FIPA ACL messages transported through simple RESTful
peer to peer TCP/IP connections. Each agent also has a discovery service that
acts as a simple agent management system.

The platform also allows the creation of gateway agents that can be used to
interconnect agents from different networks or based on other FIPA platforms
using different message transports.

Each agent keeps a local agent directory via his discovery service, which might
not scale well for larger systems. Gateway agents could take the role of directory
services, especially since they can be dynamically created/registered. Ordinary
agents will use local network discovery services only to find gateway agents and
use them as a full featured agent management system/directory facilitator.

A possible improvement of the dynamic aspects of the platform is the abil-
ity to preserve its structural integrity by automatic reorganization of local-area
components. Basic idea behind this is making every agent capable of starting a
gateway service whenever one is needed (i.e. when the number of local gateway
agents is critically low) and obtaining the needed database from other remaining
local gateway agents. This makes it possible to maintain the connectivity with
external networks or platforms even after the loss of several gateway agents.
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Abstract. Preserving the privacy of sensitive data is one of the major challenges
which the information society has to face. Traditional approaches focused on the
infrastructure for identifying data which is to be kept private and for managing
access rights to these data. However, while these efforts are useful, they do not
address an important aspect: While the sensitive data itself can be protected nicely
using these mechanisms, related data, which is deemed insensitive per se may be
used to infer sensitive data. This can be achieved by combining insensitive data
or by exploiting specific background knowledge of the domain of discourse. In
this note, we show that resolving this problem can be achieved in a simple and
elegant way by using multi-context systems.

1 Introduction

The privacy of individuals has become one of the most important and most discussed
issues in modern society. With the advent of the Internet and easy access to a lot of
data, keeping sensitive data private has become a priority for distributed information
systems. An example area in which privacy is at stake are medical information systems.

Most databases have privacy mechanisms which are comparatively simple – by and
large they boil down to keeping certain columns of the database hidden from certain
types of users. There is a huge body of literature that deals with formalisms for this kind
of authorization problem, which we cannot discuss in detail in this short note. As an
example, see [6] for a work that discusses aspects of the authorization problem in non-
monotonic knowledge bases. What we are interested in this short paper is a somewhat
different issue, namely that users can infer information that is designated private by
asking queries that do not involve private information and then making “common sense”
inferences from the answers to infer private information.

In an earlier paper [4], we have given a formal definition of the Privacy Preservation
Problem and shown how this can be addressed by using default logic (we also refer to
this paper for discussions on related work). In that paper, however, there were several
restrictions on the knowledge bases that can be used. Effectively, they had to be first-
order theories, because in this way it is easily possible to build a default theory around
them.

In order to lift this restriction, in this note we propose using multi-context systems
as defined by Brewka and Eiter in [3] instead of default logic. By switching to that
formalism, it is possible to use heterogeneous knowledge bases to which users may
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have access or which model user knowledge. The unifying framework are then contexts
and bridge rules that link contexts instead of default rules in [4]. Apart from the greater
flexibility concerning the types of “participating” knowledge bases, another advantage
is that efficient systems for reasoning with multi-context systems begin to emerge [1].

In the following, we will first provide an adapted definition of the privacy preser-
vation problem in section 2. This definition is slightly different from the one of [4] in
order to allow for more heterogeneous knowledge bases to be involved. In section 3 we
will then show how to construct a multi-context system for computing answers for a
privacy preservation problem. In section 4 we conclude and outline future work.

2 Privacy Preservation Problem

In this section, we provide a simple formulation of the privacy preservation problem
(P3 for short), which is a generalization of the definition in [4]. For simplicity, we will
not consider any evolution in time of the systems, as it was done in [4].

We consider a logic L as in [3] to be a triple (KBL,BSL,ACCL) where KBL

is the set of well-formed knowledge bases of L (each of which is a set as well), BSL

is the set of possible belief sets, and ACCL is a function KBL → 2BSL describes
the semantics of each knowledge base. In the following, when mentioning knowledge
bases, we will usually not specify the underlying logic, intending that it can be any logic
in the sense just described.

Let the finite set U contain one user ID for each user in the system under consider-
ation. Moreover, we consider the main knowledge base MKB which the users will be
querying. Furthermore, the function BK associates each user u ∈ U with a background
knowledge base BK(u), while the function Priv associates each user u ∈ U with a
belief set Priv(u) that should be kept private. Note that the various knowledge bases
need not be of the same logic, but for practical reasons one would assume the belief sets
to be homogeneous.

It should be pointed out that BK(u) is not necessarily the user’s own knowledge
base, but rather a model of the user’s knowledge, maintained by the information system.

Example 1. Consider a small medical knowledge base MedKB containing information
about the symptoms and diseases of some patients. Let this knowledge base describe
two predicates symptom and disease and let the following be its only belief set SMedKB:

symptom(john, s1) symptom(jane, s1) disease(jane, aids)
symptom(john, s2) symptom(jane, s4) disease(john, cancer)
symptom(john, s3) disease(ed, polio)

Note that MedKB could very well be just a database. Assume that john and jane are
also users of the system and want to keep their diseases private, so Priv(john) =
{disease(john, cancer)}, while Priv(jane) = {disease(jane, aids)}. Consider an-
other user acct (an accountant). This person may have the following background knowl-
edge base BK(acct) in the form of rules (so the underlying logic might be answer set
programming).

disease(X, aids)← symptom(X, s1), symptom(X, s4)
disease(X, cancer)← symptom(X, s2), symptom(X, s3)
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Let a query be a construct to which for every semantics of a knowledge base a
belief set is associated, which is referred to as the answer Ans(Q) to Q. A privacy
preserving answer to a query Q over MKB posed by uo ∈ U with respect to BK and
Priv is X ⊆ Ans(Q) such that for all u ∈ U \ {u0} and for all p ∈ Priv(u), if
p 6∈ ACC(BK(u0)) then p 6∈ ACC(X ∪ BK(u0)). A maximal privacy preserving
answer is a subset maximal privacy preserving answer.

Note that here we assume that elements of belief sets can be added to knowledge
bases, yielding again a knowledge base of the respective logic.

A privacy preservation problem P3 is therefore a tuple (MKB,U,BK,Priv, Q, u0)
and solving it amounts to finding the (maximal) privacy preserving answers to Q posed
by u0 over MKB with respect to BK and Priv.

Example 2. Returning to our MedKB example, posing the query disease(john, X),
we would get as an answer the set {disease(john, cancer)}. Likewise, the answer
to the query symptom(john, X) is the set {symptom(john, s1), symptom(john, s2),
symptom(john, s3)}.

We assumed that John and Jane want their diseases kept private. However, the ac-
countant can violate John’s privacy by asking the query symptom(john, X). The an-
swer that acct would get from the system is {symptom(john, s1), symptom(john, s2),
symptom(john, s3)}. However, recall that the accountant has some background knowl-
edge including the rule

disease(X, cancer)← symptom(X, s2), symptom(X, s3)

which, with the answer of the query, would allow acct to infer disease(john, cancer).
Thus the privacy preserving answers to symptom(john, X) are

Ans1 = {symptom(john, s1), symptom(john, s2)}
Ans2 = {symptom(john, s1), symptom(john, s3)}
Ans3 = {symptom(john, s1)}
Ans4 = {symptom(john, s2)}
Ans5 = {symptom(john, s3)}
Ans6 = ∅

None of these answers allows acct to infer the private knowledge disease(john, cancer).
However, except for the answers Ans1 and Ans2, which are maximal, all answers yield
fewer information than could be disclosed without infringing privacy requirements. Any
system should also provide only one of these answers to the user, because getting for
instance both Ans1 and Ans2 would again violate John’s privacy requirements.

In a practical system, upon disclosing an answer the system should update the re-
spective user’s knowledge model in order to avoid privacy infringements by repeated
querying. For example, when the system returns Ans1 to user acct, it should mod-
ify BK(acct) in order to reflect the fact that acct now knows symptom(john, s1)
and symptom(john, s2), such that asking the same query again it is made sure that
symptom(john, s3) will not be disclosed to acct. This however is part of the dynamic
aspect of a privacy preserving information system, which we will not address in this
paper.
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3 Solving Privacy Preservation Problems Using Multi-Context
Systems

The definitions in Section 2 were already slightly geared towards multi-context systems.
We recall that a multi-context system in the sense of [3] is a tuple (C1, . . . , Cn) where
for each i, Ci = (Li, kbi, bri) where Li is a logic, kbi is a knowledge base of Li and
bri is a set of Li bridge rules over {L1, . . . , Ln}.

An Li bridge rule over {L1, . . . , Ln} is a construct

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . ,not (rm : pm)

where 1 ≤ rk ≤ n, pk is an element of a belief set for Lrk
and for each kb ∈ KBi

kb ∪ {s} ∈ KBi.
The semantics of a multi-context system is defined by means of equilibria. A belief

state for a multi-context system (C1, . . . , Cn) is S = (S1, . . . , Sn), where Si ∈ BSi

for 1 ≤ i ≤ n. An Li bridge rule of the form above is applicable in S iff for 1 ≤ k ≤ j
pk ∈ Srk

holds and for j < k ≤ m pk 6∈ Srk
holds. Let app(br, S) denote the

set of all bridge rules in br which are applicable in a belief state S. A belief state
S = (S1, . . . , Sn) is an equilibrium of a multi-context system (C1, . . . , Cn) iff for all
1 ≤ i ≤ n, Si ∈ ACCi(kbi ∪ {hd(r) | r ∈ app(bri, S)}), where hd(r) is the head of
a bridge rule r, viz. s in the bridge rule schema given earlier.

Given a P3 (MKB,U,BK,Priv, Q, u), with U = {u1, . . . , u|U|}, in order to
identify privacy preserving answers, we build a multi-context system MP3 = (C1,
C2, C3, C4, . . . , C|U|+3), where C1 = (LMKB,MKB, ∅), C2 = (LMKB, ∅, br2),
C3 = (LMKB, ∅, br3), C4 = (LBK(u1),BK(u1), br4) . . . , C|U|+3 = (LBK(u|U|),
BK(u|U|), br|U|+3). Here Lkb is the logic of the knowledge base kb. The meaning is
that C1 provides just the belief sets for MKB (no bridge rules), C2 and C3 are used to
identify those belief sets which are privacy preserving, while C4, . . . , C|U|+3 represent
the user information, that is, the background knowledge base of the querying user and
the privacy requirements of the other users. The important part are the bridge rules,
which we will describe next. In many cases, we will create one rule for each symbol
that can occur in some belief set of Ans(Q), so for convenience let D = {p | p ∈
B, B ∈ Ans(Q)}.

The set br2 contains one bridge rule p ← (1 : p), not (3 : p) for each p ∈ D.
Symmetrically, br3 contains one bridge rule p ← (1 : p), not (2 : p) for each p ∈ D.
The intuition is that the belief sets of C2 will be subsets of the belief set of C1 in any
equilibrium, and hence possible privacy preserving answers. C3 exists only for technical
reasons.

For i such that ui−2 = u, thus for the context Ci of the querying user, we add one
bridge rule p ← (2 : p) for each p ∈ D. This means that in any equilibrium the belief
set for i will contain all consequences of the privacy preserving answer with respect to
u’s knowledge base.

For each i where 3 ≤ i ≤ |U|+2 such that ui−2 6= u, thus for contexts representing
non-querying users, bri contains one bridge rule p1 ← (j : p1), . . . , (j : pl), not (i :
p1) for uj = u and {p1, . . . , pl} ∈ Priv(ui−2). The idea is that no belief state can
be an equilibrium, in which the querying user derives information which ui−2 wants to
keep private.
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Proposition 1. Given a P3 (MKB,U,BK,Priv, Q, u), each equilibrium belief state
(S1, S2, S3, S4, . . . , S|U|+3) for MP3 is such that S2 is a privacy preserving answer to
P3. Also, each privacy preserving answer S to P3 is the second component of an
equilibrium for MP3.

Example 3. In the example examined above, consider the P3 (MedKB, {john, jane,
acct}, BK, Priv, symptom(john, X), acct). Note that we did not define background
knowledge bases for users john and jane, but their nature is not important for the
example, just assume that they exist. We also have not defined any privacy statement
for acct, but also this is not important for our example and we will assume that it
is empty, that is, acct does not require anything to be kept private. We construct a
multi-context system (C1, C2, C3, C4, C5, C6) where C1 = (LMedKB, MedKB, ∅),
C2 = (LMedKB, ∅, br2) with bridge rules br2 being

symptom(john, s1)← (1 : symptom(john, s1)), not (3 : symptom(john, s1))
symptom(john, s2)← (1 : symptom(john, s2)), not (3 : symptom(john, s2))
symptom(john, s3)← (1 : symptom(john, s3)), not (3 : symptom(john, s3))

then C3 = (LMedKB, ∅, br3) with bridge rules br3 being

symptom(john, s1)← (1 : symptom(john, s1)), not (2 : symptom(john, s1))
symptom(john, s2)← (1 : symptom(john, s2)), not (2 : symptom(john, s2))
symptom(john, s3)← (1 : symptom(john, s3)), not (2 : symptom(john, s3))

then C4 = (LBK(john),BK(john), br4) with bridge rules br4 being

disease(john, cancer)← (6 : disease(john, cancer)), not (4 : disease(john, cancer))

then C5 = (LBK(jane),BK(jane), br5) with bridge rules br5 being

disease(jane, aids)← (6 : disease(jane, aids)), not (5 : disease(jane, aids)

and finally C6 = (LBK(acct),BK(acct), br6) with bridge rules br6 being

symptom(john, s1)← (2 : symptom(john, s1))
symptom(john, s2)← (2 : symptom(john, s2))
symptom(john, s3)← (2 : symptom(john, s3))

MP3 has six equilibria

E1 = (SMedKB, Ans1,Ans(symptom(john, X)) \Ans1, Ans1, ∅, ∅)
E2 = (SMedKB, Ans2,Ans(symptom(john, X)) \Ans2, Ans2, ∅, ∅)
E3 = (SMedKB, Ans3,Ans(symptom(john, X)) \Ans3, Ans3, ∅, ∅)
E4 = (SMedKB, Ans4,Ans(symptom(john, X)) \Ans4, Ans4, ∅, ∅)
E5 = (SMedKB, Ans5,Ans(symptom(john, X)) \Ans5, Ans5, ∅, ∅)
E6 = (SMedKB, Ans6,Ans(symptom(john, X)) \Ans6, Ans6, ∅, ∅)

where SMedKB is as in Example 1 and the second belief set of each Ei is exactly the re-
spective Ansi of Example 2 and the third belief set is the complement of Ansi with
respect to Ans(symptom(john, X)) = {symptom(john, s1), symptom(john, s2),
symptom(john, s3)}.
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We would like to point out that in this construction the original knowledge bases are
not changed, we only create contexts and bridge rules. All of the background knowledge
bases could be multi-context systems themselves; for instance, if the user model for acct
foresees that acct is aware of SNOMED and PEPID, then acct’s background knowledge
base could be a multi-context system comprising these two medical knowledge bases.

In order to obtain maximal privacy preserving answers using the described con-
struction, the simplest way is to postprocessing all privacy preserving answers. More
involved solutions would have to interfere with the underlying multi-context system
reasoner, for instance by dynamically changing the multi-context system. It is not clear
to us at the moment whether it is possible to modify the construction such that the equi-
libria of the obtained multi-context system correspond directly to the maximal privacy
preserving answers.

4 Conclusion and Future Work

We have presented a definition of the privacy preservation problem, which allows for
using knowledge bases of different kinds. Finding privacy preserving answers can then
be accomplished by building an appropriate multi-context system and computing one
of its belief states. Since systems for solving multi-context systems begin to emerge,
for example DMCS [1], this also implies that these privacy preserving answers can be
effectively computed.

However, usually one is interested in maximal privacy preserving answers. It is un-
clear to us whether a similar construction as the one presented in this paper can be
used for finding privacy preserving answers which are maximal, by just creating appro-
priate contexts and bridge rules and without modifying the involved knowledge bases
or adding new knowledge bases of particular logics. One possible line of investiga-
tion would be to examine work on diagnosing inconsistent multi-context systems [5,
2], since in diagnosis tasks there is an implicit minimization criterion, which could be
exploited for encoding maximality.
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