
Graph Decomposition and Transitive
Closures
Yangjun Chen*

Dept. Business Computing, Winnipeg University,
515 Portage Ave. Winnipeg, Manitoba, Canada R3B 2E9

ychen2@uwinnipeg.ca

Abstract. In this paper, we propose a new algorithm for computing recursive closures.
The main idea behind this is tree labeling and graph decomposition, based on which the
transitive closure of a directed graph can be computed in O(e⋅b) time and O(n⋅b) space,
where n is the number of the nodes of the graph, e is the numbers of the edges, and b is
the graph’s breadth. It is a better computational complexity than any existing algorithms
for this problem.

1. Introduction

Let G = (V, E) be a directed graph (digraph for short). Digraph G* = (V, E*) is the reflexive, tran-
sitive closure of G if (v, w) ∈ E* iff there is a path from v to w in G. In this paper, we present a
new algorithm for computing the transitive closure of a digraph efficiently.

2. Tree labeling
In this section, we mainly discuss the concepts of tree labeling and graph decomposition, based
on which our algorithm is designed. For any directed tree T, we can label it as follows. By travers-
ing T in preorder, each node v will obtain a number pre(v) to record the order in which the nodes
of the tree are visited. In a similar way, by traversing T in postorder, each node v will get another
number post(v). These two numbers can be used to characterize the ancestor-descendant relation-
ships of nodes as follows.

Proposition 1. Let v and v’ be two nodes of a tree T. Then, v’ is a descendant of v iff pre(v’) >
pre(v) and post(v’) < post(v).
Proof. See [Kn73].
If v’ is a descendant of v, then we know that pre(v’) > pre(v) according to the preorder search. Now
we assume that post(v’) > post(v). Then, according to the postorder search, either v’ is in some
subtree on the right side of v, or v is in the subtree rooted at v’, which contradicts the fact that v’
is a descendant of v. Therefore, post(v’) must be less than post(v).

The following example helps for illustration.

Example 1. See the pairs associated with the nodes of the directed tree shown in Fig. 1. The first
element of each pair is the preorder number of the corresponding node and the second is its pos-
torder number. Using such labels, the ancestor-descendant relationships of nodes can be easily
checked. For instance, by checking the label associated with b against the label for f, we know that
b is an ancestor of f in terms of Proposition 1. We can also see that since the pairs associated with
g and c do not satisfy the condition given in Proposition 1, g must not be an ancestor of c and vice
versa.

Defition 1. Let (p, q) and (p’, q’) be two pairs associated with nodes u and v. We say that (p, q) is
subsumed by (p’, q’), denoted (p, q) (p’, q’), if p > p’ and q < q’. Then, u is a descendant of v
if (p, q) is subsumed by (p’, q’).

3. Branchings and graph decomposition

Now we discuss how to recognize the ancestor-descendant relationships w.r.t. a general structure:
a DAG or a graph containing cycles.

* The author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Can-

What we want is to apply the technique discussed above to a DAG. To this end, we establish a
branching of the DAG as follows.

Definition 2. (branching [Ta77]) A subgraph B = (V, E’) of a digraph G = (V, E) is called a branch-
ing if it is cycle-free and dindegree(v) ≤ 1 for every v ∈ V.

Clearly, if for only one node r, dindegree(r) = 0, and for all the rest of the nodes, v, dindegree(v) = 1,
then the branching is a directed tree with root r. Normally, a branching is a set of directed trees.
Now, we assign each edge e a same cost (e.g., let cost c(e) = 1 for every edge). We will find a
branching for which the sum of the edge costs, , is maximum.

For example, the trees shown in Fig. 2(b) are a maximal branching of the graph shown in Fig. 2(a)
if each edge has a same cost.
Assume that the maximal branching for G = (V, E) is a set of trees Ti with root ri (i = 1, ..., m). We
introduce a virtual root r for the branching and an edge r → ri for each Ti, obtaining a tree Gr,
called the representation of G. For instance, the tree shown in Fig. 2(c) is the representation of the
graph shown in Fig. 2(a). Using Tarjan’s algorithm for finding optimum branchings [Ta77], we
can always find a maximal branching for a directed graph in O(|E|) time if the cost for every edge
is equal to each other. Therefore, the representative tree for a DAG can be constructed in linear
time.
By traversing Gr in preorder, each node v will obtain a number pre(v); and by traversing Gr in
postorder, each node v will get another number post(v). These two numbers can be used to recog-
nize the ancestor-descendant relationships of all Gr’s nodes as discussed in Section 2.
In a Gr (for some G), a node v can be considered as a representation of the subtree rooted at v,
denoted Tsub(v); and the pair (pre, post) associated with v can be considered as a pointer to v, and
thus to Tsub(v). (In practice, we can associate a pointer with such a pair to point to the correspond-
ing node in Gr.) In the following, what we want is to construct a pair sequence: (pre1, post1), ...,
(prek, postk) for each node v in G, representing the union of the subtrees (in Gr) rooted respectively
at (prej, postj) (j = 1, ..., k), which contains all the descendants of v. In this way, the space overhead
for storing the descendants of a node is dramatically reduced. Later we will shown that a pair se-
quence contains at most O(b) pairs, where b is the breadth of G.

Example 2. The representative tree Gr of the DAG G shown in Fig. 2(a) can be labeled as shown
in Fig. 3(a). Then, each of the generated pairs can be considered as a representation of some sub-
tree in Gr. For instance, pair (3, 3) represents the subtree rooted at c in Fig. 3(a).
If we can construct, for each node v, a pair sequence as shown in Fig. 3(b), where it is stored as a
link list, the descendants of the nodes can be represented in an economical way. Let L = (pre1,
post1), ..., (prek, postk) be a pair sequence and each (prei, posti) is a pair labeing vi (i = 1, ..., k).
Then, L corresponds to the union of the subtrees Tsub(v1) , ..., and Tsub(vk). For example, the pair
sequence (4, 1)(5, 2)(6, 4)(8, 6) associated with d in Fig. 3(b) represents a union of 4 subtrees:
Tsub(e), Tsub(f), Tsub(g) and Tsub(d), which contains all the descendants of d in G.
The question is how to construct such a pair sequence for each node v so that it corresponds to a
union of some subtrees in Gr, which contains all the descendants of v in G.
First, we notice that by labeling Gr, each node in G = (V, E) will be initially associated with a pair

c e()
e E ′∈

a

b g h

c e

f

Fig. 1. Labeling a tree

(3, 1)

(5, 2)

(4, 3)

(2, 4) (6, 5)
(7, 6)

(1, 7)

a b

c d
g

a

c g

e

b

d
a

c g

e

b

d

fe
f

f

Fig. 2. A DAG and its branching

(a) (b) (c)

r

as illustrated in Fig. 4. That is, if a node v is labeled with (pre, post) in Gr, it will be initially labeled
with the same pair (pre, post) in G.

To compute the pair sequence for each node, we sort the nodes of G topologically, i.e., (vi, vj) ∈
Ε implies that vj appears before vi in the sequence of the nodes. The pairs to be generated for a
node v are simply stored in a link list Av. Initially, each Av contains only one pair produced by la-
beling Gr.
We scan the topological sequence of the nodes from the beginning to the end and at each step we
do the following:

Let v be the node being considered. Let v1, ..., vk be the children of v. Merge Av with each
 for the child node vi (i = 1, ..., k) as follows. Assume Av = p1 → p2 → ... → pg and =

q1 → q2 → ... → qh, as shown in Fig. 5. Assume that both Av are increasingly ordered.
(We say a pair p is larger than another pair p’, denoted p > p’ if p.pre > p’.pre and p.post >
p’.post.)

We step through both Av and from left to right. Let pi and qj be the pairs encountered. We’ll
make the following checkings.
(1) If pi.pre > qj.pre and pi.post > qj.post, insert qj into Av after pi-1 and before pi and move to

qj+1.
(2) If pi.pre > qj.pre and pi.post < qj.post, remove pi from Av and move to pi+1. (*pi is subsumed

by qj.*)
(3) If pi.pre < qj.pre and pi.post > qj.post, ignore qj and move to qj+1. (*qj is subsumed by pi; but

it should not be removed from .*)
(4) If pi.pre < qj.pre and pi.post < qj.post, ignore pi and move to pi+1.
(5) If pi = pj’ and qi = qj’, ignore both (pi, qi) and (pj’, qj’), and move to (pi+1, qi+1) and (pj+1’,

qj+1’), respectively.

In terms of the above discussion, we have the following algorithm to merge two pair sequences
together.
Algorithm pair-sequence-merge(A1, A2)
Input: A1 and A2 - two link lists associated with v1 and v2.
Output: A - modified A1, containing all the pairs in A1 and A2 with all the subsumed pairs removed.
begin
1 p ← first-element(A1);
2 q ← first-element(A2);
3 while p ≠ nil do{

(1, 8)

(2, 5)

(3, 3)

(4, 1) (5, 2)

(7, 7)a

c g

e

b

d

f

(6, 4) (8, 6)

a

b

c

d

e

f

g

2, 5

4, 1 5, 2 6, 4

3, 3

7, 7

4, 1 5, 2 6, 4 8, 6

4, 1 5, 2 6, 4

4, 1

5, 2

Fig. 3. Tree labeling and illustration for transitive closure representation
(a) (b)

Tsub(e) ∪ Tsub(f) ∪ Tsub(g) ∪ Tsub(b)
Tsub(a)

Tsub(c)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g) ∪ Tsub(d)

Tsub(e)
Tsub(f)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g)

a b
c d

g

fe

Fig. 4. Graph labeling

(2, 5)
(7, 7)

(3, 3) (6, 4) (8, 6)

(4, 1) (5, 2)

Av:

p1 p2 pg

viA :
q1 q2 qh

Fig. 5. Link lists associated with nodes in G

Avi
Avi

Avi

Avi

Avi

4 while q ≠ nil do{
5 if (p.pre > q.pre ∧ p.post > q.post) then
6 {insert q into A1 before p;
7 q ← next(q);} (*next(q) represents the pair next to q in A2.*)
8 else if (p.pre > q.pre ∧ p.post < q.post) then
9 {p’ ← p; (*p is subsumed by q; remove p from A1.*)
10 remove p from A1;
11 p ← next(p’);} (*next(p’) represents the pair next to p’ in

A1.*)
12 else if (p.pre < q.pre ∧ p.post > q.post) then
13 {q ← next(q);} (*q is subsumed by p; move to the

next element of q.*)
14 else if (p.pre < q.pre ∧ p.post < q.post) then
15 {p ← next(p);}
16 else if (p.pre = q.pre ∧ p.post = q.post)
17 then {p ← next(p); q ← next(q);}
18 if p = nil ∧ q ≠ nil then {attach the rest of A2 to the end of A1;}
end

The following example helps for illustration.

Example 3. Assume that A1 = (7, 7)(11, 8) and A2 = (4, 3)(8, 5)(10, 11). Then, A = pair-sequence-
merge(A1, A2) = (4, 3)(7, 7)(10, 11). Fig. 6 shows the entire merging process.

In each step, the A1-pair pointed by p and the A2-pair pointed by q are coompared. In the first step,
(7, 7) in A1 will be checked against (4, 3) in A2 (see Fig. 6(a)). Since (4, 3) is smaller than (7, 7),
it will be inserted into A1 before (7, 7) (see Fig. 6(b)). In the second step, (7, 7) in A1 will be
checked against (8, 5) in A2. Since (8, 5) is subsumed by (7, 7), we move to (10, 11) in A2 (see
Fig. 6(c)). In the third step, (7, 7) is smaller than (10, 11) and we move to (11, 8) in A1 (see Fig.
6(d)). In the fourth step, (11, 8) in A1 is checked against (10, 11) in A2. Since (11, 8) is subsumed
by (10, 11), it will be removed from A1 and p becomes nil (see Fig. 6(e)). In this case, (10, 11) will
be attached to A1 (see line 18 of Algorithm pair-sequence-merge()), forming the result A = (4,
3)(7, 7)(10, 11) (see Fig. 6(e)). Fig. 7 is a pictorial illustration of the result of merging A1 and A2.

Along the topological order of a graph, we can generate the pair sequences for all the nodes, which
computes the transitive closure of the graph using O(e⋅b) time.

References
Kn73 D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-Wes-

ley Pub. London, 1973.
Ta77 J. Tarjan, Finding Optimum Branching, Networks, 7. 1977, pp. 25 -35.

(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(10, 11)
(4, 3)(8, 5)(10, 11)

p = nil

q

A1:
A2:

A

(a) (b) (c)

(d) (e)

Fig. 6. An entire merging process

(4, 3) (7, 7)

(8, 5)
(10, 11)

(11, 8)

A1:

A2: A:

a branching

Fig. 7. Illustration of mering two pair
sequencees

	Str:
	:41: 5
	:51: 6
	:61: 7
	:71: 8

