
Design and Implementation of a NetLogo Interface
for the Stand-Alone FYPA System

Daniela Briola and Viviana Mascardi
Dipartimento di Informatica e Scienze dell’Informazione (DISI)

Università degli Studi di Genova
Email: {briola, mascardi}@disi.unige.it

Abstract—FYPA (Find Your Path, Agent!) is a multiagent sys-
tem currently used by Ansaldo STS for off-line daily computation
of paths of trains inside stations. Its exploitation for on-line re-
planning in case of unavailability of resources is envisaged in the
very near future, since the system’s performances demonstrated
to be suitable for real time usage.

In this paper we present StandaFYPA, the stand-alone version
of FYPA that we developed for running batteries of tests on our
own, without needing to access existing Ansaldo applications.
StandaFYPA is equipped with a graphical interface implemented
in NetLogo for off-line visualization, that we describe here in
details.

I. INTRODUCTION

FYPA (Find Your Path, Agent!) [2], [4], [5] is a multiagent
system used by Ansaldo STS, the Italian leader in design and
construction of signaling and automation systems for conven-
tional and high speed railway lines, for solving a resource
allocation problem by means of distributed negotiation.

The system is currently used by Ansaldo STS for off-line
computation of paths of trains inside stations, whereas its
on-line application for real-time unavailability management is
foreseen in the very near future.

The “Ansaldo FYPA” system (AnsaFYPA from now on),
namely the system currently operating in Ansaldo STS centers,
reads configuration data from a legacy system and send results
to it, using Web Services. In 2009 we started the development
of a stand-alone version of the system in order to carry
out batteries of tests without needing any Ansaldo legacy
system, whose access from outside Ansaldo was of course
not allowed. Hence, we implemented the “Stand-alone FYPA”
system (StandaFYPA in the sequel) by reusing as much as
possible code we already developed for Ansaldo, and by
implementing the new functionalities we needed for making
StandaFYPA self-contained.

AnsaFYPA and StandaFYPA are different only as far as the
input/output management is concerned: we changed the type
source of input data and we modified the output visualization.
In particular, we added a post-execution simulator to the
StandaFYPA system implemented by means of a NetLogo
[6] program able to read the output files of the agents and
to graphically represent the moves of trains (agents) on the
railway tracks (resources).

The performances of StandaFYPA and its NetLogo interface
are the main subjects of this paper, which is organized in
the following way: Section II briefly recalls the problem

addressed by FYPA and the proposed solution, and provides
an evaluation of AnsaFYPA and StandaFYPA performances;
Section III provides some background knowledge on NetLogo,
discusses the reasons why we did not implement StandaFYPA
in NetLogo, and shows how we used NetLogo for develop-
ing the StandaFYPA graphical interface; Section IV shows
StandaFYPA at work; finally, Section V outlines some future
directions of research and concludes.

II. STAND-ALONE FYPA
A. The problem faced by FYPA

The abstract problem faced by the FYPA multiagent system
has already been described in [2], [4], [5] and consists of
• A set of indivisible resources that must be assigned to

different agents in different time slots (each resource can
be used by only one agent in each time slot).

• A set of agents with different priorities, each needing to
use some of the available resources for one or more time
slots; agents have preferences over the set of resources
they can obtain.

• A directed graph of dependencies among resources: an
agent can start using resource R only if it used exactly
one resource from {R1, R2, ..., Rn} in the previous time
slot (we represent these dependencies as arcs R1 → R,
R2 → R, ..., Rn → R in the graph).

• A set of resources named “start points” that can be
assigned to agents without requiring the prior usage of
other resources (no arc enters in the corresponding node).

• A set of resources named “end points” that, once assigned
to one agent, allow the agent to complete its job (no arc
exits from the corresponding node).

• A set of couples of conflicting arcs in the graph of
dependencies: an agent releasing R1 for accessing R2,
where the usage of R2 depends on the previous usage
of R1, might conflict with an agent releasing R3 for
accessing R4. The two agents might indeed need to use
the same transportation means for accessing R2 from
R1 and R4 from R3 respectively, and the transportation
means might be non sharable as well.

• A static allocation plan that assigns resources to agents
for pre-defined time slots, in such a way that no conflicts
arise.

Since agents happen to use resources for longer than
planned and resources can break up, a dynamic re-allocation



of resources over time is often required. Thus, the solution
of the real world problem is a dynamic re-allocation of the
resources to the agents such that:

1) the re-allocation is feasible, namely free of conflicts; in
our scenario, conflicts may arise both because two or
more agents would want to access the same resource
in the same time slot, and because two or more agents
would want to use conflicting arcs in the same time slot;

2) the re-allocation task is completed within a pre-defined
amount of time;

3) each agent minimizes the changes between its new plan
and its static allocation plan: the start and end point must
always remain those stated in the static allocation plan,
but the nodes in between may change, as well as the
time slots during which resources are used;

4) each agent minimizes the delay in which it reaches the
end point with respect to its static allocation plan;

5) the number of agents and resources involved in the re-
allocation process is kept to the minimum.

In FYPA, every train is managed by a “Treno agent” and
every resource inside the station (a node of the graph) is
managed by a “Nodo agent”1. Railway tracks connecting
nodes (the arcs of the graph) are resources to be assigned
to trains. The resource allocation problem is solved by means
of a complex negotiation protocol that converges towards a
solution provided that
• there are always more free resources than agents;
• at least one complete free path connecting every start

point to an end point exists;
• the number of arcs in the graph ensures a redundancy in

the choice of paths;
• agents enter the graph at the time stated by their static

allocation plan or later;
• it cannot occur that two trains reserve the same resource

in a “not disputable” way.
Both AnsaFYPA and StandaFYPA solve the above problem.

The table below summarizes the differences between the two
systems, which are concerned with technical details of their
implementations and not with the functionalities they provide.

AnsaFYPA StandaFYPA
OS Linux Windows (XP or Vista)
Input Text Files Database
Data Interf. Web Services (WSIG) Connection to DB
Paths Saved in an external file Computed run time from DB
Arcs Mainly One-Way Bidirectional
GUI Ansaldo STS program NetLogo

B. Evaluation of the AnsaFYPA and StandaFYPA systems

AnsaFYPA demonstrated to give good performances when
tested by Ansaldo STS engineers: using a station with about
fifty nodes, two hundreds arcs and at least ten trains in the
station at the same time, the system was able to find a solution

1Being developed for an Italian company, FYPA code uses Italian tags for
agent names: in this paper we keep the names of agents as they are in the
code, to avoid inconsistencies with respect to the images captured from JADE.

in few seconds. Ansaldo STS is using AnsaFYPA as a plug-
in of its commercial application, and uses it to organize the
movements of trains in a station for an entire day. In the sequel
we report data of two experiments carried out by Ansaldo STS
engineers on the field (courtesy of Ansaldo STS).

The first station considered during the testing of the
AnsaFYPA system was Mestre: this station has 59 Nodo
agents, 528 Treno agents (during day 28th of March 2011)
and each Nodo agent manages approximately tree entering
arcs. The total number of incompatibilities is 430. A simplified
representation of Mestre station is shown in Figure 1.

The simulation carried out by Ansaldo STS engineers
took 18 minutes to be completed. This time is also due
to the scheduling chosen by the Ansaldo STS system: the
User Agents Manager creates a new train every 2 seconds,
so the simulation time is at least equal to the number of
trains multiplied for 2 seconds: in this example, at least 17
minutes. This means that the system requires less than two
seconds, considering all the simulation time, to manage the
reallocations/conflicts that arise between trains when a new
train enters the station. This amount of time is acceptable for
using AnsaFYPA on-line as well.

The second station that was used for testing AnsaFYPA
is Pisa. Pisa is managed by 60 Nodo agents, each having
about 20 entering arcs. Every arc has 130 incompatibilities on
average. This station is definitely more complex than Mestre
because of the many more incompatibilities. The simulation
of the real traffic in Pisa station on the 20th of January 2011,
with 395 trains crossing the station, took only 13 minutes to be
completed (with one train entering the station every 2 seconds,
like in the previous example). A graph-like representation of
Pia station is reported in Figures 2 and 3, where the station is
partitioned into its left and right sub-graphs.

The tests we carried out on StandaFYPA show that it
performs in the same way as AnsaFYPA if considering the
“allocation phase”, that is, if considering the simulation start-
ing when the first train enters the station. StandaFYPA is faster
than AnsaFYPA in its “set up” phase (the phase where Nodo
agents are created with the information regarding arcs and
incompatibilities) because the direct access to a database is
definitely faster than using web services and parsing very large
files. The StandaFYPA system takes about thirty seconds to
set up, while the AnsaFYPA needs some minutes.

III. NETLOGO AND ITS USAGE IN STAND-ALONE FYPA

A. NetLogo

This section provides a short introduction to NetLogo and is
based on [1] and on http://ccl.northwestern.edu/netlogo/docs/.

NetLogo is a programmable modeling environment for
simulating natural and social phenomena. It is particularly well
suited for modeling complex systems developing over time.
Modelers can give instructions to hundreds or thousands of
agents all operating independently. This makes it possible to
explore the connection between the micro-level behavior of
individuals and the macro-level patterns that emerge from the
interaction of many individuals.



Figure 1. The simplified representation of Mestre station (courtesy of Ansaldo STS)

Figure 2. The graph-like representation of Pisa station (right side, courtesy of Ansaldo STS)



Figure 3. The graph-like representation of Pisa station (left side, courtesy of Ansaldo STS)

NetLogo supports three types of agents: turtles, patches,
and links. Patches represent square (in 2D) or box (in 3D)
cells on the main 2D (or 3D) view of the world. Turtles are
agents that can move around on the world surface, and draw.
Links represent relationships between turtles. There is also an
“observer agent” that has a view of the whole NetLogo world
and is used for running the main parts of the program (linked
to buttons on the interface) as well as providing a way of
interacting command by command on the main interface.

One of the benefits of using NetLogo, which is in fact
the reason why we used it in StandaFYPA, is its graphical
interface. By default, the interface contains just a 2D spatial
view of the model environment, which is a square lattice. In
addition to the 2D spatial view, the developer can add other
elements such as buttons to set model parameters and graphs
to monitor results. The 2D view has several different options
that prove useful in modeling. The size of the grid (the number
of cells) can be changed, as can the size of the cells themselves
(in pixels).

B. Why not implementing StandaFYPA in NetLogo

NetLogo is very useful to simulate the evolution of a system
consisting of thousands of simple agents divided into different
categories. Hence, it is suitable to implement applications
whose main aim is to evaluate the emergent behavior of the
system and where there is no need to follow the life cycle of
individual agents. In that kind of applications, decisions about
what action is to be done are usually made using a probabilistic
choice. Also, simulated time does not require a sophisticated
management and the built-in representation of time provided
by NetLogo by means of Ticks (a discrete representation of
time shared among agents) is enough.

We could not use NetLogo to implement the stand-alone

version of the FYPA algorithm mainly because of the follow-
ing reasons:

1) NetLogo is not suitable to simulate a negotiation among
agents based on a “deterministic view” (namely, a ne-
gotiation based on a protocol with predefined roles and
actions);

2) NetLogo is not suitable to simulate an interaction where
agents exchange messages;

3) NetLogo does not support a continuous model of time
we adopted in FYPA.

Besides these main and almost general motivations, there
are more specific ones due to the features of the physical world
where our agents (trains and nodes) live, and to the protocol
we designed.

The environment of our MAS can be represented as a graph
with nodes and many arcs connecting them, and agents that
cross the graph. In NetLogo, links represent a connection
between two agents, but only one link between each couple
of agents is allowed: the existence of multiple railway tracks
among two nodes was difficult to model. Furthermore, the
most natural way of using NetLogo is to ask the entire
population of agents of some kind to do something, using
the command “ask agentset to do something”: this command
selects one agent from the set in a random way and than
executes the code for that agent. Then it randomly chooses
another agent and so on, until all the agents of that kind
have been selected. In this way, the execution of the entire
protocol is forced to be sequential, and not simultaneous as
in FYPA happens, and hence all the problems arising from
the concurrent choice of a resource (path, arc or node) do not
emerge and cannot be dealt with.

Although there are ways to avoid this sequential behavior
of the “ask command”, and hence this last problem should



have been overcome, we soon realized that, in order to use
NetLogo to implement StandaFYPA, we should have forced
NetLogo to behave in a completely different way with respect
to its own philosophy. Instead, NetLogo proved a very suitable
tool for implementing a nice graphical interface for off-line
visualization of train paths: we used it for exploiting this
functionality, as described in the next section.

C. NetLogo graphical interface for StandaFYPA

NetLogo offers an integrated graphical representation of the
simulation, so it is almost simple to let the user see how the
simulation is going on. Instead of programming the graphical
front end of an application, to see for example where the
agents are moving, one can use NetLogo that provides these
visualization facilities for free.

We took advantage of them for off-line visualization of the
StandaFYPA output. Our NetLogo program reads the structure
of the station and the movements of a set of Trains during
the time from the log files that are output by StandaFYPA
(manually reworked to meet the input format needed by our
NetLogo program). Due to NetLogo limitations, we are not
able to draw more that one arc between two nodes.

Nodes and trains are NetLogo turtles, whereas arcs are
NetLogo link agents. Time is represented using NetLogo
Ticks: at every tick, each train will read from a private list
(initialized with its movements on the graph) and will move
on a new node (or will remain on the node where it is, if it
should stay there).

NetLogo needs four types of files:
• Nodes.txt: a list of nodes with their physical position on

the NetLogo output screen;
• Arcs.txt: a list of the arcs connecting two nodes (one arc

for each pair at most);
• Trains.txt: list of all the trains involved in the simulation;
• Movements.txt: list representing the position of trains on

nodes, for each NetLogo time tick.
Figure 4 shows the interface of our NetLogo program. When

the program is started, all the agents read the information they
need from these four files. The user can decide to run the
simulation “tick by tick” or “as a movie” (selecting the flag
“Forever” among the options of the “Go” button): in the first
case, the user will ask the system, pressing the button “Go”, to
move on the simulation of only one tick (updating the trains
position), while in the second case the system will update the
graph every Delta seconds (that is, every Delta seconds the
tick counter will be incremented and the position of trains
updated), showing in this way the trains moving on the graph.
Delta is a value that the user can change to slow down or
speed up the simulation, using the sliding bar shown at the
top of the interface.

IV. STANDAFYPA AT WORK

In this section we will describe the main features of
StandaFYPA using some examples: we will start with simple
ones to show the basic interactions in the negotiation protocol,
how the changes of the state of the graph are spread among

Nodes, the node reservation procedure and so on. Then we
will present some more complex examples (using sometimes
a Dummy agent from JADE platform) to show the interactions
among Trains and Nodes.

To fully understand the examples we should recall the FYPA
system uses Italian names for agents, in particular:
• User Agents (UA) are called “Treno”
• Resource Agents (RA) are called “Nodo”
• Resource Agents Manager is called “Prenotazioni-

Stazione”
• User Agents Manager is called “MovimentiIndotti”
• Paths Manager Agent (PA) is called “PercorsiAlternativi”
These examples have been executed on a personal computer

with MS Windows XP Professional c©, 2 GB RAM and an
AMD Athlon c© 64 processor 3000+.

A. Example 1: Resource reservation
In this example we show how Nodo agents interact to

maintain the state of the graph updated.
Considering the graph shown in Figure 5, Nodo 3 and

Nodo 4 manage arc number 6 which has an incompatibility
with arc 5, managed by Nodo 2 and Nodo 5. These arcs
are managed (namely, “in the scope of”) by two Nodo agents
because they are bidirectional.

Let us simplify the example using a Dummy agent (da0)
instead of a Train and let us suppose that this agent needs
to leave Nodo 3 to move on Nodo 4. In this case da0 will
send a reservation request to Nodo 4 and then a confirmation
message to it.

In Figure 6 the messages exchanged between Nodo agents
are reported: Nodo 4 informs Nodo 2, Nodo 3 and Nodo 5
that there is a reservation request they must be informed of,
and then it sends a new message, with performative CON-
FIRM, to inform its neighbors that the previous reservation
request has been confirmed.

The execution of this example in JADE takes less than 1
second to be completed.

B. Example 2: Path reservation, with free nodes
In this example we describe the procedure to reserve a path,

and we start from the simplest situation, that is, all the nodes
are free and there is only one train in the station.

In the table below, the original plan of Treno 1 is reported:
considering the station shown in Figure 5, Treno 1 needs to
reserve the path Nodo 1, Nodo 3, Nodo 4 and Nodo 6. In
Figure 7 the complete interaction between Treno 1 and nodes
is shown.

Train Step Node From (ms) To (ms)
Treno 1 1 Nodo 1 210000 240000
Treno 1 2 Nodo 3 240000 310000
Treno 1 3 Nodo 4 310000 340000
Treno 1 4 Nodo 6 340000 380000

In Figure 8 the movements of Treno 1 in the station
are reported: these images come from the NetLogo interface
described in Section III-C. Starting from the creation of
Treno 1, the execution of this example in JADE takes less
than 1 second to be completed.



Figure 4. StandaFYPA graphical interface implemented with NetLogo

Figure 5. Station represented as a graph

Figure 6. Example 1: JADE sniffer view



Figure 7. Example 2: JADE sniffer view

First step Second step

Third step Fourth step

Figure 8. Example 2: NetLogo screenshots

C. Examples 3 and 4: Path reservation with occupied nodes

Now let us consider a further more complex situation that
we label with “Example 3”. Suppose that Treno 1 has priority
equal to 2. The station and Treno 1’s original plan are the
same ones of the above example.

We will show how the Treno agent acts if one of the
resources it is trying to reserve is already occupied.

In this example we assume that another train (a dummy
agent, da0) has already a reservation for the resource Nodo 4
for the interval 310000 - 340000 (that is the same interval

requested by Treno 1). The behavior of Treno 1 will change
considering the maximum delay it can undergo and the priority
of da0.

Let us suppose that Treno 1 can now accept 4000 millisec-
onds as maximum delay, and that da0 priority is 3 (da0 is a
train with a lower priority than Treno 1).

As the reader can see in Figure 9, when Treno 1 sends it
QUERY-IF messages, it receives an INFORM from Nodo 4
that specifies that the resource is already occupied by train
da0, with priority 3, and that the resource will be again



available from 340001 (till 370001, that is, is free for the
same time interval but starting from 340001).

Treno 1 can calculate the total delay it should accept: in
this case, 3000 milliseconds, that is an acceptable delay. The
train decides to maintain its path (even if it could steal the
resource from da0) shifting the reservations: it asks Nodo 3 to
stay more on it, and then it moves on Nodo 4 when specified
in the INFORM message. All the nodes will answer with a
CONFIRM, so the train will again confirm its reservations and
will get a reserved path.

The interaction among the agents (excluding the last CON-
FIRM messages sent back by Treno 1) is shown in Figure
9, while the complete simulation made with the NetLogo
interface is reported in Figure 10. Starting from the creation
of Treno 1, the execution of this example in JADE takes less
than 2 seconds to be completed.

In this situation, the priority of da0 does not care because
Treno 1 can accept the delay suggested by Nodo 4.

However, let us suppose that the dummy agent da0, that has
already a reservation for the resource Nodo 3 for the interval
240000 - 310000, has priority 3 and that the maximum delay
for Treno 1 is 1000.

In this example Treno 1 steals the resource from da0
because it has an higher priority and the delay it should
accept shifting its reservations is too high (we do not provide
screenshots for this example).

An even more complex situation, that we label with “Exam-
ple 4”, takes place if the dummy agent da0, that has already
a reservation for the resource Nodo 4 for the interval 310000
- 340000, has priority 1 and that the maximum delay for
Treno 1 is 1000.

Being 3000 milliseconds of total delay not acceptable and
being the priority of da0 higher than the one of Treno 1,
the train can only search for another path. It asks the Paths
Manager Agent (PA) to get the list of alternative paths (from
Nodo 1 to Nodo 6), avoiding Nodo 4. The content of the
QUERY-IF message sent by Treno 1 to PA is the next one:

1; Nodo 1; Nodo 6; Nodo 4; [Nodo 1, Nodo 3,
Nodo 4, Nodo 6]; Nodo 4
while the content of the INFORM message received from

PA is the next one:
[(1 false; 2 true; 5 true; 6 false),
(1 false; 3 true; 5 true; 6 false)]
that is the list of alternative paths (where 1 false means

Nodo 1 that is not a “Stop Node”). In this case, Treno 1
selects the path (1 false; 2 true; 5 true; 6 false) and it
succeeds in reserving it, as shown in Figure 11. In Figure 12
the complete simulation made with the NetLogo interface is
reported. Starting from the creation of Treno 1, the execution
of this example in JADE takes less than 2 seconds to be
completed.

V. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the StandaFYPA systems, its
differences with respect to AnsaFYPA, its performances on
real case situations (Pisa and Mestre stations) and its behavior
in small examples that we used for debugging purposes.

We already started to look for similar case studies in the
same area to verify if StandaFYPA may be used to solve them
[3]: by analyzing these new case studies in detail and trying
to solve them using our StandaFYPA system we will also be
able to understand how our protocol can be modified to cope
with them and, in general, how it can be made more flexible.

Some technical improvements that are on their way are:
• implementing the code to automatically export

StandaFYPA log files in the format requested by
our NetLogo graphical interface (currently, some manual
adjustment is required);

• modifying the database (and the code) to model directed
arcs instead of bidirectional arcs.;

• modifying the protocol to let Treno agents “ask help”: if a
Treno agent T1 needs a resource that is already reserved
by another Treno agent T2 with an higher priority (so
T1 is not able to steal the resource), T1 could ask T2 to
find another path in the station, that is, it could ask T2
to release the resource and let T1 move on that;

• inserting the configuration parameters regarding the “time
outs” into the database, in order to allow the user specify
how long a Nodo or a Treno agent must wait for an
answer.

ACKNOWLEDGMENTS

This paper is based on Chapter 5 of Daniela Briola’s
Ph.D. Thesis, [2]. We thank Riccardo Caccia from Ansaldo
STS for his help and support during all the stages of FYPA
development.

REFERENCES

[1] M. J. Berryman and S. D. Angus. Tutorials on agent-based modelling with
NetLogo and network analysis with Pajek. In R. L. Dewar and F. Detering,
editors, Proceedings of the 22nd Canberra International Physics Summer
School, pages 351–375, 2010.

[2] D. Briola. Negotiation in Multiagent Systems: Protocols, Ontologies and
Applications. PhD thesis, DISI, University of Genova, Italy, 2011.

[3] D. Briola and V. Mascardi. Multi agent resource allocation: a comparison
of five negotiation protocols. In this volume.

[4] D. Briola, V. Mascardi, and M. Martelli. Intelligent agents that monitor,
diagnose and solve problems: Two success stories of industry-university
collaboration. In Journal of Information Assurance and Security, vol-
ume 4, pages 106–117, 2009.

[5] D. Briola, V. Mascardi, M. Martelli, R. Caccia, and C. Milani. Dynamic
resource allocation in a MAS: A case study from the industry. In From
Objects to Agents Workshop, WOA 2009, Proceedings, 2009.

[6] Uri Wilensky, at the Center for Connected Learning (CCL) and Computer-
Based Modeling, Northwestern University, Evanston, IL. Netlogo: Ref-
erence homepage, 1999. http://ccl.northwestern.edu/netlogo/.



Figure 9. Example 3: JADE sniffer view

First step Second step

Third step Fourth step

Figure 10. Example 3: NetLogo screenshots



Figure 11. Example 4: JADE sniffer view

First step Second step

Third step Fourth step

Figure 12. Example 4: NetLogo screenshots


