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Abstract—The paper presents an agent-based model for the
explicit representation of groups of pedestrians in a crowd. The
model is the result of a multidisciplinary research (CRYSTALS
project) where multicultural dynamics and spatial and socio-
cultural relationships among individuals are considered as first
class elements for the simulation of crowd of pilgrims taking to
the annual pilgrimage towards Makkah. After an introduction
of advantages of Multi-Agent System approach for pedestrian
dynamics modelling, a formal description of the model is pro-
posed. The scenario in which the model was developed and some
examples about modelling heterogeneous groups of pedestrians
are described.

I. INTRODUCTION

Models for the simulation of pedestrian dynamics and
crowds of pedestrians have been proposed and successfully
applied to several scenarios and case studies: these models
are based on physical approach, Cellular Automata approach
and Multi-Agent System approach (see [1] for a state of
the art). In this work, we refer to the Multi-Agent System
(MAS) approach according to which crowds are studied as
complex systems whose dynamics results from local behaviour
of individuals and the interactions with their surrounding
environment. A MAS is a system composed of a set of
autonomous and heterogeneous entities distributed in an en-
vironment, able to cooperate and coordinate with each other
[2], [3]. Many research areas contribute to the development
of tools and techniques based on MAS for the modelling
and simulation of complex systems, as crowds of pedestrians
are. In particular, Artificial Intelligence (AI) has contributed
in different ways [4]. At the very beginning, AI researchers
mainly worked towards encapsulating intelligence in agent
behaviours. Other main aspects which AI researchers recently
investigated concern modeling and computational tools to
deal with interactions [5], [6]. The result of this line of
research is that we currently can exploit sounding tools that are
flexible, adaptable, verifiable, situated and distributed. Due to
the suitability of agents and of MAS-approach to deal with
heterogeneity of complex systems, several examples of its

application in the pedestrian dynamics area are presented in
the literature [7]–[9].

Despite simulators can be found on the market and they are
commonly employed by end-user and consultancy companies
to provide suggestions to crowd managers and public events
organizers about questions regarding space management (e.g.
positioning signals, emergency exits, mobile structures), some
main open issues in Pedestrian Dynamics community are
highlighted as specific modelling requirements. For instance,
theoretical studies and empirical evidences demonstrated that
the presence of groups strongly modifies the overall dynamics
of a crowd of pedestrians [10], [11].

In this paper, we propose an agent-based model for the
explicit representation and modelling of groups of pedestrians,
starting from some fundamental elements we derived from
theories and empirical studies from sociology [12], anthropol-
ogy [13] and direct observations gathered during experiments
in collective environments [14]. This work is the result of
CRYSTALS project, a multidisciplinary research project where
multicultural dynamics and spatial and social relationships
among individuals are considered as first class elements for
the simulation of crowd of pilgrims taking to the annual Hajj
(the annual pilgrimage towards Makkah).

In modelling groups, considering the differences in the
agent-based tools before mentioned, our goal was to provide
a general platform-independent model, without an explicit de-
scription of space, time, perception functions and behavioural
functions which are usually strictly related to the development
of the tool. On the contrary, we focus on the organization
of pedestrians and on the study of relationships among indi-
viduals and the relative group structure, both as static feature
and dynamic evolution. The main contribution of the approach
we are presented concerns the expressiveness of modelling.
Considering the explicit representation of relationships among
pedestrians, it is moreover possible to apply methods of
network analysis, in particular regarding the identification of
relevant structures (i.e. borders and spatially located groups



[15], [16]).
Differently, other proposals about group modelling pre-

sented in the pedestrian dynamics literature do not explicitly
investigate the whole concept of group (both from static
and dynamic way) and do not consider elements derived
from anthropological and sociological studies: in [17] e.g. a
proposal in which the concept of group is related to the idea
of attraction force applied among pedestrians is presented as
an extension of social force field model [18]; [19] proposes
a model of pedestrian group dynamics using an agent-based
approach, based on utility theory, social comparison theory
and leader-follower model; in [20] a MAS-based analysis in
which social group structures is presented, exploiting inter and
intra relationships in groups by means of the creation of static
influence weighted matrices not depending on the evolution of
the system.

The paper is organized as follows: we focus on the descrip-
tion of basic elements of the model and on the description of
agent behavioural rules, directly connected with the analysis of
internal states of agents. First, in section II, the scenario of the
CRYSTALS project in which the presence of heterogeneous
groups is particularly evident is explained. At last, an idea of
application of the model to the case study, some conclusions
and future directions are presented.

II. THE SCENARIO OF ARAFAT I STATION ON MASHAER
LINE

In this section we describe a case of study in which model
requirements have been developed with the study of affluence
and entrance on Arafat I station of new Mashaer train line (Fig.
1) during Hajj 2010, the annual Pilgrimage towards Makkah.
Hajj is a phenomenon in which millions of pilgrims organized
in groups come from all the continents and stay and live
together for a limited period of time. In this situation, a lot of
groups with different cultural characteristics live together and
create the whole crowd of the Pilgrimage.

Fig. 1. A representation of the scenario of Mashaer train station in Arafat I

An analysis focused on the presence of groups according
to cultural relationships highlighted that four main types of
groups can be identified within Hajj pilgrims crowds:

1) primary groups, the basic units social communities are
built on consisting in small units whose members have
daily direct relationships (e.g. families);

2) residential groups, characterized by homogeneous spa-
tial localization and geographical origin;

3) kinship groups, based on descent;
4) functional groups,“artificial” groups which exist only

to perform a specific functions (i.e. executive, control,
expressive function). Relationships among members are
only based on the fulfilment of a goal.

To model groups during Hajj, four kinds of static rela-
tionships have to be considered: primary, residential, kinship,
functional. Moreover, every group can be characterized by a
set of features like the country of origin, the language, the
social rank. Differently, every pedestrian can be characterized
by personal features like the gender, the age, the marital status,
the impaired status. In Fig. 2 and 3 some examples on the
previously presented groups are shown.

III. CROWD CRYSTALS: A FORMAL MODEL

In this model, we refer to some considerations about orga-
nizing structures related to particular patterns of pedestrians
such as crystals of crowd. This concept is directly derived by
the theory of Elias Canetti [12]:

Crowd Crystals are the small, rigid groups of men,
strictly delimited and of great constancy, which serve
to precipitate crowds. Their structure is such that
they can be comprehended and taken in at a glance.
Their unity is more important than their size. The
crowd crystal is a constant: it never changes its size.

Starting from this definition, a crowd can be seen as a set of
crystals (i.e. groups of agents); a crowd of crystals is a system
formally described as:

S = 〈A,G,R,O, C〉

where:
• A = {a1, . . . , an} is the population of agents;
• G = {G1, . . . , Gm} is a finite set of groups;
• R = {r1, . . . , rl} is a finite set of static binary relation-

ships defined on the system;
• O = {o1, . . . , ok} is a finite set of goals presented in the

system;
• C = {C1, C2, . . . , Cs} is a family of features defined on

the system regarding the groups where each Ci is a set
of possible values that the ith feature can assume.

In the next sections we formally define groups and agents.

A. Crystals

We define the concept of group in a crowd starting from
the previously presented definition of crystals of crowd. Every
group is defined by a set of agents and by a relationship that
defines the membership of agents to the group. We derive the



Fig. 2. Figure on the left shows a group of people following a domestic flag: this group is a residential group, in which people are characterized by the same
geographical origin. Figure on the right shows some primary and kinship groups, composed of few people interconnected by means of descent relationships.

Fig. 3. These figures show the situation in a waiting box in which a lot of people are waiting to enter the station. Considering the whole group of people
who are waiting, we can identify it as a functional group: they are interconnected by a functional relationship, based on the goal of the group (i.e. enter the
station).

importance and the connection between the notion of group
and the notion of relationship by multidisciplinary studies:
informally, a group is a whole of individuals in a relationship
with a common goal and/or a common perceived identity.

Every group is defined a priori by a set of agents: this set has
a size (i.e. the cardinality of the group) and the composition of
members can not change. Moreover, among group members,
a static relationship already exists: the kind of relationship
determines the type of group, e.g. a family, a group of friends,
a working group and so on.

In order to characterize pedestrian groups, it is possible to
identify a set of features, shared among all groups in a system:
these features allow to analyse and describe more in detail
different aspects which is necessary to take into account in
the modelling of the system. On the basis of this assumption,
a vector with the values of features as associated to every
group. These values are shared and homogeneous on agents
belonging to the same group. In the same way, every group
has a goal that is shared among all the group members. In fact,
every agent belonging to a group inherits from it the global

attributes of the group and the goal. The latter idea is not a
restriction: following multidisciplinary studies, people involve
in a group share the same objective or project. The problem
to mediate the goal associated to the group and the “local”
goal associated to agent as single entity is not dealt with in
this first proposal.

We define a group Gi as a 4-tuple:

Gi = 〈Ai, zi, ri, oi〉

where:

• Ai ⊆ A is a finite set of agents belonging to Gi;
• zi ∈ C1 × C2 × . . . × Cs is a vector with the values of

features related to Gi group;
• ri ∈ R is a static irreflexive, symmetric relationship

among agents which belong to the group Gi and such
that for all a, b ∈ Ai with a 6= b, the pair (a, b) is in the
transitive closure of ri. This means that the graph given
by ri is undirected and connected without self-loops;

• oi ∈ O is the goal associated to the group Gi.



In this first proposal, we assume that agents can not belong
to two different groups at the same time:

Ai

⋂
Aj = ∅ ∀i, j = 1, . . . ,m and i 6= j

This constraint is certainly a restriction for the generaliza-
tion of the model. Future works are related to the extension of
the model to lead with this aspect. We can also describe the
population of agents A as the union the populations of every
group:

A =

m⋃
i=1

Ai

Visually, we can represent each group as a graph GAi =
(Ai, Ei) where Ai is the set of agents belonging to Gi and Ei

is the set of edges given by the relationship ri. We require that
GAi is a non-oriented and connected graph (i.e. every pair of
distinct nodes in the graph is connected).

B. Agents

Another fundamental element besides groups is the agent
population A in which every agent represents a pedestrian
in a crowd. In order to introduce characteristics related the
pedestrians, we introduce L = {L1, . . . , Lq} as a family of
agent features where every Li is a set of possible values that
the ith feature can assume. Every agent can have different
values related to a set of characteristics L:

a = 〈wa〉

where wa ∈ L1×L2× . . .×Lq is a vector with the values
of features related to agent a.

C. Agent Behavioural rules

After the characterisation of the main elements of the
system, we now focus on behavioural rules of pedestrians
belonging to a group in a crowd.

We deeply focus on two behavioural rules: the fact that
pedestrians tend to maintain a minimum distance from pedes-
trians belonging the other groups (i) and the fact that pedes-
trians in a group tend to keep a maximum distance from other
agents belonging to the same group (ii).

These rules are directly derived by Proxemics a theory first
introduced by E.T. Hall [13] and related to the study of the set
of measurable distances between people as they interact. The
core of this theory is the fact that different persons perceive
the same distance in different way, due to personal attitude. In
order to develop these rules, it is necessary to introduce a set
of functions to measure distances among agents in the case
of a pedestrian inside and outside a group, depending on the
semantic of space.

On A we define a pseudo-semi-metric:

p : A×A 7→ D,

that is a function that measures distances between agents,
such that, given two agents a, b ∈ A, p(a, b) = p(b, a) (i.e.,

p is symmetric) and p(a, a) = 0D, where D is a domain
of distances, described as a totally ordered set with 0D as
a minimal element. We introduce D with the scope to not
restrict the definition of the environment in a spatial domain:
different simulation tools describe space both in a continuous
and discrete way. In order to be platform-independent, in this
work, we do not explicitly define the environment and, i.e.,
distances, in a spatial domain.

From p we derive, for any specific agent a ∈ A, a function
pa : A 7→ D that associates to a its distance from any other
agents in A. Given two agents a, b ∈ A, pa(b) = pb(a).

Moreover, for every group Gi we introduce another pseudo-
semi-metric:

vi : Ai ×Ai 7→ D

that denotes the distance between two different agents
belonging to the same group Gi. Given two agents a, b ∈ Gi,
vi(a, b) = vi(b, a) (i.e., vi is symmetric) and vi(a, a) = 0D.
From vi we derive, for any specific agent a ∈ Gi a function
via : Ai 7→ D that associates to the agent its distance
from any other agents in Gi. Given two agents a, b ∈ Gi,
via(b) = vib(a).

In fact, we introduce two different functions p and vi due to
a potential difference in their semantic from a theoretical point
of view. Actually, considering scenarios of crowd simulations,
this distinction is not necessary: in this sense, we assume that p
and vi functions have the same semantic ∀Gi. A simplification
is possible:

∀Gi, vi(a, b) = p(a, b) ∀a, b ∈ A

In the next section we will use p in order to calculate
the distance among agents and to guide the behaviours of
agents inside and outside groups. As previously written, we
have introduced the distance domain D in order to allow
us to not restrict the definition of distance to a spatial
domain. Obviously, all crowd simulations are situated in a
particular environment in which distances can be measured in
R+: thinking about a spatially located or binary (true/false)
systems simulating pedestrians, only positive real values are
admissible. For this reason, we can reduce the complexity of
D and admit that D ⊂ R+, in which also binary values are
included (i.e. false=0 and true=1).

1) Safe Proxemic Rule: The first rule we want to intro-
duce is related to the behaviour during interaction between a
pedestrian and other pedestrians belonging to a different group.
From this point of view, in order to introduce the importance of
personal differences derived, for instance, by cultural attitude
and social context, in the pedestrian simulating context, we
associate to every agent a ∈ A belonging to a group Gi a
personal distance da ∈ D.

We introduce a function da that, considering the feature
values associate to the agent and to its group, derives da as
follows:



da :

(∏
C∈C

C

)
×

(∏
L∈L

L

)
7→ D

Given an agent a ∈ Gi, with a = 〈wa〉 and its group Gi

with features zi, its personal distance is da(zi, wa) = da. This
distance derives both from the global characteristics of group
(i.e. zi) and from the local characteristics of agent (i.e. wa)
we are considering.

Considering the distance among a and the other agents not
belonging to its group, we require that a ∈ Gi is in a safe
proxemic condition if the distance pa(b) is above da for all
b ∈ A \Ai.

Formally, we define that an agent a ∈ Gi is in a safe
proxemic condition iff:

@b ∈ A \Ai : pa(b) ≤ da
This first rule represents the fact that pedestrians tend to

maintain a minimum distance from pedestrians belonging the
other groups; if the safe proxemic condition is violated, agents
tend to restore the condition of proxemic safeness.

2) Safe Group Rule: Every group Gi is characterized by a
private defined distance δGi ∈ D that depends on the values of
group features zi. We introduce a function dg that calculates
δGi

as follows:

dg :
∏
C∈C

C 7→ D

Given a group Gi, dg(zi) = δGi
.

Previously, the introduced relationships R were called static
relationships. The introduction of time into the model gives the
possibility to define relationships that are time dependent: due
to the fact that time can be modelled in a continuous or discrete
way, the proposed model is defined in a way applicable to both
continuous and discrete modelling. Considering a particular
time t ∈ T ⊆ R and t0 as the starting time, the evolution of
the system is given by a map ϕ : S × T 7→ S, where S is
the space of possible systems. The state of the system at time
t is ϕ(S0, t), where S0 is the state of the system at time t0.
We use the definition of time in order to introduce a new kind
of relationship time-dependent (differently from the previous
one). We call dynamic relationship a function r such that rt
is a dynamic irreflexive, symmetric relationship among agents
which belong to the group Gi. rt represents the relation at time
t that is dependent on the whole evolution of the system from
time t0 to time t. For each group Gi at time t it is possible
to consider the graph given by the relation rt. In particular, to
model the proximity relationship between agents, a possible
definition of rt is the following:

∀a, b ∈ Gi, (a, b) ∈ rt iff p(a, b) ≤ δGi

recalling that vi is potentially different for each ϕ(S0, t) since
it is defined into the system.

It is possible to define a group as having the safe group
condition at time t on the basis of the history of the evolution
of the graph structure given by rt. Let S be the function that

defines the presence or absence of the safe group condition.
In other words S (〈rj | j ≤ t〉) ∈ {0, 1}. The fact that S
is dependent on the whole history of the graph structure is
motivated by the necessity to take care of particular conditions
that can temporary change the graph structure but that can be
quickly recovered. By using the whole history we can avoid
to consider unsafe (respect to safe) a group that is, in fact, in
a safe (respect to unsafe) condition. For instance, considering
a simulation placed into two rooms separated by a turnstile.
The passage of a group through the turnstile can divide the
group: in fact the group is not in an unsafe condition if we
can detect that the passage through the turnstile is a temporary
condition.

The safe group rule represents the fact that pedestrians in
a group tend to keep a maximum distance from other agents
belonging to the same group: if the safe group condition is
violated, agents tend to restore the condition of group safeness.

D. Agent Internal State

On the basis of behavioural rules before introduced, it is
possible to introduce an analysis about conditions (i.e. internal
states) of agents. This analysis can be useful in order to study
how agents change their internal conditions considering the
application of the model in a simulation.
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Fig. 4. Finite state automata representing states and transitions in an agent

Considering the two behavioural rules before introduced,
an agent can be in a safe proxemic condition or in unsafe
proxemic condition; moreover, it can be in a safe group
condition or in unsafe group condition. Four states, depending
on the verification of the behavioural rules are admitted:

1) Safe Proxemic and Group state (SPG): an agent is in this
state if both the safe proxemic and safe group condition
are verified;

2) Safe Proxemic state (SP): an agent is in this state if only
the safe proxemic condition is verified;

3) Safe Group state (SG): an agent is in this state if only
the safe group condition is verified;

4) Unsafe state (U): an agent is in this safe if neither the
safe proxemic nor safe group conditions are verified.



An overview about internal states and the transitions among
them is presented in the Fig. 4. Note that all the transitions
among states are admissible.

Now, let us consider two particular configurations on the
population of agents A = {a1, a2, . . . , an} with G1, . . . , Gm

groups: if m = 1 there is only one group coinciding with the
whole A; if m = n, |Ai| = 1 ∀i = 1, . . . ,m, all the groups
have a size equal to 1 and every agent in the population is a
singleton. In these cases we note that the previous finite state
automata can be simplified as follows (Fig. 5 and Fig. 6):
• if there is only one group coinciding with A, only two

states are admissible: SPG and SP. In fact, SG and U
states are not possible because all agents of the population
belong to the same Gi group;

SPG SP
2

2

Fig. 5. Simplification of the finite state automata referring to an agent (I)

• if every agent represents a singleton, only two states are
admissible: SPG and SG. In fact, SP and U states are not
possible because every agent is always in a safe group
condition.

SPG SG
1

1

Fig. 6. Simplification of the finite state automata referring to an agent (II)

IV. MODELLING GROUPS IN THE SCENARIO OF ARAFAT I
STATION

Considering the scenario of Arafat I station before intro-
duced, in this section we exploit the model above presented
to describe groups of pedestrians in the entrance of the station.
In this case, we can define the scenario, depicted in Fig. 1 as
a system S = 〈A,G,R,O, C〉 where:
• A is the set of the pilgrims in the waiting boxes;
• G is the set of groups of pilgrims;
• R = {primary, residential, kindship, functional}

represents the types of groups admitted in the scenario;
• O = {C1, C2, C3, C4} is the set of possible goals, i.e.

the train carriages;
• C = {country, language, social rank} is the family of

features regarding groups.
Starting from this definition, a group can be defined for

instance as Gi = 〈Ai, zi, ri, oi〉 where:
• Ai ⊆ A represents the set of group members;
• zi = {Saudi Arabia,Arabic,medium};
• ri = primary;

• oi = C1.

Regarding the definition of characteristics of agents,
a plausible family of characteristics can be L =
{gender, age,marital status, impaired status}. From this
point of view, an agent a ∈ A can be defined for instance as
ai = {male, adult,married, no}.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed an agent-based model for the
explicit representation and modelling of groups of pedestrian
in a crowd, focusing on the organization of pedestrians and on
the study of relationships among individuals and the relative
group structure.

Future directions are related to the development of simula-
tion in the presented scenario in order to test and validate the
model, and in the application of methods for network analysis
on the group structures, in order to identify and study, for
example, the presence of recursive patterns.
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