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Abstract - In this paper we propose an agent-based approach 
for controlling the behavior of a Smart Home Environment 
that, based on the recognized situation and user goal, selects a 
suitable workflow for combining services of the environment. 
To this aim we have developed a butler agent that employs 
user and context modeling for supporting proactive 
adaptation of the interaction with the house. The user can 
interact with the proposed services by accepting, declining or 
changing them. Such a feedback is exploited by the learning 
component of the butler to refine the user model and improve 
its future behavior accordingly. In order to provide a 
description of how the system might work, a practical example 
is shown. 

Keywords: Smart Home Environment, Multi Agent System, User 
Modeling. 

I. INTRODUCTION  
A Smart Home Environment (SHE) can be seen as 

composed of independent and distributed devices and 
objects interacting among each other and with the user to 
support user-centered goals and tasks. According to this 
view, we propose an agent-based architecture aimed at 
controlling the behavior of a SHE, from a high-level point 
of view, in order to make the fruition of services easy, 
natural and adapted to the user's needs [12]. To this aim, 
smart home and net-centric services should be configured 
and orchestrated taking into account the possible goals 
triggered by the user’s situation. In fact, prediction, 
proactivity and decision making capabilities, are important 
in helping users to achieve their goals through the automatic 
execution of tasks that might be complex or tedious for 
them. This assistance is of particular importance when the 
smart home is inhabited by elderly people or by persons 
with special needs [1,13,14]. 

In deciding which type of Multi Agent System (MAS) 
organization was best suited for this aim, we paraphrased 
the metaphor of the butler in grand houses, who can be seen 
as an household affairs manager with duties of a personal 
assistant, able to organize the housestaff in order to meet the 
expectations of the house inhabitants. Specifically, we 
propose an agent-based system that supports the user in 
daily routines but also in handling exceptional situations that 
may occur. To this aim, taking into account the results of a 

previous project [2], we have developed a MAS in which 
the butler agent has to recognize the situation of the user, 
based on interaction with Sensor Agent, in order to infer 
possible user’s goals. The recognized goals are then used to 
select the most suitable workflow among a set of available 
candidates [16]. Such a selection is made by matching 
semantically the goals, the current situation features and the 
effects expected by the execution of the workflow. Once a 
workflow has been selected, its actions are executed by the 
effector agents. Since the system uses an agent supervisor, 
who orchestrates all other agents of the system, our 
approach is centralized. Obviously, given the largely open 
and pervasive nature of smart environments, a decentralized 
solution might be a suitable alternative. Uribarren [15] 
proposed the design and development of a flexible smart 
home architecture using a peer-to-peer (P2P) approach. The 
P2P approach has some obvious advantages, such as system 
scalability and the benefits to avoid single point of failure  
usually attributed to a centralized server. However, such 
systems are certainly more expensive and still more 
complex to manage.  

Since the user may change the execution of the selected 
workflow by substituting, deleting, undoing the effects of 
some services, as any good butler, it should be able to learn 
about situational user preferences but it should leave to its 
“owner” the last word on critical decisions [4]. To this aim, 
the butler agent must be able to interpret the user’s feedback 
appropriately, using it to revise: (i) the knowledge about the 
user, with respect to his preferences and goals in a given 
situation, and (ii) the workflow or the services invoked in it 
[16].  

In the rest of the paper we describe how this approach 
works and, in particular, in Section 2 we describe in details 
the proposed MAS and the general architecture of the agents 
involved in the system. Then in Section 3 we illustrate the 
role and behavior of each agent, by providing examples. 
Finally conclusions and future work directions are 
discussed. 

II. THE PROPOSED MAS 
The approach adopted for designing the architecture of 

our system derives from the application of the metaphor of 



the butler, which tries to satisfy the needs of the house 
inhabitants. As a main task, the butler must perceive the 

situation of the house and coordinate the housestaff.

 
Fig. 1. The MAS architecture

To this aim we have designed the following classes of

agents:  

• the Sensor Agents (SA): they are used for 
providing information about context parameters 
and features (i.e. temperature, light level, humidity, 
etc.) at a higher abstraction level than sensor data. 
Indeed, they transform signals and numeric data 
into a symbolic representation that is closer to the 
human way of reasoning about context.  

• the Butler Agent (BA): its behavior is based on a 
combination of intelligent reasoning, machine 
learning, service-oriented computing and semantic 
Web technologies for flexibly coordinating and 
adaptively providing smart services in dynamically 
changing contexts. In particular, this agent reasons 
on the user’s goals and devises the workflow to 
satisfy them. 

• the Effector (EA) and Interactor (IA) agents:  
decisions about actions to be executed have an 
impact on device behaviors; to this aim each device 
is controlled by an EA. In order to find the best 
solution to satisfy a required basic goal, these 
agents reason on the opportunity of performing an 
action instead of another in the current context. 
When the execution regards a communicative 

action, its execution is handled appropriately by the 
IA that is specialized in interacting with the user. 

• The Housekeeper Agent (HA): it acts as a 
facilitator1 since it knows all the agents that are 
active in the house and also the goal they are able 
to fulfill. 

The way in which these agents coordinate themselves, 
depicted in Figure 1, is the following. Cyclically, or as an 
answer to a user action, the butler runs its reasoning model 
about the user. According to the situation provided by the 
appropriate SAs, the butler will infer and rank which are the 
possible user goals and needs. Then, the butler selects the 
workflow associated with a specific goal by matching 
semantically the goal with all the Input, Output, Pre-
Condition and Effect (IOPE) descriptions of the workflows 
stored in a workflow repository. Once the most appropriate 
workflow has been selected and activated, it is necessary to 
select the services/actions to be invoked among those 
available in the environment. This process is performed 
through semantic matchmaking, as well. Therefore, each 
workflow is planned by initially describing its execution 
flow and, when needed, the IOPE features of all web 
services included in the process. Then, the matchmaker 
module is responsible of performing the semantic match 

                                                                 
1  http://www.fipa.org/ 



between the workflow predefined requests and the available 
semantic web services, which are listed in Semantic Web 
Services Register (SWSR) according to the IOPE standard 
representation [8]. Hence, the workflow services are 
invoked dynamically, matching the user’s needs in the most 
effective way (see Section 3.1 for more details). As regards 
predicates of Web Services, both simple and complex Web 
Services will be implemented according to the standard 
Web Ontology Language for Services (OWL-S) [10], which 
is an ontology that enables automatic service discovery, 
invocation, composition and execution monitoring. In 
particular, the composition of complex services from atomic 
services is based on their pre-conditions and post-
conditions. 

The user may change the workflow execution by 
substituting, deleting, undoing the effects of some services. 
This feedback is interpreted appropriately by the BA and 
used to revise its knowledge about the situation, the goals, 
the workflows or the services invoked in it [16].  

The HA is able to return the list of active agents able to 
execute a requested service/action. 

A. The agents’ architecture 
All agents in our MAS architecture are endowed with 

two behaviors, reasoning and learning, whose 
implementation depends on the specific kind of agent.  

The reasoning behavior interprets its input (e.g., in the 
case of SAs, data collected through the sensors of the smart 
environment) and processes this input according to its 
specific role (e.g., SAs transform sensor data in high-level 
knowledge about the situation). 

Although for simpler activities mathematical and 
statistical processing techniques can be sufficient, the 
complexity of most real-world environments, and 
specifically of those aimed at pro-actively supporting human 
users, requires the additional exploitation of more powerful 
kinds of reasoning and knowledge management, such as [3]: 

• deduction: to draw explicit information that is 
hidden in the data 

• abduction: to be able to sensibly proceed even in 
situations in which part of the data are missing or 
otherwise unknown 

• abstraction: to strip off details that are known but 
useless for the specific current tasks and objectives 

Hence, we use a logic language to express all the items 
included in the knowledge base of our agents. In particular, 
the need to handle relationships among several entities and 
possible situations calls for the first-order logic setting. An 
advantage of this setting is that the knowledge handled 
and/or learned by the system can be understood and checked 
by humans. 

In particular, the input to an agent is processed by its 
reasoning layer, for: 

• deciding which signals are to be ignored and which 
ones are to be sent to other entities that can 
understand and exploit them (e.g. agents or user or 
devices, depending on the kind of agent) and/or to 
its learning functionality. 

• processing and combining input data to detect 
significant patterns and produce more complex 
information, using different kinds of inference 
techniques. 

• deciding which part of this information is to be 
ignored and which part is to be forwarded to other 
entities (see above) and/or to the learning 
functionality. 

The learning behavior, on the other hand, is used by an 
agent to refine and improve its future performance. For 
example, the BA may exploit user feedback to refine the 
user model accordingly. The branch of Machine Learning 
specifically aimed at dealing with first-order logic languages 
is Inductive Logic Programming (ILP) [9]. It is less 
developed, but much more powerful, and potentially more 
useful, than other traditional Machine Learning approaches 
such as artificial neural networks or Bayesian learning. In 
particular, for the specific needs of adaptivity posed by the 
present application, an incremental approach to learning 
new information is mandatory, because the continuous 
availability of new data and the evolving environment 
cannot be effectively tackled by static models, but require 
continuous adaptation and refinement of the available 
knowledge. An incremental ILP system that is able to 
exploit different kinds of inference strategies (induction, 
deduction, abduction, abstraction), and hence fits the above 
requirements, is described in [3]; also abstraction and 
abduction theories can be learned automatically [7]. 

Regardless of the specific role played by an agent, its 
behaviors strictly cooperate in the same way. Reasoning 
uses the agent’s knowledge to perform inferences that 
determine how the agent achieves its objectives. Learning 
exploits possible feedback on the agent’s decisions to 
improve that knowledge, making the agent adaptive to the 
specific user needs and to their evolution in time. The output 
of the learning behavior consists of new knowledge gained 
from experience, that affects (extends/refines) the model on 
which the reasoning behavior is based. In case, it can be 
forwarded to the user to ask him for confirmation of the new 
knowledge by means of the IA. 

The main inference strategy that characterizes the layer 
learning of our agents is induction, although a cooperation 
with other strategies, such as those exploited in the 
reasoning behavior, is strongly advised, for a better 
integration of the new knowledge with the reasoning engine. 



Although all agents share the same architecture, they 
differ in the following aspects: 

• level of complexity, depending on the kind of 
agent (as specified in Section 3); 

• techniques that can be exploited by the reasoning 
functionality (deduction, abstraction, …), that are 
different according to the agent role; 

• tools: determining how the techniques are 
implemented in the behavior, they may change 
from agent to agent even in the same class (e.g., an 
EA will exploit different tools, depending on 
whether it must manage a device or a function 
provided by a web service); 

• theories: they change for each single agent (even 
for those having same complexity, techniques and 
tools) and are strictly related to the agent's role. 

Of course, different agents work on different portions of 
knowledge on the domain and may require different effort 
and pose different problems. For instance, learning user 
goals (which is a typical problem of the BA) is more 
problematic than – say – learning simple actions, such as 
closing the window. 

In the following section we describe the specific 
behavior of each agent class included in our MAS.  

III. AGENT CLASSES 
This section describes the different agent classes, 

showing examples that illustrate how they work. The 
following scenario will be assumed (more details on its 
formalization can be found in [6]): 

It’s evening and Jim, a 73 y.o. man, is at home alone. He 
has a cold and fever. He is a bit sad since he cannot go 
downtown and drink something with his friend, like he does 
every evening. Jim is sitting on the bench in his living room 
in front of the TV. The living room is equipped with sensors, 
which can catch sound/noise in the air, time, temperature, 
status of the window (open/close) and of the radio and TV 
(on/off), and the current activity of the user, and with 
effectors, acting and controlling windows, radio and TV and 
also on the execution of digital services that may be 
visualized on communication devices, as for instance the 
TV. 

A. Sensor Agents 
Sensor Agents are in charge of controlling a set of 

sensors that are suitably placed in the environment for 
providing information about context parameters and features 
(e.g. temperature, light level, humidity, etc.), such as meters 
to sense physical and chemical parameters, microphones 
and cameras to catch what happens, indicators of the status 
of various kinds of electric and/or mechanical devices. The 

values gathered by the physical sensors are sent in real-time 
to the reasoning behavior of the relative SA, which uses 
abstraction to strip off details that are known but useless for 
the specific current tasks and objectives. For instance, the 
SA providing information about temperature will abstract 
the centigrade value into a higher level representation such 
as “warm”, “cold”, and so on. This abstraction process may 
be done according to the observed specific user’s needs and 
preferences (e.g. the same temperature might be cold for a 
user but acceptable for another). 

For instance, let us denote the fact that the user Y is cold 
in a given situation X with cold(X,Y). This fact can be 
derived from the specific temperature using a rule of the 
form: 

cold(X,Y) :- temperature(X,T), T<18, user(Y), 
present(X,Y), jim(Y). 

(it is cold for user Jim if he is present in a situation in which 
the temperature is lower than 18 degrees). In turn, the above 
rule can be directly provided by an expert (or by the user 
himself), or can be learned (and possibly later refined) 
directly from observation of user interaction [5]. For 
instance, assume that the following events have been 
recorded in the past: 

temperature 28 16 8  20 32 18 37 26 22 19 29 23 12 25 4 

action C H H  - C H C C - - C - H - H 

where the first row reports a set of temperatures sensed in 
situations where Jim was present, and the second row 
reports his action in those situations (C = cooling, H = 
heating, - = no action). Then, the SA controlling the 
temperature may automatically learn that the user turns on 
heating (i.e., he is cold) whenever the temperature is below 
19 degrees, and turns on the cooling system (presumably 
because he is warm) whenever the temperature is above 25 
degrees:  

cold(X,Y) :- temperature(X,T), T<19, user(Y), 
present(X,Y), jim(Y).  

warm(X,Y) :- temperature(X,T), T>25, user(Y), 
present(X,Y), jim(Y).  

B. The Butler Agent 
The Butler Agent recognizes user goals starting from 

percepts received by SAs and determines a suitable 
workflow that integrates elementary services according to 
the particular situation. Its behaviors are based on a 
combination of intelligent reasoning, machine learning, 
service-oriented computing and semantic Web technologies 
for flexibly coordinating and adaptively providing smart 
services in dynamically changing contexts. 

The reasoning of this agents mainly involves deduction, 
to draw explicit information that is hidden in the data, and 
abduction, to be able to sensibly proceed even in situations 



in which part of the data are missing or otherwise unknown. 
However, in some cases, it may also use abstraction, which 
is performed at a higher level than SAs. 

Each observation of a specific situation can be 
formalized using a conjunctive logic formula under the 
Close World Assumption (what is not explicitly stated is 
assumed to be false), described as a snapshot at a given 
time. A model, on the other hand, consists of a set of Horn 
clauses whose heads describe the target concepts and whose 
bodies describe the pre-conditions for those targets to be 
detected. For instance, the following model might be 
available: 

improveHealth(X) :- present(X,Y), user(Y), 
has_fever(Y). 

improveHealth(X):-  
present(X,Y), user(Y), has_headache(Y), 
cold(X,Y). 

improveHealth(X) :- present(X,Y), user(Y), 
has_flu(Y). 

improveMind(X) :- present(X,Y), user(Y), sad(Y). 

improveMind(X) :- present(X,Y), user(Y), 
bored(Y). 

(meaning “A user Y that is present in situation X and has a 
fever, or has a headache and has a cold, or has a flu, might 
want to improve his health” and “A user Y that is present in 
situation X and is sad or bored might want to improve his 
mind”, respectively). Although the above rules are very 
simple for the sake of brevity, they clearly show how the 
knowledge in the model is expressed using high-level 
concepts of the domain that can be understood, evaluated 
and possibly produced/modified by humans. A sample 
observation might be: 

morning(t0), closedWindow(t0), present(t0,j), 
jim(j), user(j), temperature(t0,14), 

has_fever(j), sad(j). 

(i.e., “in situation at time t0 it is morning, the window is 
closed and the temperature is 14°; user Jim is present and 
Jim has a fever”). Reasoning infers that Jim is cold: 
cold(t0,j). Being all the preconditions of the first and fourth 
rules in the model satisfied by this situation for X = t0 and Y 
= jim, the user goals improveHealth and improveMind are 
recognized for Jim at time t0, which may cause activation of 
suitable workflows aimed at attaining those results. 
Conversely, the other rules in the model are not satisfied – 
e.g., considering the last rule, user Jim is present, but he is 
assumed not to be bored. Although predicates such as 
fever(X), headache(X) and flu(X) are already abstractions of 
the specific value provided by SAs, further levels of 
generalization can be automatically performed by the 
reasoning layer, e.g. using a predicate has_disease(Y), 
defined as 

has_disease(X) :- fever(X).  

has_disease(X) :- flu(X).  

such that the first and third rule in the model can be reduced 
to: 

improveHealth(X) :- present(X,Y), user(Y), 
has_disease(Y). 

making it applicable to other kinds of deseases, in addition 
to just fever and flu. Referring back to the previous 
observation, the reasoning behavior would infer that Jim has 
a disease – has_disease(j) – from the fact that he has a fever. 

The BA reasons not only on goals but also on 
workflows. Indeed, once a goal is triggered, it selects the 
appropriate workflow by performing a semantic 
matchmaking between the semantic IOPE description of the 
user's high-level goal and the semantic profiles of all the 
workflows available in the knowledge base of the system 
[10]. As a result, this process will produce one of the 
following possible outputs:  

• no semantic matching between the goal and any of 
the available workflows;  

• a single workflow semantically matching the goal;  
• n workflows that are semantically consistent with 

the goal (in this case a function of semantic 
similarity with the goal will be applied to rank all 
the selected workflows). 

For instance, as shown in Figure 2, the semantic 
matchmaking process leads to two different workflows 
associated, respectively, to the two high-level goals 
improveHealth and improveMind previously recognized. 
The semantic matchmaking process starts from these goals 
and leads to the desired workflow.  

 

• Fig. 2. An example of Butler Workflow Planning 



The semantic matchmaking can be also used within a 
workflow, to find both the most appropriate subflows and 
services. In the simplest case, in fact, the best workflow may 
consist of a sequence of actions. Hence, the behavior 
implementation allows dealing with complex workflows 
consisting of a flow of actions and other sub-goals 
corresponding to subflows, which are again processed 
according to the matchmaking phase described above. In our 
case, the main workflow includes two goals that needs to be 
executed by selecting two different subflows corresponding, 
respectively, to each goal: improveHealth and 
improveMind. These subflows include both simple actions, 
that can be directly executed, and subflow that need to be 
satisfied, such as setTemperature.  

In turn, the subgoal setTemperature is satisfied by 
applying once more the matching process to find a suitable 
workflow. Using this workflow, the reasoning behavior of 
the BA will process the information collected by the 
temperature sensors in order to understand whether to raise 
or reduce the environment temperature, as described in the 
following rules: 

doReduceTemperature(X) :- present(X,Y), user(Y), 
warm(X,Y). 

doRaiseTemperature(X) :- present(X,Y), user(Y), 
cold(X,Y). 

This hierarchical matchmaking process stops when the 
resulting workflow is composed of simple goals that can be 
directly satisfied by invoking a net-centric service or 
through simple actions performed on the effectors. In both 
cases, the BA asks to the HA which EAs can satisfy each 
planned action and send the specific request to the EA in 
charge for handling actions regarding changes of a particular 
parameter (i.e. temperature, light, etc.). 

C. The Effector and Interactor Agents 
Effector and Interactor agents are in charge of taking 

appropriate decisions about actions to be executed in order 
to fulfill simple goals determined by the BA. EAs have a 
direct impact on several device behaviors and/or net-centric 
services affecting the same environment parameter (e.g., 
temperature, light, ...); conversely, each device is controlled 
by an EA. In order to find the best solution to satisfy the 
user needs, these agents reason about different possible 
solutions to attain the same goal in the current context. For 
instance, if the goal is reducing the temperature, the EA in 
charge of temperature control may decide whether turning 
on air conditioning or opening the window; additionally, it 
decide how to control those devices (in the former case, 
which fan speed to select; in the latter case, how widely the 
window must be opened). If the goal is reminding Jim to 
take medicines and this can be done through a web service 
accessible on TV, the EA invokes it.  

When the simple goal regards a communicative action, 
its execution is delegated to the IA, that may exploit 
interaction with the user to get hints on how to attain a 
simple goal and, based on this, possibly learn new 
preferences of that user with respect to the given context and 
situation, in order to continuously and dynamically improve 
adaptation. For instance, the user might prefer opening the 
window rather than turning on air conditioning in the 
evening, if it is not windy. This requires, among others, 
natural language understanding capabilities in order to 
interpret the user utterances and relate them to the proper 
event.  

IV. CONCLUSIONS AND FUTURE WORK 
This contribution shows a preliminary work towards the 

development of a MAS aiming at handling the situation-
aware adaptation of a SHE behavior. In this MAS different 
types of agents cooperates to the adaptation process: Sensor 
Agents, a Butler Agent, a Housekeeper, Effector and 
Interaction Agents. This process is performed at different 
levels, starting from the interpretation of sensor data from 
Sensor Agents, the planning services satisfying recognized 
user’s goals and arriving to the decision on how to act on 
devices from Effector Agents. The main peculiarity of the 
proposed architecture lies in the fact that all kinds of agents 
in the MAS are a specialization of an abstract class endowed 
with both reasoning and learning behavior. Reasoning, in 
turn, can exploit any combination of abstraction, deduction 
and abduction according to the role of the agent in the MAS. 
For instance, some agents (such as Sensor Agents in our 
MAS) might use only one inference strategy, some others 
(such as the Butler Agent) might use all of them according 
to the complexity level of their task. The learning behavior 
uses a fully incremental technique based on a first-order 
logic representation and can exploit induction to 
build/update the theories used by the various inference 
strategies on which reasoning is based.  

Still, open problems remain and will be the subject of 
our future work. An open issue regards how to reason on 
users’ reactions to the proposed flow of activities in order to 
adopt the optimal behavior of the SHE. In fact, when the 
user undoes or gives a negative feedback to one or more 
actions of the selected workflow, it is necessary to 
understand if this is just an exception or if it must affect the 
reasoning models, e.g. because there is: 

• a change in the situation that has not been detected 
or taken into account,  

• a mistake in controlling the effectors to achieve a 
simple goal, 

• a mistake in interpreting the user’s goals or in 
selecting or composing the workflow.  

Each of the latter cases determines which agent in the MAS 
has made a wrong decision, and is to be involved in theory 



refinement. Identification of the specific case should be 
obtained by an analysis of the user’s feedback, and 
introduces a related issue, that is who is in charge of 
identifying the problem, gathering the feedback and 
notifying it to the proper agent that must activate its learning 
behavior. A candidate for taking care of these activities is 
the Interactor Agent because it embeds the communication 
function for interpreting the user feedback. Due to our 
experience with the Java Agent Development Framework 
(JADE), we currently intend to use it for the MAS software 
implementation, and to plug it into a simulation system. As 
regards devices, we are in touch with a company interested 
in trying the system and willing to provide a set of devices 
useful for testing it in a variety of realistic scenarios. 

Finally, in the near future we plan to collect more 
examples of interaction with the system to simulate and 
evaluate its behavior in all the possible situations that are 
relevant for our application domain.  
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