
An Agent-based Approach for Adapting the Behavior
of a Smart Home Environment

Davide Cavone, Berardina De Carolis, Stefano Ferilli, Nicole Novielli
Dipartimento di Informatica, Universita’ di Bari, Italy

davide@uniba.it, <decarolis,ferilli,novielli> @di.uniba.it

Abstract - In this paper we propose an agent-based approach
for controlling the behavior of a Smart Home Environment
that, based on the recognized situation and user goal, selects a
suitable workflow for combining services of the environment.
To this aim we have developed a butler agent that employs
user and context modeling for supporting proactive
adaptation of the interaction with the house. The user can
interact with the proposed services by accepting, declining or
changing them. Such a feedback is exploited by the learning
component of the butler to refine the user model and improve
its future behavior accordingly. In order to provide a
description of how the system might work, a practical example
is shown.

Keywords: Smart Home Environment, Multi Agent System, User
Modeling.

I. INTRODUCTION
A Smart Home Environment (SHE) can be seen as

composed of independent and distributed devices and
objects interacting among each other and with the user to
support user-centered goals and tasks. According to this
view, we propose an agent-based architecture aimed at
controlling the behavior of a SHE, from a high-level point
of view, in order to make the fruition of services easy,
natural and adapted to the user's needs [12]. To this aim,
smart home and net-centric services should be configured
and orchestrated taking into account the possible goals
triggered by the user’s situation. In fact, prediction,
proactivity and decision making capabilities, are important
in helping users to achieve their goals through the automatic
execution of tasks that might be complex or tedious for
them. This assistance is of particular importance when the
smart home is inhabited by elderly people or by persons
with special needs [1,13,14].

In deciding which type of Multi Agent System (MAS)
organization was best suited for this aim, we paraphrased
the metaphor of the butler in grand houses, who can be seen
as an household affairs manager with duties of a personal
assistant, able to organize the housestaff in order to meet the
expectations of the house inhabitants. Specifically, we
propose an agent-based system that supports the user in
daily routines but also in handling exceptional situations that
may occur. To this aim, taking into account the results of a

previous project [2], we have developed a MAS in which
the butler agent has to recognize the situation of the user,
based on interaction with Sensor Agent, in order to infer
possible user’s goals. The recognized goals are then used to
select the most suitable workflow among a set of available
candidates [16]. Such a selection is made by matching
semantically the goals, the current situation features and the
effects expected by the execution of the workflow. Once a
workflow has been selected, its actions are executed by the
effector agents. Since the system uses an agent supervisor,
who orchestrates all other agents of the system, our
approach is centralized. Obviously, given the largely open
and pervasive nature of smart environments, a decentralized
solution might be a suitable alternative. Uribarren [15]
proposed the design and development of a flexible smart
home architecture using a peer-to-peer (P2P) approach. The
P2P approach has some obvious advantages, such as system
scalability and the benefits to avoid single point of failure
usually attributed to a centralized server. However, such
systems are certainly more expensive and still more
complex to manage.

Since the user may change the execution of the selected
workflow by substituting, deleting, undoing the effects of
some services, as any good butler, it should be able to learn
about situational user preferences but it should leave to its
“owner” the last word on critical decisions [4]. To this aim,
the butler agent must be able to interpret the user’s feedback
appropriately, using it to revise: (i) the knowledge about the
user, with respect to his preferences and goals in a given
situation, and (ii) the workflow or the services invoked in it
[16].

In the rest of the paper we describe how this approach
works and, in particular, in Section 2 we describe in details
the proposed MAS and the general architecture of the agents
involved in the system. Then in Section 3 we illustrate the
role and behavior of each agent, by providing examples.
Finally conclusions and future work directions are
discussed.

II. THE PROPOSED MAS
The approach adopted for designing the architecture of

our system derives from the application of the metaphor of

the butler, which tries to satisfy the needs of the house
inhabitants. As a main task, the butler must perceive the

situation of the house and coordinate the housestaff.

Fig. 1. The MAS architecture

To this aim we have designed the following classes of

agents:

• the Sensor Agents (SA): they are used for
providing information about context parameters
and features (i.e. temperature, light level, humidity,
etc.) at a higher abstraction level than sensor data.
Indeed, they transform signals and numeric data
into a symbolic representation that is closer to the
human way of reasoning about context.

• the Butler Agent (BA): its behavior is based on a
combination of intelligent reasoning, machine
learning, service-oriented computing and semantic
Web technologies for flexibly coordinating and
adaptively providing smart services in dynamically
changing contexts. In particular, this agent reasons
on the user’s goals and devises the workflow to
satisfy them.

• the Effector (EA) and Interactor (IA) agents:
decisions about actions to be executed have an
impact on device behaviors; to this aim each device
is controlled by an EA. In order to find the best
solution to satisfy a required basic goal, these
agents reason on the opportunity of performing an
action instead of another in the current context.
When the execution regards a communicative

action, its execution is handled appropriately by the
IA that is specialized in interacting with the user.

• The Housekeeper Agent (HA): it acts as a
facilitator1 since it knows all the agents that are
active in the house and also the goal they are able
to fulfill.

The way in which these agents coordinate themselves,
depicted in Figure 1, is the following. Cyclically, or as an
answer to a user action, the butler runs its reasoning model
about the user. According to the situation provided by the
appropriate SAs, the butler will infer and rank which are the
possible user goals and needs. Then, the butler selects the
workflow associated with a specific goal by matching
semantically the goal with all the Input, Output, Pre-
Condition and Effect (IOPE) descriptions of the workflows
stored in a workflow repository. Once the most appropriate
workflow has been selected and activated, it is necessary to
select the services/actions to be invoked among those
available in the environment. This process is performed
through semantic matchmaking, as well. Therefore, each
workflow is planned by initially describing its execution
flow and, when needed, the IOPE features of all web
services included in the process. Then, the matchmaker
module is responsible of performing the semantic match

1 http://www.fipa.org/

between the workflow predefined requests and the available
semantic web services, which are listed in Semantic Web
Services Register (SWSR) according to the IOPE standard
representation [8]. Hence, the workflow services are
invoked dynamically, matching the user’s needs in the most
effective way (see Section 3.1 for more details). As regards
predicates of Web Services, both simple and complex Web
Services will be implemented according to the standard
Web Ontology Language for Services (OWL-S) [10], which
is an ontology that enables automatic service discovery,
invocation, composition and execution monitoring. In
particular, the composition of complex services from atomic
services is based on their pre-conditions and post-
conditions.

The user may change the workflow execution by
substituting, deleting, undoing the effects of some services.
This feedback is interpreted appropriately by the BA and
used to revise its knowledge about the situation, the goals,
the workflows or the services invoked in it [16].

The HA is able to return the list of active agents able to
execute a requested service/action.

A. The agents’ architecture
All agents in our MAS architecture are endowed with

two behaviors, reasoning and learning, whose
implementation depends on the specific kind of agent.

The reasoning behavior interprets its input (e.g., in the
case of SAs, data collected through the sensors of the smart
environment) and processes this input according to its
specific role (e.g., SAs transform sensor data in high-level
knowledge about the situation).

Although for simpler activities mathematical and
statistical processing techniques can be sufficient, the
complexity of most real-world environments, and
specifically of those aimed at pro-actively supporting human
users, requires the additional exploitation of more powerful
kinds of reasoning and knowledge management, such as [3]:

• deduction: to draw explicit information that is
hidden in the data

• abduction: to be able to sensibly proceed even in
situations in which part of the data are missing or
otherwise unknown

• abstraction: to strip off details that are known but
useless for the specific current tasks and objectives

Hence, we use a logic language to express all the items
included in the knowledge base of our agents. In particular,
the need to handle relationships among several entities and
possible situations calls for the first-order logic setting. An
advantage of this setting is that the knowledge handled
and/or learned by the system can be understood and checked
by humans.

In particular, the input to an agent is processed by its
reasoning layer, for:

• deciding which signals are to be ignored and which
ones are to be sent to other entities that can
understand and exploit them (e.g. agents or user or
devices, depending on the kind of agent) and/or to
its learning functionality.

• processing and combining input data to detect
significant patterns and produce more complex
information, using different kinds of inference
techniques.

• deciding which part of this information is to be
ignored and which part is to be forwarded to other
entities (see above) and/or to the learning
functionality.

The learning behavior, on the other hand, is used by an
agent to refine and improve its future performance. For
example, the BA may exploit user feedback to refine the
user model accordingly. The branch of Machine Learning
specifically aimed at dealing with first-order logic languages
is Inductive Logic Programming (ILP) [9]. It is less
developed, but much more powerful, and potentially more
useful, than other traditional Machine Learning approaches
such as artificial neural networks or Bayesian learning. In
particular, for the specific needs of adaptivity posed by the
present application, an incremental approach to learning
new information is mandatory, because the continuous
availability of new data and the evolving environment
cannot be effectively tackled by static models, but require
continuous adaptation and refinement of the available
knowledge. An incremental ILP system that is able to
exploit different kinds of inference strategies (induction,
deduction, abduction, abstraction), and hence fits the above
requirements, is described in [3]; also abstraction and
abduction theories can be learned automatically [7].

Regardless of the specific role played by an agent, its
behaviors strictly cooperate in the same way. Reasoning
uses the agent’s knowledge to perform inferences that
determine how the agent achieves its objectives. Learning
exploits possible feedback on the agent’s decisions to
improve that knowledge, making the agent adaptive to the
specific user needs and to their evolution in time. The output
of the learning behavior consists of new knowledge gained
from experience, that affects (extends/refines) the model on
which the reasoning behavior is based. In case, it can be
forwarded to the user to ask him for confirmation of the new
knowledge by means of the IA.

The main inference strategy that characterizes the layer
learning of our agents is induction, although a cooperation
with other strategies, such as those exploited in the
reasoning behavior, is strongly advised, for a better
integration of the new knowledge with the reasoning engine.

Although all agents share the same architecture, they
differ in the following aspects:

• level of complexity, depending on the kind of
agent (as specified in Section 3);

• techniques that can be exploited by the reasoning
functionality (deduction, abstraction, …), that are
different according to the agent role;

• tools: determining how the techniques are
implemented in the behavior, they may change
from agent to agent even in the same class (e.g., an
EA will exploit different tools, depending on
whether it must manage a device or a function
provided by a web service);

• theories: they change for each single agent (even
for those having same complexity, techniques and
tools) and are strictly related to the agent's role.

Of course, different agents work on different portions of
knowledge on the domain and may require different effort
and pose different problems. For instance, learning user
goals (which is a typical problem of the BA) is more
problematic than – say – learning simple actions, such as
closing the window.

In the following section we describe the specific
behavior of each agent class included in our MAS.

III. AGENT CLASSES
This section describes the different agent classes,

showing examples that illustrate how they work. The
following scenario will be assumed (more details on its
formalization can be found in [6]):

It’s evening and Jim, a 73 y.o. man, is at home alone. He
has a cold and fever. He is a bit sad since he cannot go
downtown and drink something with his friend, like he does
every evening. Jim is sitting on the bench in his living room
in front of the TV. The living room is equipped with sensors,
which can catch sound/noise in the air, time, temperature,
status of the window (open/close) and of the radio and TV
(on/off), and the current activity of the user, and with
effectors, acting and controlling windows, radio and TV and
also on the execution of digital services that may be
visualized on communication devices, as for instance the
TV.

A. Sensor Agents
Sensor Agents are in charge of controlling a set of

sensors that are suitably placed in the environment for
providing information about context parameters and features
(e.g. temperature, light level, humidity, etc.), such as meters
to sense physical and chemical parameters, microphones
and cameras to catch what happens, indicators of the status
of various kinds of electric and/or mechanical devices. The

values gathered by the physical sensors are sent in real-time
to the reasoning behavior of the relative SA, which uses
abstraction to strip off details that are known but useless for
the specific current tasks and objectives. For instance, the
SA providing information about temperature will abstract
the centigrade value into a higher level representation such
as “warm”, “cold”, and so on. This abstraction process may
be done according to the observed specific user’s needs and
preferences (e.g. the same temperature might be cold for a
user but acceptable for another).

For instance, let us denote the fact that the user Y is cold
in a given situation X with cold(X,Y). This fact can be
derived from the specific temperature using a rule of the
form:

cold(X,Y) :- temperature(X,T), T<18, user(Y),
present(X,Y), jim(Y).

(it is cold for user Jim if he is present in a situation in which
the temperature is lower than 18 degrees). In turn, the above
rule can be directly provided by an expert (or by the user
himself), or can be learned (and possibly later refined)
directly from observation of user interaction [5]. For
instance, assume that the following events have been
recorded in the past:

temperature 28 16 8 20 32 18 37 26 22 19 29 23 12 25 4

action C H H - C H C C - - C - H - H

where the first row reports a set of temperatures sensed in
situations where Jim was present, and the second row
reports his action in those situations (C = cooling, H =
heating, - = no action). Then, the SA controlling the
temperature may automatically learn that the user turns on
heating (i.e., he is cold) whenever the temperature is below
19 degrees, and turns on the cooling system (presumably
because he is warm) whenever the temperature is above 25
degrees:

cold(X,Y) :- temperature(X,T), T<19, user(Y),
present(X,Y), jim(Y).

warm(X,Y) :- temperature(X,T), T>25, user(Y),
present(X,Y), jim(Y).

B. The Butler Agent
The Butler Agent recognizes user goals starting from

percepts received by SAs and determines a suitable
workflow that integrates elementary services according to
the particular situation. Its behaviors are based on a
combination of intelligent reasoning, machine learning,
service-oriented computing and semantic Web technologies
for flexibly coordinating and adaptively providing smart
services in dynamically changing contexts.

The reasoning of this agents mainly involves deduction,
to draw explicit information that is hidden in the data, and
abduction, to be able to sensibly proceed even in situations

in which part of the data are missing or otherwise unknown.
However, in some cases, it may also use abstraction, which
is performed at a higher level than SAs.

Each observation of a specific situation can be
formalized using a conjunctive logic formula under the
Close World Assumption (what is not explicitly stated is
assumed to be false), described as a snapshot at a given
time. A model, on the other hand, consists of a set of Horn
clauses whose heads describe the target concepts and whose
bodies describe the pre-conditions for those targets to be
detected. For instance, the following model might be
available:

improveHealth(X) :- present(X,Y), user(Y),
has_fever(Y).

improveHealth(X):-
present(X,Y), user(Y), has_headache(Y),
cold(X,Y).

improveHealth(X) :- present(X,Y), user(Y),
has_flu(Y).

improveMind(X) :- present(X,Y), user(Y), sad(Y).

improveMind(X) :- present(X,Y), user(Y),
bored(Y).

(meaning “A user Y that is present in situation X and has a
fever, or has a headache and has a cold, or has a flu, might
want to improve his health” and “A user Y that is present in
situation X and is sad or bored might want to improve his
mind”, respectively). Although the above rules are very
simple for the sake of brevity, they clearly show how the
knowledge in the model is expressed using high-level
concepts of the domain that can be understood, evaluated
and possibly produced/modified by humans. A sample
observation might be:

morning(t0), closedWindow(t0), present(t0,j),
jim(j), user(j), temperature(t0,14),

has_fever(j), sad(j).

(i.e., “in situation at time t0 it is morning, the window is
closed and the temperature is 14°; user Jim is present and
Jim has a fever”). Reasoning infers that Jim is cold:
cold(t0,j). Being all the preconditions of the first and fourth
rules in the model satisfied by this situation for X = t0 and Y
= jim, the user goals improveHealth and improveMind are
recognized for Jim at time t0, which may cause activation of
suitable workflows aimed at attaining those results.
Conversely, the other rules in the model are not satisfied –
e.g., considering the last rule, user Jim is present, but he is
assumed not to be bored. Although predicates such as
fever(X), headache(X) and flu(X) are already abstractions of
the specific value provided by SAs, further levels of
generalization can be automatically performed by the
reasoning layer, e.g. using a predicate has_disease(Y),
defined as

has_disease(X) :- fever(X).

has_disease(X) :- flu(X).

such that the first and third rule in the model can be reduced
to:

improveHealth(X) :- present(X,Y), user(Y),
has_disease(Y).

making it applicable to other kinds of deseases, in addition
to just fever and flu. Referring back to the previous
observation, the reasoning behavior would infer that Jim has
a disease – has_disease(j) – from the fact that he has a fever.

The BA reasons not only on goals but also on
workflows. Indeed, once a goal is triggered, it selects the
appropriate workflow by performing a semantic
matchmaking between the semantic IOPE description of the
user's high-level goal and the semantic profiles of all the
workflows available in the knowledge base of the system
[10]. As a result, this process will produce one of the
following possible outputs:

• no semantic matching between the goal and any of
the available workflows;

• a single workflow semantically matching the goal;
• n workflows that are semantically consistent with

the goal (in this case a function of semantic
similarity with the goal will be applied to rank all
the selected workflows).

For instance, as shown in Figure 2, the semantic
matchmaking process leads to two different workflows
associated, respectively, to the two high-level goals
improveHealth and improveMind previously recognized.
The semantic matchmaking process starts from these goals
and leads to the desired workflow.

• Fig. 2. An example of Butler Workflow Planning

The semantic matchmaking can be also used within a
workflow, to find both the most appropriate subflows and
services. In the simplest case, in fact, the best workflow may
consist of a sequence of actions. Hence, the behavior
implementation allows dealing with complex workflows
consisting of a flow of actions and other sub-goals
corresponding to subflows, which are again processed
according to the matchmaking phase described above. In our
case, the main workflow includes two goals that needs to be
executed by selecting two different subflows corresponding,
respectively, to each goal: improveHealth and
improveMind. These subflows include both simple actions,
that can be directly executed, and subflow that need to be
satisfied, such as setTemperature.

In turn, the subgoal setTemperature is satisfied by
applying once more the matching process to find a suitable
workflow. Using this workflow, the reasoning behavior of
the BA will process the information collected by the
temperature sensors in order to understand whether to raise
or reduce the environment temperature, as described in the
following rules:

doReduceTemperature(X) :- present(X,Y), user(Y),
warm(X,Y).

doRaiseTemperature(X) :- present(X,Y), user(Y),
cold(X,Y).

This hierarchical matchmaking process stops when the
resulting workflow is composed of simple goals that can be
directly satisfied by invoking a net-centric service or
through simple actions performed on the effectors. In both
cases, the BA asks to the HA which EAs can satisfy each
planned action and send the specific request to the EA in
charge for handling actions regarding changes of a particular
parameter (i.e. temperature, light, etc.).

C. The Effector and Interactor Agents
Effector and Interactor agents are in charge of taking

appropriate decisions about actions to be executed in order
to fulfill simple goals determined by the BA. EAs have a
direct impact on several device behaviors and/or net-centric
services affecting the same environment parameter (e.g.,
temperature, light, ...); conversely, each device is controlled
by an EA. In order to find the best solution to satisfy the
user needs, these agents reason about different possible
solutions to attain the same goal in the current context. For
instance, if the goal is reducing the temperature, the EA in
charge of temperature control may decide whether turning
on air conditioning or opening the window; additionally, it
decide how to control those devices (in the former case,
which fan speed to select; in the latter case, how widely the
window must be opened). If the goal is reminding Jim to
take medicines and this can be done through a web service
accessible on TV, the EA invokes it.

When the simple goal regards a communicative action,
its execution is delegated to the IA, that may exploit
interaction with the user to get hints on how to attain a
simple goal and, based on this, possibly learn new
preferences of that user with respect to the given context and
situation, in order to continuously and dynamically improve
adaptation. For instance, the user might prefer opening the
window rather than turning on air conditioning in the
evening, if it is not windy. This requires, among others,
natural language understanding capabilities in order to
interpret the user utterances and relate them to the proper
event.

IV. CONCLUSIONS AND FUTURE WORK
This contribution shows a preliminary work towards the

development of a MAS aiming at handling the situation-
aware adaptation of a SHE behavior. In this MAS different
types of agents cooperates to the adaptation process: Sensor
Agents, a Butler Agent, a Housekeeper, Effector and
Interaction Agents. This process is performed at different
levels, starting from the interpretation of sensor data from
Sensor Agents, the planning services satisfying recognized
user’s goals and arriving to the decision on how to act on
devices from Effector Agents. The main peculiarity of the
proposed architecture lies in the fact that all kinds of agents
in the MAS are a specialization of an abstract class endowed
with both reasoning and learning behavior. Reasoning, in
turn, can exploit any combination of abstraction, deduction
and abduction according to the role of the agent in the MAS.
For instance, some agents (such as Sensor Agents in our
MAS) might use only one inference strategy, some others
(such as the Butler Agent) might use all of them according
to the complexity level of their task. The learning behavior
uses a fully incremental technique based on a first-order
logic representation and can exploit induction to
build/update the theories used by the various inference
strategies on which reasoning is based.

Still, open problems remain and will be the subject of
our future work. An open issue regards how to reason on
users’ reactions to the proposed flow of activities in order to
adopt the optimal behavior of the SHE. In fact, when the
user undoes or gives a negative feedback to one or more
actions of the selected workflow, it is necessary to
understand if this is just an exception or if it must affect the
reasoning models, e.g. because there is:

• a change in the situation that has not been detected
or taken into account,

• a mistake in controlling the effectors to achieve a
simple goal,

• a mistake in interpreting the user’s goals or in
selecting or composing the workflow.

Each of the latter cases determines which agent in the MAS
has made a wrong decision, and is to be involved in theory

refinement. Identification of the specific case should be
obtained by an analysis of the user’s feedback, and
introduces a related issue, that is who is in charge of
identifying the problem, gathering the feedback and
notifying it to the proper agent that must activate its learning
behavior. A candidate for taking care of these activities is
the Interactor Agent because it embeds the communication
function for interpreting the user feedback. Due to our
experience with the Java Agent Development Framework
(JADE), we currently intend to use it for the MAS software
implementation, and to plug it into a simulation system. As
regards devices, we are in touch with a company interested
in trying the system and willing to provide a set of devices
useful for testing it in a variety of realistic scenarios.

Finally, in the near future we plan to collect more
examples of interaction with the system to simulate and
evaluate its behavior in all the possible situations that are
relevant for our application domain.

REFERENCES

[1] Bierhoff, I. and van Berlo, A. More Intelligent Smart Houses

for Better Care and Health, Global Telemedicine and eHealth
Updates: Knowledge Resources", vol. 1, pp. 322-325, 2008.

[2] De Carolis, B., Cozzolongo, G. and Pizzutilo, S.: A Butler
Agent for Personalized House Control. ISMIS 2006: 157-166

[3] Esposito, F., Fanizzi, N., Ferilli, S., Basile, T.M.A. and Di
Mauro, N. Multistrategy Operators for Relational Learning
and Their Cooperation. Fundamenta Informaticae Journal,
69(4):389-409, IOS Press, Amsterdam, 2006.

[4] Falcone, R. and Castelfranchi, C. Tuning the Collaboration
Level with Autonomous Agents: A Principled Theory. AI*IA
2001: 212-224.

[5] Ferilli S., Basile T.M.A., Di Mauro N., Esposito F. On the
LearnAbility of Abstraction Theories from Observations for
Relational Learning. In: J. Gama, R. Camacho, G. Gerig, P.
Brazdil, A. Jorge, L. Torgo. Machine Learning: ECML 2005.
P. 120-132, Berlino: Springer, ISBN/ISSN: 3-540-29243-8,
2005

[6] Ferilli, S., Cavone, D., De Carolis, B. and Novielli, N. A
Layered Architecture for Situation Aware Home
Environments, to appear in Proceedings of 6th Workshop on
"Artificial Intelligence Techniques for Ambient Intelligence"
(AITAmI'11)

[7] Ferilli S., Esposito F., Basile T.M.A., Di Mauro N.
Automatic Induction of Abduction and Abstraction Theories
from Observations. In: S. Kramer, B. Pfahringer. Inductive
Logic Programming. p. 103-120, Berlino: Springer,
ISBN/ISSN: 3-540-28177-0, 2005.

[8] Meyer, H. On the Semantics of Service Compositions.
Lecture Notes in Computer Science, 2007, Volume
4524/2007, 31-42

[9] Muggleton, S.H. Inductive Logic Programming. New
Generation Computing, 8(4):295-318, 1991.

[10] OWL-S, Semantic markup for web services; W3C member
submission, 2004. 10

[11] Paolucci, M., Kawamura, T., Payne, T. and Sycara, K.
Semantic Matching of Web Services Capabilities. In The
Proceedings of The First International Semantic Web
Conference (ISWC), Sardinia (Italy), June 2002. 11

[12] Shadbolt, N. Ambient Intelligence. IEEE Intelligent
Systems.Vol.18, No.4, 2003. 12

[13] Soler, V., Peñalver, A., Zuffanelli, S., Roig, J. and Aguiló, J.
Domotic Hardware Infrastructure in PERSONA Project,
International Symposium on Ambient Intelligence (ISAmI
2010), 2010. 13

[14] Steg, H. et al. Ambient Assisted Living – European overview
report, September, 2005 14

[15] Uribarren Aitor, Jorge Parra1, M. Anwar Hossain, Eduardo
Jacob, Abdulmotaleb El Saddik, Flexible Smart Home
Architecture using Device Profile for Web Services: a Peer-
to-Peer Approach, International Journal of Smart Home,
Vol.3, No.2, April, 2009 15

[16] Yau, S.S. and Liu, J. Incorporating Situation Awareness in
Service Specifications, isorc, pp.287-294, Ninth IEEE
International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC'06),
2006 16

