
Agent-based Development of Wireless Sensor
Network Applications

Giancarlo Fortino, Stefano Galzarano, Raffaele Gravina, Antonio Guerrieri
DEIS – University of Calabria

Via P. Bucci cubo 41c, 87036 Rende (CS), Italy
g.fortino@unical.it, sgalzarano@deis.unical.it, rgravina@deis.unical.it, aguerrieri@deis.unical.it

Abstract— Due to the growing exploitation of wireless sensor
networks (WSNs) for enhancing all major conventional
application domains and enabling brand new application
domains, the development of applications based on WSNs has
recently gained a significant focus. Thus, design methods,
middleware and frameworks have been defined and made
available to support high-level programming of WSN
applications. However, even though many proposals do exist,
more research efforts should still be devoted to the definition of
WSN-oriented methodologies and tools fully supporting the
development lifecycle of WSN applications. In this paper, we
promote the use of the agent paradigm for the development of
WSN applications. After providing motivations about synergies
between agents and WSNs and a brief overview about agent
technology for WSNs, we describe the use of MAPS (Mobile
Agent Platform for Sun SPOTs), our agent platform for WSNs,
for the development of applications in important application
domains based on wireless body sensor networks (e.g. e-Health)
and building sensor and actuator networks (e.g. energy efficient
buildings). Finally, we delineate the characteristics on which full-
fledged agent-oriented methodologies for WSN applications could
be built.

Keywords-Agent-based development; agent-oriented
programming frameworks; wireless sensor networks; state-based
programming; MAPS; body sensor networks; bulding sensor and
actuator networks

I. INTRODUCTION
Advances in micro-electro-mechanical systems (MEMS)

technology, wireless communications, and digital electronics
have enabled the development of low-cost, low-power,
multifunctional sensor nodes that are small in size and can
communicate over short distances in an ad-hoc manner. Such
nodes are, in general, characterized by constrained computing
and communication capabilities. A given number of such
cooperating sensor nodes can be organized and deployed as a
wireless sensor network (WSN) [3].

The development of applications for WSNs requires not
only the same middleware/programming support required by
conventional distributed applications but also the fulfillment of
additional requirements specific to WSNs [1]. In particular,
middleware support for conventional distributed applications
includes:

- Shielding application developers from low-level

platform-specific details;
- Reusable pattern-oriented frameworks, rather than

(re)building software monolithically for each
application;

- Higher-level network-oriented programming
abstractions that better match distributed application
requirements;

- A wide array of non-functional services, such as
logging, deployment management and security that
have been proven necessary to operate effectively in a
networked environment.

Moreover, specific WSN features that have to be fully
supported are:

- Resource-constrained nature of WSNs in terms of
processing and memory capabilities, and battery life;

- WSN nodes are usually dynamic and mobile in nature
instead of being static and fixed as in traditional
distributed systems;

- Differently from traditional distributed systems, WSN
nodes usually incorporate both application-level
functions and the management of low-level aspects
related to mobility, routing and security.

Several middleware architectures based on different models
(database, macroprogramming, event-based, virtual machine,
etc) have been to date proposed to support the development,
deployment, execution, and maintenance of sensor-based
applications [40]. Nevertheless, considering the commonalities
that bind the intrinsic properties of WSNs with those of agents
[46], agent-based middleware could be more effective in the
context of WSNs than middleware based on other models.

It is therefore reasonable to wonder whether agent
technology can effectively support the construction of WSN
applications. The paradigm of agent-oriented software
engineering (AOSE) is argued to be well suited for developing
complex software systems in distributed and dynamic
environments [25, 28]. In particular, agent technology already
offers several approaches for the design and implementation of
agent-based sensor applications: (i) the development of a multi-
agent application atop non agent-oriented middleware for
WSNs [40]; (ii) the development of agent-based middleware
that supports agent-based programming [39]; and (iii) the

extension of an existing multi-agent platform with middleware
capabilities for WSNs (if possible) [46].

Although agent-oriented programming support is available,
there is still a lack of full-fledged methodologies specifically
supporting all phases (from requirement analysis to system
maintenance) of the development lifecycle of agent-based
WSN applications.

In this paper, we first provide an overview of agent-based
computing in WSNs from several perspectives: network
routing, data dissemination and fusion, in-network
coordination, programming frameworks, high-level system
architectures and applications (see Section II). Then, in Section
III, agent-based development of WSN applications enabled by
the MAPS (Mobile Agent Platform for Sun SPOT) framework
[2] is exemplified. Section IV discusses the identified
requirements for defining a full-fledged agent-oriented
methodology for the development of WSN applications.
Finally, some concluding remarks along with a brief
description of the on-going work are provided.

II. AGENTS AND WIRELESS SENSOR NETWORKS
Agent technology has been successfully used in WSNs at

different levels (application, middleware, network) [39]. In the
following we provide motivations of using agents for WSNs.
As sensors in a WSN must typically coordinate their actions to
achieve system-wide goals, coordination among dynamic
entities (or agents) is one of the main features of multi-agent
systems. Moreover, WSNs are characterized by the following
properties: physical distribution, resource boundedness,
information uncertainty, large scale, decentralized control and
adaptiveness [46]. Such properties are shared with and can be
supported by agents and multi-agent systems. In particular:

- Physical distribution implies that sensors are situated in
an environment from which they can receive stimuli
and act accordingly, also through control actions
aiming at changing their environment. Situatedness is a
main property of an agent and several well-known
agent architectures were defined to support such
important property.

- Boundedness of resources (computing power,
communication and energy) is a typical property both
of sensor nodes as single units and of the WSN as a
whole. Agents and related infrastructures can support
such limitation through intelligent resource-aware,
single and cooperative behaviors.

- Information uncertainty is typical in large-scale WSNs
in which both the status of the network and the data
gathered to observe the monitored/controlled
phenomena could be incomplete. In this case,
intelligent (mobile) agents could recover inconsistent
states and data through cooperation and mobility.

- Large scale is a property of WSNs either sparsely
deployed on a wide area or densely deployed on a
restricted area. Agents in multi-agent systems usually
cooperate in a decentralized way through highly
scalable interaction protocols and/or time- and space-
decoupled coordination infrastructures.

- In large-scale WSNs, centralized control is not feasible
as nodes can have intermittent connections and also
can suddenly disappear due to energy lack. Thus,
decentralized control should be exploited. The multi-
agent approach is usually based on control
decentralization transferred either to multiple agents
dynamically elected among the available set of agents
or to the whole ensemble of agents coordinating as
peers.

- Adaptiveness is the main shared property between
sensors and agents. An agent is by definition adaptive
in the environment in which is situated. Thus,
modeling the sensor activity as an agent or a multi-
agent system and, consequently, the whole WSN as a
multi-agent system, could facilitate the implementation
of the adaptiveness properties.

Moreover an interesting taxonomy about sensor networks
and their relationships with multi-agent systems can be found
in [46].

The main agent-oriented research efforts have been to date
devoted to the following WSN research themes: network
routing, data dissemination and fusion, in-network
coordination, programming frameworks, high-level system
architectures and applications. In the following subsections an
overview of some of the main outcomes related to such themes
will be presented.

A. Network routing
Several agent-oriented techniques have been defined to

support efficient routing in WSNs. Most of them are based on
mobile agents that are able to roam across the sensor nodes,
performing routing tasks.

An interesting routing technique based on mobile agents is
rumor routing [8] that allows for routing queries to nodes that
have observed a particular event (i.e. a localized phenomenon
detected by some sensor node/s). The rumor routing algorithm
aims at lower energy consumption than algorithms that flood
the whole network with query or event messages. The main
idea is that mobile agents a priori create paths leading to event
nodes as the events occur; later queries are sent on random
walks until they find one of the created paths, and then route
along the path to event nodes.

In [22] authors propose a solution where mobile agents are
created whenever a source node decides to send a data packet
to the sink. Agents are then responsible for carrying the data
through the network. After reaching the destination, the agent
delivers the data to the application and then dies. After arriving
at a node, the agent checks a forwarding table available at the
node with the possible next hops, including such nodes
respective costs and energy levels. Based on that information,
agents take a decision. Since energy levels are depleted as
agents use a given path, future agents might take more
expensive paths that happen to have more energy available,
achieving some degree of load balancing. Moreover, agents
could negotiate and aggregate their data when they “meet” in
the network, possibly becoming one single agent after such
aggregation.

B. Data Dissemination and Fusion
Several data fusion and dissemination schemes based on

mobile agents have been to date proposed. In [31], authors
review and evaluate the most representative mobile agent-
based middleware proposals for autonomic data fusion tasks in
WSNs, highlighting their relevant strengths and shortcomings.
They classify such research proposals in five main categories:
single mobile agent-based, multiple mobile agent-based,
autonomic data fusion in clustered WSN architectures,
hardware based and combined multiple mobile agent/stationary
agents-based autonomic data fusion. In [11] mobile agents are
used to disseminate data. According to client/server
architectures, data at multiple sources is transferred to a
destination whereas, according to the mobile agent paradigm, a
task-specific mobile agent traverses the relevant sources to
gather data and disseminate them according to specific policies.
Many inherent advantages (e.g. scalability, extensibility,
energy awareness, reliability) of the mobile agent architecture
make it suitable for WSNs than the client/server architecture.
Mobile agents can be exploited at three levels (node level, task
level, and combined task level) to reduce the information
redundancy and communication overhead.

C. Energy-aware Coordination
Within application domains involving low-power, wireless

devices physically distributed over an environment to acquire
and integrate information, one of the main challenges to face
with is to coordinate the activities of such devices in order to
achieve good system-wide performance. Moreover, several
constraints have to be considered: specific constraints on each
device (e.g. limited power, communication and computational
resources), the limitation for each of them to be able to
communicate with only its local neighborhood and the need for
a decentralized approach such that there is no central point of
failure and no communication bottleneck. The problem of
performing decentralized coordination of low-power devices is
addressed in [18] by considering the generic problem of
maximizing social welfare within a group of interacting agents.
Each agent interacts locally with a number of other agents such
that the utility of an individual agent is dependent on its own
state and the states of these other agents. In particular, a novel
representation of the problem, through a cyclic bipartite factor
graph composed of variable and function nodes (representing
the agents’ states and utilities respectively), is proposed. Such
descriptive model allows using an extension of the sum-
product algorithm (specifically the max-sum algorithm), which
is adopted, along with a local decentralized message passing, to
generate approximate solutions to the global optimization
problem. It is shown that this approach has a communication
cost (in terms of total messages size and, consequently, in
energy consumption) that scales very well with the number of
agents in the system because the complexity of the calculation
that each agent performs depends only on the number of
neighbors that it has and not on the total size of the network.

D. Programming Frameworks
Very few agent frameworks for WSNs have been to date

proposed and concretely implemented. In the following, we
first describe Agilla and actorNet, the most significant

available research prototypes based on TinyOS [45], and then,
we introduce AFME and MAPS which are based on Java.

Agilla [19] is an agent-based middleware developed on
TinyOS and supporting multiple agents on each node. Agilla
provides two fundamental resources on each node: a tuplespace
and a neighbor list. The tuplespace represents a shared memory
space where structured data (tuples) can be stored and
retrieved, allowing agents to exchange information through
spatial and temporal decoupling. A tuplespace can be also
accessed remotely. The neighbor list contains the address of all
one-hop nodes needed when an agent has to migrate. Agents
can migrate carrying their code and state, but they cannot carry
their tuples locally stored on a tuplespace. Packets used for
node communication (e.g. for agent migration/cloning, remote
tuple accessing) are very small to minimize messages losses,
whereas retransmission techniques are also adopted.

ActorNet [27] is an agent-based platform specifically
designed for Mica2/TinyOS sensor nodes. To overcome the
difficulties in allowing code migration and interoperability due
to the strict coupling between applications and sensor node
architectures, actorNet exposes services like virtual memory,
context switching, and multi-tasking. Thanks to these features,
it effectively supports agent programming by providing a
uniform computing environment for all agents, regardless of
hardware or operating system differences. The actorNet
language used for high-level agent programming has syntax
and semantics similar to those of Scheme with proper
instruction extension.

Both Agilla and actorNet are designed for TinyOS that
relies on the nesC language that is not an object-oriented
language but an event- and component-based extension of the
ANSI C language. The Java language, through which Sun
SPOT [43] and Sentilla JCreate [41] sensors can be
programmed, due to its object-oriented features, could provide
more flexibility and extendibility for an effective
implementation of agent-based platforms. Currently, the only
two available Java-based mobile agent platforms for WSNs are
MAPS [2] and AFME [32].

The AFME framework [32], a lightweight version of the
agent factory framework purposely designed for wireless
pervasive systems and implemented in J2ME, has been
recently ported onto Sun SPOT and used for exemplifying
agent communication and migration in WSNs. AFME is
strongly based on the Belief-Desire-Intention (BDI) paradigm, in
which agents follow a sense-deliberate-act cycle. In AFME,
agents are defined through a mixed declarative/imperative
programming model. The declarative Agent Factory Agent
Programming Language (AFAPL), based on a logical formalism
of beliefs and commitments, is used to encode an agent’s
behavior by specifying rules that define the conditions under
which commitments are adopted. The imperative Java code is
instead used to encode perceptors and actuators. However,
AFME was not specifically designed for WSNs and,
particularly, for Java Sun SPOT. MAPS, the Java-based agent
platform overviewed in the next section, is conversely
specifically designed for WSNs and fully uses the release 4.0
blue of the Sun SPOT library to provide advanced functionality
of communication, migration, sensing/actuation, timing and

flash memory storage. Moreover, it allows developers to
program agent-based applications in Java according to the rules
of the MAPS framework, and thus no translator and/or
interpreter need to be developed and no new language has to be
learnt as in the case of Agilla, ActorNet and AFME.

E. System Architectures, Services and Applications
Mobile agents have been also exploited to design WSN system
architectures and develop services and applications based on
WSNs. In [10, 23] authors propose mobile agents for WSN
applications and, specifically, decompose the agent design
functionality into four components: architecture, itinerary
planning, middleware system design, and agent cooperation.
This decomposition covers low-level to high-level design
issues and facilitates the creation of a component-based and
efficient mobile agent system for a wide range of applications.
With reference to applications, a measurable bandwidth saving
can be obtained either when large amounts of data are locally
processed by mobile agents, or when the deployment of a
programmable approach enabling task autonomy is required.
To this purpose, an efficient design for the core components is
required to support the scheme being followed by the agent-
based application when dealing with a particular type of
problem. Similarly, the WSN application has a direct influence
on the type of communications mechanism employed by the
mobile agent system to perform its task efficiently. However,
their applicability mainly is warranted not only by the overall
energy savings they introduce, but also by the extra flexibility
they offer when coping with frequent and/or unexpected
aspects of the event being sensed that other types of approaches
are unable to address efficiently.
In [12] the MAWSN (Mobile Agent-based WSN) architecture
for data processing/aggregating/concatenating in a planar
sensor architecture is proposed. MAWSN can exhibit better
performance than client/server communications in terms of
energy consumption and packet delivery ratio. However,
MAWSN has a longer end-to-end latency than client/server
communications in certain conditions.
Mobile agents have also been applied for location tracking
services based on WSNs. The goal is to monitor the roaming
path of a moving object through wireless sensor nodes
disseminated on an environment. While similar to the problem
of location update in personal communication service
networks, it is more challenging as there are no central control
mechanism and backbone network and the communication
bandwidth is very limited. In [44], a mobile agent-based
protocol for location tracking is proposed. Once a new object is
detected, a mobile agent is initiated to track the roaming path
of the object. The agent follows the object by moving to the
sensor closest to the object. Moreover, the mobile agent may
invite some nearby sensor agent to cooperatively locate the
object and inhibit other irrelevant sensor agents from tracking
the object. As a result, the communication and sensing
overheads can be greatly reduced.

Finally, in [38] an energy-efficient, fault-tolerant approach
for collaborative signal and information processing (CSIP)
among multiple sensor nodes using a mobile agent-based
computing model, is proposed. The performance of such a
model is compared with the classic client/server-based model

with respect to the execution time and energy consumption
perspectives through both simulation and analytical study.
Results indicate that in the context of sensor networks where
the number of sensor nodes is very large, the communication
bandwidth is considerably low, and the energy resource is
contingent, the mobile-agent-based computing model is more
suitable for conducting collaborative processing.

III. USING MAPS FOR AGENT-BASED DEVELOPMENT
MAPS [2, 30] is an innovative Java-based framework

specifically developed on Sun SPOT technology for enabling
agent-oriented programming of WSN applications. It has been
defined according to the following requirements:

- Component-based lightweight agent server architecture
to avoid heavy concurrency and agents cooperation
models.

- Lightweight agent architecture to efficiently execute
and migrate agents.

- Minimal core services involving agent migration, agent
naming, agent communication, timing and sensor node
resources access (sensors, actuators, flash memory, and
radio).

- Plug-in-based architecture extensions through which
any other service can be defined in terms of one or
more dynamically installable components implemented
as single or cooperating (mobile) agents.

- Use of Java language for defining the mobile agent
behavior.

The architecture of MAPS (see Fig. 1) is based on several
components interacting through events and offering a set of
services to mobile agents, including message transmission,
agent creation, agent cloning, agent migration, timer handling,
and an easy access to the sensor node resources. In particular,
the main components are the following:

- Mobile Agent (MA). MAs are the basic high-level
component defined by user for constituting the agent-
based applications.

- Mobile Agent Execution Engine (MAEE). It manages
the execution of MAs by means of an event-based
scheduler enabling lightweight concurrency. MAEE
also interacts with the other services-provider
components to fulfill service requests (message
transmission, sensor reading, timer setting, etc) issued
by MAs.

- Mobile Agent Migration Manager (MAMM). This
component supports agents migration through the
Isolate (de)hibernation feature provided by the Sun
SPOT environment. The MAs hibernation and
serialization involve data and execution state whereas
the code must already reside at the destination node
(this is a current limitation of the Sun SPOTs which do
not support dynamic class loading and code migration).

- Mobile Agent Communication Channel (MACC). It
enables inter-agent communications based on

asynchronous messages (unicast or broadcast)
supported by the Radiogram protocol.

- Mobile Agent Naming (MAN). MAN provides agent
naming based on proxies for supporting MAMM and
MACC in their operations. It also manages the
(dynamic) list of the neighbor sensor nodes which is
updated through a beaconing mechanism based on
broadcast messages.

- Timer Manager (TM). It manages the timer service for
supporting timing of MA operations.

- Resource Manager (RM). RM allows access to the
resources of the Sun SPOT node: sensors (3-axial
accelerometer, temperature, light), switches, leds,
battery, and flash memory.

Figure 1. The architecture of MAPS.

The dynamic behavior of a mobile agent (MA) is modeled
through a multi-plane state machine (MPSM). Each plane may
represent the behavior of the MA in a specific role so enabling
role-based programming. In particular, a plane is composed of
local variables, local functions, and an automaton whose
transitions are labeled by Event-Condition-Action (ECA) rules
E[C]/A, where E is the event name, [C] is a boolean expression
evaluated on global and local variables, and A is the atomic
action. Thus, agents interact through events, which are
asynchronously delivered and managed by the MAEE
component.

It is worth noting that the MPSM-based agent behavior
programming allows exploiting the benefits deriving from
three main paradigms for WSN programming: event-driven
programming, state-based programming and mobile agent-
based programming.

MAPS has been also made interoperable with the JADE
framework [6]. Specifically, a JADE-MAPS gateway [16] has
been developed for allowing JADE agents to interact with
MAPS agents and vice versa. While both MAPS and JADE are
Java-based, they use a different communication method. JADE
sends messages according to the FIPA standards (using the
ACL specifications), while MAPS creates its own messages
based on events. Therefore, the JADE-MAPS Gateway
facilitates message exchange between MAPS and JADE
agents. This inter-platform communication infrastructure

allows rapid prototyping of WSN-based distributed
applications/systems that use JADE at the
basestation/coordinator/host sides and MAPS at the sensor
node side.

Recently a tiny version of MAPS, named TinyMAPS, has
been developed for the Java-based Sentilla JCreate sensor
platform [41]. Sentilla sensors are much more resource-
constrained than Sun SPOT sensors so both the mobile agent
system architecture and the agent architecture of TinyMAPS
have been purposely tailored to be actually implemented. In the
following a comparison between TinyMAPS and MAPS with
respect to their architectures and programming models is
reported.

Both TinyMAPS and MAPS offer similar services for
developing WSN agent-based applications. They use state
machines to model the agent behavior and directly the Java
language to program guards and actions. Moreover, differently
from TinyMAPS, MAPS is more powerful and fully exploits
the last release of the Sun SPOT library to provide advanced
functionality of communication, migration, sensing/actuation,
timing, and flash memory storage. In MAPS, the
implementation of mobile agents is based on Isolates, whose
migration mechanism is directly offered by the SPOT Squawk
JVM. The concept of Isolates within Sentilla JCreate
technology is different; they are used as system mechanisms
together with the concept of Binary when the code is deployed
on the motes [41]. TinyMAPS supports migration by simply
sending an event that contains agent status information and
data (which are coded and encapsulated inside the event); the
agent needs to re-start its execution on the remote node. In any
case, both platforms suffer from the current limitation of the
Sentilla JCreate and the Sun SPOT that do not allow dynamic
class loading, so preventing from the possibility to support
code migration (i.e. any class required by the agent must be
already present at the destination node). Finally, both MAPS
and TinyMAPS allow developers to program agent-based
applications in Java according to its rules so no translator
and/or interpreter need to be developed and no new language
has to be learnt.

MAPS is being applied in two WSN application domains:
body sensor networks [4] for supporting assisted livings and
building sensor networks for intelligent management of energy
consumptions and resident comfort [24]. In the following
subsections, we describe the application of MAPS in the two
aforementioned application domains.

A. Body Sensor Networks
 Among the WSN domains, wireless Body Sensor

Networks (BSNs) [36] are conveying notable attention as their
real-world applications aim at supporting humans in every
facets of their daily life. BSNs involve wireless wearable
physiological sensors applied to the human body for medical
and non-medical purposes and, in particular, BSNs enable
continuous, real-time, non-invasive, anywhere and anytime
monitoring of assisted livings. Applications where BSNs could
be greatly useful include early detection or prevention of
diseases (heart attacks, Parkinson, diabetes, etc.), elderly
assistance at home, e-Sport, e-Entertainment, post-trauma
rehabilitation after surgeries, motion and gestures detection,

cognitive and emotional recognition for social interactions,
medical assistance in disaster events, e-Factory.

To demonstrate the effectiveness of agent-based platforms
to support programming of BSN applications, in [5] a MAPS-
based agent-oriented signal processing in-node environment
specialized for real-time human activity monitoring has been
presented. In particular, the system is able to recognize
postures (e.g. lying down, sitting and standing still) and
movements (e.g. walking) of assisted livings. The system
architecture, shown in Fig. 2, is organized into a coordinator
(based on a PC/smartphone), implemented with Java and
JADE, and two sensor nodes implemented with MAPS [2].

Figure 2. Architecture of the agent-based activity monitoring system.

The coordinator side is based on a JADE Agent which
incorporates several modules of the Java-based coordinator
developed in the context of the SPINE framework [4]. In
particular, it is used by end-user applications (e.g. the real-time
activity recognition application) for sending commands to the
sensor nodes and is responsible of capturing low-level
messages and events coming from the nodes. The JADE agent
coordinator also integrates an application-specific logic for the
synchronization of the two sensors. In particular, the activity
recognition application, running above the JADE agent,
integrates a classifier based on the K-Nearest Neighbor
algorithm that is capable of recognizing postures and
movements defined in a training phase.

The two sensor nodes are based on the Java Sun SPOT
platform and are respectively positioned on the waist and the
thigh of the monitored person. In particular, MAPS is resident
on the sensor nodes and supports the execution of the
WaistSensorAgent and the ThighSensorAgent, whose
behaviours are modelled though a finite-state machine
executing the following step-wise cycle:

1. Sensing the 3-axial accelerometer sensor according to a
given sampling time;

2. Computation of specific features (Mean function on all
accelerometer axes and Max and Min functions on the
X accelerometer axis for the WaistSensorAgent and
Max on the X accelerometer axis for the
ThighSensorAgent) on the acquired raw data;

3. Features aggregation and transmission to the
coordinator;

4. Goto 1.

In [5] the entire system has been analyzed by considering
the following two aspects:

- the performance evaluation of the timing granularity
degree of the sensing activity at the sensor node and
the synchronization degree or skew of the activities of
the two sensor agents;

- the recognition accuracy which shows how well the
human postures/movements are recognized by the
system.

On the basis of the obtained performance results it can be
stated that MAPS shows its great suitability for supporting
efficient BSN applications, so demonstrating that the agent
approach is not only effective during the design of a BSN
application but also during the implementation phase.
Furthermore, the recognition accuracies are good and
encouraging if compared with other works in the literature that
use more than two sensors on the human body to recognize
activities [29]. While it has been shown that MAPS provides
enough efficiency to support the requirements of real-time
recognition of human activities, with reference to programming
effectiveness, its agent programming model based on finite
state machine offers a very straightforward and intuitive
instrument for supporting BSN application development.

B. Building Sensor Networks
Building sensor networks are WSNs that are deployed

inside buildings, on the building structure, or among buildings
to support building automation, energy saving and structural
health monitoring. Building sensor networks require an
efficient domain-specific framework for their management and
for the flexible and rapid development of related applications
(smart home, passive house, intra-smart GRID, energy efficient
buildings, etc). To this purpose the Building Management
Framework (BMF) has been developed [24].

BMF is a domain-specific framework for intelligent
management of WSAN (Wireless Sensor and Actuator
Networks) enabling proactive monitoring of spaces and control
of devices/equipments. BMF specifically provides: (i) flexible
and efficient management of (large) sets of cooperating
networked sensors and actuators; (ii) abstractions for logical
and physical node group organization to specifically capture
the morphology of buildings; (iii) intelligent sensing and
actuation techniques; (iv) integration of heterogeneous WSNs;
(v) flexible system programming at low- and high-level.

In particular, BMF is basically organized in two processing
layers: Low-Level Processing (LLP) and High-Level
Processing (HLP). LLP resides on the sensor nodes and
provides the following sensor-based services: acquisition of
data from sensors, execution of actions on actuators, in-node

processing (selection and aggregation), scheduling of sensing
and actuation requests, data and request routing, dynamic node
addressing, and group management.

LLP is currently available for TinyOS and Sun SPOT nodes
with implementations following respectively the TinyOS
event-driven and the Java object-oriented paradigms. LLP is
highly modular so that it is easy to extend it for new platforms
and to allow for a fast integration of new sensors/actuators.

HLP resides at the basestation side and provides the
following system-wide services: device discovery and
management, group-based programming of sensors and
actuators, adaptation of heterogeneous devices, and support for
higher-level application-specific components.

HLP is currently based on the OSGi framework [34] so
having strong modularity and allowing to implement all needed
services in different bundles that can communicate with each
other through OSGi. In particular, the following bundles are
available: The Platform Bundle which is a bundle allowing to
interface the system with different type of platforms. Every
Platform Bundle is linked to an hardware component able to
communicate with a platform in the network; The
Communication Bundle which allows to send and receive
packets over the air enabling communication between bundles
and a WSN; The Groups and Nodes Management Bundle
which keeps track of nodes and groups in a WSAN, and stores
nodes configurations and groups compositions; The Packet
Manager Bundle which allows the creation and the
interpretation of low level packets according to the Building
Management Framework Communication Protocol; The
Network Manager Bundle which allows to fully manage a
WSN running the BMF; The Data Saving Bundle which is
designed to save data from the WSN to files or DB; The
Aggregation Bundle which is delegated to execute aggregations
on data from the network; The BMF Management GUI Bundle
which is a standard graphical configuration application
designed to allow the user to manage a WSN submitting
requests, waiting for and visualizing data from the network and
displaying charts about sensing operations.

LLP and HPL interact through an application level
communication protocol, namely Building Management
Framework Communication Protocol (BMFCP). BMFCP
therefore supports the communication between HLP and LLP
to configure and monitor the building sensor network in an
effective manner. The packets exchanged can be formed,
depending on the specific request or the specific data from the
nodes, by different fields having a different amount of bytes.
The BMFCP is developed to send over-the-air variable length
packets containing only the meaningful bits of the significant
fields. Thus, the BMFCP optimizes transmissions saving
battery on the single nodes and network bandwidth so allowing
more nodes to share the same radio channel.

An agent-oriented design of BMF, named A-BMF, has
been recently carried out. A-BMF exploits agents and their
supporting infrastructure to enhance the management
functionality of BMF with in-node and basestation-side agent-
oriented features. The architecture of A-BMF (see Figure 3) is
composed of coordinator agents (CAs), which run in the
basestations, and sensor agents (SAs), which are executed in

the sensor nodes. Specifically A-BMF relies on a multi-
basestation approach to allow for large buildings composed of
multiple floors and diversified environments. Thus, the A-BMF
architecture is hybrid: hierarchical and peer-to-peer. Interaction
among CAs is peer-to-peer whereas interaction between
coordinator agents and their related SAs (or SA cluster) is
usually master/slave. Moreover, SAs of the same cluster
coordinate to dynamically form a multi-hop ad-hoc network
rooted at the CA. Functionalities of CAs and SAs are similar to
those described for BMF at the basestation and sensor node
sides. Moreover, CAs can cooperate for submitting queries and
retrieving data spanning multiple SA clusters. A-BMF is
currently being implemented through JADE at basestation side
and through MAPS at sensor side.

Figure 3. High-level view of the A-BMF architecture

IV. TOWARDS A FULL-FLEDGED AGENT-ORIENTED
METHODOLOGY FOR THE DEVELOPMENT OF WSN

APPLICATIONS
The complexity of WSN application development currently

derives from two major issues: (i) a lack of adequate
abstractions in application development that application
developers can exploit for the rapid implementation of WSN
applications; in fact, the level of abstraction remains very low
in the current practice of WSN application development; (ii)
lack of coherent tool chains for application development; in
fact, in addition to programming, WSN application
development involves a series of labor-intensive tasks such as
the compilation and verification of program code,
configuration of a simulator or of sensor nodes, and
deployment/injection of compiled code to nodes. Among the
new paradigms and tools that the Software Engineering has
proposed, the agent-oriented software engineering (AOSE)
[25], which has shown high suitability to support the
development of distributed applications in terms of multi-agent
systems (MAS) in dynamic and heterogeneous environments,
could be a very good candidate to effectively support WSN
applications. In particular, several agent-oriented
methodologies [49, 9, 15, 13, 37, 21] have been defined to
enable the concrete use of the abstractions of the agent
paradigm and effectively and successfully applied in diverse
application domains. Such methodologies are different in the
following aspects: (i) supported phases of the software

development lifecycle; (ii) adopted modeling languages; (iii)
availability of a CASE tool supporting the methodology; (iv)
agent platforms for executing the produced software. However,
since they are general-purpose, to obtain specific
methodologies for the resolution of specific problems in
specific application domains, the method engineering, which
allows for the integration of method fragments taken from
existing methodologies or developed ad-hoc, has been
exploited [20]. In addition, several research efforts have
recently been devoted to integrating simulation into agent-
oriented methodologies for supporting MAS validation before
MAS deployment [14]. It is worth noting that such
methodologies are not currently exploited for the development
of applications on WSN even though the agent paradigm is
emerging as promising paradigm for programming WSN
applications.

A pure agent-oriented methodology for WSN application
development could be based on:

- The use and customization of agent-oriented existing
methodologies [49, 9, 15, 13, 37, 21];

- The ad-hoc definition of agent-oriented methodologies
by possibly re-using parts of already existing
methodologies through a method engineering approach
[14, 20].

However, being WSNs a specific type of distributed embedded
system, often integrated into other distributed embedded
systems, the following techniques and methods developed in
the research area of embedded computing could be fruitfully
exploited: platform-based design, simulation-driven
prototyping, and model-driven development based on domain-
specific languages. We therefore believe that an effective
methodology for WSN application development should
integrate method fragments from agent-oriented methodologies
with the following WSN-oriented techniques/methods:

- Platform-Based Design [26] is a methodology
originally developed for the design of embedded
systems. According to the PBD, a design is obtained as
a sequence of refinement steps that guide the designer
from the initial specification all the way down to a
physical implementation. To support this process, a set
of intermediate abstraction layers and platforms are to
be identified. These platforms therefore represent the
target system at different levels of abstraction. Each
platform is composed on a set of instances. An iterative
refinement (mapping) process translates a platform
instance to another one of a lower level, until the final
implementation is reached. Each refinement step is a
design choice taken as the solution of a constrained
optimization problem. The cost function is typically
the energy consumption (to optimize the system
lifetime). The constraints are usually the error rate,
latency, and the budget. The PBD methodology has
been applied for the system-level design of WSNs [7]
to address, through a formal and systematic approach,
issues such as reliability and support for heterogeneity
that are still one of the main limiting factors to the
commercial spread of the WSN technology. In
particular, the approach is based on three layers of

abstraction and their relative platforms: a service
platform at the application layer, a protocol platform to
describe the protocol stacks, and an implementation
platform for the hardware nodes. In this case, the first
refinement step maps the high-level service platform
instance to an implementation platform instance,
leading to a topology. It is the output of this step that
identifies the type, the number, and the location of the
physical sensor nodes needed by the application. The
communication problem is addressed only later, with a
further mapping process that choose the right
communication protocol stack (MAC and/or routing)
that meets the application requirements and satisfies
the energy constraints of the selected physical network
infrastructure. PBD for WSNs [7]

- WSN simulation techniques and frameworks. The
growth of WSN applications has opened the way to
their performance evaluation. Since mathematical
analysis and experimental deployments are not always
allowed, for the WSNs most of researchers have
chosen simulation for their study. This approach is a
delicate matter due to the complexity of the WSNs.
First of all, the large number of nodes heavily impacts
simulation performance and scalability. Second,
credible results demand an accurate characterization of
the radio channel. New aspects inherent in WSN must
be included in simulators (e.g., a physical environment
and an energy model), leading to different degrees of
accuracy against performance [17]. Many simulators
like ATEMU, EmStar, SNAP, TOSSIM, and COOJA
are specifically designed for WSNs. Among them
COOJA allows to simulate WSNs choosing if
increasing the accuracy or the performance giving the
possibility to simulate different nodes at different
levels. The COOJA simulator [35] is a flexible Java-
based sensor network simulator with specific
algorithms to simulate entities like the WSN radio
channel and battery consumption and capable to
emulate microcontrollers like the MSP430 one.
COOJA is the only simulator that has the ability to mix
simulations of sensor devices at multiple abstraction
levels: (i) Application level, the simulated nodes run
the application logic re-implemented in Java
(simulating at this level increases performances); (ii)
OS level, the nodes use the same code as real nodes,
but compiled for COOJA; (iii) Hardware level, the
nodes run the same compiled code that can be used in
real nodes (simulating at this level increases accuracy).
The nodes at different abstraction levels can
communicate with each other using the radio channel.
COOJA can effectively support the prototyping of
WSN applications giving the possibility to simulate
high-level code (Java, at the application level) to test
the algorithms and then the code can be re-
implemented for WSN nodes like TelosB and
simulated again at low-level (hardware level).

- MDD and Domain-Specific Languages for WSNs. The
Model-Driven Development is based on the idea of
separating the specification of the operation of a

system from the details of the way that system uses the
capabilities of its platform. The three primary goals of
MDD are portability, interoperability and reusability
through architectural separation of concerns. MDD
provides a set of guidelines for structuring
specifications expressed as models. It defines system
functionality using an appropriate domain-specific
language (DSL). The MDD approach can be very
useful in the WSN domain [47] giving the possibility
to overcome the limitation in the programming of
heterogeneous WSN due to different platforms and
OSs. In [33], for example, a complete framework for
modeling, simulation, and multiplatform code
generation for WSN based on MathWorks tools is
presented. This framework offers application
developers rich libraries for digital signal processing
and control algorithm behavior simulation, along with
a broad variety of debugging and analysis tools, such
as animated state chart displays, scopes, and plots.
Moreover, with this framework users can automatically
generate the complete application code for several
target operating systems from the same simulated and
debugged model, without thinking about the details of
the target platform implementation.

Moreover, the methodology should also aim at supporting the
development of applications both for single-application WSNs
and for future multiple-purpose WSNs [42, 48].
Finally, as demonstrated in the software engineering research
area, the development of a CASE tool specifically and
seamlessly supporting all phases of the methodology from
requirement analysis to system deployment and maintenance
would promote usability and effectiveness of the methodology.

V. CONCLUSIONS
In this paper we have proposed the agent paradigm and

technology as very suitable for supporting the development of
WSNs. “Agents” and “sensors” have many common aspects
that can be fruitfully exploited to design efficient agent-based
WSNs. In fact, several agent-oriented research efforts on
routing, data dissemination and fusion,
frameworks/middleware, services, systems, and applications
for WSNs have been defined. Moreover, in this paper we have
shown how MAPS, a mobile agent framework for Sun SPOT
sensor platform, can actually support the development of
applications in the context of wireless body sensor networks
and building sensor and actuators networks that are conveying
notable attention as enablers of a great variety of high-impact
application domains (e.g. e-Health, e-Factory, energy efficient
buildings). Finally, we discussed the requirements that a full-
fledged agent-oriented methodology for the development of
WSN applications could have. Such methodology not only
should incorporate useful methods and models derived from
available agent-oriented methodology but also it should include
methods and techniques derived from embedded computing
such as platform-based design, simulation-driven testing and
model-driven development based on domain-specific
languages. On-going research activity is therefore focused at
the definition of such methodology.

ACKNOWLEDGMENT
This work has been partially supported by CONET, the

Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number FP7-
2007-2-224053.

REFERENCES
[1] S. R. Afzal, C. Huygens, W. Joosen, “Extending middleware
frameworks for Wireless Sensor Networks,” Proc. of the International
Conference on Ultra Modern Telecommunications, ICUMT 2009, 12-14
October, St. Petersburg, Russia, pp. 1-7, 2009.
[2] F. Aiello, G. Fortino, R. Gravina and A. Guerrieri, A Java-based Agent
Platform for Programming Wireless Sensor Networks, The Computer Journal,
54(3), pp. 439-454, 2011.
[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
"Wireless Sensor Networks: A Survey," Computer Networks Elsevier Journal,
Vol. 38, No. 4, pp. 393–422, March 2002.
[4] F. Bellifemine, G. Fortino, R. Giannantonio, R. Gravina, A. Guerrieri,
M. Sgroi, “SPINE: A domain-specific framework for rapid prototyping of
WBSN applications” Software Practice and Experience, Wiley, 41(3), 2011,
pp. 237-265.
[5] F. Bellifemine, F. Aiello, G. Fortino, S. Galzarano, R. Gravina, “An
agent-based signal processing in-node environment for real-time human
activity monitoring based on wireless body sensor networks”. Journal of
Engineering Applications of Artificial Intelligence, Elsevier. 2011, to appear.
[6] F. Bellifemine, A. Poggi, and G. Rimassa,, “Developing multi agent
systems with a FIPA-compliant agent framework,”. Software Practice And
Experience 31, 103-128, 2001.
[7] A. Bonivento, L. P. Carloni, A. L. Sangiovanni-Vincentelli, “Platform
based design for wireless sensor networks,” MONET 11(4), 469-485, 2006.
[8] D. Braginsky and D. Estrin, “Rumor routing algorithm for sensor
networks,” in First ACM International Workshop on Wireless Sensor
Networks and Applications, pp.22–31, Sept. 2002.
[9] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos and A. Perini,
"TROPOS: an agent-oriented software development methodology", Journal of
Autonomous Agents and Multi-Agent Systems, 8(3), pp.203-236, 2004.
[10] M. Chen, S. González-Valenzuela, V. C. M. Leung, “Applications and
design issues for mobile agents in wireless sensor networks”, IEEE Wireless
Communications, pp. 20-26, Dec 2007.
[11] M. Chen, T. Kwon, and Y. Choi. “Data Dissemination based on Mobile
Agent in Wireless Sensor Networks,” Proc. of the IEEE Conference on Local
Computer Networks 30th Anniversary (LCN '05). IEEE Computer Society,
Washington, DC, USA, 527-529, 2005
[12] M. Chen, T. Kwon, Y. Yuan and V.C.M. Leung, “Mobile Agent Based
Wireless Sensor Networks,” Journal of computers, 1(1), pp. 14-21, April
2006.
[13] M. Cossentino, "From requirements to code with the PASSI
methodology", in B. Henderson-Sellers and P. Giorgini (Eds.) Agent-Oriented
Methodologies, Hershey, PA: Idea Group Inc., pp.79-106, 2005.
[14] M. Cossentino, G. Fortino, A. Garro, S. Mascillaro, W. Russo,
"PASSIM: A Simulation-based Process for the Development of Multi-Agent
Systems" in Int'l Journal on Agent Oriented Software Engineering, 2(2), 2008.
[15] S.A. DeLoach, M. Wood, and C. Sparkman, "Multi-agent system
engineering", Int'l Journal of Software Engineering and Knowledge
Engineering, 11(3), pp.231-258, 2001.
[16] J.J. Domanski, R. Dziadkiewicz, M. Ganzha, A. Gab and M.M.
Mesjasz “Implementing GliderAgent – an agent-based decision support
system for glider pilots,” in NATO ASI Book, IOS press, 2011, to appear.
[17] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario, J.
Garcia-Haro. "Simulation scalability issues in wireless sensor networks"
Communications Magazine, IEEE, Vol. 44, No. 7. (2006), pp. 64-73.
[18] A. Farinelli, A. Rogers, A. Petcu and N.R. Jennings, “Decentralised
Coordination of Low-Power Embedded Devices Using the Max-Sum
Algorithm,” Proc. of Seventh International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-08), 12-16 May 2008, Estoril,
Portugal. pp. 639-646, 2008.
[19] C.-L. Fok, G.-C. Roman and C. Lu, Agilla: A Mobile Agent
Middleware for Sensor Networks, accepted to ACM Transactions on
Autonomous and Adaptive Systems Special Issue, 2011.

[20] G. Fortino, A. Garro, W. Russo, "An Integrated Approach for the
Development and Validation of Multi Agent Systems", in Computer Systems
Science & Engineering, 20(4), pp.94-107, Jul. 2005.
[21] G. Fortino, W. Russo, E. Zimeo, "A Statecharts-based Software
Development Process for Mobile Agents", in Information and Software
Technology, 46(13), pp.907-921, Oct. 2004.
[22] L. Gan, J. Liu, and X. Jin, “Agent-based, energy efficient routing in
sensor networks,” In AAMAS ’04: Proc. of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 472–479,
Washington, DC, USA, 2004.
[23] S. González-Valenzuela, M. Chen, V. C. M. Leung, “Programmable
Middleware for Wireless Sensor Networks Applications Using Mobile
Agents,” MONET, 15(6):853-865, 2010.
[24] A. Guerrieri, A. Ruzzelli, G. Fortino and G. O’Hare, “A WSN-based
Building Management Framework to Support Energy-Saving Applications in
Buildings,” In “Advancements in Distributed Computing and Internet
Technologies: Trends and Issues” (Al-Sakib Khan Pathan, Mukaddim Pathan,
Hae Young Lee, eds), Chapter 12, pp. 161-174, IGI Global, 2011.
[25] N.R. Jennings and M. Wooldridge, "Agent-Oriented Software
Engineering", in Handbook of Agent Technology, Bradshaw, J., Ed.:
AAAI/MIT Press, 2001.
[26] K. Keutzer, S. Malik, A.R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, “System-Level Design: Orthogonalization of Concerns and
Platform Based Design”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 19(12), Dec 2000.
[27] Y. Kwon, S. Sundresh, K. Mechitov and G. Agha, ActorNet: An Actor
Platform for Wireless Sensor Networks, in Proc. of the 5th Int’l Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1297-1300, 2006.
[28] M. Luck, P. McBurney, and C. Preist, “A manifesto for agent
technology: towards next generation computing,” Autonomous Agents and
Multi-Agent Systems 9(3), pp.203-252, 2004.
[29] U. Maurer, A. Smailagic, D. P. Siewiorek, M. Deisher, “Activity
recognition and monitoring using multiple sensors on different body
positions”, Proceedings of the International Workshop on Wearable and
Implantable Body Sensor Networks (BSN ’06), pages 113–116, Washington,
DC, USA, 2006. IEEE Computer Society.
[30] Mobile Agent Platform for Sun SPOT (MAPS), documentation and
software at: http://maps.deis.unical.it/.
[31] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou,
“Mobile agent middleware for autonomic data fusion in wireless sensor
networks,” In M. K. Denko, L. T. Yang, & Y. Zhang (Eds.), Autonomic
computing and networking, chapter 3 (pp. 57-81). USA: Springer. 2009.
[32] C. Muldoon, G. M. P. O'Hare, M. J. O'Grady and R. Tynan, Agent
Migration and Communication in WSNs, in Proc. of the 9th International
Conference on Parallel and Distributed Computing, Applications and
Technologies (2008).
[33] S. Olivieri, M.M.R. Mozumdar, L. Lavagno, L. Vanzago (2009).
“Modeling, Simulation, and Automatic Code Generation Framework for

Sensor Network Applications”. Wireless Design & Development, ISSN:
1076-4240, Feb 2009.
[34] OSGi (Open Service Gateway initiative) Alliance, http://www.osgi.org
(2011)
[35] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with Cooja,” Proceedings of the First IEEE
International Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp 2006), Tampa, Florida, USA, Nov. 2006.
[36] A. Pantelopoulos, N.G. Bourbakis, “A Survey on Wearable Sensor-
Based Systems For Health Monitoring and Prognosis”, In IEEE Transactions
on Systems, Man and Cybernetics, Part C, Vol. 40, No. 1, pp. 1-12, 2010.
[37] J. Pavón, J. Gómez-Sanz, and R. Fuentes, "The INGENIAS
Methodology and Tools," In Agent-Oriented Methodologies, Eds. B.
Henderson-Sellers and P. Giorgini, Idea Group Publishing, 2005, pp.236-276.
[38] H. Qi, Y. Xu, and X. Wang, “Mobile-Agent-Based Collaborative
Signal and Information Processing in Sensor Networks,” Proc. IEEE, vol. 91,
no. 8, Aug. 2003, pp. 1172–83.
[39] A. Rogers, D. Corkill, and N.R. Jennings, N. R. “Agent technologies
for sensor networks,” IEEE Intelligent Systems, 24, pp. 13-17, 2009.
[40] K. Romer, O. Kasten, and F. Mattern, “Middleware challenges for
wireless sensor networks,” Mobile Computing and Communications Review,
6, 2002.
[41] Sentilla Developer Community,
http://www.sentilla.com/developer.html.
[42] J. Steffan, L. Fiege, M. Cilia, A. Buchmann, "Towards Multi-Purpose
Wireless Sensor Networks", In Proc. of IEEE Int'l Conf. on Sensor Networks
(SENET'05), Montreal, Canada, Aug 2005.
[43] Sun™ Small Programmable Object Technology (Sun SPOT),
http://www.sunspotworld.com/.
[44] Yu-Chee Tseng, Sheng-Po Kuo, Hung-Wei Lee and Chi-Fu Huang,
“Location Tracking in a Wireless Sensor Network by Mobile Agents and Its
Data Fusion Strategies,” The Computer Journal,Vol.47, No.4, pp. 448-460,
July 2004.
[45] TinyOS, documentation and software, http://www.tinyos.net.
[46] M. Vinyals, J. A. Rodriguez-Aguilar, J. Cerquides, “A Survey on
Sensor Networks from a Multiagent Perspective,” The Computer Journal,
54(3), pp. 455-470, 2010.
[47] H. Wada, P. Boonma, J. Suzuki and K. Oba, "Modeling and Executing
Adaptive Sensor Network Applications with the Matilda UML Virtual
Machine," In Proc. of the 11th IASTED Int'l Conf. on Software Engineering
and Applications (SEA) Cambridge, MA, November 2007.
[48] Y. Yu, L. J. Rittle, V. Bhandari, J. B. LeBrun, “Supporting Concurrent
Applications in Wireless Sensor Networks,” In Proc. of ACM SenSys.
November, 2006.
[49] F. Zambonelli, N.R. Jennings, and M. Wooldridge, "Developing
multiagent systems: the Gaia Methodology", ACM Trans. on Software
Engineering and Methodology, 12(3), pp.317-370, 2003.

