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Abstract— It is shown that a simplified model of genetic 
regulatory networks, aimed at the study of their generic 
properties, can shed light on some important biological 
phenomena. Two cases are analyzed, namely perturbations in 
gene expression induced in an organism by the knock-out of 
selected genes, and cell differentiation. The role of simplified 
models in biology is discussed. 

I.  INTRODUCTION 
The wealth of data nowadays available in genomics and 

other -omics has superseded our understanding of the key 
biological processes which they refer to, so there is a strong 
need for theories and models in order to make sense of the data 
themselves. 

The movement of systems biology has contributed to shift 
the focus of research from a naive genocentric viewpoint to a 
more sophisticated approach, which takes properly into account 
system-level interactions. In this field, most models are quite 
specific, as they refer to the behaviour of a particular organ 
(like e.g. the heart in mammals) or to a particular genetic-
metabolic subsystem.  

A useful complementary approach (which has been called 
complex systems biology by Kaneko [1]) is centered instead on 
the search for generic properties, common to many different 
biological systems. An example of this kind of properties is the 
widespread fat-tailed distributions of several biological 
variables, and an even more striking example is provided by   
the scaling law which relates power consumption to body mass 
of different living species, irrespective of the differences 
among their anatomical and physiological properties [2]. Data 
indicate that the power consumption grows as mass3/4.  It seems 
indeed that the scaling law applies to very different sizes, from 
blue whales to small mammals and birds to mithocondria, thus 
spanning an impressive range of 20 orders of magnitude.  
Interestingly enough, the smartest explanation of this regularity 
and of the value of the exponent is related to the number of 
(relevant) spatial dimensions, i.e. 3, and to the (generic) 
hypothesis that biological evolution has tuned the features of 
living organisms in order to optimize power efficiency (under 
suitable constraints). 

The search for generic properties of living beings had been 
pioneered by Stuart Kauffman, who introduced his model of 
random boolean networks (RBNs) more than 40 years ago in 
an attempt at exploring the properties of genetic regulatory 
networks. The model later became popular, in particular in the 
complex systems community, but it has only recently been 

shown that it can actually describe some quantitative features 
of real genetic regulatory networks. The possibility to verify 
the appropriateness of such a model has been opened by the 
availability of DNA microarrays, which allow genome-wide 
monitoring of the changes in gene expression levels.  In this 
paper, after reviewing the RBN model in section 2, I will 
briefly discuss in section 3 its application to the study of 
perturbations induced by single gene knock-out in the yeast S. 
Cerevisiae, which was the first application of RBNs to the 
simulation of quantitative properties of real genes in a cell. 
Interestingly enough, the same study opens a way to test one of 
the strongest claims which have been put forth in complex 
systems biology, i.e. that evolution has led organisms to critical 
dynamical states, intermediate between order and chaos [3], 
which are sometimes referred to as "the edge of chaos". This 
aspect will also be discussed in section 3. 

In section 4 I will describe another application of RBNs to 
real biological systems. In this case the quantitative data which 
can validate or disprove the model are not yet available, 
however the model is interesting in principle, as it shows that it 
is possible to describe several different phenomena involved in 
cell differentiation in a unified way by supposing that 
differentiation is an emergent phenomenon of a genetic 
regulatory network, without postulating particular gene 
circuits. It is also possible to devise experiments to test the 
hypotheses which lie at the basis of the model, as well as some 
of their consequences. 

A final remark concerns the reference list, which might 
have become very long, had all the relevant original papers 
been mentioned. I prefer to keep the list short, quoting only a 
few papers where all the other relevant references can easily be 
found. 

II. RANDOM BOOLEAN NETWORKS 
The model is fairly well-known and the reader is referred to 

[4,5] for a more detailed description. A RBN is a dynamical 
system whose N variables take values {1,0} which can change 
in time according to a well-defined function (called transition 
function) of their inputs. It is convenient to think of it as a 
directed graph, with nodes associated to variables. If variable i 
depends upon variable j then there is a link from node j to node 
i. In the case considered here, all the nodes have exactly k input 
links, and the updating is synchronous. The network is random 
in that both the connections are drawn at random (choosing the 
k inputs to a node with uniform probability among the other N-
1) and the Boolean function associated to a node is chosen at 
random. Usually one either chooses the Boolean function with 



uniform probability from a predefined set, or generates each 
Boolean function by associating with a certain probability the 
output 1 or 0 to each of the 2k input possible input vectors. 

The system is deterministic and synchronous, therefore if N 
is finite its asymptotic states are cycles (a fixed point being a 
cycle with period one). Depending upon its structural features 
(i.e. topology and boolean functions), a family of networks 
shows a typical time behaviour, although single network 
realizations can behave in a way different from that typical of 
their family. Indeed, some combinations of structural 
parameters give rise to behaviours which have been termed 
ordered, other combinations lead to disordered or "chaotic" 
states. In the case of ordered systems the typical length of the 
asymptotic cycles increases slowly with the system size; 
moreover, it often happens that two nearby initial conditions 
evolve to the same final attractor. In the case of disordered 
networks the length of the cycles increases sharply with N, and 
it often happens that close initial conditions lead to different 
attractors. Critical networks have been defined as those whose 
structural parameters take values which are intermediate 
between those of ordered and those of disordered networks. 

A bold theoretical ansatz which has been proposed [3] is 
that critical RBNs are endowed with features which make them 
particularly well-suited to perform complex tasks in a changing 
environment; therefore it has been argued that biological 
evolution should have driven biological organisms in, or close 
to this region in parameter space. 

III. PERTURBATIONS IN GENE REGULATORY NETWORKS 
It has recently been possible to study the expression levels 

of all the genes of an organism, and to compare their global 
properties with those of genetic network models. A more 
detailed description of the results summarized below can be 
found in [6-8] and further references quoted therein.  

In an important series of experiments  a single gene of S. 
cerevisiae was knocked-out, and  the expression levels of all 
the genes, in cells with a knocked-out gene, was compared with 
those in normal, wild type cells. In order to make precise 
statements about the number of genes perturbed in a given 
experiment, and to compare them with Boolean models, it is 
required that a threshold be defined, such that the difference is 
regarded as "meaningful" if the ratio of the expression of gene i 
in experiment j to the expression of gene i in the wild type cell 
is greater than the threshold (or smaller than its reciprocal). In 
order to describe the global features of these experiments it is 
convenient to introduce the notion of avalanche, which is the 
number of genes affected by the perturbation induced by a 
particular knock-out experiment.  

The knock-out experiment can be simulated in silico by 
comparing the evolution of two identical RBNs which start 
from the same state of an attractor, the only difference being 
that one gene is clamped permanently to the value 0 in the 
network which simulates knock-out. A gene belongs to the 
avalanche associated to a particular knock-out if it differs in the 
final states of the two networks at least once in the attractor 
cycle. The initial simulations were performed using a classical 
RBN with 2 input connections per node, restricting the set of 
Boolean functions to the so-called canalyzing ones.  The data 

set concerns 6325 genes and 227 experiments and the 
comparison with the experimental distribution of avalanches 
turned out to be good. 

The reason why such a simple model worked so well has 
been uncovered by analytical methods which have proven that 
the distribution of avalanches depends only upon the outdegree 
distribution, while the indegree distribution plays no role [7]. 
Moreover, in the case of classical random Boolean networks, 
where the distribution of outgoing connections is Poissonian, it 
can be also proven that the distribution of small avalanches 
depends only upon a single parameter, the so-called Derrida 
exponent which is given by the equation: 

 
where A is the average connectivity of the network and q is the 
probability that a chosen node does not change its value when 
one (and only one) of its inputs has changed (note that q 
depends on the choice of the set of Boolean functions).  had 
been introduced in the past in order to distinguish between 
ordered and disordered dynamical regimes (1 being the critical 
value), and it turns out that it also rules the distribution of 
avalanches. Therefore it is possible to estimate its value from 
the distribution of avalanches, so these analyses provide a 
general way to test the criticality hypothesis and, within the 
limitations of the data set presently available, they also provide 
support to it. 

IV. CELL DIFFERENTIATION 
One of the major challenges in complex systems biology is 

that of providing a general theoretical framework to describe 
the phenomena involved in cell differentiation, i.e. the process 
whereby stem cells, which can develop into different types, 
become progressively more specialized. The model described 
below (for more details see 9-10 and further references quoted 
therein) is an abstract one (it does not refer to a specific 
organism or cell type) and it aims at reproducing the most 
relevant features of the process: (i) the existence of different 
degrees of differentiation, that span from totipotent stem cells 
to fully differentiated cells; (ii) stochastic differentiation, where 
populations of identical multipotent cells stochastically 
generate different cell types; (iii) deterministic differentiation, 
where signals trigger the progress of multipotent cells into 
more differentiated types, in well defined lineages; (iv) limited 
reversibility: differentiation is almost always irreversible, but 
there are limited exceptions under the action of appropriate 
signals; (v) induced pluripotency: fully differentiated cells can 
come back to a pluripotent state by modifying the expression of 
some genes and (vi) induced change of cell type: modification 
of the expression of few genes can directly convert one 
differentiated cell type into another. 

The key hypotheses are that the differentiation process is an 
emerging property due to the interactions of very many genes 
(so its main features should be shared by a variety of different 
organisms) and that cellular noise plays a crucial role. To check 
these hypotheses a noisy version of the RBN model can be 
used (briefly refereed to as NRBN). 

Noise is modelled as a transient flip of a single node, 
chosen at random. Attractors of deterministic RBNs are 



unstable with respect to noise even at these low levels, and if a 
node is flipped for a single time step in an attactor state one 
sometimes observes transitions from that attractor to another 
one. Therefore, by flipping all the states belonging to the 
attractors of a RBN, it is possible to create a complete map of 
the transitions among the attractors. In these conditions single 
attractors can no longer be associated to cell types, as it is 
usually assumed [4]. Ribeiro and Kauffman [11] observed that 
it is possible to identify in the attractors’ landscape subsets of 
attractors, which they called Ergodic Sets, which entrap the 
system in the long time limit, so the system continues to jump 
between attractors which belong to the set. Unfortunately it 
turns out that most NRBNs have just one such set: this 
observation rules out the possibility to associate them to cell 
types. 

A possible solution to this problem is based on the 
observation that flips are a kind of noise fairly intense, as they 
amount to silencing an expressed gene or to express a gene 
which would otherwise be inactive: a particular transition may 
well be an event too rare to happen with significant probability 
in the cell lifetime, if it can happen only by perturbing a 
specific gene, or very few ones. It is possible therefore to 
introduce a threshold θ, and to neglect all the transitions having 
an occurrence probability lower than that.  In such a way, the 
notion of Ergodic Set has to be modified in that of Threshold 
Ergodic Set (briefly, TES), a set of attractors linked only by 
jumps having a probability higher than θ, that entrap the 
system in the long time limit. A TES is therefore a subset of 
attractors which are directly or indirectly θ-reachable 
(reachable by means of transition whose probability exceeds 
the threshold θ) from at least another member of the set, and 
from which no transition can allow escaping. The threshold 
clearly is related to the level of noise in the cell, and scales 
with the reciprocal of the frequency of flips [9]. 

An ergodic set can be described therefore as a TES with 
θ=0; by increasing the threshold, one usually observes the birth 
of more and more TESs until, above a certain level, all the 
attractors of the deterministic model are also independent 
TESs. It is therefore possible to associate cell types to TESs, 
that represent coherent stable ways of functioning of the same 
genome even in the presence of noise. Several authors, on 
theoretical and experimental bases, associate different levels of 
noise to different levels of differentiation, the noise being 
higher the less differentiated the cell is. So the degree of 
differentiation appears to be related to the possibility for an 
undifferentiated cell to wander in a portion of phase space 
greater than the corresponding portions covered by more 
differentiated cells. In the NRBN model a convenient proxy for 
the available portion of phase space could be the number of 
different attractors belonging to the TES associated to that cell. 
A 0-threshold TES could therefore be associated to a totipotent 
cell, while as the threshold is increased smaller TESs appear, 
corresponding to more differentiated biological forms, until at 
high enough threshold values all the attractors are TESs, thus 
representing the fully differentiated cells. The increase of the 
threshold would correspond to a decrease of noise level, that 
could be related to an improvement in the mechanisms 
whereby fluctuations are kept under control. This association 
of differentiation to changes in the noise level represents the 

most stringent outcome of the model, and could be amenable to 
experimental test. 

This hypothesis explains in a straightforward way the fact 
that there are different degrees of differentiation (i.e. property 
i), corresponding to different threshold values. It is also 
straightforward to describe stochastic differentiation (i.e. 
property ii): in this vision the fate of a cell depends on the 
particular attractor where the system is found when the noise 
level changes. The new cell type will be that corresponding to 
the new TES to which the attractor belongs at the new 
threshold level. 

There exist also several processes, e.g. during the 
embryogenesis, in which cell differentiation is not stochastic 
but it is driven towards precise, repeatable types by specific 
chemical signals, which activate or silence some genes. These 
signals can be simulated by permanently fixing to 1 or 0 the 
state of some nodes. However this single action doesn’t 
influence the level of noise, and therefore doesn’t enable 
differentiation: in order to have deterministic differentiation it 
is necessary that so-called "switch" nodes exist, whose 
permanent perturbation coupled with a change in noise level 
always leads the system to the same TES. The existence of 
switch nodes has actually been verified to be a common 
property (found in about 1/3 of the nets), thereby proving the 
effectiveness of the model (i.e. property iii). 

Moreover, by simulating the overexpression of a few genes, 
it has been possible to simulate also the other properties 
summarized above, and in particular the important processes of 
induced pluripotency and transitions among different cell 
types. 

V. CONCLUSIONS 
The above examples show that relatively simple generic 

models of gene regulatory networks are able to describe the 
quantitative features of the perturbations induced by gene 
knock-out, and to form the basis of an interesting model of cell 
differentiation. It goes without saying that more sophisticated 
models might be necessary to describe other important 
properties. 

But the point which is worth stressing is that even models 
which are based on crude approximations may well provide 
insights on complex phenomena. This is well known in 
physics, where the aim is often that of finding very general 
properties, and simple models which display these properties 
are considered very useful. On the contrary, researchers in 
biology and social sciences often overstate the need for detailed 
models, which entrap all the features and the interactions which 
they suppose might be important - a requirement which, if 
taken too seriously, might even prevent the development of 
dynamical medelling in those fields. What might be envisaged 
is a hierarchy of models, where the simpler ones, which 
however capture some key properties, are used to understand 
some of the most relevant aspects, and to suggest further 
experiments. They may well be complemented by more 
detailed models able to provide more accurate quantitative (and 
sometimes also qualitative) behaviours. 
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