
Two Basic Correctness Properties for ATL

Transformations: Executability and Coverage

Elena Planas1, Jordi Cabot2, and Cristina Gómez3

1 Universitat Oberta de Catalunya (Spain), eplanash@uoc.edu
2 École des Mines de Nantes - INRIA (France), jordi.cabot@inria.fr
3 Universitat Politècnica de Catalunya (Spain), cristina@essi.upc.edu

Abstract. Model transformations play a cornerstone role with the emer-
gence of Model Driven Engineering (MDE), where models are trans-
formed from higher to lower levels of abstraction. Unfortunately, a quick
and easy way to check the correctness of model transformations is still
missing, which compromises their quality (and in turn, the quality of the
target models generated from them).

In this paper we propose a lightweight and efficient method that per-
forms a static analysis of the ATL rules with respect to two correctness
properties we define: (1) weak executability, which determines if there is
some scenario in which an ATL rule can be safely applied without break-
ing the target metamodel integrity constraints; and (2) coverage, which
ensures a set of ATL rules allow addressing all elements of the source
and target metamodels. In both cases, our method returns meaningful
feedback that helps repairing the possible detected inconsistencies.

1 Introduction

Model transformations play a cornerstone role with the emergence of Model
Driven Engineering (MDE), where models are transformed from higher to lower
levels of abstraction. In consequence, the quality of the whole transformation
process strongly depends on the quality of the model transformations. How-
ever, even though there is a wide set of research proposals focused on model
transformations, there is still further work to be done regarding its analysis and
verification. In particular, there is a lack of efficient methods to analyze rule
correctness with respect to the source and target metamodels.

In order to alleviate this situation, we first define two basic correctness prop-
erties of model transformation rules. First property, weak executability of a rule,
analyzes whether a rule may be safely applied without breaking the target meta-
model integrity constraints. Second property, covering of a rule set, analyzes
whether a set of rules allow addressing all elements of the source and target
metamodels.

We also propose a lightweight analysis method to check these properties on
rules expressed in ATL language [1]. In order to improve its efficiency, our method
works at design time without any need to execute the rules. If the checked



property is not satisfied, the method returns meaningful feedback suggesting
possible corrections to repair the detected errors.

Paper organization. The rest of the paper is structured as follows. Section
2 introduces a running example that will be used in the rest of the paper. Sections
3 and 4 specify the executability and coverage properties and provide a method
to check them. Finally, section 5 discusses the related work and section 6 presents
our conclusions and further work.

2 Running Example

This section introduces briefly some preliminary concepts on ATL model trans-
formations and presents our running example, which describes a simple trans-
formation of a Person model (source model) to a Student model (target model).

2.1 Metamodels

ATL rules describe the transformation from a source model (which conforms to
a source metamodel) to a target model (which conforms to a target metamodel)
by relating its metamodels. The source and target metamodels are described in
the Ecore language (which allows to formally define its structure).

Example. The Person metamodel (PersonMM) (see Fig. 1, left) consists of people
having a name, surname, age and college name. Besides, people may know other
people (in a symmetric way). The Student metamodel (StudentMM) (see Fig. 1,
right) consists of students having a full name. Students study at a college and
they are enrolled in at least one subject.

Fig. 1. PersonMM (source metamodel) and StudentMM (target metamodel).

2.2 ATL Rules Specification

The presented work only addresses ATL matched rules, that is, declarative rules
that define how the source model elements are matched and navigated to create
and initialize the target model elements. Although our method could be extended
in order to address other kinds of ATL rules.

An ATL rule is introduced by the keyword “rule” followed by the rule’s name.
The source pattern is used to declare which element type of the source model
has to be transformed. It consists of the keyword “from”, a source variable
declaration and optionally a filter (that is, an OCL expression restricting the

2 MtATL 2011



rule to elements of the source model that satisfy certain constraints). The target
pattern is used to declare which element(s) of the target model the source pattern
has to be transformed to. It starts with the keyword “to” and consists of a
variable declaration and a sequence of bindings (assignments).

Example. We define a simple rule (“Person2Student”) to transform people into
students. For each Person instance, a Student instance has to be created. The
full name of a Student has to be set linking together the name and surname of
the Person (using a helper). A College instance is also created and related to the
new student.

The corresponding ATL code is the following:

module Person2Student;
create OUT: StudentMM from IN: PersonMM;

helper context PersonMM!Person def :
getFullName(): String = self.name + ’ ’ + self.surname;

rule Person2Student {
from p: PersonMM!Person
to s: StudentMM!Student (

fullName ← p.getFullName(),
college ← c

),
c: StudentMM!College (

name ← p.collegeName
)

}

3 Executability of ATL rules

We consider an ATL rule r is weakly executable if it has a chance of being
successfully executed. That is, if there is at least a given set of elements that
matches with the source model for which the execution of the rule r generates a
target model consistent with the target metamodel and its integrity constraints.
Otherwise r is useless, as every time it is executed, an error arises because the
target model violates some integrity constraints.

We define our executability property as weak executability since we do not
require all executions of the rule on a matching source model to be successful,
which could be defined as strong executability. Weak executability is a prereq-
uisite for strong executability (the latter implies the former). Hence, designers
can check first weak executability, which is simpler to verify, and then they can
apply other techniques to determine the stronger property if necessary.

As an example, rule “Person2Student” is not weakly executable since, every
time we create a new Student and we do not associate it to any subject, we
reach an erroneous model where the minimum 1 cardinality of the “IsEnrolledIn”
association is violated. Our method can report that, in order to create a new
Student, we need to assign at least one subject within the same execution.

CEUR Workshop Proceedings 3



To determine if a rule is weakly executable we proceed by applying a two-step
verification process (see Fig. 2). This process may be automated and integrated
into a tool for editing ATL rules.

Fig. 2. Weak executability overview.

Step 1: Computing Dependencies. The executability of an ATL rule de-
pends on the updates it performs. In particular, problems may arise when some
update requires the presence of other updates within the same execution in order
to reach a consistent model (i.e. a state that violates no constraint) after execut-
ing the rule. Therefore, to be executable, a rule r must satisfy all dependencies
for every update in r. A dependency from an update up1to another update up2
expresses that up2 must be included in all rules where up1 appears to avoid vio-
lating the metamodel constraints. Dependencies for a specific update are drawn
from the structure and constraints of the target metamodel and from the kind
of effect the update performs (create an object, initialize an attribute or create
a link).

Table 1 provides the rules to compute the dependencies for each kind of
update. First column (Rule update) shows the description and the corresponding
ATL code for several possible updates in the rule1. Second column (Constraint)
states when the dependency must hold2. Finally, third column (Required update)
shows the description and the corresponding ATL code of the required update
to satisfy the constraint in the same row.

As an example, we discuss the first row of Table 1, which describes the re-
quired updates to ensure that an object creation does not violate a mandatory

1 Note that the Table 1 only shows the creating object/link updates, given that ini-
tializing an attribute has not any dependency.

2 Our method covers the following constraint types: Mand(attr,cl), which expresses a
mandatory constraint over an attribute attr of class cl, that is, the attribute attr

must have at least one value; Cmin(as,r), which defines the minimum cardinality
constraint of an association as, expressing the minimum multiplicity of the member
end (i.e. role) r of as; and Sym(as), which expresses a symmetric constraint over
a recursive association as, that guarantees that if o1 is as-related to o2, then o2 is
as-related to o1.

4 MtATL 2011



Table 1. Dependencies for creating actions.

Rule Update Constraint Required Update
Description ATL code Description ATL code

Create to Mand(attr,cl) Initialize o: . . . attr ← value
object o:MM!cl attribute attr

Cmin(as,r) 6= 0 Create mandatory o: . . . r ← obj

links where obj→size≥
Cmin(as,r)

Create o: . . . Sym(as), where Create the o: . . . r2 ← o

link r1 ← obj r1 and r2 are symmetric link
its member ends

constraint of an attribute (Mand(attr, cl)). In order to avoid violate this con-
straint type, the attribute attr must be initialized within the same execution.
Last colum of first row shows the necessary ATL code to satisfy this dependency.

Example. In the following the dependencies for rule “Person2Student” are
shown:

Dependencies for rule “Person2Student”
Create an object of type Student requires:
(dep1) Initialize its attribute “fullName”
(dep2) Create one link of “StudiesAt” association
(dep3) Create at least one link of “IsEnrolledIn” association
Create an object of type College requires:
(dep4) Initialize its attribute “name”

Rule “Person2Student” has four dependencies. Creating an object of type
Student requires update its mandatory attribute “fullName” (dep1) and create
mandatory links with associations “StudiesAt” and “IsEnrolledTo” (dep2 and
dep3 respectively). Besides, creating an object of type College requires update
its mandatory attribute “name” (dep4).

Step 2: Mapping the dependencies. After computing the dependencies for a
rule, we have to check if the required updates are satisfied by the rule itself. If all
required updates are satisfied, the rule is classified as weak executable. If not, the
rule is marked as non-weak executable and the corresponding corrective feedback
is provided to the designer to help repairing the detected inconsistencies.

A required update is satisfied by a rule r if it can be mapped to r. An extract
of required ATL code may be mapped to the rule’s ATL code when the following
conditions are satisfied: (1) both codes perform the same update (creating an
element, initializing an attribute or creating a link); (2) the elements referenced
by the code coincide (e.g. both initializations are of the same attribute); and (3)
all instance-level variables of the required code can be bound to the variables
in the rule (free variables introduced by the dependencies can be bound to any
variable value in the rule’s code, while fixed ones must have the same identifier
in both codes).

CEUR Workshop Proceedings 5



Example. Table 2 shows the mapping for rule “Person2Student”.

Dependencies dep1, dep2 and dep4 of rule “Person2Student” are satisfied by
the rule given that the required code appears in the rule (replacing the free vari-
able “value1” with the value “p.getFullName()”, the free variable “obj1” with
the object “c”, and the free variable “value2” with the value “p.collegeName”).
Otherwise, dep3 is not satisfied given that the required code does not appear in
the rule. Hence, we can conclude that this rule is not weak executable. Depen-
dency dep3 will be returned as feedback and should be added to the rule in order
to make it weakly executable.

Table 2. Mapping for rule “Person2Student”. Free variables are showed in italics.
{sat} states that the dependency is satisfied, while {not sat} states the opposite.

Dependency Required ATL code Rule ATL code

dep1 {sat} out: . . . fullName ← value1 out: . . . fullName ← p.getFullName()
dep2 {sat} out: . . . college ← obj1 out: . . . college ← c
dep3 {not sat} out: . . . subject ← obj2
dep4 {sat} out: . . . name ← value2 out: . . . name ← p.collegeName

4 Coverage of ATL rule set

We consider a set of ATL rules is covering if it allows addressing all elements of
the source and target metamodels. This property may be viewed regarding two
perspectives:

– Source-coverage: We consider that a set of ATL rules is source-covering when
all elements of the source metamodel may be navigated through the execu-
tion of these rules. Otherwise, there will be elements of the source metamodel
with no relevance in the transformation. More formally, a rule set setrl =
{rl1,. . . ,rln} is source-covering when, for each element e in the source meta-
model, there is at least one rule (rli) that navigates e. For instance, the set
composed by the single rule “Person2Student” is not source-covering since
rules to navigate “age” attribute and “Knows” association are not specified.

– Target-coverage: We consider that a set of ATL rules is target-covering when
all elements of the target metamodel may be created and initialized through
the execution of these rules. Otherwise, there will be elements of the tar-
get metamodel completely useless since no rules address their modification.
More formally, a rule set setrl = {rl1,. . . ,rln} is target-covering when, for
each element e in the target metamodel, there is at least one rule (rli) that
creates or initializes e. For instance, the set composed by the single rule
“Person2Student” is neither target-covering since, for instance, rules to cre-
ate objects of type “Subject” are not specified, forbidding users to create
new subjects on the target model.

6 MtATL 2011



Even though not coverage does not indicate explicitly an error but only a
warning, we feel this property is important to guarantee that no behavioral
elements are missing in the rules.

To determine if a set of ATL rules is covering we propose applying a three
step process (see Fig. 3). This process may be automated and integrated into a
tool for editing ATL rules.

Fig. 3. Coverage overview.

Step 1: Computing metamodel elements. First step consists in determin-
ing the metamodel elements that should be addressed by the rules. In source
metamodels, these elements are all those describe the metamodel (classes, at-
tributes and associations). In target metamodels, these elements are all possible
modifiable elements (non-abstract classes, classes which are not the supertype
of a complete generalization set, non-derived attributes and non-derived associ-
ations). First column of tables 3 and 4 shows the metamodel elements for our
running source and target metamodels respectively.

Step 2: Computing addressed elements. Second step consists in determin-
ing the addressed elements in the rule set. For source metamodels, navigated
elements are those which appear in the “from” part of the rules or those which
are navigated in the “to” part. For target metamodels, created and initialized
elements are those which are created or initialized in the “to” part of the rules.
Second column of tables 3 and 4 shows the addressed elements for our running
source and target metamodels respectively.

Step 3: Computing non addressed elements. Last step consists in com-
puting the difference between metamodel elements and addressed elements. This
difference represent the elements that should be addressed but they are not treat

CEUR Workshop Proceedings 7



in any rule. They are returned as a feedback and their treat should be added in
some rule to make the set covering. Three column of tables 3 and 4 shows the
non-addressed elements for our running source and target metamodels respec-
tively.

Example. Tables 3 and 4 show the source and target coverage of our running
example.

Table 3. Source-coverage of our running example.

Metamodel elements Addressed elements Non addressed elements
(from source metamodel) (navigated elements) (non-navigated elements)

Person class Person class
name attribute name attribute
surname attribute surname attribute
age attribute age attribute
collegeName attribute collegeName attribute
Knows association Knows association

The set composed by the single rule “Person2Student” is not source-covering
since there is no rule that allows to navigate “age” attribute and “Knows” as-
sociation of the source metamodel.

Table 4. Target-coverage of our running example.

Metamodel elements Addressed elements Non addressed elements
(from target metamodel) (created/initialized elements) (non-created/initialized elements)

Student class Student class
fullName attribute fullName attribute
College class College class
name attribute name attribute
Subject class Subject class
id attribute id attribute
StudiesAt association StudiesAt association
IsEnrolledIn association IsEnrolledIn association

The set composed by the single rule “Person2Student” is neither target-
covering since there is no rule that allows to create objects of type “Subject”,
links of type “IsEnrolledIn” association neither initialize “id” attribute.

5 Related Work

Model transformation analysis and testing has been addressed in several works.
For instance, [3] represents QVT [6] model transformations in Alloy (a first-order
relational specification language) and simulates these transformations to verify
its executability; [2] describes a visualization technique to analyze the metamodel
coverage; [5] uses test cases for verifying the coverage of model transformations;
and [4] present various model transformation testing approaches and demon-
strate the challenges involved. Most of the methods above rely on the use of

8 MtATL 2011



simulation and testing techniques to analyze model transformations, compro-
mising the efficiency of the approach.

Our approach performs a static analysis (no animation/simulation is re-
quired) and, thus, is more efficient. Our static reasoning techniques have been
used in other fields. For instance, [7] uses similar static techniques to check the
executability and coverage of UML operations, while [8] also uses these tech-
niques to analyze the executability of graph transformation rules.

6 Conclusions and Further Work

We have defined two basic correctness properties of ATL matched rules: (1)
weak executability of a rule, which studies whether a rule may be safely applied
without breaking the target metamodel integrity constraints; and (2)coverage of

a rule set, which studies whether a set of rules allow navigating all elements
of the source metamodel and create/initialize all modifiable elements of the
target metamodel. We also have proposed a lightweight method for the design-
time analysis of these properties. The method provides feedback enabling the
correction of the rules.

As a further work we would like to extend our method by addressing other
types of ATL rules, verifying new properties like redundancies in ATL rules and
by giving feedback regarding possible modifications in the metamodel (and not
only in the rules themselves). We also plan to provide tool support, implementing
the method and integrating it into a tool for ATL as Eclipse platform [1].

References

1. ATLAS INRIA Research Group. ATL technology: http://www.eclipse.org/atl/.
2. M. V. Amstel and M. van den Brand. Model Transformation Analysis: Staying

Ahead of the Maintenance Nightmare. In ICMT, volume 6707 of LNCS, pages
108–122. Springer, 2011.

3. K. Anastasakis, B. Bordbar, and J. M. Küster. Analysis of Model Transformations
via Alloy. In MoDeVVa, pages 47–56, 2007.

4. B. Baudry, T. Dinh-trong, J. marie Mottu, D. Simmonds, R. France, S. Ghosh,
F. Fleurey, and Y. L. Traon. Model Transformation Testing Challenges. In IMDT,
2006.

5. J. M. Küster and M. Abd-El-Razik. Validation of Model Transformations - First
Experiences Using a White Box Approach. In MoDELS Workshops, volume 4364
of LNCS, pages 193–204. Springer, 2006.

6. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT), ver-
sion 1.1, www.omg.org/spec/QVT. 2011.

7. E. Planas, J. Cabot, and C. Gómez. Verifying Action Semantics Specifications in
UML Behavioral Models. In CAiSE, volume 5565 of LNCS, pages 125–140. Springer,
2009.

8. E. Planas, J. Cabot, C. Gómez, E. Guerra, and J. de Lara. Lightweight Executability
Analysis of Graph Transformation Rules. In VL/HCC, pages 127–130, 2010.

CEUR Workshop Proceedings 9


