
Compiling ATL with Continuations

Jesús Sánchez Cuadrado and Jesús Perera Aracil

Universidad de Murcia (Spain)
jesusc@um.es, jpereraaracil@gmail.com

Abstract. This paper presents a proposal to use continuations as an
implementation mechanism for ATL. We introduce the notion of contin-
uation, showing its applicability to model-to-model transformations, and
develop a simple mechanism to enable continuations in model transfor-
mations. Then, the declarative part of ATL is mapped to this mechanism.

1 Introduction

Model transformations are at the heart of Model Driven Engineering (MDE),
since they allow the automation of diverse kind of model manipulations. In the
case of model-to-model transformations, a key element of a model transformation
language is its mechanism to resolve relationships between model elements, which
impact both the design of the language and the engine implementation.

In the context of ATL, rules and bindings are the constructs that allow the
declarative speci�cation of mappings and the relationships between them. At the
implementation level, a two pass algorithm is enough to ensure that all available
model elements are created by the corresponding rules and that bindings get
resolved. Even though this algorithm has shown good performance, alternative
algorithms may enable advanced features for ATL.

On the other hand, in the compiler construction �eld continuations have been
used as an intermediate representation to enable local optimizations [1]. A con-
tinuation allows the execution state of a program to be captured, stopped, and
resumed later. This characteristic could be used to devise novel strategies for
resolving data dependencies in a model transformation (Section 2). So far, some
intermediate languages have been proposed to implement model transformations
(Section 5), but none of them proposes continuations as an implementation mech-
anism.

Thus, this paper presents an approach to compile ATL to a continuation-
based representation. A simple, general mechanism to enable continuations in
model transformations is developed, giving its metamodel and execution algo-
rithm (Section 3). Then, the ATL execution semantics is mapped to this mech-
anism, explaining how ATL basic constructs can be represented with it, and
outlining the current limitations of our approach (Section 4).

2 Background and motivation

This section introduces the concept of continuation, outlining some of its fea-
tures. Then, the usefulness of using continuations as an implementation mecha-
nism of a model transformation language is motivated.

A continuation rei�es the concept of �the rest of the computation�, so that the
execution state of a given program can be saved into a continuation and restored
later. This concept is supported in some programming languages, for instance
Scheme [6] or Scala [7]. Related to continuations, the so called continuation-
passing style (CPS) is a way of programming in which functions do not return
values, but they are passed another function which represents the rest of the
computation with respect to the call (i.e., a continuation). The result of the
evaluation is then passed to the continuation.

As an example, the following piece of code uses CPS to show how the idea of
continuations could be used in a model transformation setting. It speci�es the
classical UML to Java transformation, where a UML class is transformed to a
Java class, and a UML attribute is transformed to a �get method�. The code is
written in Javascript, since it might be more familiar to the reader than other
functional languages.

f u n c t i o n t r a n s f o rmC l a s s (c l a s s) {
j c l a s s = new JavaC l a s s () ;
j c l a s s . name = c l a s s . name ;

// Returns a closure that takes an attribute
// and adds it the newly created Java class
r e t u r n f u n c t i o n (j F i e l d s) {

j c l a s s . f i e l d s = j F i e l d s ;

r e t u r n f u n c t i o n (jMethods) {
j c l a s s . methods = jMethods ;
r e t u r n j c l a s s ;

}

} ;
}

// To simplify the explanation , these two functions
// are not written in CPS style
f u n c t i o n t rans fo rmAtt r i bu teToMethod (a t t r) {

jMethod = new JavaMethod () ;
jMethod . name = 'get ' + a t t r . name ;
r e t u r n jMethod ;

}

f u n c t i o n t r a n s f o rmA t t r i b u t eToF i e l d (a t t r) {
j a t t r = new Ja v aA t t r i b u t e () ;
j a t t r . name = a t t r . name ;
r e t u r n j a t t r ;

}

uml . o b j e c t s ['Class '] . each (f u n c t i o n (c) {
va r c o n t i n u a t i o n = t r a n s f o rmC l a s s (c) ;

va r a t t r i b u t e s = c . a t t r i b u t e s .map(f u n c t i o n (a t t r) {
t r a n s f o rmA t t r i b u t eToA t t r i b u t e (a t t r) ;

}) ;

c o n t i n u a t i o n = c on t i n u a t i o n (a t t r i b u t e s)

CEUR Workshop Proceedings 11

va r methods = c . a t t r i b u t e s .map(f u n c t i o n (a t t r) {
t rans fo rmAtt r i bu teToMethod (a t t r) ;

}) ;

c o n t i n u a t i o n (methods)
}) ;

The function transformClass takes a UML class as a parameter, and creates
a new Java class. Then, instead of trying to �nd the Java class members that
correspond to the UML class attributes (in this case, a get method and an
attribute per each UML attribute), it returns a function (that is, a closure) that
stops the execution until the data is available. This closure is a continuation,
because it contains the rest of the code that the transformClass function will
execute when the corresponding Java �elds are computed (i.e., what it has not
done yet). Notice, that the continuation returns a new continuation to �wait� for
the Java methods.

The transformAttributeToMethod and transformAttributeToField are
in charge of creating a Java method and �eld for a given attribute. They are not
written in CPS style to simplify the explanation.

Finally, all UML class objects are traversed. Each class is transformed into
a Java class, calling transformClass which returns a continuation, that will
be resumed when the corresponding Java attributes and methods are available.
To this end, the mapping from UML attributes to Java attributes is �rst com-
puted, resuming the continuation afterwards. A new continuation is got, which
is resumed after mapping attributes to �get methods�.

Regarding the applicability of continuations to model transformations, an im-
portant part of the implementation of a transformation language is devoted to
how to resolve relationships between elements. Depending on the features of the
transformation language, an algorithm has to be devised to schedule the trans-
formation execution to resolve all data dependencies properly. Some algorithms
need to perform multiple passes in order to resolve data dependencies between
rules and they use some intermediate structure (typically hash maps) to index
values until some pass of the transformation algorithm looks up the value. There-
fore, our premise is that continuations �t well in a context where data may not
be readily available, but will be produced at some time by other entities (e.g.,
a transformation rule). The rationale is that, as explained, a continuation cap-
tures �the rest of the computation�, so a part of a model transformation could be
stopped and stored into a continuation until the model element(s) that it needs
is available, and then resume the continuation.

We believe that, besides implementing �standard� transformation algorithms
with continuations, the use of continuations could enable the implementation
of more advanced language features. In this way, we are working on applying
continuations to tackle advanced model transformation features'.

� Language interoperability could be promoted by using continuations as a
common scheduling mechanism for several languages.

12 MtATL 2011

� Distributed model transformations. The ability of continuations to be per-
sisted could enable scheduling pieces of transformation execution between
nodes.

� Model transformations over models coming in streaming is related to the
previous point, since a piece of transformation could �sleep� in a continuation
until related data is available.

In this paper, we bring continuations into ATL, which may provide oppor-
tunities to implement novel features for ATL. To this end, the standard ATL
transformation algorithm is mapped to a continuation-based one. Next section
describes such algorithm.

3 An execution mechanism based on continuations

This section presents a simple execution mechanism to perform model-to-model
transformations based on continuations. It will be adapted to ATL in the next
section. Figure 1 shows a meta-model that comprises the main concepts of the
mechanism.

PutTrace

TraceLink
(from core)

TraceInstruction

MatchTrace

TraceVariable
(from core)

 * features

1

Value
(from core)1

SetTrace1..*

1

1

TraceVariable
(from core)

uses 1

Instruction
(from core)

ForAllObjects
class : MOF::Class

 1..*

Fig. 1: Meta-model representing the constructs of the mechanism.

A transformation de�nition uses trace links to keep the relationships between
source elements and target elements created by the rules. Trace links can be
implicit or explicit. In the case of ATL they are implicit, and they are needed to
resolve bindings. In the metamodel, a kind of trace link is de�ned by instantiating
a TraceLink with its corresponding TraceVariables.

Ideally, the execution mechanism is not tied to any execution engine. We use
the abstract metaclass Instruction to represent an instruction or statement
of some engine. Two special instructions are added, which deal with the trace
model in a �continuation-based way�: PutTrace and MatchTrace.

CEUR Workshop Proceedings 13

The PutTrace instruction creates a new trace link, setting its value via the
SetTrace elements that set the value of each trace variable. The instruction is
executed atomically, in the sense that the new link is issued to the trace model
only when all of trace variables have been set.

The MatchTrace instruction is intended to query the trace model. The query
is quite simple, since it just allows looking up a trace link that has a variable
with some value (the MatchTrace instruction is related to some TraceVariable
whose value must be equal to Value). An important di�erence of this instruc-
tion with respect to other approaches is that it blocks until a trace link that
satis�es the query is available. In this way, if no trace links are found, the trans-
formation engine suspends the execution of the instruction and executes other,
non-dependant instructions (for instance, instructions in other rules or even other
instructions of the same rule). The MatchTrace instruction is resumed later to
check whether some PutTrace instruction has produced the required trace link.

The Rule construct represents a piece of code that iterates over all instances
of a given metaclass, executing the instructions enclosed within it. It can be
seen as a simpli�cation of an ATL matched rule, but with some arbitrary code
being run when it is matched. For the moment we do not focus on every possible
instruction that could be executed, but we just focus on the high-level execution
process.

Given a transformation that uses the constructs explained above to repre-
sent the resolution of dependencies and the iteration over model elements, the
execution semantics is given by combining �x-point iteration and continuations.
The following pseudo-code shows the execution algorithm for the mechanism.

de f t o pL e v e l {
pend ing = []
f o r (r u l e i n ` ` T ran s f o rmat i on r u l e s '') {

o b j e c t s = a l lO b j e c t sO f (r u l e . s o u r c eMe t a c l a s s)
f o r (o i n o b j e c t s) {

c o n t i n u a t i o n = ev a lRu l e (r u l e , o)
i f (c o n t i n u a t i o n)

pend ing . add (c o n t i n u a t i o n)
}

}

r e s o l v e (pend ing)
}

de f r e s o l v e (pend ing) {
newPending = []
f o r (c o n t i n u a t i o n i n pend ing)

newCont inuat ion = t r yRe s o l v eT r a c e (c o n t i n u a t i o n)
i f (newCont inuat ion)

newPending . add (newCont inuat ion)
}

i f (newPending . nonEmpty) {
i f (pend ing . s i z e == newPending . s i z e) {

// Maybe I cou ld g en e r a t e an i d e n t i f i e r f o r each c o n t i n u a t i o n
i f (pend ing == newPending) {

s tuck ()
e x i t

}
}
r e s o l v e (newPending)

}

14 MtATL 2011

end

de f s t u ck ()
. . . depends on the l anguage . . .

end

t opLe v e l ()

As can be seen, the topLevel function iterates over all rules of the transfor-
mation, getting all instances of its source metaclass. This rule is then executed,
returning a continuation object in case it stopped or null if it �nished cor-
rectly. After all rules have been executed, some of them are stopped and queued
in the pending list. Afterwards, all the stored continuations must be iterated
and tried again in order to complete the execution of the rules, storing the new
continuations produced.

If two complete iterations do not change the list of pending continuations, the
transformation is stuck and it �nishes. Notice that stuckness does not necessarily
mean that the transformation de�nition is wrong, but just that some elements
cannot be resolved. The stuck() function represents a language-dependent be-
haviour when stuckness arises. As will be seen, this is used in the ATL mapping
to emulate part of the implicit tracing mechanism.

3.1 Example

Figure 2 shows a piece of a possible transformation execution for the transfor-
mation de�nition introduced in Section 2 but using the mechanism presented in
this section. Please not that in this case CPS is not being used (the execution
is not resumed from the Continuation object), but a continuation take the form
of a �controlled goto�.

The transformation would execute the class2javaClass rule �rst, creating
a new JavaClass object and storing it in the trace. Afterwards, the rules queries
the trace for the JavaMethod corresponding to the attribute attr from the UML
source class. Since it is not yet in the trace, the query returns null, a continu-
ation is created, and the control �ow is returned to the transformation, so a new
rule can be executed.

Then, the attr2JavaMethod rule is executed, creating a new JavaMethod

and storing it. After it has �nished, all rules have been executed, so the trans-
formation has to iterate over the pending continuation list and execute them.
The continuation previously created for the class2javaClass is selected, mak-
ing the execution �ow jump to the place where the rule had stopped. Now, the
rule queries again the trace in order to �nd the JavaMethod it requires. Since it
is now available, the rule can �nish its execution normally.

Now, all the pending continuations have been executed, resulting in an empty
newPending list, meaning all mappings have been executed correctly and the
transformation has �nished.

CEUR Workshop Proceedings 15

class2javaClass :Rule attr2javaMethod :Ruleuml2javaTrace:Trace

c :Continuation

putTrace(source = attr, target = attrTarget) :void

matchTrace(source = attr): Object

nul l

uml2java :Transformation

c = Create(attr)

classTarget :JavaClass
classTarget = Create()

attrTarget :JavaMethod
attrTarget = Create()

c

null

 resolve(pendingContinuations = pending) :void

execute(object = class): Continuation

execute(object = attr) : Continuation

reTryContinuationMatchTrace() :Continuation

continue(): Continuation

matchTrace(source = attr) : Object

attrTarget

nul l

This invocation creates
a new TraceLink and
stores it.

This invocation will
return null and will
stop the rule and
return a continuation

Since the TraceLink is
already present, it will
be found and returned.

putTrace(source = class, target = classTarget) :void

 addToPending(continuation = c) : void

Fig. 2: Example of executing the Class2Java transformation with continuations

4 Mapping

This section describes how to map the ATL execution semantics to the mecha-
nism proposed above. In particular, matched rules with one input pattern have
been considered. Other features are later discussed, outlining some current lim-
itations of our approach.

16 MtATL 2011

The ATL algorithm is described in [4] in detail, but it can be summarized
as follows. It performs two passes. The �rst one goes through all matched rules,
matching source elements against the rule's pattern and creating the correspond-
ing target elements. For each match, the relationship between source and target
elements is kept in a trace link. The second pass goes through all trace links,
setting properties of the target elements according to rule bindings. The right
part of a binding is resolved by looking up the trace links. If no trace link is
found, the value of the right part is assigned whenever is compatible with the
left part.

A lazy rule can be seen as a function, with the side e�ect of creating a target
element, invoked in the evaluation of the right part of a binding. Unique lazy
rules can also be seen as functions, but memoizing functions whose cache is the
trace model (which is never empty).

To begin with the mapping, the shape of the trace model must be considered.
In ATL rules �communicate� implicitly via bindings, so a generic type of trace
link is de�ned to record any relationship between the source element and the
target elements declared in a matched rules. It has as many elements (of type
MOF::Object) as declared in the matched rule with the most source and target
elements. The rationale is that a rule may have only one source element but
another one may have two or more, but since the trace is generic it has to be
able to trace any possible relationship in the transformation. Each execution of
a matched rule will create a trace link of this kind, setting only the appropriate
attributes, which will be used later to resolve bindings.

The input pattern of a matched rule is mapped to our Rulemetaclass in order
to iterate over the source model. For each target pattern, instructions to create
the corresponding target elements will be added to the rule, and one PutTrace
instruction that creates and issues to the trace model a new TraceLink relating
the source element and the target elements. The rest of required instructions
(for instance, the ones of the ATL-VM) are added.

A binding is mapped to a MatchTrace instruction over the generic trace
model. The value obtained after evaluating the right part of the binding is the
value to be looked up in the trace (i.e., the source element of the MatchTrace
instruction), and the result (which will only be one target element) is assigned
to the property speci�ed in the left part of the binding. Regarding calls to re-
solveTemp(obj, 'outputVar'), they are mapped to a MatchTrace instruction as
well, but getting the target element corresponding to outputVar.

A lazy rule is naturally mapped to a plain function, which is called each time
the lazy rule is called. No PutTrace instructions are needed in this case, since
lazy rules always return a di�erent output element.

4.1 Limitations

The mapping has some limitations to get the full ATL semantics. Next, we
outline those limitations and show some possible solutions.

� The ATL implicit tracing strategy cannot be mapped to our mechanism in
an straightforward way. The reason is that in ATL when the right part of

CEUR Workshop Proceedings 17

a binding cannot be resolved, the source element is retrieved (if compatible
with the left part) or just ignored. A possibility to provide this behaviour
with our mechanism is to implement the stuck() function, to perform the
required asignments before �nishing the transformation.

� Multivalued bindings. When the right part of a binding is a collection of el-
ements, our approach retrieves �all or nothing�. Here, the limitation is more
di�cult to overcome, because the presence of non-transformed elements pre-
vent the asignment of the already transformed ones. We are looking for ways
to deal with these issues. A possible workaround would be to �attach� some
instructions to MatchTrace that are executed each time an individual ele-
ment of the collection is resolved.

� Unique lazy rules require querying the trace model in a non-blocking way,
but we have not de�ned any mechanism for that matter yet.

5 Related work

The mechanism presented in Section 3 can be seen as part of an intermediate
languages for model transformations. In this sense, some of them have been
de�ned so far. The QVT standard proposes QVT Core as a low-level language
to facilitate the implementation of QVT Relations [5]. It can be considered as an
intermediate representation, but in contrast to our approach, it is just speci�c to
QVT. Besides, we do not know of any working implementation. ATC [2] is also
a low-level language for model transformations. It provides a great amount of
atomic instructions, but none of them provide any means to automatically resolve
data dependencies, but a specially tailored solution has to be implemented for
each case.

ATL is run on top of a virtual machine, which implements a stack-based
language [3]. Transformations compiled to this language have to implement its
own scheduling algorithms, as is the case of ATL which is implemented with a
two pass algorithm.

IDC provides transformation-speci�c features (e.g., instructions to match the
trace model, communication between patterns and rules), and enables interoper-
ability by sharing trace information. Additionally, IDC promotes low-level code
manipulation since it is based on SSA and represented with a metamodel, so
that it is easier to analyze than a stack-based language. It is part of our recent
work in model transformation language implementation, and can be downloaded
at http://modelum.es/projects/eclectic.

Regarding continuations, CPS style has been widely used in compiler con-
struction as an intermediate representation for general purpose language, in or-
der to enable local optimizations [1]. Describing a transformation de�nition in
terms of CPS could enable analysis and optimizations typically used in functional
languages to be applicable to model transformation languages.

Finally, our approach can also be seen as an alternative execution semantics
for ATL. In [8] a semantics for ATL is given based on rewriting logic using
Maude. A similar approach could be used to give the semantics of ATL in terms
of continuations or CPS.

18 MtATL 2011

6 Conclusion

In this paper, we have presented a proposal to implement model transformations
with continuations, as an alternative approach to resolve data dependencies.
Regarding its applicability in the ATL context, we have shown how some ATL
constructs could be implemented using continuations. We believe that this could
enable advanced features in ATL, such as the ones commented in section 2.

As future work, we are looking into how to overcome some of the limita-
tions of our approach. Also, we are working on using continuations to deal with
transformation language interoperability, streamed models and concurrent trans-
formation execution.

Acknowledgments

This work has been supported by Ministerio de Ciencia e Innovación (Spain),
grant TIN2009-11555.

References

1. A. W. Appel. Compiling with Continuations. Cambridge University Press, 1 edition,
February 2007.

2. A. Estévez, J. Padrón, E. V. S. Rebull, and J. L. Roda. Atc: A low-level model
transformation language. In MDEIS, pages 64�74, 2006.

3. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Science of Computer Programming, 72(1-2):31 � 39, 2008.

4. F. Jouault and I. Kurtev. Transforming models with atl. In Satellite Events at

the MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer Science,
pages 128�138, Berlin, 2006. Springer Verlag.

5. OMG. Final adopted speci�cation for MOF 2.0 Query/View/Transformation, 2005.
www.omg.org/docs/ptc/05-11-01.pdf.

6. J. Rees and W. Clinger. Revised report on the algorithmic language scheme. SIG-
PLAN Not., 21:37�79, December 1986.

7. T. Rompf, I. Maier, and M. Odersky. Implementing �rst-class polymorphic delimited
continuations by a type-directed selective cps-transform. In Proceedings of the 14th

International Conference on Functional Programming, pages 317�328, 2009.
8. J. Troya and A. Vallecillo. Towards a rewriting logic semantics for atl. In Proceedings

of the Third international conference on Theory and practice of model transforma-

tions, ICMT'10, pages 230�244, Berlin, Heidelberg, 2010. Springer-Verlag.

CEUR Workshop Proceedings 19

