
WSCDL to WSBPEL: A Case Study of
ATL-based Transformation

Ravi Khadka1, Brahmananda Sapkota2, Lúıs Ferreira Pires2,
Marten van Sinderen2, and Slinger Jansen1

1 Utrecht University, PO Box 80.089, 3508TB Utrecht, The Netherlands,
{ravi, s.jansen}@cs.uu.nl

2 University of Twente, PO Box 217, 7500AE Enschede, The Netherlands,
{b.sapkota, l.ferreirapires, m.j.vansinderen}@ewi.utwente.nl

Abstract. The ATLAS Transformation Language (ATL) is a hybrid
transformation language that combines declarative and imperative pro-
gramming elements and provides means to define model transformations.
Most transformations using ATL reported in the literature show a sim-
plified use of ATL, and often involve a single transformation. However,
in more realistic situations, multiple transformations may be necessary,
especially in case the original input/output models are not represented
in the metametamodeling representation expected by the transforma-
tion engine. In this paper, we discuss a model transformation from ser-
vice choreography (WSCDL) to service orchestration (WSBPEL), which
cannot be performed in a single ATL transformation due to the mis-
match between the concrete XML syntax of these languages and the
metametamodeling representation expected by the ATL transformation
engine. This requires auxiliary transformations in which this mismatch is
resolved. In principle, the required auxiliary transformations can be im-
plemented using XSLT or a general-purpose programming language like
Java. However, in our case study, we evaluate the use of ATL to perform
these transformations. We exploit ATL by leveraging the ATL’s XML
injection and the XML extraction mechanisms to perform the overall
transformation in terms of a transformation chain.

Keywords: MDE, ATL, Model Transformation, XML Injector, XML
Extractor, Model-Driven Service Composition, AM3, WSCDL, WSBPEL

1 Introduction

Model-Driven Engineering (MDE) aims at facilitating the development of soft-
ware applications by creating abstractions that shield the technical details of
the underlying computing environment (i.e., hardware and software environ-
ments) [23]. In MDE, models are the primary development artifacts, and model
transformations are one of the most important operations applied to models [11].
In a model transformation, a target model conforming to a target metamodel is
generated from a source model conforming to a source metamodel. The transfor-
mation from a source to a target model is driven by transformation definitions,

usually expressed in transformation languages. A number of transformation lan-
guages are available to specify model transformations. A typical example of a
transformation language is ATL [8, 10], which is a hybrid language that allows
both declarative and imperative constructs to be used to define transformations.
ATL has been developed to support transformations in the scope of Model-
Driven Architecture (MDA).

In this paper, we present a model transformation case study that uses ATL
as transformation language. The case study consists of the transformation from
service choreography to service orchestration(s) and aims at automating the ser-
vice composition processes. Most model transformations using ATL reported in
the literature show a simplified use of ATL, and often involve a single transfor-
mation. This is understandable, since these works mainly aimed at promoting
the model-driven transformation approach and the related languages and tools,
and addressed the coding of transformation rules with the ATL syntax elements,
which can be better understood with relatively simple transformation problems.
Typical examples are the transformations from class to relational models [10],
from eXtensible Stylesheet Language Transformation (XSLT) to XQuery [5] and
from Roman numbers to Arabic numbers [10]. However, in more realistic trans-
formation cases, additional auxiliary transformations may be necessary due to
the mismatch in technological spaces [16]. For instance, the ATL transforma-
tion engine expects the input/output models and metamodels to be serialized in
XML Metadata Interchange (XMI) format [9], while the original input/output
models in realistic transformations may not necessarily be represented in XMI.
To resolve these mismatches, auxiliary transformations are needed to convert
the original input format to XMI, or to convert from XMI to the final output
format, or both.

This paper discusses a transformation from Web Service Choreography De-
scription Language (WSCDL) [12] to Web Service Business Process Execution
Language (WSBPEL) [2], which cannot be performed in a single ATL transfor-
mation. WSCDL and WSBPEL are specified in concrete XML syntax so that the
situation sketched above applies to this transformation. In principle, the aux-
iliary transformations necessary in this case can be implemented using either
eXtensible Stylesheet Language Transformation (XSLT) or a general-purpose
programming language like Java [24]. However, in our case study, we have used
ATL to perform these auxiliary transformations, by leveraging the ATL’s XML
injection and the XML extraction mechanisms, while the core transformation
has been performed in ATL. This paper evaluates the resulting transformation
chain and the use of ATL to perform these transformations.

This paper is further structured as follows: Section 2 motivates service com-
position and the transformation from service choreography to service orchestra-
tion(s). In Section 3, we describe the approach adopted in the transformation
and justify the need of the auxiliary transformations. In Section 4, we discuss the
implementation of the transformations. Section 5 discusses the lessons learned
with this case study. In Section 6, we present some of the related work, and
finally Section 7 gives our conclusions.

90 MtATL 2011

2 Background

In our case study, we perform a model transformation from service choreogra-
phy to service orchestration(s) aiming at automating service composition pro-
cess. The service composition process not only realizes required, value-added
composite functionality, but also accelerates application development through
reuse at service level [14]. Service compositions can be considered at different
abstraction levels, notably at choreography and orchestration levels [20, 4]. A
choreography is a decentralized perspective, which describes the public message
exchanges, and thus defines how participating services should interact with each
other. At a lower level, it is necessary to define how to realize the responsibil-
ities specified at the choreography level in terms of the concrete processes. An
orchestration is a centralized coordination of participating services, which de-
fines the message exchanges along with the necessary internal actions, like data
transformations and internal function invocations [20]. In this paper, we report
on our approach to (semi-)automate the transformation from choreography to
orchestration(s) using ATL. We refer to this process as model-driven service com-
position [15]. We defined the metamodels for choreography and orchestration,
and defined transformation specifications based on mappings between elements
of these metamodels.

In our approach, we specify choreographies and orchestrations using WSCDL
(CDL in short) and WSBPEL (BPEL in short), respectively, because of their
wide industry acceptance. We defined the CDL and BPEL metamodels based
on the concrete XML syntax of these languages. In the core transformation, the
CDL metamodel is the source metamodel and BPEL metamodel is the target
metamodel. We defined mappings between elements of the CDL metamodel and
the BPEL metamodel that reflect our design decisions. These mappings were
implemented in ATL transformation specifications that can be executed by the
ATL engine. Figure 1 gives an overview of our transformation approach, indi-
cating the relations between models, metamodels and transformations.

3 CDL to BPEL Transformation Chain

We defined the CDL and BPEL metamodels from their language specifications,
and represented these metamodels with the Eclipse Modeling Framework (EMF).
Initially, we generated the metamodels of CDL and BPEL from their respective
schemas as explained in [7]. Many unnecessary model elements were generated
in this way, which complicated the transformation process unnecessarily. Hence,
we re-developed these metamodels manually from the language specification of
CDL [12] and BPEL [2]. The CDL and BPEL metamodels are depicted in Fig-
ure 6 and Figure 7, respectively.

ATL transformations are unidirectional so that they operate on read-only
source models and generate write-only target models. During a transformation
execution, the source model may be navigated but cannot be modified, while
target models cannot be navigated. In the CDL to BPEL transformation, the

CEUR Workshop Proceedings 91

CDL
model

BPEL
 Model

CDL
Metamodel

BPEL
Metamodel

Transformation
specification

Transformation
Language

Metametamodel

Transformation

rules

input

uses

output

uses uses
Conforms to

Conforms to Conforms to

Conforms to

Conforms to Conforms to

Fig. 1. Overview of transformation approach

original input model (CDL) and final output model (BPEL) are specified in
XML format. However, the ATL engine expects all input/output models and
input/output metamodels to be serialized in XMI format [9]. Hence, there is
mismatch between original input/output model (CDL/BPEL in XML format)
and input/output model (XMI format) of the ATL engine. To resolve these
mismatches we need a transformation chain that consist of following transfor-
mations:

– Auxiliary Transformations, consisting of a CDL XML model to CDL XMI
model transformation (T1) and a BPEL XMI model to BPEL XML model
transformation(T3).

– Core Transformation, consisting of a CDL XMI model to BPEL XMI model
transformation (T2).

Figure 2 shows the resulting transformation chain.

CDL Model
(XMI)

BPEL Model

CDL
Metamodel

BPEL
Metamodel

ATL

Metametamodel(Ecore)

cdl2bpel.atl
(T2)

input output

uses uses

BPEL Process
(XML)

XML
Metamodel

input output

Conforms To

ATL

bpel2xml.atl
(T3)

Conforms ToConforms ToConforms ToConforms To

uses uses

Conforms To Conforms To Conforms To Conforms To Conforms To

filenameCDL.xmi filenameBPEL.xmi filenameBPEL.xmi filename.bpel

XML
Metamodel

filenameCDL.xmi

xml2cdl.atl
(T1)

ATL

Conforms To

Conforms To
Conforms To

CDL
(XML)

filename.cdl

uses
uses

Conforms To

input output

Fig. 2. Transformation chain

92 MtATL 2011

The core transformation (T2) of our approach is performed by executing
the ATL transformation specifications that are derived from the transformation
mapping between CDL and BPEL metamodel elements. The ATL engine reads
a CDL XMI model as input, executes the transformation rules, and generates
a BPEL XMI model as defined in the ATL transformation specification. The
details of the transformation mappings between CDL and BPEL metamodel
elements have been reported in [15, 13].

The auxiliary transformations T1 and T2 are carried out using AtlanMod
Megamodel Management (AM3)1 framework. We used the ATL’s XML injec-
tion mechanism to perform transformation T1. An XML injection uses an XML
injector, which is a tool that implements the injection process that transforms
the CDL XML model to a CDL XMI model (instance of the CDL metamodel),
and uses ATL rules to perform transformation. To perform transformation T3,
we used the ATL’s XML extraction mechanism, in which the XML extractor
transforms the BPEL XMI model (instance of the BPEL metamodel) to a BPEL
XML model.

4 Implementation

The implementation steps of our transformation chain are depicted in Figure 3.
We used the Pi4soa2 CDL editor to model the choreography specification. Each
transformation is discussed in the sequel.

4.1 Core Transformation

The core transformation T2 has been implemented in ATL. The transformation
rules are defined based on the transformation mapping reported in [15]. Listing 1
presents the code snippet of transformation T2 in which the roleType construct
of CDL is transformed to process of BPEL. A roleType construct is used to
specify the observable behavior of a participant in the collaboration. In BPEL,
each process represents a role in collaboration so we generate a process for each
roleType of CDL. Since, in our research we restrict ourselves to the centralized
orchestrator, we generate the process for centralized orchestrator such that the
name of the process is derived from the name of the package, and targetNames-
pace of process is derived from targetNamespace of package of CDL. The variable
associated with the process is derived from the variable of CDL, partnerlinks of
the process from other roleType of CDL, activity of the process from activity of
CDL. The transformation is diagrammatically represented in Figure 4.

The code snippet (see Listing 1) contains mandatory header section (mod-
ule and create), attribute and operation helpers (orchestrator and isOrches-
trator()), and transformation rules (roleType2BPELProcess and varTovar lazy
rule). The create statement specifies the target model (BPEL) and the source

1 http://wiki.eclipse.org/AM3
2 http://sourceforge.net/apps/trac/pi4soa/wiki

CEUR Workshop Proceedings 93

<<xml>>
wscdl specification

pi4soa
Choreography modeling

<<format>>
artefact

AM3 framework (T1)
Transforms CDL(XML) to CDL(XMI)

<<atl>>
CDL (XML) to CDL(XMI)

<<xmi>>
Wscdl in xmi format

ATL framework (T2)
Transforms CDL(XMI) to BPEL(XMI)

<<atl>>
Wscdl to wsbpel

<<xmi>>
WSBPEL process

AM3 framework (T3)
Transforms BPEL(XMI) to BPEL(XML)

<<atl>>
BPEL(XMI) to BPEL(XML)

<<xml>>
BPEL process

[step no.]

[1]

[2]

[3]

[4]

Legend

Tools
Task performed

Fig. 3. Implementation steps

model (CDL). The transformation rules are the basic constructs of ATL used to
express the transformation logic. The roleType2BPELProcess is the declarative
rule (matched rule) that triggers varTovar lazy rule. A lazy rule in ATL is trig-
gered by other rules and may be applied multiple times on a single match, each
time producing a new set of target elements [10]. The roleType2BPELProcess
rule is used to transform the roleType construct of CDL that is defined as Or-
chestrator to a BPEL process with same name as of roleType.

Listing 1. Code snippet of T2 transformation

−− @path CDL=/tes t2Bpe l /CDL. ecore
−− @path BPEL=/tes t2Bpe l /BPEL. ecore
module cdlToBpel ;
c r e a t e OUT : BPEL from IN : CDL;

he lpe r de f : o r c h e s t r a t o r : S t r ing = ’ Manufacturer ’ ;
h e lpe r de f : i s O r c h e s t r a t o r () : CDL! RoleType =

CDL! RoleType . a l l I n s t a n c e s () −>
s e l e c t (r | not r . isConnectedToChannelType ()

and r . name = thisModule . o r c h e s t r a t o r)−> f i r s t () ;

r u l e roleType2BPELprocess{
from

s : CDL! RoleType (not s . isConnectedToChannelType ()

94 MtATL 2011

+name

+author

+version

+targetNameSpace

Package

+name

RoleType

+name

+interface

Behaviour

+behavior11..*

+name

+usage

+action

ChannelType

+channelType

1

0..* +name

ParticipantType

+participantType

1
0..*

+roleType
1

0..*

*

+takes 1

*

-passing

1

+name

+mutable

+free

+silent

+ofType

Variable

1..*

+residesat

1

+name

+targetNameSpace

+queryLanguage

+expressionLanguage

+suppressJoinFailure

+exitOnStandardFault

Process

+name

+location

+importType

+myRole

+partnerRole

+initializePartne

r

PartnerLink

ScopingElement

Activity

CorrelationSet

1

+
p
a
rt
n
e
rL

in
ks

*

CompensationHandler

1+activity *

+name

Variable

1

+va
ria

ble
s*

1

+
c
o
m

p
e
n
s
a
te

0..1

1

+c
or

re
la

tio
nS

et
s

*

Activity
+name

+operation

+align

+initiate

Interaction

+interaction

11..*

WSCDL WSBPEL

Fig. 4. RoleType to Process transformation

and s . name = thisModule . o r c h e s t r a t o r)
to

t : BPEL! Process (
name <− s . name+’ Process ’ ,
targetNameSpace <− s . getTargetNamespace () ,
v a r i a b l e s <− s . g e tVar i ab l e s ()
−>c o l l e c t (v | thisModule . varToVar (v)) ,
partnerL inks <− s . getRoleTypes () ,
scopeElementAct iv i ty <− CDL! Act i v i ty . a l l I n s t a n c e s () ,
c o r r e l a t i o n s e t <− CDL! ChannelType . a l l I n s t a n c e s ()
) }

l a zy r u l e varToVar {
from v : CDL! Var iab le
to bv : BPEL! Var iab le (

name <− v . name) }

4.2 Auxiliary Transformations

The auxiliary transformations T1 and T3 have been implemented by leveraging
the ATLs XML injector and extractor for injecting and extracting XML mod-
els into and from the XMI metamodel syntax, respectively. We used the AM3
framework to implement XML injector (T1) and XML extractor (T3). In order
to perform these transformation, we have used the XML metamodel shown in
Figure 5).

Listing 2 shows the code snippet of transformation T1 in ATL between the
XML source model and the CDL XMI target model. However, running this code
directly in ATL engine does not result in the desired CDL XMI format, so that

CEUR Workshop Proceedings 95

+startLine

+startColumn

+endLine

+endColumn

+name

+value

Node

Attribute TextElement

+parent

0..1

+
c
h

ild
re

n

0..*

Root

Fig. 5. XML metamodel

we had to use the XML injection mechanism of the AM3 framework. Similarly,
in the transformation T3 we used the XML extraction mechanism of the AM3
framework to extract BPEL XML code from the BPEL XMI format.

Listing 2. Code snippet of Transformation T1

module cdl2xmi ;
c r e a t e OUT : CDL from IN : XML;

r u l e Root2Package{
from

s : XML! Root
to

t : CDL! Package (
name<− ’ Package ’ ,
ch i ld r en<−Sequence{name , author , tgnsp , version ,

s . informationType , s . re lat ionType ,
s . part ic ipantType , s . roleType ,
s . tokenLocator , s . token ,
s . choregraphyPkg , s . channelType }) ,

name:CDL ! Att r ibute (
name<− ’name ’ ,
value<−s . name) ,

author:CDL ! Att r ibute (
name<− ’ author ’ ,
value<−s . author) ,
−− code cont inues−−
}

Listing 3 depicts the ATL Ant task that invokes the XML injection of trans-
formation T1. Task am3.loadModel loads a model with injectors and task am3.atl
executes the ATL transformation of Listing 2. Finally, task am3.saveModel is

96 MtATL 2011

used to save the model. This task also specifies the extractors that save the
model in XML format in transformation T3. These ATL Ant tasks are docu-
mented in [3].

Listing 3. Illustrating XML injection of Transformation T1

<p r o j e c t name=”CDL2BPEL” default=” trans fo rmAl l ”>
< !−− o ther t a s k s −−>
< !−−I n j e c t source model −−>
<am3 . loadModel modelHandler=”EMF” name=”xmlModel”

metamodel=”XML” path=”/ p r o j e c t /”>
< i n j e c t o r name=”XML”/>

</am3 . loadModel>
< !−− Transform XML model i n t o CDL model −−>
<am3 . a t l path=”/ p r o j e c t /xml2xmi . a t l ”>
<inModel name=”IN” model=”xmlModel”/>
<inModel name=”XML” model=”XML”/>
<inModel name=”CDL” model=”CDL”/>
<outModel name=”OUT” model=” cdlModel ”

metamodel=”CDL”/>
</am3 . a t l>

<am3 . saveModel model=” cdlModel ”
path=”/ p r o j e c t / cd l . xmi”/>

</ p r o j e c t>

The source code can be downloaded from here3.

5 Discussion

In this case study, we used ATL to perform the auxiliary and core transforma-
tions that transform a given CDL specification to a BPEL process. Although
there is support for the imperative definition of transformation rules, the pre-
sented solution uses a declarative approach, as recommended in [6]. The declar-
ative transformation rules are called matched rules and the imperative transfor-
mation rules are known as called rules. Unlike the called rules, which are not
triggered when a match is found but are called from another rule, the matched
rules are triggered if a pattern matches successfully. Because of our declarative
approach, the transformation is easier to read and understand, which is im-
portant in large transformation projects from an engineering and maintenance
perspective. A significant part of the matched rules are written using helpers. In
our case study, most of the navigation functions are implemented as helpers to
keep the actual transformation rules free from complex navigation expressions.
For instance, the getTargetNamespace(), getVariables(), getRoleTypes() of List-
ing 1 are helpers and quite often used throughout the transformation rules, which
otherwise, if implemented in the actual transformation rules, create more com-
plex navigation expressions. The separation of helpers and actual transformation

3 http://people.cs.uu.nl/ravi/source/source.zip

CEUR Workshop Proceedings 97

rules fits the basic intention of these constructs: rules are used for creating target
model elements and helpers are used for source model navigation [10].

ATL uses Object Constraint Language (OCL) [18] to represent data types
and declarative expressions. The OCL expressions are common to all data types,
which are helpful in the context of filtering. Moreover, facilities for performing
calculations on several data types via OCL was proven to be powerful and expres-
sive enough while specifying the transformation rules in our solution. Elements
can simply be selected using the name of the reference. Hence, selection and
traversing of instances of model elements are facilitated.

The pattern matching mechanism of ATL matches the specific elements from
the source model and creates the right elements within the target model. In com-
bination with OCL expressions, pattern matching saves a large number of lines
of code compared with transformations written in general-purpose programming
languages like Java or XSLT-based transformations [24]. Previously, transforma-
tion T1 of our approach was implemented using XSLT [15], which became lengthy
and required considerable effort to be defined and maintained if compared with
the latest ATL-based transformation.

The use of the AM3 framework for ATL’s XML injection (T1) and XML ex-
traction (T3) made our approach uniform, since it aligned these transformations
with the ATL-based core transformation (T2). The XML injection and XML ex-
traction facilitated the understandability of the transformation and resulted in a
better maintainable transformation chain, if compared with our earlier solution
(i.e., using XSLT).

Further, existing Integrated Development Environments (IDE) for the ATL
and the AM3 framework are available as extensions to the Eclipse Modeling
Project (M2M) and Generative Modeling Technologies (GMT) respectively, which
provide support, such as syntax highlighting and debugging for developing trans-
formations.

We validated our transformation with two example scenarios: a Purchase
Order scenario [13] and a Build-To-Order scenario [15]. In both scenarios we
modeled the choreography using Pi4soa and performed all the transformations
(T1, T2, and T3). The T3 transformation successfully generated the BPEL skele-
ton from the given CDL specification. The choreography has higher abstraction
level than the orchestration so choreography does not represent the internal de-
tails of the participating services in the collaboration. We, therefore, manually
added some missing information (like branching conditions) to the generated
BPEL process, which was validated against the executable schema of BPEL to
ensure syntactical correctness. We later imported the BPEL process in the Ac-
tiveBPEL designer tool [1] to check the behavior of the orchestrator, and tested
this behavior for correctness, with successful results.

6 Related Work

A number of transformation approaches from CDL to BPEL have been reported
in the literature. Mendling et al. [17] proposed an XSLT-based transformation

98 MtATL 2011

approach to realize the transformation from CDL to BPEL. The transformation
is bidirectional in nature, i.e., the XSLT script can generate a BPEL process
from a CDL specification, and vice-versa. In [22], Rosenberg et al. developed
CDL to BPEL transformation approach using Java. Similarly, Weber et al. [25]
presented a CDL to BPEL transformation approach based on Java. In our previ-
ous work [15, 13], we used XSLT-based transformation to perform transformation
T1 of the transformation chain (see Figure 3).

XSLT-based transformations require experience and considerable effort to de-
fine and maintain, whereas transformations written using general-programming
languages like Java tend to be hard to write, comprehend, and maintain [24].
Metamodel-based transformations, like the ones we implemented in our trans-
formation chain in this case study, are much more convenient for the sake of
understandability and maintenance.

7 Conclusion

In this paper, we reported on our experience with a realistic model transforma-
tion using ATL. The transformation was developed to automate service com-
position design from choreography (CDL) level to orchestration (BPEL) level.
In particular, we described the need of multiple transformations, subdivided in
core and auxiliary transformations, and the use of ATL to perform all those
transformations. Auxiliary transformation exploited the use of ATL’s XML ex-
traction and injection to provided uniformity and facilitated the maintainability
of the resulting transformation chain. We have successfully validated the pro-
posed transformation approach with two example scenarios. Our result shows
a significant improvement over the manual transformation approaches that ex-
isted earlier. We also tested the behavior of the generated BPEL process for
correctness, with successful results.

Overall, we conclude that the consistent use of ATL in the transformations
of our case study has been beneficial from the perspective of maintainability and
understandability. Possible future work can be to implement the CDL to BPEL
transformation in other transformation languages like Query/View/Transforma-
tion (QVT) [21] and Yet Another Transformation Language (YATL) [19], and
compare the resulting transformations, for example, by comparing their com-
plexity and performance.

References

1. ActiveBPEL: ActiveBPEL Engine. Online (2011), Available at: http://http://
www.activebpel.org

2. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., et al.: Web
Services Business Process Execution Language Version 2.0. OASIS, Available at:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2007)

3. AM3/Ant: AM3/ANT Tasks. Online (2004), Available at: http://wiki.eclipse.
org/AM3_Ant_Tasks

CEUR Workshop Proceedings 99

4. Barros, A., Dumas, M., Oaks, P.: Standards for web service choreography and
orchestration: Status and perspectives. In: Business Process Management Work-
shops. pp. 61–74. Springer (2006)

5. BéZion, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.: First experiments with
the ATL model transformation language: Transforming XSLT into XQuery. In:
2nd OOPSLA Workshop on Generative Techniques in the context of Model Driven
Architecture. p. 50 (2003)

6. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the Large and
Modeling in the Small. Model Driven Architecture pp. 33–46 (2005)

7. EMF: Generating an EMF Model using XML Schema (XSD). Online
(June 2004), Available at: http://www.eclipse.org/modeling/emf/docs/2.x/

tutorials/xlibmod/xlibmod_emf2.0.html

8. Jouault, F., Allylamine, F., BéZion, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

9. Jouault, F., Allylamine, F., BéZion, J., Kurtev, I., Valourem, P.: ATL: a QT-like
transformation language. In: Companion to the 21st ACP SKIPLANE symposium
on Object-oriented programming systems, languages, and applications. pp. 719–
720. ACP (2006)

10. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Satellite Events at the
MODELS 2005 Conference. pp. 128–138. Springer (2006)

11. Jouault, F., Allylamine, F., BéZion, J., Kurtev, I., Valourem, P.: Atl: a qt-like
transformation language. In: Companion to the 21st ACP SKIPLANE symposium
on Object-oriented programming systems, languages, and applications. pp. 719–
720. OOPSLA ’06, ACP, New York, NY, USA (2006)

12. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0, W3C Candidate Recommendation, November
2005. World Wide Web Consortium (2005), Available at: http://www.w3.org/TR/
ws-cdl-10/

13. Khadka, R.: Model-Driven Development of Service Compositions: Transformation
from Service Choreography to Service Orchestrations. Master’s thesis, University
of Twente (August 2010), Available at: http://essay.utwente.nl/59677/

14. Khadka, R., Sapkota, B.: An Evaluation of Dynamic Web Service Composition
Approaches. In: Proceeding of the 4th International Workshop on Architectures,
Concepts and Technologies for Service Oriented Computing, ACT4SOC 2010. pp.
67–79. INSTICC Press, Athens, Greece (July 2010)

15. Khadka, R., Sapkota, B., Ferreira Pires, L., van Sinderen, M., Jansen, S.: Model-
driven development of service compositions for enterprise interoperability. In: van
Sinderen, M., Johnson, P. (eds.) Enterprise Interoperability, LNBIP, vol. 76, pp.
177–190. Springer (2011)

16. Kurtev, I., Bézivin, J., Aksit, M.: Technological spaces: An initial appraisal.
In: Proceedings of Confederated International Conferences CoopIS, DOA, and
ODBASE: Industrial Track. Springer, Irvine, CA, USA. (2002)

17. Mendling, J., Hafner, M.: From inter-organizational workflows to process execution:
Generating BPEL from WS-CDL. In: On the Move to Meaningful Internet Systems
2005: OTM Workshops. pp. 506–515. Springer (2005)

18. OCL: Object Constraint Language OMG Specification Ver 2.0. Online (2002),
Available at: http://www.omg.org/spec/OCL/2.0/PDF

19. Patrascoiu, O.: YATL: Yet another transformation language. In: Proceedings of
the 1st European MDA Workshop, MDA-IA. pp. 83–90. Twente, The Netherlands
(2004)

100 MtATL 2011

20. Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52
(2003)

21. QVT: Meta Object Facility (MOF) 2.0 Query/View/Transformation, v1.1. Online
(2011), Available at: http://www.omg.org/spec/QVT/1.1/PDF/

22. Rosenberg, F., Enzi, C., Michlmayr, A., Platzer, C., Dustdar, S.: Integrating quality
of service aspects in top-down business process development using WS-CDL and
WS-BPEL. In: Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference, EDOC 2007. p. 15. IEEE Computer Society (2007)

23. Schmidt, D.: Model-driven engineering. IEEE computer 39(2), 25–31 (2006)
24. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-

driven software development. Software, IEEE 20(5), 42–45 (2003)
25. Weber, I., Haller, J., Mulle, J.: Automated derivation of executable business pro-

cesses from choreographies in virtual organisations. International Journal of Busi-
ness Process Integration and Management 3(2), 85–95 (2008)

CEUR Workshop Proceedings 101

F
ig
.
6
.

C
D

L
m

eta
m

o
d
el

102 MtATL 2011

F
ig
.
7
.

B
P

E
L

m
et

a
m

o
d
el

CEUR Workshop Proceedings 103

