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Abstract. Sense making is at the heart of cognitively complex and data 

intensive decision making processes. It is often conducted in collective spaces 

through exchange of ideas, discussions, analysing situations, and exploring 

alternatives. This position paper proposes a novel approach to facilitate 

collective sense making via a collaboration platform which (a) offers multiple 

views to collaboration (including forums, mind maps, and argumentation 

structure), and (b) provides intelligent support to understand sense making 

behaviour by employing user and community modelling techniques. The work 

is conducted in the framework of the EU funded Dicode project, developing 

intelligent services for data-intensive collaboration and decision making. 
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1 Introduction 

This paper proposes a novel platform to augment the synergy between human and 

machine intelligence in complex decision making situations. Many collaborative 

decision making problems have to be solved through dialoguing and argumentation 

among a group of people [1, 2]. In such contexts, discussions for making sense of the 

issues, constraints, and options are usually conducted in an unstructured manner. 

Sense making is a “motivated, continuous effort to understand connections (which 

can be among people, places, and events) in order to anticipate their trajectories and 

act effectively” [3]. Therefore, sense making is an inevitable path in cognitively 

complex and data intensive decision making processes. 

Dicode1 (Data-intensive collaboration and decision making), an EU Framework 7 

project, sets out to tackle the above challenges for three use cases. The first use case 

concerns a team of scientists in clinico-genomic research. The second use case 

involves a group of radiographers, radiologists and clinicians in a trial of rheumatoid 

arthritis treatment. The third use case involves public opinion monitoring on the 

internet for a team of brand consultants to design a campaign. 

                                                           
1 Dicode website is http://dicode-project.eu/  



Argumentation, as seen in Dicode, is a common activity in collective sense making 

process. It is valuable in shaping a common understanding of the problem and can 

provide the means to decide which parts of the information brought up by the decision 

makers will finally be the input to the solution used. Argumentation may also 

stimulate the participation of decision makers and encourage constructive criticism. 

However, discovering the connections is mainly by using tacit knowledge and the 

value of this activity has been largely unacknowledged. Dicode aims to address the 

above by user-friendly multi-view collaboration workspaces, which facilitate the 

exchange and sharing of ideas, opinions, comments and resources between 

participants. While each collaborative workspace enables an individual or a team to 

visualise the connections between concepts and artefacts, keeping track of the 

rationale behind the decision points and redeploying the accumulated knowledge in 

new situations is itself potentially a cognitively complex process. Hence, intelligent 

support will be provided by exploiting the behaviour data captured in the usage logs 

and by adding semantics to the content shared. 

This position paper outlines a multi-faceted approach to combine human and 

machine intelligence for collective sense making. Specifically, we will present a novel 

approach to design collaborative workspaces that facilitate sense making by 

combining multiple views – ranging from informal (unstructured) to formal 

(structured). Each view facilitates different sense making aspects. Furthermore, we 

present a proposal how collaborative workspaces can be augmented with intelligent 

support utilising adaptation techniques, namely user and community modelling. 

2 The Dicode Project 

The goal of the Dicode project is to facilitate and augment collaboration and decision 

making in data-intensive and cognitively-complex settings. It will exploit and build 

on the most prominent high-performance computing paradigms and large data 

processing technologies - such as cloud computing, MapReduce [4], Hadoop2, 

Mahout3, and column databases – to meaningfully search, analyze and aggregate data 

existing in diverse, extremely large, and rapidly evolving sources. Building on current 

advancements, the solution foreseen in the Dicode project will bring together the 

reasoning capabilities of both the machine and the humans. It can be viewed as an 

innovative workbench incorporating and orchestrating a set of interoperable services 

that reduce the data-intensiveness and complexity overload at critical decision points 

to a manageable level, thus permitting stakeholders to be more productive and 

concentrate on creative activities. Services to be developed are: (i) scalable data 

mining services (including services for text mining and opinion mining), (ii) 

collaboration support services, and (iii) decision making support services.  

In this paper, the focus is on the collaboration support services which are realised 

via multi-view collaborative workspaces augmented with intelligent support for 

collective sense making. 

                                                           
2 Apache Hadoop Project http://hadoop.apache.org/ 
3 Apache Mahout Project http://mahout.apache.org/ 
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3 Multi-View Collaborative Workspace 

In Dicode, three different views of collaboration workspaces (CW) are supported. 

These are summarised below: 

• Discussion-forum view: In this view, the CW is displayed as a traditional web-

based forum, where posts are displayed in an ascending chronological order. Users 

are able to post new messages to the collaboration workspace, which appear at the 

end of the list of messages. Posts may also have attachments to enable the 

uploading of files. Discussion-forum exhibits a very low level of formality and are 

mainly suitable to support ideas sharing, exchange and collection. 

• Mind-map view: In this view, the CW is displayed as a mind map where users can 

interact with the items on the collaboration workspace. This view deploys a spatial 

metaphor permitting the easy movement and arrangement of items on the 

collaboration workspace (Fig. 1). Messages posted on the collaboration workspace 

in mind-map view can be one of the following types: idea, comment, note and 

generic. Files of any content type (e.g. pdf, jpg) can be uploaded to the CW. The 

set of available types can be configured and participating users will be able to 

define new ones. The mind-map view also provides a set of mechanisms through 

which: (a) items on the collaboration workspace can be related, and (b) new 

abstractions can be created. In particular, creation of relationships between items is 

facilitated by drawing directed arrows between items on the collaboration 

workspace. Visual cues can be used to convey semantics (e.g. red colour can 

indicate opposition, while green can indicate “in favour”; labels can be associated 

to arrows elucidating semantic relationships). Items on the CW can be aggregated, 

to allow a group of items to be treated as a single entity, and transformed into a 

single item creating new, composite items. The mind-map view aims at supporting 

sense-making during data intensive and cognitive complex tasks. 

  

Fig. 1: Mind-map view of a collaboration workspace. Explicit relations can be created between 

collaboration items (arrows) or juxtaposed to express implicit/transient relationship. 

• Formal/Argumentation view: The formal/argumentation view of the CW permits 

only a limited set of discourse moves for a limited set of message types whose 

semantics is predefined and fixed. Formal views of the collaboration workspaces 
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exhibit a high level of formality. In particular, the formal view (Fig. 2) enables the 

posting of messages which can be of type issue (to indicate the decisions to be 

made) alternative (to represent potential solutions to the issues discussed) or 

position (to comment on alternatives or on other positions). Positions either support 

or are against alternatives and positions and their relationship are explicitly 

specified when users post them to the collaboration workspace. Files can be 

attached to positions to further support their validity. The formal view supports 

also the notion of preferences, used to weigh the importance of two positions and 

reflect the importance of one position over another. Decision making support 

algorithms (e.g. a voting or a multiple criteria decision making), which are 

associated with the CW, can take into consideration the relationships of positions 

as well as existing preferences and calculate which alternative is currently 

prevailing or which position has been defeated. The aim of the formal view is to 

make the CW machine understandable and to further support decision making. 

 

 

Fig. 2: A formal view of the collaboration workspace shown in Fig. 1. 

Every CW can be transformed from one view into another at any point in time 

by anyone participating in the collaboration. Such transformations are rule-based; a 

set of rules specifies how items in the source view are transformed into items of the 

destination view. All discourse moves and contributions that users create during 

their interaction in the CW are logged within Dicode in order to enable their further 

analysis by a variety of services. For each view, log data contains information related 

to the event that happened on the workspace and which includes:  

• the collaboration workspace’s ID and view where the event took place; 

• the user’s operation and the associated content (e.g. adding/updating/deleting an 

item, moving an item, creating relationships between items etc); 

• the user who executed the operation; 

• the date and time when the event occurred. 

The log data in the CW will be used as an input for intelligent support algorithms. 
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4 Intelligent Support 

Intelligent support will augment the multi-view CWs with machine intelligence to 

understand and facilitate collective sense making. Intelligent support will be provided 

at two levels: 

• Understanding collective sense making. This will include user/community 

profiling, e.g. identifying user characteristics, discovering links between 

individuals, identifying common topics; discovering patterns of behaviour such as 

silos or dominance, extracting situations parameters. 

• Facilitating collective sense making. This will include interface augmentation (e.g. 

adding visual signals to help establish situational awareness) or suggestions in the 

form of messages (e.g. to facilitate the exchange of ideas, point at useful patterns, 

highlight important situation aspects). 

 

The following subsections propose our approach to implementing the first level of 

intelligent support, i.e. understanding collective sense making behaviour. This will be 

achieved by three functions (section 4.3) which employ descriptive machine learning 

and data mining algorithms and meet the key objectives as stated in section 4.2. The 

following section outlines how the CW log data will be enriched with semantics for 

user and community modelling. 

4.1 Input: Augmented CW Log Data 

Intelligent support will be based on the log data from the CWs which include mind 

mapping graphs, discussions, arguments and comments. In addition, the users’ meta-

data, including the users’ navigational behaviour as recorded in the usage logs, as well 

as the searching behaviour of the users in the collaborative workspace, will be used to 

characterise the users and derive a user profile for each user in the community. 

Semantic enrichment of the user profiles is achieved by considering semantic data 

sources, such as domain ontologies (to identify the domain topics discussed), as well a 

collaboration and decision making ontology developed in Dicode (to take into account 

the user roles and to link sense making to decision making steps).  

4.2 User and Community Modelling 

Intelligent support in Dicode is underpinned by a mechanism for user and community 

modelling which will be outlined here. It is envisaged to be used by intelligent 

services which augment the CW in Dicode. For instance, a recommendation 

mechanism in Dicode will be able to use the output of the community modelling 

functions to direct to ‘items’ in the CW, e.g. a data set, a set of relevant discussions, a 

topic of interest to search for. Furthermore, the users of the CW can be pointed to a 

set of discussions that occurred in different times but belong to a certain topic of 

interest. 

Objectives. The following four main objectives can be perceived for the 

community modelling and user profiling functions:  
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• O1: Detect topics of community discussions in the collaborative workspace. 

• O2: Identify key characteristics of the users in the community from available data 

about the users, i.e. unstructured data, semantic annotations, meta-data, and use 

these characteristics to shape the user profile for each user within the community. 

• O3: Quantify the strength of each characteristic for discovery of connections.  

• O4: Discover clusters of users and interesting patterns in user behaviour by 

applying descriptive data mining functions, i.e. cluster analysis and association 

mining on the derived user profiles. 

4.3 Outline of the Main Algorithms 

This section will outline how descriptive machine learning and data mining, such 

as cluster analysis and association rule mining, can be applied for user and 

community modelling. We will group them into three main functions. 

Function 1: Clustering Unstructured Data for Topic Detection 
Purpose (O1). The main purpose of this function is to discover the main topics of 

the unstructured data, i.e. community discussions, arguments, using descriptive data 

mining methods, i.e. cluster analysis. 

Input. Unstructured data that community users create within the collaborative 

workbench, as part of their collaboration activities. These include the discussion and 

arguments that occurred between the community users in the workbench. All the 

available parts of the discussions can be utilized by the function, i.e. the title of the 

discussion thread, main discussion body, replies by other users, tags that collaborating 

users attach to the discussion. 

Processing. The input data will be processed as follows: 

• Pre-process the input unstructured data and transform it into a term weight 

document matrix to be used as input for cluster analysis. 

• Using the pre-processed matrix, build and train a clustering model that segments 

the discussions into distinct groups (clusters) based on the similarities and 

distances between the discussions. 

• Using the profiles of the discovered clusters, detect the topic of each cluster of 

discussions based on the frequency of occurrence by considering the most 

occurring terms that occur in each cluster.  

Output. There are two types of output produced by this function: 

• Clusters of discussions, where each discussion instance will be assigned a cluster 

id to identify to which discovered cluster of discussions it belongs to. 

• Cluster profiles, including the number of discussions that belong to each cluster 

and the most significant terms that belong to each cluster based on the frequency of 

occurrence. 

Function 2: Deriving Key User Characteristics and Generating User Profiles 
Purpose (O2 & O3). The purpose of this function is to derive the key 

characteristics that describe each user within the community, and weight these 

8      A. Ammari et al.



characteristics for every user to reflect the significance of each characteristic. These 

weighted user profiles will be accumulated in a community model. 

Input. Data input to this function include: (a) Discussion topics that are detected 

using the first function described above; (b) User meta-data available from the logs 

and meta-data derived from the other components of the collaborative workbench, 

including the discussions, arguments, i.e. the author of the main body of the 

discussion and the authors of the replies to the main body, the mind mapping graphs, 

and the meta-data available from the searching behaviour in the workspace. (3) The 

characteristics derived from the unstructured data, i.e. topics, and the meta-data can 

be semantically enriched by the collaboration and decision support ontology, relevant 

domain ontologies, and open lexical resources, i.e. Wordnet.  

Processing. This function will process the input data as follows: 

• Identify user characteristics within the community from the available input data. 

• Compute weighted interests in the identified topics - for each identified 

characteristic, the function will compute a numerical weight for each user profile 

that represents the significance (importance) of this characteristic to that user 

within the community.  

• Build a user–characteristic matrix that could be input to further descriptive data 

mining functions (cluster analysis and association mining). 

Output. The output of this function is a community model that includes a user 

profile for each user. Each user profile represents the weights of the identified 

characteristics for each user within the community. 

Function 3: Discovering Patterns in the User Profiles 

Purpose (O4). The purpose of this function is to discover hidden patterns in the 

user profiles for further support to collaboration and decision making, using 

descriptive data mining techniques. 

Inputs. The input to this function is mainly the community model (user profiles) 

derived by the second function 

Processing. This function will process the input data as follows: 

• Apply cluster analysis methods on the derived user profiles within the community 

model to discover the user clusters and the user cluster profiles. 

• Apply association mining methods on the derived user profiles within the 

community model to discover association hidden patterns within the user 

characteristics. 

Output. This function mainly produces three outputs: (a) Clusters of user profiles, 

where each user profile instance will be assigned a cluster id to identify to which 

discovered cluster of user profiles each user belongs to. (b) Cluster profiles, including 

the number of user profiles that belong to each cluster and the characteristics’ values 

for the average user profile, i.e. cluster centroid, for each discovered cluster. (c) 

Discovered hidden association patterns, including frequent characteristic-sets that list 

those significant characteristics that are obtained frequently by the same users, and the 

hidden association rules underlying these sets.  
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5 Related Work 

The approach proposed in this paper has two main innovative aspects: (a) a new way 

to facilitate sense making using multiple linked views of collaborative workspaces; 

and (b) a novel application of user and community modelling to get an understanding 

of collective sense making behaviour.  

Over the years, a number of systems have been developed aiming to support the 

process of sense making which include Debatepedia [5], Parmenides [6], ClaiMaker 

[7], TruthMapper [8] and Cohere [9]. Despite their powerful features, each of these 

systems provides only a fixed level of formality lacking the ability to adapt their 

environment to the needs of the collaboration.  In Dicode, collaborative workspaces 

build on and extend the notion of spatial hypertext, which has been proposed as an 

alternative to navigational and semantic organisation of resources [10]. Spatial 

hypertext employs a spatial metaphor to organize information aiming at taking 

advantage of the user’s visual memory and pattern recognition. Due to its ability to 

express ambiguity as well as transient and implicit relationships between information, 

it is an effective way to support information triage, i.e. the process of sorting through 

relevant materials and organizing them to meet the needs at hand[11]. While most 

existing hypertext systems permit only a single user to organize the information (e.g. 

VIKI [12], WARP [13]), approaches to bring spatial hypertext into the collaborative 

realm have only recently started to emerge [14]. Dicode will make a contribution to 

this stream by exploiting spatial hypertext for collective sensemaking in cases when 

humans need to process large volumes of heterogeneous data. 

Recent research trends look at intelligent ways to support the effective functioning 

of close-knit communities through personalization and adaptation techniques. 

Modelling users within a community provides the grounds for generating group 

recommendations [15]. One method to support that is through detecting the topics that 

the collaborating users show interests in. In [16] Cheng and Vassileva derived topics 

of users’ interests based on the resources shared by them within the community, 

where a reward factor is calculated to measure the relevance of each contributed 

resource to the topics derived. In [17], Bretzke and Vassileva modelled users’ 

interests based on how frequently and recently users have searched for a specific area 

from a particular taxonomy. User relationships are then determined based on the 

resource downloading behaviour. A more recent approach by Kleanthous and 

Dimitrova [18][19] employs the metadata of the shared resources along with an 

ontology representing the community context and derives a semantically relevant list 

of interests for every user.  

In Dicode, we aim to further enhance the existing topic detection approaches by 

exploiting a hybrid machine learning, text data mining, and semantic enrichment 

approach. Using as input community discussions, mind-mapping activities, and 

relevant ontologies, we aim to discover topics of interests that are buried within the 

diversity of unstructured and semi-structured contents produced by the collaborating 

members in the multi-view collaborative workspaces. Detected topics will then be 

exploited to facilitate collective sense making within the community members.  

A community model can be analysed to automatically detect patterns which can be 

used to decide when and how interventions to the community can be done [20]. It has 

been shown that community patterns based on these processes can be derived from 
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the community graph. For example, [19] have identified community patterns related 

to processes linked to effective knowledge sharing, such as transactive memory (how 

members’ knowledge is related), shared mental models (shared understanding of the 

common goal), and cognitive centrality (influential members).  

Similarly to Kleanthous and Dimitrova’s work on semantically-enriched 

relationship detection, we will exploit semantics and ontologies to enhance the log 

data from CWs and get richer input about what is happening in the community. 

However, the community modelling approach in Dicode will take the modelling 

further by exploiting descriptive data mining approaches, including output from (i) 

statistical member segmentation, i.e. group profiles, where members assigned to the 

same group share a similar behavioural profile, as well as output from (ii) association 

rule mining, i.e. lists of the frequently co-occurring behavioural activities of the 

community members, in order to further improve the community pattern discovery 

tasks. Discovered patterns will also be used to further augment the multi-view CW for 

enhanced collective sense-making, knowledge sharing, and group recommendations. 

6 Conclusions 

We have set out an ambitious goal to exploit the synergy of machines and humans in 

complex cognitive situations that require making decisions involving large volumes 

of data. We are starting to unravel the aspects of this synergy. While data mining 

techniques (i.e. machine intelligence) can be exploited to process data and discover 

trends and patterns, human intelligence is needed to make sense of the data and take 

decisions. The process of sense making involves discovering connections, deriving 

patterns, generating alternatives, weighting possibilities. People perform these tasks in 

an intuitive manner using tacit knowledge. Our ultimate goal is to capture, preserve, 

and reuse this tacit knowledge by providing collaborative workspaces for collective 

sense making. In turn, we will exploit machine intelligence to analyse the human 

behaviour in the collaborative spaces in order to get a better understanding of the 

collective sensemaking process, facilitate important aspects, and support future 

human sense making (e.g. exploiting patterns applied earlier). 

Currently, we are developing the CWs following a generic approach, which will 

enable the same approach to be applied to diverse use cases. The illustrations in this 

paper were from the exemplification of the multi-view space for a Breast Cancer 

research group embarking on an analysis to discover any common characteristics or 

trends that could be deducted from recent studies which used high-throughput 

technologies such as microarrays and next-generation sequencing. We plan to apply 

the approach presented here to support sense making in a clinical trial of Rheumatoid 

Arthritis treatment where a team of medical practitioners examines large data sets and 

analyses the effectiveness of the treatment on patients. In addition, the log data from 

the CWs is being analysed in line with the functions presented in here to augment 

CWs with intelligent support.  
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