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Abstract. Providing computer-aided support for the assignment of di-
agnosis codes has been approached in numerous ways, often by exploiting
free-text fields in patient records. Modeling the 'meaning’ of diagnosis
codes through statistical data on co-occurrences of words and assigned
codes—using a method known as Random Indexing—has only recently
been explored as an interesting, alternative solution. It involves words in
a clinician’s notes ’voting’ for semantically associated diagnosis codes, the
election results yielding a single list of recommendations. This approach
is here applied and evaluated on a corpus of over 250,000 coded patient
records. The evaluation is performed by comparing the recommended
codes generated by the model with those assigned by the clinicians. Ap-
plying the tf-idf weighting scheme somewhat improves results for general
models (23% recall for exact matches) but has little effect on domain-
specific models (32% and 59% recall for exact matches). These results
confirm the potential of Random Indexing for diagnosis code assignment
support, and merits further attention.
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1 Introduction

Diagnostic coding is part of a clinician’s everyday work routine, its purpose
being to classify diseases and other health-related issues. This makes it possi-
ble to quantify the complex operations of healthcare and thus enables effective
oversight of hospitals; it also produces statistics on a regional, national and in-
ternational level. For such statistics to be comparable, a standard such as the
10th revision of the International Classification of Diseases and Related Health
Problems (ICD-10) needs to be employed [1].

The important yet somewhat tedious task of assigning appropriate diagno-
sis codes is typically accompanied by note-taking. This information source is
often exploited in attempts to provide computer-aided coding support, given
the successful application of natural language processing to other classification
problems. Since a clinician’s assessment and other notes often overlap with the
content of the assigned diagnosis code(s), the text may be used to infer possible
codes, not automating but greatly facilitating the coding process.
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Computer-aided diagnostic coding support has long been an active research
area (see [2] for a review); however, the results are yet to reach a level where use
in a clinical setting is widespread. Natural language processing techniques are
applied in most previous attempts, which include rule-based systems and statis-
tical classifiers. Larkey and Croft [3] assign ICD-9 codes to discharge summaries
using a combination of classifiers and achieve 87.9% precision, measured as the
presence of the principal code among ten recommended codes.

Pakhomov et al. [4] propose a two-step classifier, where the notion of certainty
is used to determine whether subsequent manual review is needed. A diagnostic
statement is fed to an example-based classifier and, if unsuccessful, forwarded to
a machine learning component, which generates a number of suggestions ranked
by confidence. These are subjected to manual review. Fixed fields, such as gender
information, are exploited to filter out improbable classifications. They report
micro-averaged Fj-scores ranging from 58.6% to 96.7%, depending on whether
the diagnostic entries are found in the database of previously coded entries.

In the Computational Medicine Center’s 2007 Medical NLP Challenge [5],
a limited set of 45 ICD-9-CM codes were to be assigned to radiology reports,
more specifically based on the clinical history and impression fields. The auto-
matic systems were evaluated against a gold standard, which was created using
the majority annotation from three independent annotation sets. Many of the
best-performing contributions are heavily dependent on hand-crafted rules, with
the winning contribution achieving a micro-averaged Fj-score of 89%. Farkas
and Szarvas [6] decided instead to combine predefined rules based on the ICD-
9-CM coding guide with automated procedures, which effectively reduces the
development effort and yet results in a high micro-averaged Fij-score of 88.9%.
The third-best system uses classifiers that perform a binary classification for
each label and achieves a micro-averaged F}-score of 87.7%. They found that
the choice of classifier was less important but that identifying negations, making
use of the structure of UMLS' and enriching the to-be-classified documents with
hypernyms helped [7].

The possible application of the word space model to this problem has only
recently been investigated. We have previously proposed the use of Random
Indexing as an interesting alternative [8]. In that study, the method is evaluated
qualitatively on a limited set of documents, yielding promising yet tentative
results. There is thus a need for those results to be consolidated by a more
quantitative evaluation, while there is also considerable scope for the method to
be developed further.

The word space model is an application of the vector space model (see [9] for
a review) and attempts to capture the meaning of words through statistics on
word co-occurrences. This is based on the distributional hypothesis, which states
that words that appear in similar contexts tend to have similar properties. Thus
if words repeatedly co-occur, we can assume that they in some way refer to
similar concepts [10]. Given the successful application of word space models to
information retrieval, semantic knowledge tests (e.g. TOEFL), text categoriza-

! Unified Medical Language System
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tion, text summarization, word sense disambiguation, etc., it may also prove a
viable solution for diagnostic coding support.

2 Method

Random Indexing [11], [12] is applied on a corpus of almost 270,000 coded patient
records to calculate co-occurrences of words in clinical notes and assigned ICD-10
codes, creating models which can be used to predict diagnosis codes for uncoded
documents. The method comprises the following steps: (1) pre-processing the
data, (2) building a number of word space models using the training data, (3)
generating suggested diagnosis codes for the documents in the test data and (4)
evaluating the results by matching the suggested codes with those assigned by
the clinicians.

A subset of the Stockholm EPR corpus [13] is used for training and evaluating
the created models. The subset contains approximately 5.5 million notes from
838 clinical units?. Documents contain notes from one clinical unit about a single
patient and are created differently depending on the definition of a patient visit:
(1) notes made on the same day, (2) notes made on consecutive days and (3)
notes made with at most one undocumented day in between. The reason for
the different partitions is to see what effect the length of the documents has on
the models: do they benefit from additional information or are they impaired
by potentially less uniform content? Documents are associated with assigned
codes; documents without any associated codes are ignored. These documents
are first pre-processed: lemmatization is done using the Granska Tagger [14],
while punctuation, digits and stop words are removed. The pre-processed data
is subsequently partitioned into two subsets, where one is used for training (90%)
and the other is set aside for testing (10%). In the training set, the associated
ICD-10 codes are included in the input documents, whereas in the test set,
they are retained separately for evaluation. Diagnosis codes are generally not
mentioned in the free-text fields; the idea is that no such information should be
revealed to the models in the testing phase.

We then generate a number of models by constructing a word vector for each
token (words and ICD-10 codes) encountered in the training data. The relative
directions of these word vectors in the word space are assumed to indicate se-
mantic similarity. The construction of the word vectors requires the context to be
defined and represented in some way. The context is often defined as a paragraph
or a window of surrounding words; however, in our case, it includes an entire
document, as there is no sequential dependency between the diagnosis code and
the words in the document. Each document, i.e. the context, is assigned a unique
and randomly generated context vector, which is a sparse, high-dimensional and
ternary vector. The dimensionality of the context vectors depends on the size
and redundancy of the data—we have set it to 1,000—with a very small number
(1-2%) of randomly distributed +1s and -1s, while the remaining elements are set

2 This research has been approved by the Regional Ethical Review Board in Stockholm
(Etikprovningsnamnden i Stockholm), permission number 2009/1742-31/5.
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to 0. The word vectors are then built by processing the documents: every time a
word occurs in a particular context, the context vector is added to the word vec-
tor. The usage of a word is thus represented as a vector, which is the sum of the
context vectors of the contexts in which it appears. We build a model for each
of our data sets: three general models (general elections), which are trained on
the entire data set, and two domain-specific models (municipal elections), which
are trained on subsets from a single type of clinic: ENT (Ear-Nose-Throat) and
rheumatology clinics respectively. The reason for creating domain-specific mod-
els is that, by limiting the sparsity of the data and the classification problem (#
of possible ICD-10 codes), we may achieve better results. Furthermore, we build
bigram versions of some of the above models. As bigrams are more informative
than unigrams and represent a means of dealing with multiword expressions,
they may prove to be appropriate units in the construction of the models.

These models are then used to produce a ranked list of a number of recom-
mended ICD-10 codes (e.g. 10) for each query document (i.e. excluding codes).
For each word in a document, a ranked list of semantically correlated words
is retrieved from the model. As we are interested in recommending diagnosis
codes, the results are filtered to include only such tokens. The individual lists
of all the words in the document are combined to produce a single ranked list.
This ensemble method is carried out in one of two ways: (1) by using the rank-
ing positions of the codes in the individual lists and (2) by using the semantic
(cosine) similarity scores of the codes in the individual lists.

In this initial approach, we apply the ’one word, one vote’ system, i.e. all
words have an equal say in electing the diagnosis codes (democratic approach).
This simple yet rather naive approach is refined by implementing the tf-idf
(term frequency-inverse document frequency) weighting scheme (meritocratic ap-
proach), effectively giving a stronger voice to prominent (tf) words that have a
high discriminatory value (idf). Tf is implicit in our method, as each instance of
a word has its own vote, while idf is retrieved from the model.

The evaluation is conducted by comparing the codes that were assigned by
the clinicians with the model-generated recommendations. This matching is done
on all four possible levels of ICD-10 according to specificity (Figure 1). If a
clinically assigned code is not given at the most specific level—as is often the
case—and that same code is recommended by the model, it naturally counts as
an exact match. To gauge the quality of the results, they are compared with a
naive baseline for each model. It is created by matching the assigned codes for
each document against a list of the most frequent labels in the training set.

AO0O.Oa
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Level 3 (L3)
Exact (E)

Fig. 1. The structure of ICD-10 allows division into four levels.
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3 Results

The data sets have a distinct number of tokens and unique codes per visit (Table
1). While the set of codes is identical across the general data sets (12,396 labels),
these are much smaller in the domain-specific versions (1,713 and 638 labels).

Table 1. Data set statistics.

data set visits|codes|codes/visit (max)|tokens/visit (min-max)
Odays_general ~278 k[12,396 1.7 (47) 165.6 (1-3913)
1days_general ~274 k(12,396 1.7 (47) 177.7 (1-3913)
2days-general ~271 k(12,396 1.7 (47) 186.1 (1-3913)
Odays.ENT ~24 K| 1,713 2.1 (20) 138.2 (1-621)
Odays_Rheumatology | ~9 k| 638 1.2 (16) 88.5 (1-549)

The models trained and evaluated on the bigram versions of the above data sets
fail to yield an improvement over the simpler unigram models. Those models are
therefore not considered in any of the subsequent experiments. Out of the two
ensemble methods applied in the production of the final list of recommended
codes, the one whereby the cosine similarity scores are taken into account gener-
ally performs somewhat better than the more basic variant in which the ranking
positions are used.

The models are initially employed in a democratic approach, i.e. all words
have an equal vote (Table 2). In the general data sets, approximately 21% of the
assigned codes are recommended by the corresponding models. Partial matches
are more frequent, with approximately 29% matched on level 2. The results are
higher when applying the domain-specific models: 31% exact matches in ENT
and 59% in Rheumatology. Similar increases are observed when matching at the
less specific levels, with 61% and 93% partial matches respectively.

Table 2. Democratic approach — general and municipal elections. Overall recall (top
10) for all four possible levels of ICD-10.

Model Recall (top 10)

E L3 L2 L1
Odays_general 0.21 0.23 0.29 0.59
1days_general 0.23 0.25 0.33 0.60
2days_general 0.20 0.22 0.29 0.59
Odays-ENT 0.31 0.31 0.39 0.61
Odays_Rheumatology 0.59 0.59 0.70 0.93

The models are then applied in a meritocratic fashion, i.e. some words have a
greater say than others (Table 3). This approach leads to a small increase in the
performance of the general models (up to 3 percentage points), with little impact
on the domain-specific models, even having an adverse effect in Rheumatology.
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Table 3. Meritocratic approach — general and municipal elections. Overall recall (top
10) for all four possible levels of ICD-10.

Recall (top 10)

Model E L3 12 L1
Odays_general 0.23 0.25 0.32 0.59
1days_general 0.23 0.25 0.33 0.60
2days_general 0.22 0.24 0.32 0.60
Odays_.ENT 0.32 0.33 0.39 0.61
Odays-Rheumatology 0.59 0.59 0.69 0.93

When we increase the number of generated recommendations, the results im-
prove to some degree (Figure 2). For recall 15, the results increase by up to 7
percentage points and, for recall 20, they increase by up to 13 percentage points.
That is, when 20 recommended codes are generated, 28% of the clinically as-
signed codes are recommended by the general models, while 38% (ENT) and
69% (Rheumatology) are matched by the domain-specific models. The baseline
is beaten by the general models but not always by the domain-specific versions.
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Fig. 2. Improvements observed when increasing the number of recommendations from
10 to 15 and 20. The baseline is for recall top 10 only.

4 Discussion

The definition of a patient visit, which potentially determines the length of the
documents and the number of assigned codes, appears to have a negligible impact
on the results. As can be seen in Table 1, the average number of tokens per visit
only increases slightly, while the average number of assigned codes is more or
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less equal. The reason for this is probably that the status of inpatients is usually
monitored and documented on a near-daily basis.

The domain-specific models perform significantly better than the general
models. This was expected considering the extent to which the classification
problem is thereby limited: the number of labels is reduced from 12,396 to 1,713
(ENT) and 638 (Rheumatology). The discrepancy between the two domain-
specific models, including the average number of codes per visit in ENT (2.1)
and Rheumatology (1.2), is likewise a possible reason for the latter performing
better than the former.

The meritocratic approach had surprisingly little effect on the results. While
it did have a positive yet small impact on the general models, it had little—and
even a negative—impact on the domain-specific models. A qualitative analysis
of which types of words benefit from this weighting scheme would be interesting.
It is likely that a small set of keywords are highly indicative of the diagnoses
and need to be given additional weight. In a technocratic approach, this could
be achieved by seeking out words used in the ICD-10 descriptions or by looking
for SNOMED CT terms, such as diseases and body parts.

The fact that the bigram models performed worse than the unigram models
could possibly be due to the sparsity of the data. That is, there are many more
distinct tokens and fewer instances of each. The same conclusion was reached
by Suominen et al. [7], where bigrams and trigrams were shown to yield no
improvement in the assignment of ICD-9-CM codes.

The results presented here are not directly comparable with those in previ-
ous studies, primarily due to the tasks being of different orders of magnitude.
In comparison to the 2007 shared task [5], in which a limited set of 45 labels
were used, our classification problem comprises thousands of labels. While they
ensured that the testing data did not contain any unseen labels, ours could and
did. Moreover, the shared task was limited to assigning one or two codes, al-
though they were punished for failing to assign the exact the number of labels.
In contrast, we have so far only presented recall scores, measured as the presence
of clinically assigned codes in a list of 10, 15 or 20 recommendations. The same is
done in [3], although, in that case, only a single label—the principal code—was
to be assigned. In contrast to the shared task, where the data was produced by
expert coders and the best-performing systems to a large extent relied on hand-
crafted rules, this study evaluates a statistically-based method on large volumes
of clinically generated data. However, building models on real, noisy data, with-
out relying heavily on rules that are expensive to create, is precisely what could
make this method a feasible solution for future clinical coding support.

In future work, we plan to exploit fixed fields in patient records, such as age
and gender, to avoid statistically rare correlations, as was successfully done in
[4]. Furthermore, we believe negation handling may have a positive effect on
results. This could be achieved by, for instance, ignoring negated diagnoses in
the construction of the word space models. Different levels of certainty may also
be factored into the equation. Detection of negation and uncertainty was shown
in [7] to have a positive effect on the automatic assignment of diagnosis codes.
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5 Conclusion

We have quantitatively evaluated the use of Random Indexing as a means to
provide diagnostic coding support on over 250,000 patient records. An array of
models and two ensemble methods were evaluated. A meritocratic approach (tf-
idf weighting) yields little improvement over a democratic approach (one word,
one vote) in the election of appropriate diagnosis codes. Domain-specific models
produce significantly better results (at best 61% exact matches and 93% partial
matches) than general models (22% exact matches and 61% partial matches).
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