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Preface

Welcome to the 24th International Workshop on Description Logics, DL 2011,
in Barcelona, Spain. The workshop continues the long-standing tradition of in-
ternational workshops devoted to discussing developments and applications of
knowledge representation formalisms and systems based on Description Logics.
The list of the International Workshops on Description Logics can be found at
http://dl.kr.org.

There were 59 papers submitted, each of which was reviewed by at least
three members of the program committee or additional reviewers recruited by
the PC members. Apart from the presentation of the accepted papers, posters,
and demos, the program was further enhanced by the following keynotes:

– Marcelo Arenas (Pontificia Universidad Católica de Chile),
Exchanging More than Complete Data.

– Gert Smolka (Saarland University),
Incremental Decision Procedures for Modal Logic with Nominals and Even-
tualities.

– Heiner Stuckenschmidt (Universität Mannheim),
A Little Logic Goes a Long Way – Logical Reasoning in Web Data Integration
and Ontology Learning.

The Best Student Paper Prize (e500) has been awarded to Szymon Klarman
(Vrije Universiteit Amsterdam) and Vı́ctor Gutiérrez-Basulto (Universität Bre-
men) for their paper Two-Dimensional Description Logics of Context.

The organizers of the DL 2011 workshop gratefully acknowledge the logistical
and financial support of Yahoo, Inc. and Yahoo! Research Barcelona, and the
financial support of the Artificial Intelligence Journal. The organization of the
workshop also greatly benefited from the help of Barcelona Media, in particular
Sònia Campdepadrós Pérez.

Our thanks go to all the authors for submitting to DL, and to the invited
speakers, PC members, and all additional reviewers who made the technical
program possible. Finally, we would like to acknowledge that the work of the PC
was greatly simplifed by using the EasyChair conference management system
(www.easychair.org) developed by Andrei Voronkov.

Riccardo Rosati, Sebastian Rudolph and Michael Zakharyaschev
DL 2011 Conference and PC chairs

Peter Mika, Estefania Ricart and Natalia Pou
Local organizers
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Exchanging More than Complete Data

Marcelo Arenas

Pontificia Universidad Católica de Chile
marenas@ing.puc.cl

In the traditional data exchange setting source instances are restricted to be
complete, in the sense that every fact is either true or false in these instances.
Although natural for a typical database translation scenario, this restriction is
gradually becoming an impediment to the development of a wide range of ap-
plications that need to exchange objects that admit several interpretations. In
particular, we are motivated by two specific applications that go beyond the
usual data exchange scenario: exchanging incomplete information and exchang-
ing knowledge bases.

In this talk, we propose a general framework for data exchange that can
deal with these two applications. More specifically, we address the problem of
exchanging information given by representation systems, which are essentially
finite descriptions of (possibly infinite) sets of complete instances, and then we
show the robustness of our proposal by applying it to the problems of exchang-
ing incomplete information and exchanging knowledge bases, which are both
instantiations of the exchanging problem for representation systems.

This is joint work with Jorge Perez and Juan Reutter.
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Incremental Decision Procedures for Modal
Logic with Nominals and Eventualities

Gert Smolka

Saarland University
smolka@ps.uni-saarland.de

The talk will discuss different decision procedures for modal logic with nom-
inals and eventualities. This logic has an ExpTime-complete decision problem
and is not compact. There is a simple and worst-case optimal decision procedure,
which is not practical since it is not incremental. I will discuss two incremental
procedures, one worst-case optimal procedure for the fragment without nomi-
nals, and one not worst-case optimal procedure for the full logic. A main concern
will be the correctness arguments for the procedures.

The talk is based on joint work with Mark Kaminski.
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A Little Logic Goes a Long Way – Logical

Reasoning in Web Data Integration and

Ontology Learning

Heiner Stuckenschmidt

Universität Mannheim
heiner@informatik.uni-mannheim.de

There is an ongoing dispute in the Semantic Web Community about the use-

fulness of (Description) Logic as a basis for describing data on the web. While

researchers in logic argue with the benefits of logic in terms of a clean seman-

tics and richness of the language, criticism against the use of logic normally

focusses on two points: its computational complexity and its inability to rep-

resent soft constraints. In this talk, we will address these criticisms and argue

that if used in the right way description logics are a valuable tool for typical

tasks on the semantic web. We use problem of semantic matchmaking as an

example to show that the use of rather inexpressive logics with good computa-

tional properties already provide significant benefits by eliminating incoherent

matches. In the second part of the talk we address the problem of dealing with

soft constraints and show two solutions to this problem that have proven use-

ful for matchmaking: Approximate subsumption as a purely logical framework

for partial matchmaking and Log-Linear Description Logics as a new combina-

tion of Description Logics with (log-linear) probabilistic models. We show that

purely logical matchmaking achieves results comparable with state of the art

matchmaking systems that rely on similarity functions and present results that

show that log-linear description logics outperform existing matching systems.

We conclude that in the context of semantic web applications expressive power

of the logics used is less important than the integration with other formalisms

and technologies for improving efficiency and the ability to deal with imperfect

knowledge.
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Knowledge Base Exchange

Marcelo Arenas1, Elena Botoeva2, and Diego Calvanese2

1 Dept. of Computer Science, PUC Chile
marenas@ing.puc.cl

2 KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy
lastname@inf.unibz.it

Abstract. In this paper, we study the problem of exchanging knowledge between
two knowledge bases (KBs) connected through mappings, with a special interest
in exchanging implicit knowledge, not only data like in the traditional database
exchange setting. As representation formalism we use Description Logics (DL)
that exhibit a reasonable tradeoff between expressive power and complexity of
reasoning. Thus, we assume that the source and target KBs are given as a DL
TBox+ABox, while the mappings have the form of DL TBox assertions. We
study the problem of translating the knowledge in the source KB according to
these mappings. We define a general framework of KB exchange, and specify the
problems of computing and representing different kinds of solutions, i.e., target
KBs with specified properties, given a source KB and a mapping. We then de-
velop first results and techniques and study the complexity of KB exchange for
the case of DL-LiteRDFS, a DL that corresponds to the FOL fragment of RDFS.

1 Introduction

In data exchange, data structured under one schema (called source schema) must be
restructured and translated into an instance of a different schema (called target schema),
and the way in which this restructuring should occur is specified by means of a mapping
from the source schema to the target schema [5]. Such a problem has been studied
extensively in recent years, under various choices for the languages used to specify the
source and target schema, and the mappings [2]. While incomplete information in this
setting is introduced by the mapping layer (see also [6]), one fundamental assumption
in the works on data exchange is that the source is a (completely specified) database.

In this paper, we go beyond this setting, and consider data exchange in the case
where implicit knowledge is present in the source, by which new data may be inferred.
We follow the line of the work in [1], where a general framework for data exchange
is proposed, in which the source data may be incompletely specified, and thus (possi-
bly infinitely) many source instances are implicitly represented. The framework in [1]
in based on the general notion of representation system, as a mechanism to represent
multiple instances of a data schema, and considers the problem of incomplete data ex-
changes under mappings constituted by a set of tuple generating dependencies (tgds).

We refine that framework to the case where as a representation system we use De-
scription Logics (DL) knowledge bases (KBs) constituted by a TBox and an ABox,
and where mappings are sets of DL inclusions. While in the traditional data exchange

4



2 Marcelo Arenas, Elena Botoeva, and Diego Calvanese

setting, given a source instance and a mapping specification, (universal) solutions are
target instances derived from the source instance and the mapping, in our case solutions
are target DL KBs, derived from the source KB and the mapping. Besides a notion of
(universal) solution based on the correspondence between models of source and tar-
get KBs, we introduce also the weaker notion of (universal) CQ-solution, based on the
correspondence between answers to conjunctive queries over source and target KBs.

In our setting where we exchange DL KBs, in order to minimize the exchange (and
hence transfer and materialization) of explicit (i.e., ABox) information, we are inter-
ested in computing universal (CQ-)solutions that contain as much implicit knowledge
as possible. This leads us to define a new problem, called representability, whose goal
is to compute from a source TBox and a mapping, a target TBox that leads to a univer-
sal (CQ-)solution when it is combined with a suitable ABox computed from the source
ABox, independently of the actual source ABox.

We then develop first results and techniques for KB exchange and for the repre-
sentability problem in the case of KBs expressed in DL-LiteRDFS, a DL that corresponds
to the FOL fragment of RDFS. DL-LiteRDFS is a fragment of DL-LiteR [4] that does not
allow for existential quantification (i.e., concepts of the form ∃R) in the right-hand side
of concept inclusions, nor for disjointness assertions.

The paper is organized as follows. In Section 2 we give preliminary notions on DLs
and conjunctive queries (CQs). In Section 3 we define our framework of KB exchange.
In Section 4 we present the techniques for deciding the defined reasoning tasks. Finally,
in Section 5 we draw some conclusions and outline issues for future work.

2 Preliminaries

We introduce here the necessary notions about the description logic (DL) that we use in
this article, and about conjunctive queries, which we adopt as our query formalism.

2.1 DL-LiteR Knowledge Bases

The DLs of the DL-Lite family [4] of light-weight description logics are characterized
by the fact that reasoning can be done in polynomial time, and that data complexity of
reasoning and conjunctive query answering is in AC0. We adopt here DL-LiteR, and
present now its syntax and semantics.

Let NC , NR, Na be sets of concept, role, and individual names, respectively, and
assume that A ∈ NC and P ∈ NR. In DL-LiteR, B and C are used to denote basic
and complex concept descriptions, respectively, and R and Q are used to denote basic
and complex roles, respectively. These concept and roles constructs are defined by the
following grammar:

R ::= P | P−

Q ::= R | ¬R
B ::= A | ∃R
C ::= B | ¬B

In the following, for a basic role R, we use R− to denote P− when R = P , and P
when R = P−.

5



Knowledge Base Exchange 3

A DL-LiteR TBox is a finite set of concept inclusions B � C and role inclusions
R � Q. A DL-LiteR ABox is a finite set of membership assertions of the form A(a) and
P (a, b), where a, b ∈ Na. A DL-LiteR KB K is a pair �T ,A�, where T is a DL-LiteR
TBox and A is a DL-LiteR ABox. As usual, TBoxes represent implicit knowledge,
while ABoxes represent the data.

In the following, we will also make use of a restricted form of DL-LiteR TBoxes.
A DL-LiteR TBox is said to be definite if there are only atomic concepts and atomic
roles on the right-hand side of its inclusions. In other words, a definite TBox may not
mention in its right-hand side a concept of the form ∃R, and may not contain concept
or role disjointness assertions. We call DL-LiteRDFS the fragment of DL-LiteR obtained
by considering only definite DL-LiteR TBoxes. Intuitively, DL-LiteRDFS corresponds to
the fragment of RDFS [3] that is embeddable in FOL (and hence in DLs).

The semantics of DL-LiteR is defined in the standard way. We just remark that
we use MOD(K) to denote the set of all models of KB K. From now on, we assume
that interpretations satisfy the standard name assumption, that is, we assume given a
fixed infinite set U of individual names, and we assume that for every interpretation
I = �∆I , ·I�, it holds that ∆I ⊆ U and aI = a for every a ∈ ∆I . Notice that this
implies the Unique Name Assumption (UNA), i.e., different individuals are interpreted
as different domain elements.

A signature Σ is a set of concept and role names. An interpretation I = �∆I , ·I� is
said to be an interpretation of Σ if it is defined exactly on the concept and role names in
Σ. Given a KB K, the signature Σ(K) of K is the alphabet of concept and role names
occurring in K, and K is said to be defined over (or simply, over) a signature Σ if
Σ(K) ⊆ Σ (and likewise for a TBox T , an ABox A, a concept inclusions B � C, a
role inclusions R � Q, and membership assertions A(a) and R(a, b)).

2.2 Conjunctive Queries and Certain Answers

A conjunctive query (CQ) over a signature Σ is a first-order formula of the form
q(x) = ∃y.conj (x,y), where x, y are tuples of variables and conj (x,y) is a con-
junction of atoms of the form: (1) A(t), with A a concept name in Σ and t either a
constant from U or a variable from x or y, or (2) P (t1, t2), with P a role name in Σ
and ti (i = 1, 2) either a constant from U or a variable from x or y. In a conjunc-
tive query q(x) = ∃y.conj (x,y), x is the tuple of free variables of q(x). A union of

conjunctive queries (UCQ) is a formula of the form: q(x) =
�n

i=1 ∃yi.conj i(x,yi),
where each conji(x,yi) is as before. A query q (either a CQ or a UCQ) is said to be a
query over a KB K if q is a query over a signature Σ and Σ ⊆ Σ(K).

Let q be a CQ ∃y1 · · · ∃y�.conj (x1, . . . , xk, y1, . . . , y�) over a signature Σ and
I = �∆I , ·I� an interpretation of Σ. Then the answer of q over I, denoted by qI ,
is defined as the set of tuples (a1, . . . , ak) of elements from ∆I for which there ex-
ist a tuple (b1, . . . , b�) of elements from ∆I such that I satisfies every conjunct in
conj (a1, . . . , ak, b1, . . . , b�). Moreover, given a UCQ q =

�n
i=1 qi, the answer of q

over an interpretation I, denoted by qI , is defined as
�n

i=1 q
I
i . Finally, given a query q

(either a CQ or a UCQ) over a KB K, the answer to q over K, denoted by cert(q,K),
is defined as cert(q,K) =

�
I∈MOD(K) q

I . Each tuple in cert(q,K) is called a certain

answer for q over K.

6



4 Marcelo Arenas, Elena Botoeva, and Diego Calvanese

Certain answers in DL-LiteR can be characterized through the notion of chase. We
call a chase a (possibly infinite) set of assertions of the form A(t), P (t, t�), where t, t�
are either individuals, or labeled nulls interpreted as not necessarily distinct domain el-
ements. For DL-LiteR KBs, we employ the notion of oblivious chase as defined in [4].
For such a KB �T ,A�, the chase of A w.r.t. T , denoted chaseT (A), is a chase ob-
tained from A by adding facts implied by inclusions in T , and introducing labeled nulls
whenever required by an inclusion with ∃R in the right-hand side (see [4] for details).

3 Exchanging Knowledge Bases

In this section, we introduce the knowledge exchange framework used in the paper.
The starting point to define this framework is the notion of mapping, which has been
shown to be of fundamental importance in the context of data exchange [5]. Formally,
a DL-LiteR-mapping (or just mapping) is a tuple M = (Σ1, Σ2, T12), where Σ1, Σ2

are disjoint signatures and T12 is a DL-LiteR TBox whose inclusions are of the form:
(1) C1 � C2, where C1, C2 are complex concepts over Σ1 and Σ2, respectively, and
(2) Q1 � Q2, where Q1 and Q2 are complex roles over Σ1 and Σ2, respectively.

Let M = (Σ1, Σ2, T12) be a mapping. Intuitively, mapping M specifies how a
knowledge base over the vocabulary Σ1 should be translated into a knowledge base
over the vocabulary Σ2. This intuition is formalized in terms of the notion of solution,
which is defined as follows. Given an interpretation I1 of Σ1 and an interpretation
I2 of Σ2, pair (I1, I2) satisfies TBox T12, denoted by (I1, I2) |= T12, if for each
concept inclusion C1 � C2 ∈ T12, it holds that CI1

1 ⊆ CI2
2 , and for each role inclusion

Q1 � Q2 ∈ T12, it holds that QI1
1 ⊆ QI2

2 . Moreover, given an interpretation I of Σ1,
SATM(I) is defined as the set of interpretations J of Σ2 such that (I,J ) |= T12, and
given a set X of interpretations of Σ1, SATM(X ) is defined as:

SATM(X ) =
�

I∈X SATM(I).

Then the notion of solution under a mapping is defined as follows, by considering this
notion of satisfaction and the knowledge exchange framework proposed in [1].

Definition 1. Let M = (Σ1, Σ2, T12) be a mapping, K1 a KB over Σ1, and K2 a KB

over Σ2. Then K2 is said to be a solution for K1 under M if:

MOD(K2) ⊆ SATM(MOD(K1)).

That is, K2 is a solution for K1 under M if for every model I2 of K2, there exists a
model I1 of K1 such that (I1, I2) |= T12.

Let M = (Σ1, Σ2, T12). A KB K1 over Σ1 can have an infinite number of solutions
under M. Thus, it is natural to ask what is a good solution for this knowledge base. Next
we introduce the notion of universal solution, which is a simple extension of the concept
of solution introduced in Definition 1, and is based on the notion of universal solution
introduced in [1].

Definition 2. Let M = (Σ1, Σ2, T12) be a mapping, K1 a KB over Σ1, and K2 a KB

over Σ2. Then K2 is said to be a universal solution for K1 under M if:

MOD(K2) = SATM(MOD(K1)).

7
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In the preceding definition, KB K2 is considered to be a good solution for KB K1 under
mapping M as the models of K2 exactly correspond to the valid translations of the
models of K1 according to M. We illustrate Definitions 1 and 2 in an example.

Example 1. Let M = (Σ1, Σ2, T12), where Σ1 = {A1, B1}, Σ2 = {A2, B2}, and
T12 = {A1 � A2, B1 � B2}. Furthermore, assume that K1 = �T1,A1�, where
T1 = {B1 � A1} and A1 = {B1(a)}. Then the following knowledge bases over Σ2

are solutions for K1 under M:

K2 = �T2,A2�, where T2 = ∅, A2 = {B2(a), A2(a)}
K�

2 = �T �
2 ,A�

2�, where T �
2 = {B2 � A2}, A�

2 = {B2(a)}

Moreover, K2 is a universal solution for K1 under M, while K�
2 is not. In fact, if I2 is

an interpretation of Σ2 such that: ∆I2 = {a, b}, AI2
2 = {a}, and BI2

2 = {a, b}, then
we have that I2 �∈ MOD(K�

2) since I2 does not satisfy inclusion B2 � A2, but I2 ∈
SATM(MOD(K1)) since (I1, I2) |= T12 for I1 ∈ MOD(K1) defined as ∆I1 = {a},
AI1

1 = {a} and BI1
1 = {a}.

In the previous example, K�
2 is not a universal solution for K1 under M since inclusion

B2 � A2 cannot be deduced from the information in K1 and M. Or, more formally,
K�

2 is not a universal solution as B2 � A2 is not implied by �T1 ∪ T12,A1�. However,
K�

2 can also be considered as a solution of K1 that is desirable to materialize, as the
implicit knowledge in K2 (i.e., TBox T2) represents the implicit knowledge in K1 (i.e.,
TBox T1), given the way that concepts A1 and B1 have to be translated according to
mapping M. In fact, solution K�

2 is as good as solution K2 in terms of the information
that can be extracted from them by using some specific queries, but with the advantage
that K�

2 represents knowledge in a more compact way. In what follows, we introduce a
new class of good solutions that captures this intuition with respect to the widely used
fragment of CQs.

Definition 3. Let M = (Σ1, Σ2, T12) be a mapping, K1 = �T1,A1� a KB over Σ1,

and K2 a KB over Σ2. Then K2 is said to be a CQ-solution for K1 under M if for every

CQ q over Σ2, we have that cert(q, �T1 ∪ T12,A1�) ⊆ cert(q,K2).
Moreover, K2 is said to be a universal CQ-solution for K1 under M if for every CQ

q over Σ2, we have that cert(q, �T1 ∪ T12,A1�) = cert(q,K2).

Notably, we have in Example 1 that both KB K2 and KB K�
2 are universal CQ-solutions

for KB K1 under mapping M.
A natural question at this point is what is the relationship between the notions of

solution presented in this section. The following proposition, which is straightforward
to prove, shows that the notion of (universal) CQ-solution is weaker than the notion of
(universal) solution.

Proposition 1. Let M = (Σ1, Σ2, T12) be a mapping, K1 a KB over Σ1, and K2 a

KB over Σ2. If K2 is a (universal) solution for K1 under M, then K2 is a (universal)

CQ-solution for K1 under M.

In this paper, we study several fundamental problems related to the notions of solution
presented here. These problems are formally introduced below.

8



6 Marcelo Arenas, Elena Botoeva, and Diego Calvanese

3.1 Knowledge Base Exchange: Reasoning Tasks

In the data exchange scenario [5], as well as in the knowledge exchange scenario [1],
the problem of materializing solutions has been identified as the fundamental problem
to solve. Given a class U of mappings (for example, the class of DL-LiteR-mappings)
and a DL L (for example, DL-LiteR), the problem of computing solutions is defined as
follows for U and L:

PROBLEM : COMPSOL(U ,L)
INPUT : A mapping M ∈ U and an L-knowledge base K1 over Σ1

TO DO : Compute an L-knowledge base K2 over Σ2 such that K2 is a solu-
tion for K1 under M

Given a class U of mappings and a DL L, the computation problems
COMPUNIVSOL(U ,L), COMPCQSOL(U ,L), and COMPUNIVCQSOL(U ,L) are de-
fined exactly as above, but considering universal solutions, CQ-solutions, and universal
CQ-solutions instead of solutions, respectively.

In the rest of this paper, we study these problems, and some other fundamental
problems associated to them, for a restriction of the class of mappings introduced in
this section. More precisely, a mapping M = �Σ1, Σ2, T12� is said to be definite if T12
is a DL-LiteRDFS TBox (recall the definition of definite TBoxes in Section 2.1). We use
Udef to denote the class of definite mappings. Then, as our first result, we obtained that
the chase can be used to compute universal solutions for definite mappings and DL-

LiteRDFS TBoxes. In what follows, let chaseT ,Σ(A) denote the projection of chaseT (A)
on the signature Σ.

Proposition 2. Let M = (Σ1, Σ2, T12) be a definite mapping and K1 = �T1,A1� a

DL-LiteRDFS KB over Σ1. Then �∅, chaseT12,Σ2(chaseT1(A1))� is a universal solution

for K1 under M.

Thus, given that for definite mappings and DL-LiteRDFS TBoxes, the sets chaseT1(A1)
and chaseT12,Σ2(chaseT1(A1)) are always finite and can be computed in polynomial
time [4], we obtain as a corollary of Propositions 1 and 2 that the problems of computing
solutions defined above can be solved in polynomial time for definite mappings and DL-

LiteRDFS TBoxes.

Corollary 1. COMPSOL(Udef ,DL-LiteRDFS), COMPUNIVSOL(Udef ,DL-LiteRDFS),
COMPCQSOL(Udef ,DL-LiteRDFS), and COMPUNIVCQSOL(Udef ,DL-LiteRDFS) can all

be solved in polynomial time.

Unfortunately, the solutions obtained by using Proposition 2 are of little interest to us
because the generated target ABoxes can be very large. Hence, we turn our attention to
the case of non-empty target TBoxes and, more specifically, to the problem of comput-
ing universal CQ-solutions that include as much implicit knowledge as possible. This
gives rise to the following separation properties.

Definition 4. Let M = (Σ1, Σ2, T12) be a mapping and T1 a TBox over Σ1.

– T1 is representable in M if there exists a TBox T2 over Σ2 such that for every

ABox A1 over Σ1, it holds that �T2, chaseT12,Σ2(A1)� is a universal CQ-solution

for �T1,A1� under M. T2 is called a representation of T1 in M.

9
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– T1 is weakly representable in M if there exists a mapping M� = (Σ1, Σ2, T �
12)

such that T12 ⊆ T �
12, T1 ∪ T12 |= T �

12 and T1 is representable in M�
.

The separation problems are interesting to us because a positive answer would mean
that we can construct the TBox of a solution by considering only the input TBox and
the mapping, independently of the input ABox. On the other hand, the ABox of the
solution can be found simply by translating the input ABox according to the rules in the
mapping (and the input TBox). We illustrate the notions just defined in the following
example.

Example 2. Let Σ1 = {A1, B1}, Σ2 = {A2, B2}, and T1 = {B1 � A1}. If M =
(Σ1, Σ2, T12) with T12 = {A1 � A2, B1 � B2}, then we have that T2 = {B2 � A2}
is a representation of T1 in M.

On the other hand, if M� = (Σ1, Σ2, T �
12) with T �

12 = {A1 � A2}, then we have
that T1 is not representable in M�: let A�

1 = {B1(a)}, then chaseT �
12,Σ2

(A�
1) = ∅ and

for no TBox T �
2 , �T �

2 , chaseT �
12,Σ2

(A�
1)� is a universal CQ-solution to �T1,A�

1� under
M�. However, if we consider T �

12 = T �
12 ∪ {B1 � A2}, we conclude that T1 is weakly

representable in M� since T �
12 ⊆ T �

12, T1 ∪ T �
12 |= T �

12 and T1 is representable in
M� = (Σ1, Σ2, T �

12) (in fact, ∅ is a representation of T1 in M�). Note, that T �
12 ⊂ T12.

Now, if M�� = (Σ1, Σ2, T ��
12) with T ��

12 = {A1 � A2, B1 � B2, C1 � B2},
then again we have that T1 is not representable in M��: let A��

1 = {B1(a), C1(c)},
then chaseT ��

12,Σ2
(A��

1) = {B2(a), B2(c)}. The query q() ← A2(a) evaluates to true
in �T1 ∪ T ��

12,A��
1�, hence in order for a TBox T ��

2 to be a representation of T1 in M��,
it must contain the inclusion B2 � A2. On the other hand, it implies that the query
q�() ← A2(c) evaluates to true in �T ��

2 , chaseT ��
12,Σ2

(A��
1)�, whereas it evaluates to false

in �T1∪T ��
12,A��

1�. However, again if we consider T ��
12 = T ��

12∪{B1 � A2}, we conclude
that T1 is weakly representable in M��.

4 Techniques for Deciding Representability

We address now the problem of deciding (weak) representability of a TBox in a map-
ping, for the case where TBoxes are expressed in DL-LiteRDFS and mappings are definite.
We start by showing some properties that characterize solutions in terms of chases.

In the following for two chases C1 and C2, a homomorphism from C1 to C2 is a
mapping h from the individuals and labeled nulls in C1 to those in C2 such that (1) h is
the identity on the individuals, (2) if A(t) ∈ C1 then A(h(t)) ∈ C2, and (3) if P (t, t�) ∈
C1 then P (h(t), h(t�)) ∈ C2. We write C1 → C2 if there is a homomorphism from C1 to
C2, and C1 � C2 if C1 → C2 and C2 → C1.

From now on, we assume Σ1 and Σ2 as given, and for a mapping M = (Σ1, Σ2, T12),
we use simply M to denote also T12. Then we have the following characterizations of
solutions in terms of chases, which are similar to the characterizations in [1].

Proposition 3. Let M be a definite mapping, K1 = �T1,A1� a DL-LiteRDFS KB over

Σ1, and K2 = �T2,A2� a DL-LiteRDFS KB over Σ2. If chaseM,Σ2(chaseT1(A1)) →
chaseT2(A2), then K2 is a CQ-solution for K1 under M.

10
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Corollary 2. Let M be a definite mapping, K1 = �T1,A1� a DL-LiteRDFS KB over Σ1,

and K2 = �T2,A2� a DL-LiteRDFS KB over Σ2. Then K2 is a universal CQ-solution for

K1 under M if chaseM,Σ2(chaseT1(A1)) � chaseT2(A2).

4.1 Checking Representability of a TBox in a Mapping

We address now the representability problem, which is to decide, given a TBox T1 over
Σ1 and a mapping M, whether T1 is representable in M (cf. Definition 4).

We start by considering the decision problem associated with representability:

Given a mapping M, a TBox T1 over Σ1, and a TBox T2 over Σ2, check whether T2
is a representation of T1 in M, i.e., for each ABox A1 over Σ1, �T2, chaseM,Σ2(A1)�
is a universal CQ-solution for �T1,A1� under M.

For definite mappings and DL-LiteRDFS TBoxes, the decision problem associated with
representability can be solved in two steps:
1. Check whether for each ABox A1 over Σ1, �T2, chaseM,Σ2(A1)� is a CQ-solution

for �T1,A1� under M.
2. Check whether for each ABox A1 over Σ1 and for each CQ q over Σ2, we have

that cert(q, �T2, chaseM,Σ2(A1)�) ⊆ cert(q, �T1 ∪M,A1�).
If both checks succeed, then T2 is a representation of T1 in M, otherwise it is not. We
develop now techniques to perform these two tests.

Step 1: Checking whether for each ABox A1 over Σ1, �T2, chaseM,Σ2(A1)� is a CQ-

solution for �T1,A1� under M.

We introduce now some notions that help us to characterize when a mapping is able to
“translate” the inclusions in T1 to the target TBox.

We use pn(X) to denote A if X is A, and P if X is ∃P , ∃P−, P , or P−. For X ,
Y DL-LiteRDFS expressions, we say that X is compatible with Y if (i) pn(X) = pn(Y ),
and (ii) if X is ∃R, then Y is ∃R, R, or R−. For a DL-LiteRDFS inclusion α = X1 � X2,
we use lhs(α) to denote X1, and rhs(α) to denote X2. We say that α is left-compatible

(resp., right-compatible) with X , if X is compatible with lhs(α) (resp., rhs(α)).
Let M be a definite mapping, α = N1 � M1 a DL-LiteRDFS inclusion over Σ1,

and µ ∈ M left-compatible with M1. Then the translation set of α and µ in M,
denoted M(α, µ,M), is the set of DL-LiteRDFS inclusions over Σ2 such that, if there

Table 1. Definition of M(α, µ,M). Ai, Ei are atomic concepts, Ri, Si are basic roles.

α µ ν β
A1 � E1 E1 � E2 A1 � A2 A2 � E2

∃R1 � E1 E1 � E2 ∃R1 � A2 A2 � E2

R1 � R2 ∃R2 � E2

R1 � S1 S1 � S2 R1 � R2 R2 � S2

∃S1 � E2 ∃R1 � A2 A2 � E2

R1 � R2 ∃R2 � E2

∃S1
− � E2 ∃R1

− � A2 A2 � E2

R1 � R2 ∃R2
− � E2

11



Knowledge Base Exchange 9

exists an inclusion ν in M left-compatible with N1, then β ∈ M(α, µ,M), where β is
uniquely defined by α, µ, ν as shown in Table 1. When the mapping M is clear from
the context, we write M(α, µ). We say that α is redundant w.r.t. µ = M �

1 � M2 (in M)
if M2 � M2 ∈ M(α, µ). We explain these definitions in an example.

Example 3. Let α = S1 � R1 and µ = ∃R1 � A2.

∃S−
1

∃S1

S1

∃R−
1

∃R1

R1

α

∃S−
2

∃S2S2

E2

A2

ν

ν�

µ

ν��
β

β�

Let ν = S1 � S2 and ν� = ∃S1 � E2 be in M. Then {∃S2 � A2, E2 � A2} ⊆
M(α, µ,M). If ν�� = ∃S1 � A2 ∈ M, then α is redundant w.r.t. µ.

If none of ν, ν� and ν�� is in M, then M(α, µ,M) is empty.

With these notions in place, we can characterize CQ-solutions in the context of the
representability problem.

Proposition 4. Let M be a definite mapping, T1 a DL-LiteRDFS TBox over Σ1, and T2 a

DL-LiteRDFS TBox over Σ2. Then for each ABox A1, the KB �T2, chaseM,Σ2(A1)� is a

CQ-solution for �T1,A1� under M if and only if for each inclusion α, s.t. T1 |= α, and

for each inclusion µ ∈ M left-compatible with rhs(α), there exists β ∈ M(α, µ) such

that T2 |= β.

Step 2: Checking whether for each ABox A1 over Σ1, and for each CQ q over Σ2, we

have that cert(q, �T2, chaseM,Σ2(A1)�) ⊆ cert(q, �T1 ∪M,A1�).

Recall the definition of the translation set. Now, let β = N2 � M2 be a DL-LiteRDFS

inclusion over Σ2, and ν ∈ M right-compatible with N2. Then the reverse-translation

set of β and ν in M, denoted M−(β, ν,M), is the set of DL-LiteRDFS inclusions over
Σ1 such that, if there exists an inclusion µ in M right-compatible with M2, then α ∈
M−(β, ν,M), where α is uniquely defined by β, ν, and µ as shown in Table 1.

Proposition 5. Let M be a definite mapping, T1 a DL-LiteRDFS TBox over Σ1, and T2
a DL-LiteRDFS TBox over Σ2. Then for each ABox A1 over Σ1 and for each CQ q over

Σ2, cert(q, �T2, chaseM,Σ2(A1)�) ⊆ cert(q, �T1 ∪ M,A1�) if and only if for each

inclusion β, s.t. T2 |= β, and for each inclusion ν ∈ M right-compatible with lhs(β),
there exists α ∈ M−(β,ν ), s.t. T1 |= α.

With the techniques for Steps 1 and 2 at hand, we are ready to characterize repre-
sentations.

12
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Corollary 3. Let M be a definite mapping, T1 a DL-LiteRDFS TBox over Σ1, and T2 a

DL-LiteRDFS TBox over Σ2. Then for each ABox A1 over Σ1, �T2, chaseM,Σ2(A1)� is a

universal CQ-solution for �T1,A1� under M iff

– for each inclusion α, s.t. T1 |= α, and for each inclusion µ ∈ M left-compatible

with rhs(α), there exists β ∈ M(α, µ) s.t. T2 |= β, and

– for each inclusion β, s.t. T2 |= β, and for each inclusion ν ∈ M right-compatible

with lhs(β), there exists α ∈ M−(β,ν ), s.t. T1 |= α.

Now, we can check whether a given T1 is representable in a given M.

Theorem 1. Let M be a definite mapping and T1 a DL-LiteRDFS TBox over Σ1. Then

we can check whether T1 is representable in M in polynomial time.

4.2 Checking Weak Representability

We can easily solve the weak representability problem for DL-LiteRDFS KBs even if the
mappings are arbitrary tgds, i.e., assertions of the form q1 → q2, mapping a CQ q1 over
Σ1 to a CQ q2 over Σ2 of the same arity as q1. We call such a mapping a tgd-mapping.
Let T1 be a DL-LiteRDFS TBox and M a tgd-mapping. We can enrich M by compiling
knowledge from T1 into it:

– Let q1 → q2 be a tgd in M, with q1 a CQ over Σ1 and q2 a CQ over Σ2. Let the
UCQ Q1 = {q11 , . . . , qk1} be the perfect reformulation of q1 w.r.t. T1 (see, e.g., [4]).
Then we extend M with a tgd qi1 → q2 for each qi1 ∈ Q1.

– We perform this for each tgd in M. The resulting mapping is denoted with M∗.

Proposition 6. Let M be a tgd-mapping, T1 a DL-LiteRDFS TBox over Σ1, and M∗

the mapping constructed as described above. Then for each ABox A1 over Σ1, the KB

�∅, chaseM∗,Σ2(A1)� is a universal CQ-solution for �T1,A1� under M.

From this we immediately get:

Theorem 2. Let M be a definite mapping and T1 a DL-LiteRDFS TBox over Σ1. Then T1
is weakly representable in M.

Thus, when the source KB is expressed in DL-LiteRDFS it is always possible to sepa-
rate data by enriching mappings, even if mappings are tgds. When M is a set of tgds,
the size of M∗ might be exponential in the size of M. If M is a DL-LiteRDFS mapping,
the size of M∗ is always polynomial in the size of M.

5 Conclusions

We have specialized the framework for KB exchange proposed in [1] to the case of
DLs, i.e., the source and target KBs are given as DL KBs and the mappings have the
form of DL TBox assertions. Moreover, we have defined a new reasoning problem: rep-
resentability of a TBox in a mapping, whose goal is to compute from a source TBox
and a mapping, a target TBox that leads to a universal (CQ-)solution when it is com-
bined with a suitable ABox computed from the source ABox, independently of the
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actual source ABox. A variation of this problem, called weak representability, allows
for modification of the mapping, so that the source TBox becomes representable.

Then, we have developed first results and techniques for KB exchange and for the
representability problem in the case of mappings and KBs expressed in DL-LiteRDFS

(such mappings are called definite). DL-LiteRDFS is a fragment of DL-LiteR that does
not allow for existential quantification (i.e., concepts of the form ∃R) in the right-hand
side of concept inclusions, nor for disjointness assertions. It implies, first, that the chase
is always finite in DL-LiteRDFS, and, second, that KBs are always consistent. We have
shown the following results for definite mappings and DL-LiteRDFS KBs: (i) the prob-
lems of computing (universal) (CQ-)solutions can be solved in polynomial time; (ii) the
problem of representability of a TBox in a mapping is decidable in polynomial time;
(iii) every DL-LiteRDFS TBox is weakly representable in a definite mapping.

The main direction for future work is to extend the results to the case of full DL-

LiteR. This brings up the problem of labelled nulls in the chase, which becomes infinite
in general. Moreover, due to the possible presence of disjointness assertions in TBoxes,
consistency of the source and target KBs has to be checked.
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A. Artale,1 A. Ibáñez Garćıa,1 R. Kontchakov,2 and V. Ryzhikov1

1
KRDB Research Centre

Free University of Bozen-Bolzano, Italy

{lastname }@inf.unibz.it

2
Dept. of Comp. Science and Inf. Sys.

Birkbeck College, London, UK

roman@dcs.bbk.ac.uk

1 Introduction

The DL-Lite family of description logics has recently been proposed and investi-
gated in [5–7] and later extended in [1, 8, 3]. The relevance of the DL-Lite family
is witnessed by the fact that it forms the basis of OWL 2 QL, one of the three
profiles of OWL 2 (http://www.w3.org/TR/owl2-profiles/). According to the offi-
cial W3C profiles document, the purpose of OWL 2 QL is to be the language of
choice for applications that use very large amounts of data.

This paper extends the DL-Lite languages of [3] by relaxing the restriction
on the interaction between cardinality constraints (N ) and role inclusions (or
hierarchies, H). We also introduce a new family of languages, DL-LiteHNA

α ,
α ∈ {core, krom, horn, bool}, extending DL-Lite with attributes (A).

The notion of attributes, borrowed from conceptual modeling formalisms,
introduces a distinction between (abstract) objects and application domain val-
ues, and consequently, between concepts (sets of objects) and datatypes (sets of
values), and between roles (relating objects to objects) and attributes (relating
objects to values). The advantage of the presented languages over DL-LiteA [8]
is that the range restrictions for attributes can be local (and not only global as
in DL-LiteA). Indeed, DL-LiteHNA

α has a possibility to express concept inclusion
axioms of the form C � ∀U.T , for an attribute U and its datatype T . In this
way, we allow re-use of the very same attribute associated to different concepts
with different range restrictions. For example, we can say that employees’ salary
is of type Integer, researchers’ salary is in the range 35,000–70,000 (enumeration
type) and professors’ salary in the range 55,000–100,000—while both researchers
and professors are employees. Note that local attributes are strictly more expres-
sive than global ones. For example, concept disjointness (or unsatisfiability) can
be inferred just from datatype disjointness for the same (existentially qualified)
attribute. Since DL-Lite languages have been proved useful in capturing concep-
tual data models [8, 4, 2], the extension with attributes, as presented here, will
generalize their use even further.

We aim at establishing computational complexity of knowledge base satisfi-
ability in these new DLs. In particular we prove the following results:

1. We can relax the restrictions presented in [3] limiting the interaction between
sub-roles and number restrictions without increasing the complexity of rea-
soning as far as the problem is limited to TBox satisfiability checking. As
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for KB satisfiability, the presence of the ABox should be taken into account
if we want to preserve the complexity results.

2. The introduction of local range restrictions for attributes is for free for the
languages DL-LiteNA

bool , DL-LiteNA

horn and DL-LiteNA

core.

2 The Description Logic DL-LiteHNA

bool

The language of DL-LiteHNA

bool contains object names a0, a1, . . ., value names

v1, v2, . . ., concept names A0, A1, . . ., role names P0, P1, . . ., attribute names

U0, U1, . . ., and datatype names T0, T1, . . .. Complex roles R and concepts C

are defined below:

R ::= Pi | P
−

i
,

B ::= � | ⊥ | Ai | ≥ q R | ≥ q Ui

C ::= B | ¬C | C1 � C2,

where q is a positive integer. The concepts of the form B are called basic concepts.
A DL-LiteHNA

bool TBox, T , is a finite set of concept, role, attribute and
datatype inclusion axioms of the form:

C1 � C2, C � ∀U. T, R1 � R2, U � U
�
, T � T

�
, T � T

�
� ⊥,

and an ABox, A, is a finite set of assertions of the form:

Ak(ai), ¬Ak(ai), Pk(ai, aj), ¬Pk(ai, aj), Uk(ai, vj) and Tk(vj).

We standardly abbreviate ≥ 1R and ≥ 1U by ∃R and ∃U , respectively. Absence
of an attribute (i.e., C � ∀U.⊥) can be expressed as C � ∃U � ⊥.

Together, a TBox T and an ABox A constitute the DL-LiteHNA

bool knowledge

base (KB) K = (T ,A). In the following, we denote by role(K) and att(K) the
sets of role and attribute names occurring in K, respectively; role±(K) denotes
the set {Pk, P

−

k
| Pk ∈ role(K)}.

Semantics. As usual in description logic, an interpretation, I = (∆I
, ·I), con-

sists of a nonempty domain ∆
I and an interpretation function ·I . The interpre-

tation domain ∆
I is the union of two non-empty disjoint sets: the domain of

objects ∆
I
O

and the domain of values ∆
I
V
. We assume that all interpretations

agree on the semantics assigned to each datatype Ti, as well as on each constant
vi. In particular, T I

i
= val(Ti) ⊆ ∆

I
V
is the set of values of datatype Ti, and each

vi is interpreted as one specific value, denoted val(vi), i.e., vIi = val(vi) ∈ val(Ti).
Furthermore, ·I assigns to each object name ai an element a

I
i
∈ ∆

I
O
, to each

concept name Ak a subset A
I

k
⊆ ∆

I
O

of the domain of objects, to each role
name Pk a binary relation P

I

k
⊆ ∆

I
O
×∆

I
O

over the domain of objects, and to
each attribute name Uk a binary relation U

I

k
⊆ ∆

I
O
× ∆

I
V
. We adopt here the

unique name assumption (UNA): aI
i
�= a

I
j
, for all i �= j. The role and concept
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constructs are interpreted in I in the standard way:

(P−

k
)I = {(y, x) ∈ ∆

I

O ×∆
I

O | (x, y) ∈ P
I

k }, (inverse role)

�
I = ∆

I

O, (domain of objects)

⊥
I = ∅, (the empty set)

(≥q R)I =
�
x ∈ ∆

I

O | �{y | (x, y) ∈ R
I
} ≥ q

�
, (at least q R-successors)

(≥q U)I =
�
x ∈ ∆

I

O | �{v | (x, v) ∈ U
I
} ≥ q

�
, (at least q U -attributes)

(∀U. T )I =
�
x ∈ ∆

I

O | ∀v. (x, v) ∈ U
I
→ v ∈ T

I
�
, (attribute value restriction)

(¬C)I = ∆
I

O \ C
I
, (not in C)

(C1 � C2)
I = C

I

1 ∩ C
I

2 , (both in C1 and in C2)

where �X is the cardinality of X. The satisfaction relation |= is also standard:

I |= C1 � C2 iff C
I

1 ⊆ C
I

2 , I |= R1 � R2 iff R
I

1 ⊆ R
I

2 ,

I |= T1 � T2 iff T
I

1 ⊆ T
I

2 , I |= U1 � U2 iff U
I

1 ⊆ U
I

2 ,

I |= T1 � T2 � ⊥ iff T
I

1 ∩ T
I

2 = ∅, I |= Pk(ai, aj) iff (aIi , a
I

j ) ∈ P
I

k ,

I |= Ak(ai) i ffaIi ∈ A
I

k , I |= ¬Pk(ai, aj) iff (aIi , a
I

j ) /∈ P
I

k

I |= ¬Ak(ai) i ffaIi /∈ A
I

k , I |= Uk(ai, vj) iff (aIi , v
I

j ) ∈ U
I

k ,

I |= Tk(vj) i ffvIj ∈ T
I

k .

A KB K = (T ,A) is said to be satisfiable (or consistent) if there is an interpre-
tation, I, satisfying all the members of T and A. In this case we write I |= K

(as well as I |= T and I |= A) and say that I is a model of K (of T and A).

2.1 Fragments of DL-LiteHNA

bool

We consider various syntactical restrictions on the language of DL-LiteHNA

bool

along two axes: (i) the Boolean operators (bool) on concepts, (ii) the role and
attribute inclusions (H). Similarly to classical logic, we adopt the following def-
initions. A TBox T will be called a Krom TBox

1 if its concept inclusions are
restricted to:

B1 � B2, B1 � ¬B2 and ¬B1 � B2, (Krom)

(here and below all the Bi and B are basic concepts). T will be called a Horn

TBox if its concept inclusions are restricted to:
�

k

Bk � B. (Horn)

Finally, we call T a core TBox if its concept inclusions are restricted to:

B1 � B2 and B1 �B2 � ⊥. (core)

1
The Krom fragment of first-order logic consists of all formulas in prenex normal form

whose quantifier-free part is a conjunction of binary clauses.
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As B1 � ¬B2 is equivalent to B1 � B2 � ⊥, core TBoxes can be regarded as
sitting in the intersection of Krom and Horn TBoxes. In this paper we study the
following logics, for α ∈ {core, krom, horn, bool}:

DL-LiteHNA

krom ,DL-LiteHNA

horn ,DL-LiteHNA

core are the fragments of DL-LiteHNA

bool

with Krom, Horn, and core TBoxes, respectively;

DL-LiteHN

α is the fragment of DL-LiteHNA

α without attributes and datatypes;

DL-LiteNA

α is the fragment of DL-LiteHNA

α without role and attribute inclu-
sions.

As shown in [3], reasoning in DL-LiteHN

α is already rather costly (ExpTime-
complete) due to the interaction between role inclusions and number restrictions.
However, both of these constructs turn out to be useful for the purposes of
conceptual modeling. By limiting their interplay one can get languages with
a better computational properties [8, 3]. Before presenting such limitations we
need to introduce some notation. For a role R, let inv(R) = P

−

k
if R = Pk and

inv(R) = Pk if R = P
−

k
. Given a TBox T we denote by �∗

T
the reflexive and

transitive closure of the relation {(R,R
�), (inv(R), inv(R�)) | R � R

� ∈ T }. We
say that R ≡∗

T
R

� iff R �∗
T

R
� and R

� �∗
T

R. Say that R
� is a proper sub-role

of R in T if R� �∗
T

R and R ��∗
T

R
�. A proper sub-role R

� of R is said to be a
direct sub-role of R if there is no other proper sub-role R

�� of R such that R� is
a proper sub-role of R��; the set of direct sub-roles of R is denoted as dsubT (R).

The language DL-Lite(HN )
α [3] is the result of imposing the following syntactic

restriction on DL-LiteHN

α TBoxes T :

(inter) if R has a proper sub-role in T then T contains no negative occurrences
of number restrictions ≥ q R or ≥ q inv(R) with q ≥ 2

(an occurrence of a concept on the right-hand (left-hand) side of a concept
inclusion is called negative if it is in the scope of an odd (even) number of
negations ¬; otherwise it is called positive). We will formulate two alternative
versions of restriction (inter).

Definition 1. Given a TBox T and a role R ∈ role
±(T ), we define the following

parameters:

ubound(R, T ) = min
�
{∞} ∪{ q − 1 | q ≥ 2 and ≥ q R occurs negatively in T }

�
,

lbound(R, T ) = max
�
{0} ∪ {q | ≥ q R occurs positively in T }

�
,

rank(R, T ) = max
�
lbound(R, T ),

�
R�∈dsubT (R) rank(R

�
, T )

�
,

rank(R,A) = max
�
{0}∪{n | Ri(a, ai) ∈ A, Ri �

∗

T R, for distinct a1, . . . , an}
�
.

Consider the languages obtained from DL-LiteHN

α by imposing one of the fol-
lowing two restrictions:

(inter1) for every R ∈ role
±(T ), if R has a proper sub-role in T then

ubound(R, T ) ≥ rank(R, T );
(inter2) for every R ∈ role

±(T ), if R has a proper sub-role in T then
ubound(R, T ) ≥ rank(R, T ) + max{1, rank(R,A)}.
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language (inter) [3] (inter1) (inter2) non-restrict.
DL-LiteHN

core NLogSpace [3] NLogSpace [Th.1]

DL-LiteHN

horn PTime [3] PTime [Th.1]

DL-LiteHN

krom NLogSpace [3]
≥NP [Th.2] NLogSpace [Th.1]

ExpTime [3]

DL-LiteHN

bool NP [3] NP [Th.1]

DL-LiteHNA
core NLogSpace [Th.3] NLogSpace [Th.3]

DL-LiteHNA

horn PTime [Th.3] PTime [Th.3]

DL-LiteHNA

krom NP [Th.4]
≥NP [Th.2] NP [Th.4]

ExpTime

DL-LiteHNA

bool NP [Th.3] NP [Th.3]

DL-LiteNA
core NLogSpace [Th.3]

DL-LiteNA

horn PTime [Th.3]

DL-LiteNA

krom
NA NA NA NP [Th. 4]

DL-LiteNA

bool NP [Th.3]

Table 1: Complexity of DL-Lite logics (NA = Non-Applicable).

These new restrictions are in some way weaker than (inter) and, for ex-
ample, allow for the specialization of functional roles: KB K = (T ,A) with
T = {≥ 2R � ⊥, R1 � R2, R2 � R}, and A = {R(a, b), R1(a1, b1), R2(a2, b2)}
does not satisfy (inter), but it satisfies both (inter1) and (inter2). Finally,
the above restrictions can also be applied to sub-attributes in the languages
DL-LiteHNA

α . Table 1 summarizes the obtained complexity results (with numer-
ical parameters q coded in binary).

3 Reasoning in DL-LiteHN

α

In this section, we investigate the complexity of deciding KB satisfiability in
languages DL-LiteHN

α under the restrictions (inter1) and (inter2), respectively.
We adapt the proof presented in [3], where a DL-LiteHN

bool KB K = (T ,A)
is encoded into a sentence K‡e in the one-variable first-order logic QL1. We
use a slightly longer but simpler encoding. Every ai ∈ ob(A) is associated to the
individual constant ai of QL1, and every concept name Ai to the unary predicate
Ai(x). For each concept ≥ q R in K we introduce a fresh unary predicate EqR(x).
For each role name Pk ∈ role

±(K), two individual constants dpk and dp
−

k
are

introduced, as representatives of the objects in the domain and range of Pk,
respectively. The encoding C

∗ of a concept C is defined inductively:

⊥∗ = ⊥, (Ai)∗ = Ai(x), (≥ q R)∗ = EqR(x),
�∗ = �, (¬C)∗ = ¬C∗(x), (C1 � C2)∗ = C

∗
1 (x) ∧ C

∗
2 (x).

The QL1 sentence encoding the knowledge base K is defined as follows:

K
‡e = ∀x

�
T

∗(x) ∧ T
R(x) ∧

�

R∈role±(K)

�
�R(x) ∧ δR(x)

��
∧ A

‡e .
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Formulas T ∗(x), the δR(x), for R ∈ role
±(K), and T

R(x) encode the TBox T :

T ∗
(x) =

�

C1�C2∈T

�
C∗

1 (x) → C∗

2 (x)
�
, δR(x) =

�

q,q�∈QR
T , q�>q

�
Eq�R(x) → EqR(x)

�
,

T R
(x) =

�

R�
∗
T R�

�

q∈QR
T

�
EqR(x) → EqR

�
(x)

�
,

where QR

T
contains 1, all q such that ≥ q R occurs in T and all QR

�

T
, for R� �∗

T
R.

Sentence A‡e encodes the ABox A:

A
‡e =

�

Ak(ai)∈A

Ak(ai) ∧

�

¬Ak(ai)∈A

¬Ak(ai) ∧

�

a,a
�
∈ob(A)

R
�
�

∗
T R, R

�(a,a�)∈A

EqeR,a
R(a) ∧

�

¬Pk(ai,aj)∈A

R(ai,aj)∈A, R�
∗
T Pk

⊥,

where qe
R,a

is the maximum number in Q
R

T
such that there are qe

R,a
many distinct

ai with Ri(a, ai) ∈ A and Ri �
∗
T

R. For each R ∈ role
±(K), we also need the

following formula expressing the fact that the range of R is not empty whenever
its domain is non-empty:

�R(x) = E1R(x) → inv(E1R(dr)),

where inv(E1R(dr)) is E1P
−

k
(dp−

k
) if R = Pk and E1Pk(dpk) if R = P

−

k
.

Lemma 1. A DL-LiteHN

bool knowledge base under restriction (inter2) is satisfi-

able iff the QL
1
-sentence K‡e is satisfiable.

Proof. (Sketch) The only challenging direction is (⇐). To prove it, we adapt the
proofs of Theorem 5.2 and Lemma 5.14 in [3]. The idea of the proof is to construct
a DL-LiteHN

bool interpretation I, from M, the minimal Herbrand model of K‡e . We
denote the interpretations of unary predicates P and constants a of QL1 in M
by P

M and a
M, respectively. Let D = ob(A)∪ {dpk, dp

−

k
| Pk ∈ role(K)} be the

domain of M. Then I = (∆I
, ·I) is defined inductively: ∆I =

�∞

m=0 Wm, such
that W0 is the set D0 = ob(A), and for every ai ∈ ob(A), aI

i
= a

M
i
. Each set

Wm+1, m ≥ 0, is constructed by adding to Wm fresh copies of certain elements
from D \ ob(A). The extensions AI

k
of concept names Ak are defined by taking

A
I

k = {w ∈ ∆
I
| M |= A

∗

k[cp(w)]}, (1)

where cp(w) is the element d ∈ D of which w is a copy.
The interpretation for each role Pk, is defined inductively as P I

k
=

�∞

m=0 P
m

k
,

where Pm

k
⊆ Wm×Wm, along with the construction of ∆I . The initial interpre-

tation for each role name Pk is defined as follows:

P
0
k = {(aMi , a

M
j ) ∈ W0 ×W0 | R(ai, aj) ∈ A and R �

∗

T Pk}. (2)

For every R ∈ role
±(K), the required R-rank r(R, d) of d ∈ D is defined by taking

r(R, d) = max
�
{0} ∪ {q ∈ Q

R

T
| M |= EqR[d]}

�
. The actual R-rank rm(R,w) of

a point w ∈ ∆
I at step m is

rm(R,w) =

�
�{w� ∈ Wm+1 | (w,w�) ∈ P

m+1
k

}, if R = Pk,

�{w� ∈ Wm+1 | (w�
, w) ∈ P

m+1
k

}, if R = P
−

k
.
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Assume that Wm and P
m

k
, m ≥ 0, have been already defined. Let Wm+1 = ∅ and

P
m+1
k

= ∅, for each role name Pk. If we had rm(R,w) = r(R, cp(w)), for each role
R and w ∈ Wm, then the interpretation we need would be constructed. However,
the actual rank of some points could still be smaller than the required rank. We
cure these defects by adding R-successors for them. Note that the ‘curing’ process
for a given w and R, not only increases the actual R-rank of w, but also all its
R

�-ranks, for all R �∗
T

R
�. At this point we adapt the construction in [3] to

obtain the interpretation I we are intending. For each Pk ∈ role(K), we consider
two sets of defects in P

m

k
: Λm

k
= {w ∈ Wm \Wm−1 | rm(Pk, w) < r(Pk, cp(w))}

and Λ
m−

k
= {w ∈ Wm \Wm−1 | rm(P−

k
, w) < r(P−

k
, cp(w))}.

In each equivalence class [R] = {S | S ≡∗
T

R} we select a single role, a
representative. Let G = (Rep∗

T , E) be a directed graph such that Rep
∗

T is the
set of representatives and (R,R

�) ∈ E iff R is a proper sub-role of R�. Clearly, G
is a directed acyclic graph and so, by a topological sort, one can assign to each
representative a unique number smaller than the number of all its descendants in
G. We use the ascending total order induced on G when choosing an element Pk

in Rep
∗

T , and extend in that way Wm and P
m

k
to Wm+1 and P

m+1
k

, respectively.

(Λm

k
) Let w ∈ Λ

m

k
, q = r(Pk, cp(w))− rm(Pk, w), d = cp(w). There is q� ≥ q > 0

with M |= Eq�Pk[d]. Then, M |= E1Pk[d] and M |= E1P
−

k
[dp−

k
]. In this

case we take q fresh copies w
�
1, . . . , w

�
q of dp−

k
, add them to Wm+1 and for

each 1 ≤ i ≤ q, set cp(w�
i
) = dp

−

k
, add the pairs (w,w�

i
) to each P

m+1
j

with

Pk �∗
T
Pj and the pairs (w�

i
, w) to each P

m+1
j

with P
−

k
�∗

T
Pj (note that by

adding pairs to P
m+1
j

we change its the actual rank);

(Λm−

k
) This rule is the mirror image of (Λm

k
): Pk and dp

−

k
are replaced with P

−

k

and dpk, respectively.

We need to show that, for all w ∈ ∆
I and all ≥ q R in T ,

(a1) if ≥ q R occurs positively in T thenM |= EqR[cp(w)] implies w ∈ (≥ q R)I ;
(a2) if ≥ q R occurs negatively in T then w∈(≥ q R)I implies M |= EqR[cp(w)].

Consider first w ∈ W0. It should be clear that actual R-rank of w

r0(R,w) ≤ rank(R,A) +
�

R�∈dsubT (R) rank(R
�
, T )

and so, by (inter2), the total number of R-successors before we cure the de-
fects does not exceed ubound(R, T ). If ubound(R, T ) = ∞ then there are no
negative occurrences of ≥ q R with q ≥ 2 and, although may have rm(R,w) ≥
r(R, cp(w)) after curing the defects of R, both (a1) and (a2) hold. Otherwise,
we have ubound(R, T ) + 1 ∈ Q

R

T
and so, by (inter2), maxQR

T
> rank(R, T ) +

rank(R,A), whence r0(R,w) < maxQR

T
. So, as r(R, cp(w)) ≤ lbound(R, T ) and

lbound(R, T ) < ubound(R, T ) < maxQR

T
, after curing the defect, we will have

rm(R,w) = r(R, cp(w)), for all m > 0, and both (a1) and (a2) hold. The case
with w ∈ Wm0 \Wm0−1, for m0 > 0 is similar, only now

rm0(R,w) ≤ 1 +
�

R�∈dsubT (R) rank(R
�
, T ).
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Finally, we show that I |= ϕ for each ϕ ∈ K. For ϕ = Ak(ai), ϕ = ¬Ak(ai)
the claim is by the definition of AI

k
. For ϕ = ¬Pk(ai, aj), we have (ai, aj) ∈ P

I

k

iff( ai, aj) ∈ P
0
k
iff R(ai, aj) ∈ A and R �∗

T
Pk. By induction on the structure

of concepts and (a1) and (a2), one can show that I |= C1 � C2 whenever
M |= ∀x(C∗

1 (x) → C
∗
2 (x)), for each ϕ = C1 � C2. Finally, I |= ϕ holds by

definition in case ϕ = R1 � R2 ∈ T .

Theorem 1. Under restriction (inter2), checking KB satisfiability is NP-
complete in DL-LiteHN

bool , PTime-complete in DL-LiteHN

horn and NLogSpace-
complete in both DL-LiteHN

krom and DL-LiteHN

core.

We now consider the case where the restriction (inter1) is imposed on the
interaction between sub-roles and number restrictions. In presence of an ABox,
(inter2) restricts the number of R-successors in the ABox, which appears to be
a strong constraint on the instances of the ABox. On the other hand, the less
restrictive condition (inter1), which does not impose any bound on R-successors
in the ABox, does not come for free, as shown by the following theorem:

Theorem 2. Under restriction (inter1), checking KB satisfiability is NP-hard
even in DL-LiteHN

core.

Proof. We show that graph 3-colorability can be reduced to KB satisfiability.
Let G = (V,E) be a graph with vertices V and edges E and {r, g, b} be three
colors. Consider the following KB K = (T ,A) with role names vi and w and
object names o, r, g, b and the xi, for each vertex vi ∈ V :

T ={≥ (|V |+ 4)w � ⊥} ∪ {vi � w, B1 � ∃vi, B2 � ∃v
−

i
� ⊥ | vi ∈ V } ∪

{∃v
−

i
� ∃v

−

j
� ⊥ | (vi, vj) ∈ E},

A ={B1(o), w(o, r), w(o, g), w(o, b)} ∪ {w(o, xi), B2(xi) | vi ∈ V }.

It can be shown that K is satisfiable iff G is 3-colorable.

4 Reasoning with Attributes

In this section we study the effect of extending DL-Lite with attributes. In par-
ticular, we show that for the Bool, Horn and core cases the addition of attributes
does not change the complexity of KB satisfiability.

Theorem 3. KB satisfiability is NP-complete in DL-LiteNA

bool , PTime-complete

in DL-LiteNA

horn and NLogSpace-complete in DL-LiteNA

core.

Under restriction (inter2), checking KB satisfiability is NP-complete in

DL-LiteHNA

bool , PTime-complete in DL-LiteHNA

horn and NLogSpace-complete in

DL-LiteHNA

core .

Proof. (Sketch) We encode a DL-LiteHNA

α KB K = (T ,A) in a QL1 sentence
K‡a in a way similar to the translation used in Lemma 1. Denote by val(A) the
set of all value names that occur in A. Similarly to roles, we define the sets QU

T
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of natural numbers for all occurrences of ≥ q U (including sub-attributes). We
need a unary predicate EqU(x), for each attribute name U and q ∈ Q

U

T
, denoting

the set of objects with at least q values of attribute U . We also need, for each
attribute name U and each datatype T , a unary predicates UT (x), denoting all
objects that may have attribute U values only of datatype T . Following this
intuition, we extend ·∗ by the following two statements:

(≥ q U)∗ = EqU(x) and (∀U.T )∗ = UT (x).

The QL1 sentence encoding the KB K is defined as follows:

K
‡a = K

‡e ∧ ∀x
�
T

U (x)∧
�

U∈att(K)

�
δU (x)∧α

1
U (x)∧α

2
U (x)

��
∧ A

‡a ∧ A
‡
2
a ,

where K‡e is as before, T U (x), δU (x) and A‡a are similar to T R(x), δR(x) and
A‡e , but rephrased for attributes and their inclusions. The new types of ABox
assertions require the following formula:

A
‡
2
a =

�

Uk(ai,vj)∈A

�

datatype T

�
UT (ai) → Tvj

�
∧

�

T (vj)∈A

Tvj ,

where Tvj is a propositional variable for each datatype T and each vj ∈ val(A).
The two additional formulas, α1

U
(x) and α

2
U
(x), capturing datatype inclusions

and disjointness constraints are:

α
1
U (x) =

�

T�T �∈T

�
UT (x) → UT

�(x)
�
,

α
2
U (x) =

�

T�T ��⊥∈T

��
UT (x) ∧ UT

�(x) ∧ E1U(x) → ⊥
�
∧

�

v∈val(A)

�
Tv ∧ T

�
v → ⊥

��
.

We would like to note here that the formula α
2
U
(x) for disjoint datatypes demon-

strates a subtle interaction between attribute range constraints ∀U.T and mini-
mal cardinality constraints ∃U .

We show that K is satisfiable iff the QL
1-sentence K‡a is satisfiable. For (⇐),

let M |= K‡a . We construct a model I = (∆I
O
∪∆

I
V
, ·I) of K similarly to the way

we proved Lemma 1 but this time datatypes will have to be taken into account:
let ∆

I
O

be defined inductively as before and ∆
I
O

= val(A) ∪ V . The set V will
be constructed starting from val(A) in order to ‘cure’ the attribute successors
as follows. For each datatype T and each attribute U , let

T
0 = {v ∈ val(A) | M |= Tv} and U

0 = {(a, v) | U(a, v) ∈ A}.

For every attribute U ∈ att(K), we can define the required U -rank r(U, d) of
d ∈ D and the actual U -rank r0(R,w) of w ∈ ∆

I
O
as before, treating U as a role

name (the only difference is that there will be only one step, and so, the actual
rank is needed only for step 0). We can also consider the equivalence relation
induced by the sub-attribute relation in T , then we can choose representatives
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and a linear order on them respecting the sub-attribute relation of T . We can
start from the smaller attributes and ‘cure’ their defects. Let w ∈ ∆

I
O

and
q = r(U, cp(w)) − r0(U,w) > 0. Take q fresh elements v1, . . . , vq, add those
fresh values to V , add pairs (w, v1), . . . , (w, vq) to U

0 and add v1, . . . , vq to T
0

for each datatype T with M |= UT [cp(w)]. Let U
I and T

I be the resulting
relations. Now, it can be shown that if M |= K‡a then I |= ϕ for every ϕ ∈ K.
We only note here that fresh values vj cannot be added to two disjoint datatypes
T and T

� because of formula α
2
U
(x).

Now, given a KB with a Bool or Horn TBox, K‡a is a universal one-variable
formula or a universal one-variable Horn formula, respectively, which immedi-
ately gives the NP and PTime upper complexity bounds for the Bool and Horn
fragments. The NLogSpace upper bound for KBs with core TBoxes is not so
straightforward because α

2
U
(x) is not a binary clause. In this case we note that

K‡a is still a universal one-variable Horn formula and therefore, K‡a is satisfiable
iff it is true in the ‘minimal’ model. The minimal model can be constructed in the
bottom-to-top fashion by using only positive clauses of K‡a (i.e., clauses of the
form ∀x (B1(x)∧ · · · ∧Bk(x) → H(x))) and then checking whether the negative
clauses of K‡a (i.e., clauses of he form ∀x (B1(x)∧ · · · ∧Bk(x) → ⊥)) hold in the
constructed model. By inspection of the structure of K‡a , one can see that all
its positive clauses are in fact binary, and therefore, whether an atom is true in
its minimal model or not can be checked in NLogSpace.

It is of interest to note that the complexity of KB satisfiability increases in
the case of Krom TBoxes:

Theorem 4. KB satisfiability is NP-complete in DL-LiteNA

krom, and so, in

DL-LiteHNA

krom even under (inter) and (inter2).

Proof. (Sketch) The proof exploits the ternary disjointness formula α
2
U
(x) in

K‡a . In fact, if T � T
� � ⊥ ∈ T then the following concept inclusion, although

not in the syntax of DL-LiteNA

krom, is a logical consequence of T (cf. α2
U
(x)):

∀U.T � ∀U.T
�
� ∃U � ⊥.

Using such ternary intersections one can encode 3SAT. Let ϕ =
�m

i=1 Ci be a
3CNF, where the Ci are ternary clauses over variables p1, . . . , pn. Now, suppose
pj1i

∨ ¬pj2i
∨ pj3i

is the ith clause of ϕ. It is equivalent to ¬pj1i
∧ pj2i

∧ ¬pj3i
→ ⊥

and so, can be encoded as follows:

T
1
i � T

2
i � ⊥, ¬Aj1i

� ∀Ui.T
1
i , Aj2i

� ∀Ui.T
2
i , ¬Aj3i

� ∃Ui,

where the A1, . . . , An are concept names for the variables p1, . . . , pn, and Ui is
an attribute and T

1
i
and T

2
i
are datatypes for the ith clause (note that Krom

concept inclusions of the form ¬B � B
� are required, which is not allowed in

the core TBoxes). Let T consist of all such inclusions for clauses in ϕ. It can be
seen that ϕ is satisfiable iff T is satisfiable.
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5 Conclusions

We studied two different extensions of the DL-Lite logics. First, local attributes
allow to use the same attribute associated to different concepts with different
datatype range restrictions. We showed that the extension with attributes is
harmless with the only notable exception of the Krom fragment, where the com-
plexity rises from NLogSpace to NP.

Second, we consider weak syntactic restrictions on interaction between cardi-
nality constraints and role inclusions and study their impact on the complexity
of satisfiability. For example, under (inter) [3], roles with sub-roles cannot have
maximum cardinality constraints. We present two alternative restrictions, which
coincide without ABoxes, and show that the complexity of TBox satisfiability
under them coincides with the complexity of TBox satisfiability without role in-
clusions. However, if we want to preserve complexity of KB reasoning, condition
(inter2) imposes a bound on the number R-successors in the ABox. Indeed,
under the weaker condition (inter1) complexity of KB satisfiability rises to at
least NP (even for the core fragment).

As a future work, we intend to fill the gaps in Table 1 and, in particular, to
see whether the NP-hardness results have a matching upper bound. We are also
working on query answering in the languages with attributes.
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2 ETH Zürich, Switzerland, thannguy@inf.ethz.ch

Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redundan-
cies in ontologies. The inexpressive Description Logic EL is of particular
interest in this context since, on the one hand, several large biomedical
ontologies are defined using EL. On the other hand, unification in EL has
recently been shown to be NP-complete, and thus of considerably lower
complexity than unification in other DLs of similarly restricted expres-
sive power. However, EL allows the use of the top concept (�), which
represents the whole interpretation domain, whereas the large medical
ontology SNOMEDCT makes no use of this feature. Surprisingly, remov-
ing the top concept from EL makes the unification problem considerably
harder. More precisely, we will show that unification in EL without the
top concept is PSpace-complete.

1 Introduction

Unification in DLs has been proposed in [7] as a novel inference service that can,
for example, be used to detect redundancies in ontologies. In this paper, we will
look at unification in ontologies expressed in EL. For example, assume that one
knowledge engineer defines the concept of female professors as

Person � Female � ∃job.Professor,

whereas another knowledge engineer represent this notion in a somewhat differ-
ent way, e.g., by using the concept term

Woman � ∃job.(Teacher � Researcher).

These two concept terms are not equivalent, but they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by sub-
stituting the concept name Professor in the first term by the concept term
Teacher � Researcher and the concept name Woman in the second term by the
concept term Person � Female. We call a substitution that makes two concept
terms equivalent a unifier of the two terms. Such a unifier proposes definitions

� Supported by DFG under grant BA 1122/14-1
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for the concept names that are used as variables. In our example, we know that,
if we define Woman as Person � Female and Professor as Teacher � Researcher,
then the two concept terms from above are equivalent w.r.t. these definitions.

In [7] it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [4], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. The original unification algorithm for EL introduced in [4] was a brutal
“guess and then test” NP-algorithm, but we have since then also developed
more practical algorithms. On the one hand, in [6] we describe a goal-oriented
unification algorithm for EL, in which non-deterministic decisions are only made
if they are triggered by “unsolved parts” of the unification problem. On the other
hand, in [5], we present an algorithm that is based on a reduction to satisfiability
in propositional logic (SAT), and thus allows us to employ highly optimized
state-of-the-art SAT solvers for implementing an EL-unification algorithm.

However, the large medical ontology SNOMEDCT is not formulated in EL,
but rather in its sub-logic EL

−�, which differs from EL in that the use of the
top concept is disallowed. If we employ EL-unification to detect redundancies in
(extensions of) SNOMEDCT, then a unifier may introduce concept terms that
contain the top concept, and thus propose definitions for concept names that are
of a form that is not used in SNOMEDCT. Apart from this practical motivation
for investigating unification in EL

−�, we also found it interesting to see how such
a small change in the logic influences the unification problem. Surprisingly, it
turned out that the complexity of the problem increases considerably (from NP
to PSpace). In addition, compared to EL-unification, quite different methods
had to be developed to actually solve EL

−�-unification problems. In particular,
we will show in this paper, that—similar to the case of FL0-unification—EL

−�-
unification can be reduced to solving certain language equations. In contrast to
the case of FL0-unification, these language equations can be solved in PSpace
rather than ExpTime, which we show by a reduction to the emptiness problem
for alternating automata on finite words.

Complete proofs of the results presented in this paper can be found in [1].
There we also show PSpace-hardness of EL−�-unification by a reduction of the
intersection emptiness problem for finite automata [11, 8]. An extended version
of this paper will be published as [2].

2 The Description Logics EL and EL−�

In this paper, we deal with the description logic EL in which concept terms
are built from concept names (NC) and role names (NR) using the constructors
conjunction (�), existential restriction (∃r.C) and the top concept (�). In the
restricted description logic EL

−�, concept terms may not contain �. As usual,
these concepts are interpreted as sets over some domain [3].

An EL-concept term is called an atom iff it is a concept name A ∈ NC

or an existential restriction ∃r.D. Concept names and existential restrictions
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∃r.D, where D is a concept name or �, are called flat atoms. The set At(C) of
atoms of an EL-concept term C consists of all the subterms of C that are atoms.
For example, C = A � ∃r.(B � ∃r.�) has the atom set At(C) = {A, ∃r.(B �

∃r.�), B, ∃r.�}. Obviously, any EL-concept term C is a conjunction C = C1 �

. . . � Cn of atoms and �. We call the atoms among C1, . . . , Cn the top-level
atoms of C. The EL-concept term C is called flat if all its top-level atoms are
flat. Subsumption in EL and EL

−� can be characterized as follows [6]:

Lemma 1. Let C = A1 � . . . �Ak � ∃r1.C1 � . . . � ∃rm.Cm and D = B1 � . . . �
Bl�∃s1.D1�. . .�∃sn.Dn be two EL-concept terms, where A1, . . . , Ak, B1, . . . , Bl

are concept names. Then C � D iff {B1, . . . , Bl} ⊆ {A1, . . . , Ak} and for every
j ∈ {1, . . . , n} there exists an i ∈ {1, . . . ,m} such that ri = sj and Ci � Dj.

In particular, this means that C � D iff for every top-level atom D� of D there
is a top-level atom C � of C such that C � � D�.

Modulo equivalence, the subsumption relation is a partial order on concept
terms. In EL, the top concept � is the greatest element w.r.t. this order. In
EL

−�, there are many incomparable maximal concept terms. We will see below
that these are exactly the EL

−�-concept terms of the form ∃r1. · · · ∃rn.A for
n ≥ 0 role names r1, . . . , rn and a concept name A. We call such concept terms
particles. The set Part(C) of all particles of a given EL

−�-concept term C is
defined as

– Part(C) := {C} if C is a concept name,
– Part(C) := {∃r.E | E ∈ Part(D)} if C = ∃r.D,
– Part(C) := Part(C1) ∪ Part(C2) if C = C1 � C2.

For example, the particles of C = A � ∃r.(A � ∃r.B) are A, ∃r.A, ∃r.∃r.B. Such
particles will play an important role in our EL

−�-unification algorithm. The
next lemma states that particles are indeed the maximal concept terms w.r.t. to
subsumption in EL

−�, and that the particles subsuming an EL
−�-concept term

C are exactly the particles of C.

Lemma 2. Let C be an EL
−�-concept term and B a particle.

1. If B � C, then B ≡ C.
2. B ∈ Part(C) iff C � B.

3 Unification in EL and EL−�

To define unification in EL and EL
−� simultaneously, let L ∈ {EL, EL−�

}.
When defining unification in L, we assume that the set of concepts names is
partitioned into a set Nv of concept variables (which may be replaced by sub-
stitutions) and a set Nc of concept constants (which must not be replaced by
substitutions). An L-substitution σ is a mapping from Nv into the set of all
L-concept terms. This mapping is extended to concept terms in the usual way,
i.e., by replacing all occurrences of variables in the term by their σ-images. An
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L-concept term is called ground if it contains no variables, and an L-substitution
σ is called ground if the concept terms σ(X) are ground for all X ∈ Nv.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An L-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are L-concept terms. The L-substitution
σ is an L-unifier of Γ iff it solves all the equations Ci ≡? Di in Γ , i.e., iff
σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ is called L-unifiable.

In the following, we will use the subsumption C �? D as an abbreviation for the
equation C �D ≡? C. Obviously, σ solves this equation iff σ(C) � σ(D).

Clearly, every EL
−�-unification problem Γ is also an EL-unification problem.

Whether Γ is L-unifiable or not may depend, however, on whether L = EL or
L = EL

−�. As an example, consider the problem Γ := {A �? X,B �? X},
where A,B are distinct concept constants andX is a concept variable. Obviously,
the substitution that replaces X by � is an EL-unifier of Γ . However, Γ does not
have an EL

−�-unifier. In fact, for such a unifier σ, the EL−�-concept term σ(X)
would need to satisfy A � σ(X) and B � σ(X). Since A and B are particles,
Lemma 2 would imply A ≡ σ(X) ≡ B and thus A ≡ B, which is not the case.

It is easy to see that, for both L = EL and L = EL
−�, an L-unification

problem Γ has an L-unifier iff it has a ground L-unifier σ that uses only concept
and role names occurring in Γ ,3 i.e., for all variablesX, the L-concept term σ(X)
is a ground term that contains only such concept and role names. In addition,
we may without loss of generality restrict our attention to flat L-unification
problems, i.e., unification problems in which the left- and right-hand sides of
equations are flat L-concept terms (see, e.g., [6]).

Given a flat L-unification problem Γ , we denote by At(Γ ) the set of all atoms
of Γ , i.e., the union of all sets of atoms of the concept terms occurring in Γ . By
Var(Γ ) we denote the variables that occur in Γ , and by NV(Γ ) := At(Γ )\Var(Γ )
the set of all non-variable atoms of Γ .

EL-unification by guessing acyclic assignments

The NP-algorithm for EL-unification introduced in [4] guesses, for every vari-
able X occurring in Γ , a set S(X) of non-variable atoms of Γ . Given such an
assignment of sets of non-variable atoms to the variables in Γ , we say that the
variable X directly depends on the variable Y if Y occurs in an atom of S(X).
Let depends on be the transitive closure of directly depends on. If there is no
variable that depends on itself, then we call this assignment acyclic. In case the
guessed assignment is not acyclic, this run of the NP-algorithm returns “fail.”
Otherwise, there exists a strict linear order > on the variables occurring in Γ
such that X > Y if X depends on Y . One can then define the substitution γS

induced by the assignment S along this linear order:

– If X is the least variable w.r.t. >, then γS(X) is the conjunction of the
elements of S(X), where the empty conjunction is �.

3 Without loss of generality, we assume that Γ contains at least one concept name.
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– Assume γS(Y ) is defined for all variables Y < X. If S(X) = {D1, . . . , Dn},
then γS(X) := γS(D1) � . . . � γS(Dn).

The algorithm then tests whether the substitution γS computed this way is a
unifier of Γ . If this is the case, then this run returns γS ; otherwise, it returns
“fail.” In [4] it is shown that Γ is unifiable iff there is a run of this algorithm on
input Γ that returns a substitution (which is then an EL-unifier of Γ ).

Why this does not work for EL−�

The EL-unifiers returned by the EL-unification algorithm sketched above need
not be EL

−�-unifiers since some of the sets S(X) in the guessed assignment
may be empty, in which case γS(X) = �. This suggests the following simple
modification of the above algorithm: require that the guessed assignment is such
that all sets S(X) are nonempty. If such an assignment S is acyclic, then the
induced substitution γS is actually an EL

−�-substitution, and thus the substi-
tutions returned by the modified algorithm are indeed EL

−�-unifiers. However,
this modified algorithm does not always detect EL

−�-unifiability, i.e., it may
return no substitution although the input problem is EL−�-unifiable.

As an example, consider the EL
−�-unification problem

Γ := {A �B ≡
? Y, B � C ≡

? Z, ∃r.Y �
? X, ∃r.Z �

? X},

where X,Y, Z are concept variables and A,B,C are distinct concept constants.
We claim that, up to equivalence, the substitution that maps X to ∃r.B, Y to
A�B, and Z to B �C is the only EL

−�-unifier of Γ . In fact, any EL
−�-unifier

γ of Γ must map Y to A�B and Z to B�C, and thus satisfy ∃r.(A�B) � γ(X)
and ∃r.(B � C) � γ(X). Lemma 1 then yields that the only possible top-level
atom of γ(X) is ∃r.B. However, there is no non-variable atom D ∈ NV(Γ ) such
that γ(D) is equivalent to ∃r.B. This shows that Γ has an EL

−�-unifier, but
this unifier cannot be computed by the modified algorithm sketched above.

The main idea underlying the EL
−�-unification algorithm introduced in the

next section is that one starts with an EL-unifier, and then conjoins “appro-
priate” particles to the images of the variables that are replaced by � by this
unifier. It is, however, not so easy to decide which particles can be added this
way without turning the EL-unifier into an EL

−�-substitution that no longer
solves the unification problem.

4 An EL−�-Unification Algorithm

In the following, let Γ be a flat EL
−�-unification problem. Without loss of

generality we assume that Γ consists of subsumptions of the form C1 � . . . �
Cn �? D for atoms C1, . . . , Cn, D. Our decision procedure for EL−�-unifiability
proceeds in four steps.

Step 1. If S is an acyclic assignment guessed by the EL-unification algorithm
sketched above, then D ∈ S(X) implies that the subsumption γS(X) � γS(D)
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holds for the substitution γS induced by S. Instead of guessing just subsumptions
between variables and non-variable atoms, our EL−�-unification algorithm starts
with guessing subsumptions between arbitrary atoms of Γ . To be more precise,
it guesses a mapping τ : At(Γ )2 → {0, 1}, which specifies which subsumptions
between atoms of Γ should hold for the EL−�-unifier that it tries to generate: if
τ(D1, D2) = 1 for D1, D2 ∈ At(Γ ), then this means that the search for a unifier
is restricted (in this branch of the search tree) to substitutions γ satisfying
γ(D1) � γ(D2). Obviously, any such mapping τ also yields an assignment

Sτ (X) := {D ∈ NV(Γ ) | τ(X,D) = 1},

and we require that this assignment is acyclic and induces an EL-unifier of Γ .

Definition 2. The mapping τ : At(Γ )2 → {0, 1} is called a subsumption map-
ping for Γ if it satisfies the following three conditions:

1. It respects the properties of subsumption in EL:
(a) τ(D,D) = 1 for each D ∈ At(Γ ).
(b) τ(A1, A2) = 0 for distinct concept constants A1, A2 ∈ At(Γ ).
(c) τ(∃r.C1, ∃s.C2) = 0 for distinct r, s ∈ NR with ∃r.C1, ∃s.C2 ∈ At(Γ ).
(d) τ(A, ∃r.C) = τ(∃r.C,A) = 0 for each constant A ∈ At(Γ ), role name r

and variable or constant C with ∃r.C ∈ At(Γ ).
(e) If ∃r.C1, ∃r.C2 ∈ At(Γ ), then τ(∃r.C1, ∃r.C2) = τ(C1, C2).
(f) For all atoms D1, D2, D3 ∈ At(Γ ), if τ(D1, D2) = τ(D2, D3) = 1, then

τ(D1, D3) = 1.
2. It induces an EL-substitution, i.e., the assignment Sτ is acyclic and thus

induces a substitution γSτ
, which we will simply denote by γτ .

3. It respects the subsumptions of Γ , i.e., it satisfies the following conditions
for each subsumption C1 � . . . � Cn �? D in Γ :
(a) If D is a non-variable atom, then there is at least one Ci such that

τ(Ci, D) = 1.
(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈ NV(Γ ),

then there is at least one Ci with τ(Ci, C) = 1.

Though this is not really necessary for the proof of correctness of our EL
−�-

unification algorithm, it can be shown that the substitution γτ induced by a
subsumption mapping τ for Γ is indeed an EL-unifier of Γ . It should be noted
that γτ need not be an EL

−�-unifier of Γ . In addition, γτ need not agree with τ
on every subsumption between atoms of Γ . The reason for this is that τ specifies
subsumptions which should hold in the EL−�-unifier of Γ to be constructed. To
turn γτ into such an EL

−�-unifier, we may have to add certain particles, and
these additions may invalidate subsumptions that hold for γτ . However, we will
ensure that no subsumption claimed by τ is invalidated.

Step 2. In this step, we use τ to turn Γ into a unification problem that has only
variables on the right-hand sides of subsumptions. More precisely, we define
∆Γ,τ := ∆Γ ∪∆τ , where

∆Γ := {C1 � . . . � Cn �
? X ∈ Γ | X is a variable of Γ},

∆τ := {C �
? X | X is a variable and C an atom of Γ with τ(C,X) = 1}.
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For an arbitrary EL
−�-substitution σ, we define

Sσ(X) := {D ∈ NV(Γ ) | σ(X) � σ(D)},

and write Sτ ≤ Sσ if Sτ (X) ⊆ Sσ(X) for every variable X. The following
lemma states the connection between EL

−�-unifiability of Γ and of ∆Γ,τ , using
the notation that we have just introduced.

Lemma 3. Let Γ be a flat EL−�-unification problem. Then the following state-
ments are equivalent for any EL

−�-substitution σ:

1. σ is an EL
−�-unifier of Γ .

2. There is a subsumption mapping τ : At(Γ )2 → {0, 1} for Γ such that σ is
an EL

−�-unifier of ∆Γ,τ and Sτ ≤ Sσ.

Step 3. In this step, we characterize which particles can be added in order to
turn γτ into an EL

−�-unifier σ of ∆Γ,τ satisfying Sτ ≤ Sσ. Recall that particles
are of the form ∃r1. · · · ∃rn.A for n ≥ 0 role names r1, . . . , rn and a concept name
A. We write such a particle as ∃w.A, where w = r1 · · · rn is viewed as a word
over the alphabet NR of all role names. If n = 0, then w is the empty word ε
and ∃ε.A is just A.

Admissible particles are determined by solutions of a system of linear lan-
guage inclusions. These linear inclusions are of the form

Xi ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn, (1)

whereX1, . . . , Xn are indeterminates, i ∈ {1, . . . , n}, and each Li (i ∈ {0, . . . , n})
is a subset of NR ∪ {ε}. A solution θ of such an inclusion assigns sets of words
θ(Xi) ⊆ N∗

R to the indeterminates Xi such that θ(Xi) ⊆ L0 ∪ L1θ(X1) ∪ . . . ∪
Lnθ(Xn).

The unification problem ∆Γ,τ induces a finite system IΓ,τ of such inclusions.
The indeterminates of IΓ,τ are of the form XA, where X ∈ Nv and A ∈ Nc. For
each constant A ∈ Nc and each subsumption of the form C1 � . . . � Cn �? X ∈

∆Γ,τ , we add the following inclusion to IΓ,τ :

XA ⊆ fA(C1) ∪ . . . ∪ fA(Cn), where

fA(C) :=






{r}fA(C �) if C = ∃r.C �

YA if C = Y is a variable
{ε} if C = A
∅ if C ∈ Nc \ {A}

Since ∆Γ,τ contains only flat atoms, these inclusion are indeed of the form (1).
We call a solution θ of IΓ,τ admissible if, for every variable X ∈ Nv, there is

a constant A ∈ Nc such that θ(XA) is nonempty. This condition will ensure that
we can add enough particles to turn γτ into an EL

−�-substitution. In order to
obtain a substitution at all, only finitely many particles can be added. Thus, we
are interested in finite solutions of IΓ,τ , i.e., solutions θ such that all the sets
θ(XA) are finite.
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Lemma 4. Let Γ be a flat EL−�-unification problem and τ a subsumption map-
ping for Γ . Then ∆Γ,τ has an EL

−�-unifier σ with Sτ ≤ Sσ iff IΓ,τ has a finite,
admissible solution.

Proof sketch. Given a ground EL
−�-unifier σ of ∆Γ,τ with Sτ ≤ Sσ, we define

for each concept variable X and concept constant A occurring in Γ :

θ(XA) := {w ∈ N∗
R | ∃w.A ∈ Part(σ(X))}.

It can then be shown that θ is a solution of IΓ,τ . This solution is finite since any
concept term has only finitely many particles, and it is admissible since σ is an
EL

−�-substitution.
Conversely, let θ be a finite, admissible solution of IΓ,τ . We define the sub-

stitution σ by induction on the dependency order > induced by Sτ as follows.
Let X be a variable of Γ and assume that σ(Y ) has already been defined for all
variables Y with X > Y . Then we set

σ(X) :=
�

D∈Sτ (X)

σ(D) �
�

A∈Nc

�

w∈θ(XA)

∃w.A.

Since θ is finite and admissible, σ is a well-defined EL
−�-substitution. It can be

shown that σ(X) is indeed an EL
−�-unifier of ∆Γ,τ with Sτ ≤ Sσ. ��

Step 4. In this step we show how to test whether the system IΓ,τ of linear
language inclusions constructed in the previous step has a finite, admissible
solution or not. The main idea is to consider the greatest solution of IΓ,τ .

To be more precise, given a system of linear language inclusions I, we can
order the solutions of I by defining θ1 ⊆ θ2 iff θ1(X) ⊆ θ2(X) for all indeter-
minates X of I. Since θ∅, which assigns the empty set to each indeterminate of
I, is a solution of I and solutions are closed under argument-wise union, the
following clearly defines the (unique) greatest solution θ∗ of I w.r.t. this order:

θ∗(X) :=
�

θ solution of I
θ(X).

Lemma 5. Let X be an indeterminate in I and θ∗ the maximal solution of I.
If θ∗(X) is nonempty, then there is a finite solution θ of I such that θ(X) is
nonempty.

Proof. Let w ∈ θ∗(X). We construct the finite solution θ of I by keeping only
the words of length |w|: for all indeterminates Y occurring in I we define

θ(Y ) := {u ∈ θ∗(Y ) | |u| ≤ |w|}.

By definition, we have w ∈ θ(X). To show that θ is indeed a solution of I,
consider an arbitrary inclusion Y ⊆ L0 ∪ L1X1 ∪ . . . ∪ LnXn in I, and assume
that u ∈ θ(Y ). We must show that u ∈ L0 ∪ L1θ(X1) ∪ . . . ∪ Lnθ(Xn). Since
u ∈ θ∗(Y ) and θ∗ is a solution of I, we have (i) u ∈ L0 or (ii) u ∈ Liθ∗(Xi) for
some i, 1 ≤ i ≤ n. In the first case, we are done. In the second case, u = αu�

for some α ∈ Li ⊆ NR ∪ {ε} and u� ∈ θ∗(Xi). Since |u�| ≤ |u| ≤ |w|, we have
u� ∈ θ(Xi), and thus u ∈ Liθ(Xi). ��
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Lemma 6. There is a finite, admissible solution of IΓ,τ iff the maximal solution
θ∗ of IΓ,τ is admissible.

Proof. If IΓ,τ has a finite, admissible solution θ, then the maximal solution of
IΓ,τ contains this solution, and is thus also admissible.

Conversely, if θ∗ is admissible, then (by Lemma 5) for each X ∈ Var(Γ ) there
is a constant A(X) and a finite solution θX of IΓ,τ such that θX(XA(X)) �= ∅.
The union of these solutions θX for X ∈ Var(Γ ) is the desired finite, admissible
solution. ��

Given this lemma, it remains to show how we can test admissibility of the max-
imal solution θ∗ of IΓ,τ . For this purpose, it is obviously sufficient to be able
to test, for each indeterminate XA in IΓ,τ , whether θ∗(XA) is empty or not.
This can be achieved by representing the languages θ∗(XA) using alternating
finite automata with ε-transitions (ε-AFA), which are a special case of two-way
alternating finite automata. In fact, as shown in [10], the emptiness problem for
two-way alternating finite automata (and thus also for ε-AFA) is in PSpace.

Lemma 7. For each indeterminate XA in IΓ,τ , we can construct in polynomial
time in the size of IΓ,τ an ε-AFA A(X,A) such that the language L(A(X,A))
accepted by A(X,A) is equal to θ∗(XA), where θ∗ denotes the maximal solution
of IΓ,τ .

This finishes the description of our EL
−�-unification algorithm. It remains

to argue why it is a PSpace decision procedure for EL−�-unifiability.

Theorem 1. The problem of deciding unifiability in EL
−� is PSpace-complete.

Proof. Here we only show that the problem is in NPSpace, which is equal to
PSpace by Savitch’s theorem [13]. PSpace-hardness is shown in [1, 2].

Let Γ be a flat EL
−�-unification problem. By Lemma 3, Lemma 4, and

Lemma 6, we know that Γ is EL−�-unifiable iff there is a subsumption mapping
τ for Γ such that the maximal solution θ∗ of IΓ,τ is admissible.

Thus, we first guess a mapping τ : At(Γ )2 → {0, 1} and test whether τ is a
subsumption mapping for Γ . Guessing τ can clearly be done in NPSpace. For
a given mapping τ , the test whether it is a subsumption mapping for Γ can be
done in polynomial time.

From τ we can first construct ∆Γ,τ and then IΓ,τ in polynomial time. Given
IΓ,τ , we then construct the (polynomially many) ε-AFA A(X,A), and test them
for emptiness. Since the emptiness problem for ε-AFA is in PSpace, this can
be achieved within PSpace. Given the results of these emptiness tests, we can
then check in polynomial time whether, for each concept variable X of Γ there
is a concept constant A of Γ such that θ∗(XA) = L(A(X,A)) �= ∅. If this is the
case, then θ∗ is admissible, and thus Γ is EL−�-unifiable. ��
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5 Conclusion

Unification in EL was introduced in [4] as an inference service that can sup-
port the detection of redundancies in large biomedical ontologies, which are
frequently written in this DL. Motivated by the fact that the large medical
ontology SNOMEDCT actually does not use the top concept available in EL,
we have in this paper investigated unification in EL

−�, which is obtained from
EL by removing the top concept. More precisely, SNOMEDCT is a so-called
acyclic EL−�-TBox,4 rather than a collection of EL−�-concept terms. However,
as shown in [6], acyclic TBoxes can be easily handled by a unification algorithm
for concept terms.

Surprisingly, it has turned out that the complexity of unification in EL
−�

(PSpace) is considerably higher than of unification in EL (NP). From a theo-
retical point of view, this result is interesting since it provides us with a natural
example where reducing the expressiveness of a given DL (in a rather minor way)
increases the complexity of the unifiability problem. Regarding the complexity
of unification in more expressive DLs, not much is known. If we add negation
to EL, then we obtain the well-known DL ALC, which corresponds to the basic
(multi-)modal logic K [14]. Decidability of unification in K is a long-standing
open problem. Recently, undecidability of unification in some extensions of K
(for example, by the universal modality) was shown in [17]. These undecidabil-
ity results also imply undecidability of unification in some expressive DLs (e.g.,
in SHIQ [9]).

Apart from its theoretical interest, the result of this paper also has practical
implications. Whereas practically rather efficient unification algorithm for EL

can readily be obtained by a translation into SAT [5], it is not so clear how to
turn the PSpace algorithm for EL−�-unification introduced in this paper into
a practically useful algorithm. One possibility could be to use a SAT modulo
theories (SMT) approach [12]. The idea is that the SAT solver is used to generate
all possible subsumption mappings for Γ , and that the theory solver tests the
system IΓ,τ induced by τ for the existence of a finite, admissible solution. How
well this works will mainly depend on whether we can develop such a theory
solver that satisfies well all the requirements imposed by the SMT approach.

Another topic for future research is how to actually compute EL
−�-unifiers

for a unifiable EL
−�-unification problem. In principle, our decision procedure

is constructive in the sense that, from appropriate successful runs of the ε-AFA
A(X,A), one can construct a finite, admissible solution of IΓ,τ , and from this an
EL

−�-unifier of Γ . However, this needs to be made more explicit, and we need
to investigate what kind of EL−�-unifiers can be computed this way.

4 Note that the right-identity rules in SNOMEDCT [15] are actually not expressed
using complex role inclusion axioms, but through the SEP-triplet encoding [16].
Thus, complex role inclusion axioms are not relevant here.
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1 Introduction

Fuzzy variants of Description Logics (DLs) were introduced in order to deal
with applications where not all concepts can be defined in a precise way. A
great variety of fuzzy DLs have been investigated in the literature [12,8]. In fact,
compared to crisp DLs, fuzzy DLs offer an additional degree of freedom when
defining their expressiveness: in addition to deciding which concept constructors
(like conjunction, disjunction, existential restriction) and which TBox formalism
(like no TBox, acyclic TBox, general concept inclusions) to use, one must also
decide how to interpret the concept constructors by appropriate functions on
the domain of fuzzy values [0, 1]. For example, conjunction can be interpreted
by different t-norms (such as Gödel, Łukasiewicz, and product) and there are
also different options for how to interpret negation (such as involutive negation
and residual negation). In addition, one can either consider all models or only
so-called witnessed models [10] when defining the semantics of fuzzy DLs.

Decidability of fuzzy DLs is often shown by adapting the tableau-based algo-
rithms for the corresponding crisp DL to the fuzzy case. This was first done for
the case of DLs without general concept inclusion axioms (GCIs) [19,17,14,6],
but then also extended to GCIs [16,15,18,4,5]. Usually, these tableau algorithms
reason w.r.t. witnessed models.1 It should be noted, however, that in the pres-
ence of GCIs there are different ways of extending the notion of witnessed models
from [10], depending on whether the witnessed property is required to apply also
to GCIs (in which case we talk about strongly witnessed models) or not (in which
case we talk about witnessed models).

The paper [4] considers the case of reasoning w.r.t. fuzzy GCIs in the set-
ting of a logic with product t-norm and involutive negation. More precisely, the
tableau algorithm introduced in that paper is supposed to check whether an on-
tology consisting of fuzzy GCIs and fuzzy ABox assertions expressed in this DL
has a strongly witnessed model or not.2 Actually, the proof of correctness of this
algorithm given in [4] implies that, whenever such an ontology has a strongly
witnessed model, then it has a finite model. However, it was recently shown in [2]
1 In fact, witnessed models were introduced in [10] to correct the proof of correctness

for the tableau algorithm presented in [19].
2 Note that the authors of [4] actually use the term “witnessed models” for what we

call “strongly witnessed models.”
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that this is not the case in the presence of general concept inclusion axioms, i.e.,
there is an ontology written in this logic that has a strongly witnessed model,
but does not have a finite model. Of course, this does not automatically imply
that the algorithm itself is wrong. In fact, if one applies the algorithm from [4] to
the ontology used in [2] to demonstrate the failure of the finite model property,
then one obtains the correct answer, and in [2] the authors actually conjecture
that the algorithm is still correct. However, incorrectness of the algorithm has
now independently been shown in [3] and in [1]. Thus, one can ask whether the
fuzzy DL considered in [4] is actually decidable. Though this question is not
answered in [1], the paper gives strong indications that the answer might in fact
be “no.” More precisely, [1] contains a proof of undecidability for a variant of
the fuzzy DL considered in [4], which (i) additionally allows for strict GCIs, i.e.,
GCIs whose fuzzy value is required to be strictly greater than a given rational
number; and (ii) where the notion of strongly witnessed models used in [4] is
replaced by the weaker notion of witnessed models.

In this paper, we consider a different fuzzy DL with product t-norm, where
disjunction and involutive negation are replaced by the constructor implication,
which is interpreted as the residuum. In this logic, residual negation can be
expressed, but neither involutive negation nor disjunction. It was introduced in
[10], where decidability of reasoning w.r.t. witnessed models was shown for the
case without GCIs. In [7], an analogous decidability result was shown for the case
of reasoning w.r.t. so-called quasi-witnessed models. Following [7], we call this
logic ∗-ALE . In the present paper we show that adding GCIs makes reasoning
in ∗-ALE undecidable w.r.t. several variants of the notion of witnessed models
(including witnessed, quasi-witnessed, and strongly witnessed models).

2 Preliminaries

In this section, we introduce the logic ∗-ALE and some of the properties that
will be useful throughout the paper.

The syntax of this logic is slightly different from standard description logics,
as it allows for an implication constructor, and no negation or disjunction. ∗-ALE

concepts are built through the syntactic rule

C ::= A | ⊥ | � | C1 � C2 | C1 → C2 | ∃r.C | ∀r.C

where A is a concept name and r is a role name.
A ∗-ALE ABox is a finite set of assertion axioms of the form �a : C � q� or

�(a, b) : r � q�, where C is a ∗-ALE concept, r ∈ NR, q is a rational number in
[0, 1], a, b are individual names and � is either ≥ or =. A ∗-ALE TBox is a finite
set of concept inclusion axioms of the form �C � D ≥ q�, where C,D are ∗-ALE

concepts and q is a rational number in [0, 1]. A ∗-ALE ontology is a tuple (A, T ),
where A is a ∗-ALE ABox and T a ∗-ALE TBox. In the following we will often
drop the prefix ∗-ALE , and speak simply of e.g. TBoxes and ontologies.

The semantics of this logic extends the classical DL semantics by interpreting
concepts and roles as fuzzy sets over an interpretation domain. Given a non-
empty domain ∆, a fuzzy set is a function F : ∆ → [0, 1], with the intuition that
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an element δ ∈ ∆ belongs to F with degree F (δ). Here, we focus on the product
t-norm semantics, where logical constructors are interpreted using the product
t-norm ⊗ and its residuum ⇒ defined, for every α,β ∈ [0, 1], as follows:

α⊗ β := α · β,

α ⇒ β :=

�
1 if α ≤ β

β/α otherwise.

The semantics of ∗-ALE is based on interpretations. An interpretation is a
tuple I = (∆I

, ·I) where ∆
I is a non-empty set, called the domain, and the

function ·I maps each individual name a to an element of ∆
I , each concept

name A to a function A
I : ∆

I → [0, 1] and each role name r to a function
r
I : ∆

I × ∆
I → [0, 1]. The interpretation function is extended to arbitrary

∗-ALE concepts as follows. For every δ ∈ ∆
I ,

�
I(δ) = 1,

⊥
I(δ) = 0,

(C1 � C2)
I(δ) = C

I
1 (δ)⊗ C

I
2 (δ)

(C1 → C2)
I(δ) = C

I
1 (δ) ⇒ C

I
2 (δ)

(∃r.C)I(δ) = sup
γ∈∆I

r
I(δ,γ )⊗ C

I(γ)

(∀r.C)I(δ) = inf
γ∈∆I

r
I(δ,γ ) ⇒ C

I(γ).

The interpretation I = (∆I
, ·I) satisfies the assertional axiom �a : C � q� iff

C
I(aI)�q, it satisfies �(a, b) : r � q� iff r

I(aI , bI)�q and it satisfies the concept
inclusion �C � D ≥ q� iff infδ∈∆I (CI(δ) ⇒ D

I(δ)) ≥ q. This interpretation is
called a model of the ontology O if it satisfies all the axioms in O.

In fuzzy DLs, reasoning is often restricted to witnessed models [10]. An in-
terpretation I is called witnessed if it satisfies the following two conditions:

(wit1) for every δ ∈ ∆
I , role r and concept C there exists γ ∈ ∆

I such that
(∃r.C)I(δ) = r

I(δ,γ )⊗ C
I(γ), and

(wit2) for every δ ∈ ∆
I , role r and concept C there exists γ ∈ ∆

I such that
(∀r.C)I(δ) = r

I(δ,γ ) ⇒ C
I(γ).

This model is called weakly witnessed if it satisfies (wit1) and quasi-witnessed
if it satisfies (wit1) and the condition

(wit2’) for every δ ∈ ∆
I , role r and concept C, either (∀r.C)I = 0 or there

exists γ ∈ ∆
I such that (∀r.C)I(δ) = r

I(δ,γ ) ⇒ C
I(γ).

In the presence of GCIs, witnessed interpretations are sometimes further
restricted [6,2,8] to satisfy

(wit3) for every two concepts C,D, there is a γ such that

inf
η∈∆I

(CI(η) ⇒ D
I(η)) = C

I(γ) ⇒ D
I(γ).
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Witnessed interpretations that satisfy this third restriction (wit3) are called
strongly witnessed interpretations.

We say that an ontology O is consistent (resp. weakly witnessed consistent,
quasi-witnessed consistent, witnessed consistent, strongly witnessed consistent)
if it has a model (resp. a weakly witnessed model, a quasi-witnessed model,
a witnessed model, a strongly witnessed model). Obviously, strongly witnessed
consistency implies witnessed consistency, which implies quasi-witnessed consis-
tency, which itself implies weakly witnessed consistency. The converse implica-
tions, however, need not hold; for instance, a quasi-witnessed consistent ∗-ALE

ontology that has no witnessed models can be derived from the example in [7].
We now describe some properties of t-norms and axioms that will be useful

for the rest of the paper. For every α,β ∈ [0, 1] it holds that α ⇒ β = 1 iff
α ≤ β. Thus, given two concepts C,D, the axiom �C � D ≥ 1� expresses that
C

I(δ) ≤ D
I(δ) for all δ ∈ ∆

I . Additionally, 1 ⇒ β = β and 0 ⇒ β = 1 for all
β ∈ [0, 1], and α ⇒ 0 = 0 for all α ∈ (0, 1].

In the following, we will use the expression �C
r� D� to abbreviate the axioms

�C � ∀r.D ≥ 1� , �∃r.D � C ≥ 1�. To understand this abbreviation, consider an
interpretation I satisfying �C

r� D� and let δ,γ ∈ ∆
I with r

I(δ,γ ) = 1. From
the first axiom it follows that

C
I(δ) ≤ (∀r.D)I(δ) = inf

η∈∆I
r
I(δ,η ) ⇒ D

I(η)

≤ r
I(δ,γ ) ⇒ D

I(γ) = 1 ⇒ D
I(γ) = D

I(γ).

From the second axiom it follows that

C
I(δ) ≥ (∃r.D)I(δ) = sup

η∈∆I
r
I(δ,η ) ·DI(η)

≥ r
I(δ,γ ) ·DI(γ) = D

I(γ),

and hence, both axioms together imply that C
I(δ) = D

I(γ). In other words,
�C

r� D� expresses that the value of C
I(δ) is propagated to the valuation

of the concept D on all r successors with degree 1 of δ. Conversely, given an
interpretation I such that r

I(δ,γ ) ∈ {0, 1} for all δ,γ ∈ ∆
I , if r

I(δ,γ ) = 1
implies C

I(δ) = D
I(γ), then I is a model of �C r� D�.

For a concept C, and a natural number n ≥ 1, the expression C
n will denote

the concatenation of C with itself n times; that is, Cn :=

n

�
j=1

C. The semantics

of � yields (Cn)I(δ) = (CI(δ))n, for every model I and δ ∈ ∆
I .

We will show that consistency of ∗-ALE ontologies w.r.t. the different variants
of witnessed models introduced above is undecidable. We will show this using
a reduction from the Post correspondence problem, which is well-known to be
undecidable [13].

Definition 1 (PCP). Let (v1, w1), . . . , (vm, wm) be a finite list of pairs of words
over an alphabet Σ = {1, . . . , s}, s > 1. The Post correspondence problem (PCP)

40



asks whether there is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ m such that
vi1vi2 · · · vik = wi1wi2 · · ·wik . If such a sequence exists, then the word i1i2 · · · ik

is called a solution of the problem.

We assume w.l.o.g. that there is no pair vi, wi where both words are empty.
For a word µ = i1i2 · · · ik ∈ {1, . . . ,m}∗, we will denote as vµ and wµ the words
vi1vi2 · · · vik and wi1wi2 · · ·wik , respectively.

The alphabet Σ consists of the first s positive integers. We can thus view
every word in Σ

∗ as a natural number represented in base s+1 in which 0 never
occurs. Using this intuition, we will express the empty word as the number 0.

In the following reductions, we will encode the word w in Σ
∗ using the number

2−w ∈ [0, 1]. We will construct an ontology whose models encode the search for
a solution. The interpretation of two designated concept names A and B at a
node will correspond to the words vµ, wµ, respectively, for µ ∈ {1, . . . ,m}∗.

3 Undecidability w.r.t. Witnessed Models

We will show undecidability of consistency w.r.t. witnessed models by construct-
ing, for a given instance P = ((v1, w1), . . . , (vm, wm)) of the PCP, an ontology
OP such that for every witnessed model I of OP and every µ ∈ {1, . . . ,m}∗ there
is an element δµ ∈ ∆

I with A
I(δµ) = 2−vµ and B

I(δµ) = 2−wµ . Additionally,
we will show that this ontology has a witnessed model whose domain has only
these elements. Then, P has a solution iff for every witnessed model I of OP
there exist a δ ∈ ∆

I such that A
I(δ) = B

I(δ).
Let δ ∈ ∆

I encode the words v, w ∈ Σ
∗; i.e., AI(δ) = 2−v and B

I(δ) = 2−w,
and let i, 1 ≤ i ≤ m. Assume additionally that we have concept names Vi,Wi

with V
I
i (δ) = 2−vi and W

I
i (δ) = 2−wi . We want to ensure the existence of a

node γ that encodes the concatenation of the words v, w with the i-th pair from
P; i.e. vvi and wwi. This is done through the TBox

T
i
P := {�� � ∃ri.� ≥ 1� , �(Vi �A

(s+1)|vi|)
ri� A�, �(Wi �B

(s+1)|wi|
)

ri� B�}.

Recall that we are viewing words in Σ
∗ as natural numbers in base s+1. Thus,

the concatenation of two words u, u� corresponds to the operation u·(s+1)|u
�|+u

�.
We then have that

(Vi �A
(s+1)|vi|)I(δ) = V

I
i (δ) · (AI(δ))(s+1)|vi| = 2−vvi .

If I is a witnessed model of T i
P , then from the first axiom it follows that

(∃ri.�)I(δ) = 1, and according to (wit1), there must exist a γ ∈ ∆
I with

r
I(δ,γ ) = 1. The last two axioms then ensure that A

I(γ) = 2−vvi and B
I(γ) =

2−wwi ; thus, the concept names A and B encode, at node γ, the words vvi and
wwi, as desired. If we want to use this construction to recursively construct
all the pairs of concatenated words defined by P, we need to ensure also that
V

I
j (γ) = 2−vj , W I

j (γ) = 2−wj hold for every j, 1 ≤ j ≤ m. This can be done
through the axioms

T
0
P := {�Vj

ri� Vj�, �Wj
ri� Wj� | 1 ≤ i, j ≤ m}.
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It only remains to ensure that there is a node δε where A
I(δε) = B

I(δε) =
1 = 20 (that is, where A and B encode the empty word) and V

I
j (δε) = 2−vj ,

W
I
j (δε) = 2−wj hold for every j, 1 ≤ i ≤ m. This condition is easily enforced

through the ABox3

A
0
P := {�a : A = 1� , �a : B = 1�}∪

{
�
a : Vi = 2−vi

�
,
�
a : Wi = 2−wi

�
| 1 ≤ i ≤ m}.

Finally, we include a concept name H that must be interpreted as 0.5 in
every domain element. This is enforced by the following axioms:

A0 := {�a : H = 0.5�},

T0 := {�H
ri� H� | 1 ≤ i ≤ m}.

This concept name will later be used to detect whether P has a solution (see
Theorem 3).

Let now OP := (AP , TP) where AP = A0
P ∪A0 and TP := T0 ∪

�m
i=0 T

i
P . We

define the interpretation IP := (∆IP , ·IP ) as follows:

– ∆
IP = {1, . . . ,m}∗,

– a
IP = ε,

for every µ ∈ ∆
IP ,

– A
IP (µ) = 2−vµ , B

IP (µ) = 2−wµ , H
IP (µ) = 0.5,

and for all j, 1 ≤ j ≤ m

– V
IP
j (µ) = 2−vj , W

IP
j (µ) = 2−wj , and

– r
IP
j (µ, µj) = 1 and r

IP
j (µ, µ�) = 0 if µ� �= µj.

It is easy to see that IP is in fact a witnessed model of OP , since every node
has exactly one ri successor with degree greater than 0, for every i, 1 ≤ i ≤ m.
More interesting, however, is that for every witnessed model I of OP , there is
an homomorphism from IP to I as described in the following lemma.

Lemma 2. Let I be a witnessed model of OP . Then there exists a function
f : ∆IP → ∆

I such that, for every µ ∈ ∆
IP , C

IP (µ) = C
I(f(µ)) holds for

every concept name C and r
I
i (f(µ), f(µi)) = 1 holds for every i, 1 ≤ i ≤ m.

Proof. The function f is built inductively on the length of µ. First, as I is a
model of AP , there must be a δ ∈ ∆

I such that a
I = δ. Notice that AP fixes

the interpretation of all concept names on δ and hence f(ε) = δ satisfies the
condition of the lemma.
3 Notice that equality is necessary for this construction; since there is no negation

constructor, it is not possible to express �a : X = q� with q < 1 using only axioms
of the form �a : Y ≥ q��.
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Let now µ be such that f(µ) has already been defined. By induction, we
can assume that A

I(f(µ)) = 2−vµ , B
I(f(µ)) = 2−wµ , H

I(f(µ)) = 0.5, and for
every j, 1 ≤ j ≤ m, V I

j (f(µ)) = 2−vj ,W
I
j (f(µ)) = 2−wj . Since I is a witnessed

model of �� � ∃ri.� ≥ 1�, for all i, 1 ≤ i ≤ m there exists a γ ∈ ∆
I with

r
I(f(µ), γ) = 1, and as I satisfies all the axioms of the form �C

r� D� ∈ TP , it
follows that

A
I(γ) = 2−vµvi = 2−vµi , B

I(γ) = 2−wµwi = 2−wµi ,

H
I(γ) = 0.5 and for all j, 1 ≤ j ≤ m, V I

j (γ) = 2−vj ,W
I
j (γ) = 2−wj . Setting

f(µi) = γ thus satisfies the required property. ��

From this lemma it follows that, if the PCP P has a solution µ for some µ ∈

{1, . . . ,m}+, then every witnessed model I of OP contains a node δ = f(µ) such
that AI(δ) = B

I(δ); that is, where A and B encode the same word. Conversely,
if every witnessed model contains such a node, then in particular IP does, and
thus P has a solution. The question is now how to detect whether a node with
this characteristics exists in every model. We will extend OP with axioms that
further restrict IP to satisfy A

IP (µ) �= B
IP (µ) for every µ ∈ {1, . . . ,m}+. This

will ensure that the extended ontology will have a model iff P has no solution.
Suppose for now that, for some µ ∈ {1, . . . ,m}∗, it holds that

2−vµ = A
IP (µ) > B

IP (µ) = 2−wµ .

We then have that vµ < wµ and hence wµ − vµ ≥ 1. It thus follows that

(A → B)IP (µ) = 2−wµ/2−vµ = 2−(wµ−vµ) ≤ 2−1 = 0.5

and thus ((A → B) � (B → A))IP (µ) ≤ 0.5. Likewise, if AIP (µ) < B
IP (µ), we

also get ((A → B) � (B → A))IP (µ) ≤ 0.5. Additionally, if AIP (µ) = B
IP (µ),

then it is easy to verify that ((A → B) � (B → A))IP (µ) = 1. From all this it
follows that, for every µ ∈ {1, . . . ,m}∗,

A
IP (µ) �= B

IP (µ) iff ((A → B) � (B → A))IP (µ) ≤ 0.5. (1)

Thus, the instance P has no solution iff for every µ ∈ {1, . . . ,m}+ it holds that
((A → B) � (B → A))IP (µ) ≤ 0.5.

We define now the ontology O�
P := (AP , T

�
P) where

T
�
P := TP ∪{ �� � ∀ri.(((A → B) � (B → A)) → H) ≥ 1� | 1 ≤ i ≤ m}.

Theorem 3. The instance P of the PCP has a solution iff the ontology O�
P is

not witnessed consistent.

Proof. Assume first that P has a solution µ = i1 · · · ik and let u = vµ = wµ and
µ
� = i1i2 · · · ik−1 ∈ {1, . . . ,m}∗. Suppose there is a witnessed model I of O�

P .
Since OP ⊆ O�

P , I must also be a model of OP . From Lemma 2 it then follows
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that there are nodes δ,δ
� ∈ ∆

I such that A
I(δ) = A

IP (µ) = B
IP (µ) = B

I(δ)
and r

I
ik(δ

�
, δ) = 1. Then, ((A → B) � (B → A))I(δ) = 1 and hence

(((A → B) � (B → A)) → H)I(δ) = 1 ⇒ 0.5 = 0.5.

This then means that (∀rik .(((A → B) � (B → A)) → H))I(δ�) ≤ 0.5, violating
one of the axioms in T �

P . Hence I is cannot be a model of O�
P .

For the converse, assume that O�
P is not witnessed consistent. Then IP is not

a model of O�
P . Since it is a model of OP , there must exist an i, 1 ≤ i ≤ m such

that IP violates the axiom �� � ∀ri.(((A → B) � (B → A)) → H) ≥ 1�. This
means that there is some µ ∈ {1, . . . ,m}∗ such that

(∀ri.(((A → B) � (B → A)) → H))IP (µ) < 1.

Since r
IP
i (µ, µ�) = 0 for all µ� �= µi and r

IP
i (µ, µi) = 1, this implies that (((A →

B) � (B → A)) → H)IP (µi) < 1, i.e. ((A → B) � (B → A))IP (µi) > 0.5.
From (1) it follows that AIP (µi) = B

IP (µi) and hence µi is a solution of P. ��

Corollary 4. Witnessed consistency of ∗-ALE ontologies is undecidable.

Notice that in the proofs of Lemma 2 and Theorem 3, the second condition
of the definition of witnessed models was never used. Moreover, the witnessed
interpretation IP is obviously also weakly witnessed. We thus have the following
corollary.

Corollary 5. Weakly witnessed consistency and quasi-witnessed consistency of
∗-ALE ontologies are undecidable.

4 Undecidability w.r.t. Strongly Witnessed Models

Unfortunately, the model IP constructed in the previous section is not a strongly
witnessed model of OP since, for instance, infη∈∆IP (�IP (η) ⇒ A

IP (η)) = 0,
but there is no δ ∈ ∆

IP with A
IP (δ) = 0. Thus, the construction of OP does

not yield an undecidability result for strongly witnessed consistency in ∗-ALE .
Thus, we need a new reduction that proves undecidability of strongly wit-

nessed consistency. This reduction will follow a similar idea to the one used in the
previous section, in which models describe a search for a solution of the PCP P.
However, rather than building the whole search tree, models will describe only
individual branches of this tree. The condition (wit3) will be used to ensure
that at some point in this branch a solution is found.

Before describing the reduction in detail, we recall a property of t-norms.
From a t-norm ⊗ and residuum ⇒, one can express the minimum and maximum
operators as follows [9]:

– min(α,β ) = α⊗ (α ⇒ β),
– max(α,β ) = min(((α ⇒ β) ⇒ β), ((β ⇒ α) ⇒ α)).
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We can thus introduce w.l.o.g. the ∗-ALE concept constructor max with the
obvious semantics. We will use this constructor to simulate the non-deterministic
choices in the search tree as described next.

Given an instance P = ((v1, w1), . . . , (vm, wm)) of the PCP, we define the
ABox A0

P and the TBox T 0
P as in the previous section, and for every i, 1 ≤ i ≤ m

we construct the TBox

T
si
P := {�Ci � ∃ri.� ≥ 1� , �Vi �A

(s+1)|vi| ri� A�, �Wi �B
(s+1)|wi| ri� B�}.

The only difference between the TBoxes T i
P and T si

P is in the first axiom. In-
tuitively, the concept names Ci encode the choice of the branch in the tree to
be expanded. If CI

i (δ) = 1, there will be an ri successor with degree 1, and the
i-th branch of the tree will be explored. For this intuition to work, we need to
ensure that at least one of the Cis is interpreted as 1 in every node. On the other
hand, we can stop expanding the tree once a solution has been found. Using this
intuition, we define the ontology Os

P := (As
P , T

s
P) where

A
s
P := A

0
P ∪ {a : max(C1, . . . , Cm) = 1},

T
s
P := T

0
P ∪

m�

i=1

T
si
P ∪{� (A �B) → ⊥ � ⊥ ≥ 1�}∪

{�� � ∀ri.max((A → B) � (B → A), C1, . . . , Cm) ≥ 1� | 1 ≤ i ≤ m}.

Theorem 6. The instance P of the PCP has a solution iff the ontology Os
P is

strongly witnessed consistent.

Proof. Let ν = i1i2 · · · ik be a solution of P and let pre(ν) denote the set of all
prefixes of ν. We build the finite interpretation Is

P as follows:

– ∆
Is
P := pre(ν),

– a
Is
P = ε,

for all µ ∈ ∆
Is
P ,

– A
Is
P (µ) = 2−vµ , B

Is
P (µ) = 2−wµ ,

and for all j, 1 ≤ j ≤ m

– V
Is
P

j (µ) = 2−vj , W
Is
P

j (µ) = 2−wj ,
– C

Is
P

j (µ) = 1 if µj ∈ pre(ν) and C
Is
P

j (µ) = 0 otherwise, and
– r

Is
P

j (µ, µj) = 1 if µj ∈ pre(ν) and r
Is
P

j (µ, µ�) = 0 if µ� ∈ pre(ν) and µ
� �= µj.

We show now that Is
P is a model of Os

P . Since Is
P is finite, it follows imme-

diately that it is also strongly witnessed. Clearly Is
P satisfies all axioms in

A0
P ; additionally, we have that C

Is
P

i1
(ε) = 1 and thus, Is

P satisfies As
P . The

axiom �(A �B) → ⊥ � ⊥ ≥ 1� expresses that (A � B)I
s
P (µ) ⇒ 0 = 0, and

hence (A � B)I
s
P (µ) > 0 for all µ ∈ pre(ν), which clearly holds. We now

show that the rest of the axioms are also satisfied for every µ ∈ pre(ν). Let
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µ ∈ pre(ν) \ {ν}. Then we know that there exists i, 1 ≤ i ≤ m such that
C

Is
P

i (µ) = 1 and r
Is
P

i (µ, µi) = 1; thus Is
P satisfies the axioms in T si

P . Moreover,
C

Is
P

j (µ) = 0 = r
Is
P

j (µ, µ�) for all j �= i and all µ� ∈ pre(ν) which means that Is
P

trivially satisfies all axioms in T sj
P .

If µi = ν, then as ν is a solution ((A → B)� (B → A))I
s
P (µi) = 1; otherwise,

there is a j, 1 ≤ j ≤ m with µij ∈ pre(ν) and thus C
Is
P

j (µi) = 1. This means
that Is

P satisfies the last axioms in T s
P . Finally, if µ = ν, then r

Is
P

i (µ, µ�) = 0 and
Ci(µ) = 0, for all µ� ∈ pre(ν), 1 ≤ i ≤ m, and thus the axioms are all trivially
satisfied.

For the converse, let I be a strongly witnessed model of Os
P . Then, there must

be an element δ0 ∈ ∆
I with a

I = δ0. Since I must satisfy all axioms in As
P ,

there is an i1, 1 ≤ i1 ≤ m such that CI
i1(δ0) = 1. Since it must satisfy the axioms

in T si1
P , there must exist a δ1 ∈ ∆

I with r
I
i1(δ0, δ1) = 1, AI(δ1) = 2−vi1 , and

B
I(δ1) = 2−wi1 . If AI(δ1) = B

I(δ1), then i1 is a solution of P. Otherwise, from
the last set of axioms in T s

P , there must exist an i2, 1 ≤ i2 ≤ m with C
I
i2(δ1) = 1.

We can then iterate this same process to generate a sequence i3, i4, . . . of indices
and δ2, δ3, . . . ∈ ∆

I where A
I(δk) = 2−vi1 ···vik , and B

I(δk) = 2−wi1 ···wik .
If there is some k such that A

I(δk) = B
I(δk), then i1 · · · ik is a solution

of P. Assume now that no such k exists. We then have an infinite sequence
of indices i1, i2, . . . and since for every i, 1 ≤ i ≤ m either vi �= 0 or wi �= 0,
then at least one of the sequences vi1 · · · vik , wi1 · · ·wik diverges. Thus, for every
natural number n there is a k such that either vi1 · · · vik > n or wi1 · · ·wik > n;
equivalently, (A �B)I(δk) < 1/n. This implies that

inf
η∈∆I

(�I(η) ⇒ (A �B)I(η)) = 0

and since I is strongly witnessed, there must exist a γ ∈ ∆
I with

0 = �
I(γ) ⇒ (A �B)I(γ) = (A �B)I(γ).

But from this it follows that ((A � B) → ⊥)I(γ) ⇒ 0 = 0, contradicting the
axiom �(A �B) → ⊥ � ⊥ ≥ 1� of T s

P . Thus, P has a solution. ��

Notice that, if P has no solution, then Os
P still has witnessed models, but

no strongly witnessed models. It is also relevant to point out that Os
P has a

strongly witnessed model iff it has a finite model. In fact, the condition of strongly
witnessed was only used for ensuring finiteness of the model, and hence, that a
solution is indeed found.

Corollary 7. For ∗-ALE ontologies, strongly witnessed consistency and consis-
tency w.r.t. finite models are undecidable.

5 Conclusions

We have shown that consistency of ∗-ALE ontologies w.r.t. a wide variety of
models, ranging from finite models to weakly witnessed models, is undecidable if
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the product t-norm semantics are used. Whether consistency in general, that is,
without restricting the class of interpretations used, is also undecidable is still
an open problem. In [11] it was shown that, if only crisp axioms are used, then
consistency is equivalent to quasi-witnessed consistency. However, it is unclear
how to extend this result to the fuzzy axioms used in this paper.

As future work we plan to study whether these undecidability results still hold
if the disjunction and negation constructors are used in place of the implication
considered in this paper. Additionally, we will study the decidability status of
these logics if different t-norms are chosen for the semantics.
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Via Ariosto, 25, 00185 Rome, Italy
lastname@dis.uniroma1.it

Abstract. We introduce semantic artifacts, which are a mechanism that provides
both a semantically rich representation of the information on the domain of interest
in terms of an ontology, including the underlying data, and a set of actions to
change such information over time. In this paper, the ontology is specified as a
DL-Lite TBox together with an ABox that may contain both (known) constants
and unknown individuals (labeled nulls, represented as Skolem terms). Actions are
specified as sets of conditional effects, where conditions are based on conjunctive
queries over the ontology (TBox and ABox), and effects are expressed in terms of
new ABoxes. In this setting, which is obviously not finite state, we address the
verification of temporal/dynamic properties expressed in µ-calculus. Notably, we
show decidability of verification, under a suitable restriction inspired by the notion
of acyclicity in data exchange.

1 Introduction

The artifact-centric approach to service modeling, introduced recently, considers both
data and processes as first-class citizens in service design and analysis. Artifacts are
advocated as a sort of middle ground between a conceptual formalization of a dynamic
system and an actual implementation of the system itself [1]. The verification of temporal
properties in the presence of data represents a significant challenge for the research
community, since the system becomes infinite-state, and hence the usual analysis based
on model checking of finite-state systems [2] is impossible in general. Recently, there
have been some advancements on this issue, considering suitably constrained relational
database settings for the data component (which acts also as a data storage for the
process), see e.g., [3,4].

In this paper, we follow the line of [3], and rely on the work in knowledge representa-
tion to propose a more conceptual treatment of artifacts. We do so by enriching artifacts
with a semantic layer constituted by a full-fledged ontology expressed in description
logics. In particular, our semantic artifacts include an ontology specified in DL-LiteR [5],
which is the core of the web ontology language OWL2 QL1, and it is particularly well
suited for data management. The TBox of the ontology captures intensional information
� This work has been supported by the EU FP7-ICT Project ACSI (257593).
1 http://www.w3.org/TR/owl2-profiles/
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on the domain of interest, similarly to conceptual data models, such as UML class
diagram, though as a software component to be used at runtime. The ABox, which acts
as the artifact state, maintains the data of interest, which are accessed by relying on
query answering through ontologies. As a query language, we use unions of conjunctive
queries, possibly composing their certain answers through full FOL constructs [6]. A
semantic artifact has associated actions whose execution changes the state of the artifact,
i.e., its ABox. Such actions are specified as sets of conditional effects, where conditions
are queries over the ontology and effects are expressed in terms of new ABoxes. To
capture data that are acquired from external users/environments during the execution of
actions, such ABoxes may contain special constants called labeled nulls, represented as
Skolem terms. These represent individuals that the artifact does not know, but on which
it knows some facts. Actions have no pre-condition, instead processes over the semantic
artifact are used to specify which actions can be executed at each step. We model such
processes as condition/action rules, where the condition is again expressed as a query
over the ontology.

In this setting, which is obviously not finite state, we address the verification of
temporal/dynamic properties expressed in µ-calculus [7], where atomic formulas are
queries over the ontology that can refer only to known individuals. Unsurprisingly, we
show that even for very simple semantic artifacts and dynamic properties verification
is undecidable. However, we also show that for a very rich class of semantic artifacts,
verification is indeed decidable and reducible to finite-state model checking. To obtain
this result, we rely on recent results on the finiteness of the chase of tuple-generating
dependencies in the data exchange literature [8].

2 Preliminaries

As ontology language, we make use of DL-LiteR, a member of the DL-Lite family [5],
and hence a tractable DL particularly suited for dealing with ontologies (or KBs) with
very large ABoxes, which can be managed through relational database technology. DL-
LiteR is also the core of the standard web ontology language OWL2 QL. In DL-LiteR,
concepts and roles are formed according to the following syntax:

B ::= N | ∃U
C ::= B | ¬B | ∃U .B

U ::= P | P−

V ::= U | ¬U

N , B, and C respectively denote a concept name, a basic concept, and an arbitrary
concept. P , P−, U , and V respectively denote a role name, an inverse role, a basic role,
and an arbitrary role. A DL-LiteR ontology is a pair (T,A), where T is a TBox, i.e., a
finite set of (concept and role) inclusion assertions of the forms B � C and U � V ;
and A is an ABox, i.e., a finite set of facts (also called membership assertions) of the
forms N(c1) and P (c1, c2), where N and P occur in T , and c1 and c2 are constants.
We denote with CA the set of constants appearing in A. The semantics of a DL-LiteR
ontology is the usual one for DLs, see [5]. Notice that in DL-LiteR the unique name
assumption is immaterial, since there is no way of deducing facts about equality. We say
that A is consistent wrt T if (T,A) is satisfiable, i.e., admits at least one model.

A union of conjunctive queries (UCQ) q over a DL-LiteR TBox T and constants C
is a FOL formula of the form ∃y1.conj 1(x,y1) ∨ · · · ∨ ∃yn.conjn(x,yn), with free
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variables x, existentially quantified variables y1, . . . ,yn. Each conj i(x,yi) in q is a
conjunction of atoms of the form N(z), P (z, z�), z = z�, where N and P respectively
denote a concept and a role name occurring in T , and z, z� are constants in C or variables
in x or yi, for some i ∈ {1, . . . , n}. Given constants C (typically CA), the (certain-
)answers to q over (T,A) wrt C is the set ansC(q, T,A) of substitutions2 θ of the free
variables of q with constants in C such that qθ evaluates to true in every model of (T,A).
We also consider an extension of UCQs, called ECQs, which are the range-restricted
queries of the query language EQL-Lite(UCQ) [6], that is, the FOL query language
whose atoms are UCQs evaluated according to the certain answer semantics above.
Formally, an ECQ over T and C is a possibly open formula of the form

Q ::= q | Q1 ∧Q2 | ¬Q | ∃x.Q,

where q denotes a UCQ over T and C, with the proviso that every free variable of a
negative subquery, i.e., of the form ¬Q, must occur in a positive subquery (to guarantee
range-restriction). Given constants C the answer to Q over (T,A) wrt C, is the set
ansC(Q,T,A) of tuples of constants in C obtained by evaluating the FOL formula Q in
the standard way, while considering each UCQ q appearing in it as a primitive predicate
with extension ansC(q, T,A). For the connection with epistemic logic, see [6].

3 Semantic Artifacts

A semantic artifact S = (T,A0, R) is a stateful device constituted by the information
ontology (T,A0) and the action specification R.

– T is a DL-LiteR TBox, fixed once and for all, and capturing the intensional knowl-
edge about the domain modeled by the semantic artifact.

– A0 is a DL-LiteR ABox, which expresses extensional information, and constitutes
the initial state of the artifact. We call proper constants the constants CA0 in A0, and
labeled nulls all new constants introduced by action execution.

– R is a set of actions, which change the state of the semantic artifact, i.e., the
extensional information component.
An action ρ is constituted by a signature and an effect specification. The action signa-

ture is constituted by a name and a list of individual input parameters. Such parameters
need to be substituted by constants for the execution of the action. Given a substitution θ
for the input parameters, we denote by ρθ the action with actual parameters.3

The effect specification consists of a set {e1, . . . , en} of effects, which are assumed
to take place simultaneously. Their formalization is inspired by the notion of mappings
in data exchange [8]. Specifically, an effect ei has the form q+i ∧Q−

i � A�
i where:

– q+i ∧Q−
i is a query over T and CA0 with x as free variables, that may include some

of the input parameters as query constants, q+i is a UCQ, and Q−
i is an arbitrary

ECQ whose free variables are included in those of q+i , namely in x. Intuitively, q+i
selects the tuples to instantiate the effect, and Q−

i filters aways some of them.
2 As customary, we can view each substitution simply as a tuple of constants, assuming some

ordering of the free variables of q.
3 We disregard a specific treatment of the output to the user, and assume instead that the user can

freely pose queries to the ontology and thus extract implicit or explicit information from the
states through which the semantic artifact evolves.
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Loan Gold
Customer

In Debt
Customer

Customer

< owes

< peer

< closed

1..*

Fig. 1. A semantic artifact ontology

– A�
i is a set of facts over T , which include as constants: constants in CA0 , parameters,

free variables of q+i , and implicitly existentially quantified variables.
Given a state A of S, and a substitution σ for the parameters of the action ρ, the

effect ei extracts from A the set ansCA((q
+
i ∧Q−

i )σ, T,A) of tuples of constants (proper
constants and labeled nulls), and for each such tuple θ asserts a set A�

iσθ of facts obtained
from A�

iσ by applying the substitution θ for the free variables of q+i . For each existentially
quantified variable z in A�

iσ, a labeled null is introduced having the form fz,ei(x)σθ,
where fz,ei(x) is a Skolem function, depending on the existential variable z and the
effect ei, having as arguments the free variables x of q+i . We denote by eiσ(A) the overall
set of facts, i.e., eiσ(A) =

�
θ∈ansCA

(Qiσ,T,A) A
�
iσθ. The overall effect of the action ρ

with parameter substitution σ over A is a new state do(ρσ, T,A) =
�

1≤i≤n eiσ(A) for
S . Notice that do(ρσ, T,A) may be inconsistent wrt T . In this case, the action ρ with σ
over A is not executable.

Let’s make some observations on such actions. The effects of an action are naturally a
form of update of the previous state, and not of belief revision [9]. That is, we never learn
new facts on the state in which an action is executed, but only on the state resulting from
the action execution. We also observe that existentially quantified variables introduced by
actions effects are used as witnesses of values chosen by the external user/environment
when executing the action. We assume that such a choice depends only on the specific
effects and the information retrieved by the query in the premises. We model such a
choice by introducing suitable labeled nulls generated by appropriate Skolem functions.
Finally, we observe that we do not make any persistence (or frame) assumption in our
formalization [10]. In principle at every move we substitute the whole old state, i.e.,
ABox, with a new one. On the other hand, it should be clear that we can easily write
effect specifications that copy big chunks of the old state into the new one. For example,
P (x, y) � P (x, y) copies the entire set of assertions involving the role P .

Example 1. Let us consider a semantic artifact S = (T,A0, R), where T is the DL-LiteR
formalization of the UML diagram in Figure 1, which can be described as follows. A bank
considers two specific types of customers: in-debt customers have a loan with the bank, while
gold customers have access to special privileges. In-debt customers may have closed their loan.
A relationship peer(c, p) between two customers denotes that p can vouch for c. The initial state
is A0 = {Gold(john),Cust(ann), peer(mark, john)}. R includes the following actions (we use
brackets to isolate UCQs in ECQs):

GetLoan(c) : { [∃p.peer(c, p) ∧ Gold(p)] � {owes(c,newl(c))}, CopyAll }

That is, customer c gets a loan provided that s/he has a peer that is “gold”. We use CopyAll as a
shortcut to denote effects that copy all concepts and roles.

CloseAllLoans(c) : { [owes(c, l)] � {closed(c, l)}, CopyAll }
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That is, customer c closes all his/her loans which are moved to the closed relation.

UpdateDebts : { [owes(x, l)] ∧ ¬[closed(x, l)] � {owes(x, l)},
[InDebt(x)] ∧ ∀l.[owes(x, l)] ⊃ [closed(x, l)] � {Cust(x)},
CopyAllExceptOwesClosedInDebt }

That is, “remove” from owes those tuples that are in closed, and remove in-debt customers whose
loans are all closed from InDebt, keeping them in Cust. CopyAllExceptOwesClosedInDebt

copies everything except owes, closed, and InDebt.

4 Processes

Notice that semantic artifacts include information and actions to change such information.
However, they do not say anything about how or when to apply a certain action. In
other words, semantic artifact are agnostic to processes that use them. Processes over a
semantic artifact S = (T,A0, R) are (possibly nondeterministic) programs that use the
state of S (accessed through T ) to store their (intermediate and final) computation results,
and the actions in R as atomic instructions. The state A can be arbitrarily queried through
query answering over T , while it can be updated only through the actions in R. There
are many ways to specify processes over S . Here we adopt a rule-based specification.

A condition/action rule π for a semantic artifact S is an expression of the form
Q �→ ρ, where ρ is an action in R and Q is an ECQ over T and CA0 , whose free variables
are exactly the parameters of ρ. Such a rule expresses that, for each tuple θ for which
condition Q holds, the action ρ with actual parameters θ can be executed.

A process is a finite set Π = {π1, . . . , πn} of rules. Notice that processes don’t
force the execution of actions but constrain them: the user of the process will be able to
choose any of the actions that the rules forming the process allow. Notice also that our
processes inherit entirely their states from the semantic artifact S, see e.g., [1]. Other
choices are also possible: the process could maintain its own state besides the one of the
semantic artifact. As long as such an additional state is finite, or embeddable into the
semantic artifact itself, the results here would easily extend to such a case.

The execution of a process Π over a semantic artifact S is defined as follows: we
start from the initial state A0 of the artifact, and for each rule Q �→ ρ in Π , evaluate Q,
and for each tuple θ returned execute ρθ, obtaining a new state A� = do(ρθ, T,A0) if
A� is consistent wrt T (i.e., ρθ is actually executable), and so on. In this way we build a
transition system Υ (Π,S) whose states represent possible artifact states and where each
transition represents the execution of an instantiated action that is allowed according
to the process. Υ (Π,S) captures the behavior of the process Π over the artifact S. In
principle we can model-check such a transition system to verify dynamic properties. This
is exactly what we are going to do next. However, one has to consider that in general
such a transition system is infinite, so the classical results on model checking [2], which
are developed for finite transition systems, do not apply.
Example 2. Referring to the example above, a process Π might include the following rules:

– [Cust(x)] ∧ ¬[∃y.owes(x, y)] �→ GetLoan(x), i.e., a customer can get a loan if she does not
have one already;

– ∃y.([owes(x, y)] ∧ ¬[closed(x, y)]) �→ CloseAllLoans(x), i.e., a customer that owes loans
that are not closed, can close them all at once;

– true �→ UpdateDebts, i.e., it is always possible to perform UpdateDebts.
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5 Verification Formalism

We turn to the verification formalism to be used to specify dynamic properties of
processes running over semantic artifacts. Several choices are possible. Here we focus
on a variant of µ-calculus [7], which is one of the most powerful temporal logics that
subsumes both linear time logics, such as LTL and PSL, and branching time logics such
as CTL and CTL* [2]. In particular, we introduce a variant of µ-calculus, called µL that
conforms with the basic assumption of our formalism, namely the use of ECQs to talk
about the semantic information contained in the state of the artifact. Formally, given a
semantic artifact S = (T,A0, R), formulas of µL over S have the following form:

Φ ::= Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | ✷Φ | ✸Φ | µZ.Φ | νZ.Φ | Z

where Q is an ECQ over T and CA0 (but not labeled nulls), and Z is a predicate variable.
The symbols µ and ν can be considered as quantifiers, and we make use of the

notions of scope, bound and free occurrences of variables, closed formulas, etc. The
definitions of these notions are the same as in first-order logic, treating µ and ν as
quantifiers. In fact, we are interested only in closed formulas as specification of temporal
properties to verify. For formulas of the form µZ.Φ and νZ.Φ, we require the syntactic
monotonicity of Φ wrt Z: every occurrence of the variable Z in Φ must be within the
scope of an even number of negation signs. In µ-calculus, given the requirement of
syntactic monotonicity, the least fixpoint µZ.Φ and the greatest fixpoint νZ.Φ always
exist. In order to define the meaning of such formulas we resort to transition systems.
Let A = Υ (Π,S) be the transition system for a process Π over a semantic artifact
S = (T,A0, R). We denote by ΣA the states of A. Let V be a predicate and individual
variable valuation on A, i.e., a mapping from the predicate variables Z to subsets of the
states ΣA, and from individual variables to constants in CA0 . Then, we assign meaning to
µ-calculus formulas by associating to Υ (Π,S) and V an extension function (·)AV , which
maps µ-calculus formulas to subsets of ΣA. The extension function (·)AV is defined
inductively as follows:

(Q)AV = {A ∈ ΣA | ansCA0
(QV, T, A)}

(Z)AV = ZV ⊆ ΣA

(¬Φ)AV = ΣA − (Φ)AV
(Φ1 ∧ Φ2)AV = (Φ1)AV ∩ (Φ2)AV
(∃x.Φ)AV =

�
{(Φ)AV[x/c] | c ∈ CA0}

(✸Φ)AV = {A ∈ ΣA | ∃A�. A ⇒A A� and A� ∈ (Φ)AV}
(✷Φ)AV = {A ∈ ΣA | ∀A�. A ⇒A A� implies A� ∈ (Φ)AV}
(µZ.Φ)AV =

�
{E⊆ ΣA | (Φ)AV[Z/E] ⊆ E}

(νZ.Φ)AV =
�
{E⊆ ΣA | E ⊆ (Φ)AV[Z/E]}

Here A ⇒A A� holds iff there exists a rule Q �→ ρ in Π such that there exists a
θ ∈ ansCA(Q,T,A) and A� = do(ρθ, T,A�). That is, there exist a rule in Π that can
fire on A and produce an instantiated action ρθ, which applied on A has A� as effect.

Intuitively, the extension function (·)AV assigns to the various µ-calculus constructs
the following meanings. The boolean connectives have the expected meaning, while
quantification is restricted to constants of CA0 , which are the only constants that the ECQs
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in the formula can retrieve. We also use the usual FOL abbreviations. The extension of
✸Φ consists of the states A such that for some state A� with A ⇒A A�, we have that Φ
holds in A�. While the extension of ✷Φ consists of the states A such that for all states
A� with A ⇒A A�, we have that Φ holds in A�. The extension of µZ.Φ is the smallest
subset Eµ of ΣA such that, assigning to Z the extension Eµ, the resulting extension of Φ
is contained in Eµ. That is, the extension of µX.Φ is the least fixpoint of the operator
λE .(Φ)AV[Z/E] (here V[Z/E ] denotes the predicate valuation obtained from V by forcing
the valuation of Z to be E). Similarly, the extension of νX.Φ is the greatest subset Eν
of ΣA such that, assigning to X the extension Eν , the resulting extension of Φ contains
Eν . That is, the extension of νX.Φ is the greatest fixpoint of the operator λE .(Φ)AV[X/E].
When Φ is a closed formula, (Φ)AV does not depend on V , and we denote it by ΦA.

The reasoning problem we are interested in is model checking, i.e., verify whether
a µL closed formula Φ holds for the process Π over the semantic artifact S. Formally,
such a problem is defined as checking whether A0 ∈ ΦA, that is, whether Φ is true in the
root of the initial state A0 of transition system Υ (Π,S).

Example 3. Continuing on our running example, we consider the following simple safety prop-
erty: It is always true that gold customers in A0 remain so. This property can be written as:

∀x.([Gold(x)] ⊃ νZ.([Gold(x)] ∧ ✷Z)).

This formula is true, since no action (among the ones above) removes individuals from being Gold.
Next, we consider a simple liveness property: It is possible to reach a state in which a gold

customer is also an in-debt customer.

µZ.([∃x.Gold(x) ∧ InDebt(x)] ∨✸Z)

This formula is true, because the ontology implies that if x participates to owes then x is an
instance of InDebt; and we can reach a state in which ∃x.Gold(x) ∧ owes(x, y) holds by firing
the action GetLoan(john), which is allowed by the process.

6 Homomorphism and Bisimulation

We want to understand when two ABoxes A1 and A2 over a common DL-LiteR TBox
T provide the same answers to all EQL queries. Given two relational structures I1
and I2 over the same set of relations, and a set C of constants, a C-homomorphism
h from I1 to I2 is a mapping from the domain of I1 to the domain of I2 that
preserves constants in C and relations, i.e., h(cI1) = cI2 for each c ∈ C, and if
(d1, . . . , dn) ∈ rI1 , then (h(d1), . . . , h(dn)) ∈ rI2 , for each relation r. Then, we
say that there is a C-homomorphism from A1 to A2 wrt T , denoted A1 →C

T A2, iff
there is a C-homomorphism from IA1 to each model of (T,A2), where IA1 is the
structure whose domain is CA1 , whose constants are interpreted as themselves, and
NIA1 = {c | N(c) ∈ A1} for each concept name N , similarly for role names. This
property can be checked by resorting to query answering over ontologies. For the ABox
A1, let QA1 be the boolean conjunctive query obtained as the conjunction of all facts in
A1, in which the constants not in C are treated as existentially quantified variables.

Lemma 1. Given a DL-LiteR TBox T , two ABoxes A1 and A2 over T , and a set C of
constants, we have that A1 →C

T A2 iff ansC(QA1 , T, A2) = true.
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Proof (sketch). We remind that a DL-LiteR ontology (T,A) has a unique (up to re-
naming of domain elements) canonical-model [5], which is the model that has a CA-
homomorphism to each model of (T,A). By composing homomorphisms, we have that
A1 →C

T A2 iff there is a C-homomorphism from IA1 to the canonical model of (T,A2).
The claim then follows by considering that there is a C-homomorphism from IA1 to the
canonical model of (T,A2) iff ansC(QA1 , T, A2) = true [11,5]. ��

A1 and A2 are said C-homomorphically equivalent wrt T if A1 →C
T A2 and A2 →C

T A1.

Theorem 1. Let C be a set of constants, and A1, A2 two ABoxes that are C-
homomorphically equivalent wrt a TBox T . Then, for every ECQ Q over T using
only constants in C, we have that ansC(Q,T,A1) = ansC(Q,T,A2).

Next we want to capture when two states of a single transition system or more
generally of two transition systems, possibly obtained by applying different processes to
different semantic artifacts sharing the same TBox and constants in the initial state, can
be considered behaviourally equivalent, in the sense that they satisfy exactly the same
µL formulas. To formally capture such an equivalence, we make use of the notion of
bisimulation [12], suitably extended to deal with query answering over ontologies.

Given two artifact transition systems A1 = Υ (Π1,S1) (with states ΣA1) and A2 =
Υ (Π2,S2) (with states ΣA2 ) such that S1 = (T,A10, R1) and S2 = (T,A20, R2) share
the same TBox T and the same constants C = CA10 = CA20 , a bisimulation is a relation
B ⊆ ΣA1 ×ΣA2 such that: (A1, A2) ∈ B implies that:
1. A1 and A2 are C-homomorphically equivalent wrt T ;
2. if A1 ⇒A1 A�

1 then there exists A�
2 such that A2 ⇒A2 A�

2 and (A�
1, A

�
2) ∈ B;

3. if A2 ⇒A2 A�
2 then there exists A�

1 such that A1 ⇒A1 A�
1 and (A�

1, A
�
2) ∈ B.

We say that two states A1 and A2 are bisimilar, if there exists a bisimulation B such that
(A1, A2) ∈ B. Two transition systems A1 with initial state A10 and A2 with initial state
A20 are bisimilar if (A10, A20) ∈ B.

The following theorem states that the formula evaluation in µL is indeed invariant
wrt bisimulation, so we can equivalently check any bisimilar transition systems.

Theorem 2. Let A1 and A2 be two transition systems obtained from two semantic
artifacts sharing the same TBox and constants. Then, for two states A1 of A1 and A2 of
A2 (including the initial ones) are bisimilar iff for all µL closed formulas Φ over the
two semantic artifacts, we have that A1 ∈ (Φ)A1 iff A2 ∈ (Φ)A2 .

Proof. The proof is analogous to the standard proof of bisimulation invariance of µ-
calculus [7], though taking into account our specific definition of bisimulation, using
Theorem 1 to guarantee that ECQs are evaluated identically over bisimilar states. ��

7 Undecidability and Decidability

We now show that, not surprisingly, verification in the infinite state setting we considered
is undecidable, but that it becomes decidable under some interesting conditions inspired
by the recent literature on data exchange [8]. Our results rely on the possibility of
building special semantic artifacts that we call “inflationary approximates”. For such
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special artifacts there exists a tight correspondence between the application of an action
and a step in the chase of a set of tuple-generating dependencies (TGDs) [13,8]

Given a semantic artifact S = (T,A0, R), its inflationary approximate is the seman-
tic artifact S+ = (T+, A0, R+) defined as follows. T+ is obtained from T by dropping
all assertions involving negation on the right-hand side, thus obtaining a TBox formed
by positive inclusions only. R+ is formed by one action specification ρ+ for each action
specification ρ ∈ R, where ρ+ is obtained from ρ by:

– removing all input parameters from the signature – note that the variables in q+i that
used to be parameters in ρ, become free variables in ρ+;

– substituting each effect ei : q+i ∧Q−
i � A�

i with ei : q
+
i � A�

i – note that we need
to preserve the Skolem functions name in the transformation;

– adding effects to copy all concept and role names, namely adding an effect N(x) �
N(x) for each concept name N of T , and an effect P (x, y) � P (x, y) for each
role name P of T .

Observe that executing actions in S+ can never give rise to an inconsistency, since T+

does not contain any negative information [5].
We also consider the generic process Π�, in which all condition/action rules have the

trivially true condition. Hence, Π� allows for executing every action at every step. With
these notions in place, it is easy to prove that verification in this setting is undecidable.

Theorem 3. µL model checking of processes over semantic artifacts is undecidable.

Proof (sketch). We show that it is already undecidable to check, given a semantic artifact
S+
∅ = (∅, A0, R), of the form of an inflationary approximate of an artifact with an empty

TBox, and the transition system A = Υ (Π�,S+
∅ ), whether A0 ∈ µZ(q ∨✸Z)A, where

q is a boolean UCQ. We observe that the set of all actions in S+ can be seen as a set
of TGDs, indeed it suffices to consider one TGD for each disjunct in the UCQ on the
left-hand side of an effect specification. So, we can reduce to the above model checking
problem the problem of answering boolean UCQs in a relational database under a set of
TGDs, which is undecidable [14] ��

Next, we observe a notable property of the transition system Υ (Π�,S+) generated
by the generic process Π� over the inflationary approximate S+ of a semantic artifact
S. Namely, each do(ρ+, T, ·) is a monotonic operator. This implies that by repeatedly
applying such operators starting from the ABox A0 in S+, we get at the limit (possibly
transfinite) a single ABox Amax , which is the least fixpoint of such operators taken col-
lectively [15,16]. Such an ABox contains, every fact generated by repeatedly executing
actions from the inflationary approximate S+, that is every state A+ of Υ (Π�,S+) is
such that A+ is contained in Amax . More interestingly, we show next that Amax contains
also every A generated by repeatedly executing actions from the original S .

Lemma 2. Let S = (T,A0, R) be a semantic artifact and Π a process over S. Then
every state A of the transition system Υ (Π,S) is a subset of Amax defined as above.

Proof (sketch). We can show by induction that, for every sequence of actions
ρ1θ1, ρ2θ2, . . . , ρnθn generated by the process Π starting from A0, the resulting state
do(ρnθn, T, do(· · · do(ρ2θ2, T, do(ρ1θ1, T, A0)) · · · )) is a subset of the corresponding
resulting state do(ρ+nT

+, do(· · · do(ρ+2 , T+, do(ρ+1 , T
+, A0)) · · · )) of the inflationary

approx., which is a subset of Amax . ��
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In other words, Amax generated by the generic process Π� running over the infla-
tionary approximate S+ of a semantic artifact S , bounds all states A that any process Π
can generate by running on S . Hence if for any reason Amax is finite, then the transition
system Υ (Π,S) is finite. Hence, being model checking of finite transition system de-
cidable (in fact polynomial in the size of the transition system), we get that also model
checking of Υ (Π,S) is decidable.

To get finiteness guarantees on Amax , we take advantage of the correspondence
between action execution and TGDs chase steps, as in the proof of Theorem 3. We build
on this correspondence by further considering that in DL-LiteR, every UCQ q over a
TBox can be rewritten as a new UCQ rew(q) over the same alphabet, to be evaluated
over the ABox considered as a relational database [5] (that is dropping the TBox).

In the literature for data exchange, several conditions that guarantee the finiteness
of the chase of TGDs have been considered [17,18]. Here we focus on the original
notion of weakly-acyclic TGDs [17]. Weak-acyclicity is a syntactic notion that involves
the so-called dependency graph of the set of TGDs. Informally, a set D of TGDs is
weakly-acyclic if there are no cycles in the dependency graph of D involving “existential”
relation positions. The key property of weakly-acyclic TGDs is that chasing a relational
database with them (i.e., applying them in all possible ways) generates a set of facts (a
database) that is finite. See [17] for details.

Given a semantic artifact S = (T,A0, R) and its inflationary approximate S+ =
(T+, A0, R+), we define the set E+

∅ of effect specifications that includes an effect
rew(q+i ) � Ai for each effect q+i � Ai of an action ρ+ ∈ R+. Notice that the set E+

∅
can be seen as a set of TGDs. We say that a semantic artifact S is weakly-acyclic if the
set E+

∅ seen as a set of TGDs is weakly-acyclic. (Note that the semantic artifact in our
example is trivially weakly-acyclic.)

Lemma 3. Let S = (T,A0, R) be a weakly-acyclic semantic artifact and S+ its infla-
tionary approximate. Then Amax computed as above for S+ is finite.

Proof (sketch). We have to show that starting from A0 we get to the least fixpoint Amax

of the do(ρ+, T, ·) operator in a finite number of steps. To do so, we follow the line
of the proof of finiteness of chase of weakly-acyclic TGDs in [17], and show that the
number of Skolem terms generated by the effects of actions is bounded by a polynomial
in the size of A0. Differently from [17], we cannot rely on the notion of homomorphism
to stop firing actions, but have to use membership of the new set of facts in the previous
ones. ��

As a direct consequence of Lemma 2 and Lemma 3, for weakly-acyclic semantic
artifacts verification is decidable.

Theorem 4. µL model checking of processes over weakly-acyclic semantic artifacts is
decidable.

Proof (sketch). The result follows by observing that every state generated by the exe-
cution of any process Π over a weakly-acyclic semantic artifact S is a subset of Amax ,
which by Lemma 3 is finite. Hence, we can apply a model checking procedure for
µ-calculus on finite-state systems [7]. ��
Note that the proof of Theorem 4 is giving us a single exponential upper bound (in the
size of A0) for µL model checking involving weakly-acyclic semantic artifacts.
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8 Conclusions

In this paper we have studied verification of processes over semantic artifacts. We obtain
an interesting decidability result by relying on the notion of inflationary approximate,
which allows for a connection with the theory of chase of TGDs in relational databases.
We close by observing that while we fully used the ontology for querying the artifact
state, we use it in a limited way when updating the state, namely only to guarantee
consistency. Ontology update has its own semantic and computational difficulties, see
e.g., [19], which our approach sidesteps. However, if one could introduce a suitable
notion of inflationary approximate in that case, the approach presented here could be
used to devise decidable cases.
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1 Introduction

In recent years, there has been growing interest in ontology-based data access, in which
information in the ontology is used to derive additional answers to queries posed over
instance data. The DL-Lite family of description logics [3, 2]) is considered especially
well-suited for such applications due to the fact that query answering can be performed
by first incorporating the relevant information from the ontology into the query, and
then posing the modified query to the bare data. This property, known as first-order
rewritability, means that query answering over DL-Lite ontologies has very low data
complexity, which is considered key to scalability.

An important problem which arises in ontology-based data access is how to handle
inconsistencies. This problem is especially relevant in an information integration setting
where the data comes from multiple sources and one generally lacks the ability to mod-
ify the data so as to remove the inconsistency. In the database community, the related
problem of querying databases which violate integrity constraints has been extensively
studied (cf. [4] for a survey) under the name of consistent query answering. The stan-
dard approach is based on the notion of a repair, which is a database which satisfies
the integrity constraints and is as similar as possible to the original database. Consistent
answers are defined as those answers which hold in all repairs. A similar strategy can
be used for description logics by replacing the integrity constraints with the ontology.

Consistent query answering for the DL-Lite family of description logics was re-
cently studied in [8, 7]. Unfortunately, the obtained complexity results are rather neg-
ative: consistent query answering is co-NP-hard in data complexity, even for instance
queries and the simplest dialect DL-Litecore. In the database community, negative re-
sults were also encountered, but this spurred a line of research [5, 6, 9] aimed at identi-
fying cases where consistent query answering is feasible, and in particular, can be done
using query rewriting. We propose to carry out a similar investigation for DL-Lite on-
tologies, with the aim of better understanding the cases in which query rewriting can be
profitably used. In this paper, we make some first steps towards this goal. Specifically,
we formulate general conditions which can be used to prove that a consistent rewriting
does or does not exist for a given DL-Litecore TBox and instance query.

The paper is organized as follows. After some preliminaries, we introduce in Sec-
tions 3 and 4 the problem of consistent query answering and some useful notions and
terminology. Our main results are presented in Sections 4, 5, and 6, where we present
general conditions which yield co-NP-hardness, first-order inexpressiblity, or first-order
expressiblity of consistent instance checking in DL-Litecore. Finally, in Section 7, we
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show that query rewriting is always possible if we adopt a previously studied alternative
semantics. Note that proofs have been omitted for lack of space but can be found in [1].

2 Preliminaries

Syntax. DL-Litecore knowledge bases (KBs) are built up from a set NI of constants,
called individuals, a set NC of unary predicates, called atomic concepts, and a set NR

binary predicates, called atomic roles. Complex concept and role expressions are con-
structed using the following syntax:

B → A | ∃R C → B | ¬B R → P | P−

where A ∈ NC and P ∈ NR. Here B (resp. R) denotes a basic concept (resp. basic

role), and C denotes a general concept. A TBox is a finite set of inclusions of the form
B � C (with B, C as above). An ABox is a finite set of assertions of the form B(a)
(B ∈ NC) or R(a, b) (R ∈ NR) where a, b ∈ NI. A KB consists of a TBox and an ABox.

Notational conventions We use lhs(Γ ) (resp. rhs(Γ )) to refer to the basic concept ap-
pearing on the left (resp. right) side of an inclusion Γ , e.g. lhs(∃P � ¬D) = ∃P and
rhs(∃P � ¬D) = D. We sometimes use R− to mean P− if R = P ∈ NR and P if
R = P−, and write R(a, b) to mean P (a, b) if R = P and R(b, a) if R = P−.

Semantics An interpretation is I = (∆I , ·I), where ∆I is a non-empty set and ·I
maps each a ∈ NI to aI ∈ ∆I , each A ∈ NC to AI ⊆ ∆I , and each P ∈ NR to
P I ⊆ ∆I ×∆I . The function ·I is straightforwardly extended to general concepts and
roles, e.g. (∃S)I = {c | ∃d : (c, d) ∈ SI}. I satisfies G � H if GI ⊆ HI ; it satisfies
A(a) (resp. P (a, b)) if aI ∈ AI (resp. (aI , bI) ∈ P I). We write I |= α if I satisfies
inclusion/assertion α. I is a model of K = (T ,A) if I satisfies all inclusions in T and
assertions in A. A KB K is satisfiable/consistent if it has a model; otherwise it is unsat-

isfiable/inconsistent (K |= ⊥). We say that K entails α, written K |= α, if every model
of K is a model of α. The closure of T , written cl(T ), consists of all inclusions which
are entailed from T . Given an ABox A, we denote by IA the interpretation which has
as its domain the individuals in A and which makes true precisely the assertions in A.

Queries A query is a formula of first-order logic with equality (FOL), whose atoms are
of the form A(t), P (t, t�), or t = t� with t, t� terms, i.e., variables or individuals. Con-

junctive queries are queries which do not contain ∀, ¬, or =. Instance queries (IQs) are
queries consisting of a single atom with no variables (i.e. ABox assertions). A Boolean

query is a query with no free variables. For a Boolean query q, we write I |= q when q
holds in the interpretation I, and K |= q when I |= q for all models I of K.

3 Consistent query answering

The most commonly used approach to query answering over inconsistent KBs is known
as consistent query answering and relies on the notion of a repair:

Definition 1. A repair of a knowledge base K = (T ,A) is an inclusion-maximal subset

B of A consistent with T . We use Rep(K) to denote the set of repairs of K.
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Consistent query answering consists in performing standard query answering on
each of the repairs and intersecting the answers. For Boolean queries, we have:

Definition 2. A Boolean query q is said to be consistently entailed from K = (T ,A),
written K |=cons q, if T ,B |= q for every repair B ∈ Rep(K).

Just as with standard query entailment, we can ask whether consistent query entail-
ment can be tested by rewriting the query and evaluating it over the data.

Definition 3. A first-order query q� is a consistent rewriting of a Boolean query q w.r.t.

a TBox T if for every ABox A, we have T ,A |=cons q if and only if IA |= q�.

We illustrate the notion of consistent rewriting on an example.

Example 1. Consider the query q = R(a, b) and the TBox T = { ∃R � ¬D,∃R �
¬∃S−,∃R− � ¬B}. We claim q� = R(a, b) ∧ ¬D(a) ∧ ¬ ∃xS(x, a) ∧ ¬B(b) is a
consistent rewriting of q w.r.t. T . To see why, note that if a repair implies q, then it
must contain R(a, b). Moreover, if the ABox A contains any assertion that contradicts
R(a, b) then we can build a repair which does not contain R(a, b). Thus, R(a, b) is
consistently entailed just in the case that R(a, b) ∈ A and there are no assertions in A
which conflict with R(a, b), which is precisely what q� states.

The method used in Example 1 can be generalized to show that a consistent rewrit-
ing exists for all role instance queries1. Unfortunately, the same is not true for concept
IQs. Indeed, in [7], it was shown that consistent instance checking in DL-Litecore is
co-NP-hard in data complexity. We present the reduction in the following example.

Example 2. Consider an instance ϕ = c1 ∧ . . . ∧ cm of UNSAT, where each ci is a
propositional clause. Let v1, . . . , vk be the propositional variables appearing in ϕ. We
define the DL-Litecore knowledge base K = (T ,A) as follows:

T = { ∃P− � ¬ ∃N−, ∃P � ¬ ∃U−, ∃N � ¬ ∃U−,∃U � A }
A = {U(a, ci) | 1 ≤ i ≤ m } ∪ {P (ci, vj) | vj ∈ ci} ∪ {N(ci, vj) | ¬vj ∈ ci}

It is not hard to verify that ϕ is unsatisfiable if and only if K |=cons A(a). The basic idea
is that, because of the inclusion ∃P− � ¬ ∃N−, each repair corresponds to a valuation
of the variables, with vj assigned true if it has an incoming P -edge in the repair.

The focus in this paper will be on distinguishing between hard and easy instances
of the consistent query answering problem. More specifically, we will be interested in
the problem of deciding for a given TBox and IQ whether a consistent rewriting exists.

4 Causes and conflicts

In formulating our results, it will be convenient to introduce some terminology for refer-
ring to assertions which participate in the entailment of another assertion or its negation.

1 Obviously this is no longer the case if we consider a logic with role inclusions like DL-LiteR.
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Definition 4. Let α,β be assertions and Υ an inclusion. We say β causes (or is a cause
of) α given Υ , written β

Υ�−→ α, if {Υ}, {β} |= α. We say β conflicts with (or is a
conflict for) α given Υ , written β

Υ•−−−→ α, if Υ = B1 � ¬B2 and β |= B1(a) and

α |= B2(a) for some a. Sometimes we omit Υ if its identity is not relevant.

The following straightforward proposition characterizes consistent instance check-
ing in terms of causes and conflicts.

Proposition 1. Let K = (T ,A) be a DL-Litecore KB and α an instance query. Then

K�|=cons α if and only if there exists a subset A� ⊆ A which is consistent with T and

such that for every β ∈ A which causes α (given some axiom in cl(T )), there is γ ∈ A�

which conflicts with β (given some axiom in cl(T )).

In other words, consistent instance checking comes down to deciding existence of a
consistent subset of the ABox which contradicts all causes of the instance query.

We now introduce the notion of a cause-conflict chain. The intuition is as follows.
Suppose that we have an assertion µ0 in the ABox which causes the IQ α. Then to show
K�|=cons α, Proposition 1 says we must select some assertion ρ0 which conflicts with
µ0. But if ρ0 conflicts with an assertion λ1 which is a conflict of another cause µ1, then
this forces us to choose a different conflict ρ1 for µ1 which is consistent with ρ0. The
presence of ρ1 may in turn attack a conflict of a third cause µ3, leading us to select a
conflict ρ3 for µ3, and so on.

Definition 5. A cause-conflict chain (for TBox T and IQ α) is a sequence µ0ρ0λ1µ1ρ1

λ2µ2ρ2 . . . λnµnρnλn+1µn+1 of distinct assertions, together with a sequence Υ0Γ0Σ1

Ω1Υ1Γ1Σ2 . . . ΩnΥnΓnΣn+1Ωn+1Υn+1 of inclusions from cl(T ), which satisfy:

– for every i: µi
Υi�−−→ α, µi

Γi•−−−→ ρi, ρi
Σi+1•−−−−−→ λi+1, and µi

Ωi•−−−→ λi

– if j < i, then we do not have µi •−→ ρj

– {ρ0, ρ1, . . . , ρn} is consistent with T

Examples of cause-conflict chains can be found in Figure 1a(b) and 2(b). In the follow-
ing sections, we will consider particular types of cause-conflict chains and see how they
are related to the presence of a consistent rewriting.

5 General co-NP-hardness result

In this section, we formulate a general condition which can be used to show co-NP-
hardness of consistent instance checking. We begin by giving a more elaborate reduc-
tion from UNSAT, and then we analyze what is needed to make the proof go through.

Example 3. Consider the following TBox T :

{ ∃R0 � A,∃R1 � A,∃R2 � A,∃R3 � A,∃R0 � ¬ ∃S,∃S− � ¬B1, B1 � ¬ ∃R−
1 ,

∃R−
1 � ¬D1, D1 � ¬B2, B2 � ¬ ∃R−

2 ,∃R−
2 � ¬D2, D2 � ¬ ∃T−,∃T− � ¬ ∃R−

3 }
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Fig. 1: ABox and type-1 cause-conflict chain for Example 3.

We show using a reduction from UNSAT that deciding whether T ,A |=cons A(a) is
co-NP-hard in data complexity. Given a propositional CNF ϕ = c1 ∧ . . . ∧ cm over
v1, . . . , vk, we define A as follows (see Figure 1(a) for a pictorial representation):

{R0(a, c+
i ), R3(a, c−i ) | 1 ≤ i ≤ m } ∪ {R1(a, vj), R2(a, vj) | 1 ≤ j ≤ k + m }∪

{S(c+
i , vj) | vj ∈ ci} ∪ {T (c−i , vj) | ¬vj ∈ ci} ∪ {S(c+

i , vk+i) | 1 ≤ i ≤ m}∪
{T (c−i , vk+i) | 1 ≤ i ≤ m} ∪ {B1(vj), B2(vj), D1(vj), D2(vj) | 1 ≤ j ≤ k + m}

We show that ϕ |= ⊥ if and only if T ,A |=cons A(a). For the first direction, suppose
we have a satisfying valuation for ϕ, and let V be the set of variables which are affected
to true. We assume without loss of generality that if a variable vj appears only positively
(resp. negatively) in ϕ then vj ∈ V (resp. vj �∈ V ). Define the subset B of A as follows:

{S(c+
i , vj), D1(vj), D2(vj) ∈ A | vj ∈ V, 1 ≤ j ≤ k}∪

{T (c−i , vj), B1(vj), B2(vj) ∈ A | vj �∈ V, 1 ≤ j ≤ k}∪
{T (c−i , vk+i), B1(vk+i), B2(vk+i) ∈ A | ∃vj ∈ V with vj ∈ ci}∪
{S(c+

i , vk+i), D1(vk+i), D2(vk+i) ∈ A | ∀vj ∈ V : vj �∈ ci}

It is easy to check that B is consistent with T and that T ,B�| = A(a). It can also
be verified that adding any additional assertions from A to B leads to a contradic-
tion. In particular, note that either a clause ci has some positive variable vj ∈ V ,
in which case S(c+

i , vj), T (c−i , vk+i) ∈ B, or it contains no such vj , in which case
S(c+

i , vk+i), T (c−i , vj) ∈ B. In either case, both R0(a, c+
i ) and R3(a, c−i ) conflict with

an assertion in B. Thus, B is a repair of A w.r.t. T which does not entail A(a).
For the other direction, let B be a repair with T ,B�|= A(a). It follows that none of

the role assertions in A involving R0, R1, R2, R3 appear in B. The absence of R1- and
R2-assertions and the consistency of B with T together imply that for each vj , we have
either B1 and B2 or both D1 and D2. This means each vj has either incoming S-edges
or incoming T -edges, but not both. We create a valuation in which vj is affected to true
if and only if vj has an incoming S-edge. Clearly if ci has a positive literal vj which is
affected to true, then it will be satisfied by this valuation. If instead all of the positive
literals in ci are affected to false, then the absence of R0(a, c+

i ) can only be explained
by the presence in B of the assertion S(c+

i , vk+i). But this implies in turn the absence
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of T (c−i , vk+i) in B. As R3(a, c−i ) �∈B , there must be some assertion in B of the form
T (c−i , v�) (1 ≤ � ≤ k). This means v� will be affected to false by our valuation, and
hence the clause will be satisfied. Thus, the formula ϕ is satisfiable.

To understand how the preceding reduction can be generalized, it is helpful to con-
sider the cause-conflict chain pictured in Figure 1(b). This chain contains the essential
structure used in the reduction, with individuals b, c, and d playing the roles of c+

i ,
vj , and c−� . We first notice that at the start and end of the chain, there is a switch of
individuals, which corresponds to moving from c+

i to vj and then back to c−� . Next
remark that in order to show consistency of the constructed B, we needed consistency
of the sets of “forward” assertions {S(b, c), D1(c), D2(c)} and “backward” assertions
{B1(c), B2(c), T (d, c)}. Also note that in order to use a repair to construct a satisfying
valuation, we had to prove that no vj had both incoming S- and T -edges. This involved
showing that the only way to simultaneously contradict all Ri assertions while retaining
consistency was to choose all of the forward (Di) or all of the backward (Bi) assertions.
Key to this reasoning was the fact that for each Ri(a, vj) assertion, we were forced to
choose either Bi(vj) or Di(vj). If we could use some B�(vj) or D�(vj) with � �= j, the
line of reasoning fails. Finally we note that none of the conflicts in the chain involves
the query individual a. This is important because if we used some assertion C(a) to
contradict Ri(a, vj), then we would also contradict Ri(a, v�) when � �= j, making it
impossible to independently choose truth values for each variable.

The preceding analysis leads us to define the notion of a position (to be able to talk
about switching to a new individual) and the notion of type-1 cause-conflict chains.

Definition 6. Concepts of the forms A or ∃P (resp. ∃P−
) are said to have position 1

(resp. 2). An inclusion Υ begins (resp. concludes) on position p, written bpos(Υ ) = p
(resp. cpos(Υ ) = p), if p is the position associated with lhs(Υ ) (resp. rhs(Υ )).

Definition 7. A cause-conflict chain for T and α defined by the sequence of assertions

µ0ρ0λ1µ1 . . . ρnλn+1µn+1 and sequence of inclusions Υ0Γ0Σ1Ω1Υ1 . . . Σn+1Ωn+1Υn+1

is said to be of type-1 if it satisfies the following conditions:

(C1) bpos(Υi) �= bpos(Γi) and bpos(Υi) �= cpos(Ωi) for all i
(C2) cpos(Γ0) �= bpos(Σ1) (C4) {λ1, . . . , λn+1} is consistent with T
(C3) cpos(Σn+1) �= bpos(Ωn+1) (C5) if j > i, then we do not have µi •−→ λj

Condition C1 of the definition states that the query individual is not used in the
conflicts, whereas C2 and C3 make sure there is a switch to a new individual at the start
and end of the chain. Condition C4 guarantees consistency of the “backward” conflict
assertions, and C5 ensures that when reading the chain from right to left all causes are
relevant (i.e. not already contradicted by one of the previous choices).

Example 4. If B1 � ¬B2 were added to the TBox from Example 3, then the chain from
Figure 1(b) would not be type-1, since B1(c) and B2(c) would conflict (violating C4).

The next result shows that the presence of a type-1 cause-conflict chain is sufficient
to show co-NP-hardness (and a fortiori, the lack of a consistent rewriting). The proof
generalizes the reduction from Example 3.

Theorem 1. If a type-1 cause-conflict chain for T and α exists, then the problem of

deciding whether T ,A |=cons α is co-NP-hard in data complexity.
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Fig. 2: ABox and Type-2 cause-conflict chain used in Example 5.

6 General first-order inexpressibility result

In this section, we use Ehrenfeucht-Fraı̈ssé games to prove nonexistence of a consis-
tent rewriting. As in the previous section, we start with an illustrative example, before
formulating the general condition.

Example 5. Consider the following DL-Litecore TBox T :

T = { ∃R � A, ∃R− � ¬ ∃S, ∃R− � ¬B,∃S− � ¬B }
We show using Ehrenfeucht-Fraı̈ssé games that there is no consistent first-order rewrit-
ing of the query A(a) w.r.t. T . Consider some k ∈ N, and let m = 2k +1. We construct
two ABoxes A1 and A2 as follows (A1 is pictured in Figure 2(a)):

A1 = {R(a, bi), R(a, ci), B(ci), S(ci, ci+1) | 1 ≤ i ≤ m}∪
{B(bi) | 2 ≤ i ≤ m } ∪ {S(bi, bi+1), | 1 ≤ i ≤ m− 1 }

A2 = A1 \ {B(c1)} ∪ {B(b1)}

We show that T ,A1 |=cons A(a) and T ,A2 �|=cons A(a). For the first point, suppose
for a contradiction that there is a repair B of A1 w.r.t. T such that T ,B�|= A(a). Then
there can be no assertions in B of the form R(a, bi), and hence each such assertion must
provoke a contradiction when added to B. In order for B∪{R(a, b1)} to be inconsistent
with T , we must have S(b1, b2) ∈ B, as S(b1, b2) is the only assertion in A which
conflicts with R(a, b1). But this means that B(b2) �∈B , and hence that S(b2, b3) ∈ B,
or else we could add R(a, b2) to B without provoking a contradiction. Continuing in
this manner, we find that S(bm−1, bm) ∈ B, and so B(bm) �∈B . But in this case,
B ∪ {R(a, bm)} is consistent with T , which contradicts the maximality of B. For the
second point, we remark that the set B = {B(bi), S(ci, ci+1) | 1 ≤ i ≤ m} is a repair
of A2 w.r.t. T such that T ,B�|= A(a).

We now must show that duplicator has a k-round winning strategy in the Ehrenfeucht-
Fraı̈ssé game based on interpretations IA1 and IA2 . The basic idea is as follows (we
defer the full argument to [1]). Whenever spoiler selects a point which is “closer” to
the side of bm/cm+1 in IA1 , duplicator responds with the identical point in IA2 . When
spoiler plays “closer” to the b1/c1 side, then duplicator plays ci if bi was played, and bi

if ci was played. The important thing is to make sure there is sufficient distance between
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the indices j where duplicator copies spoiler and those where he chooses differently.
This can be done by keeping track of the rightmost point where the choices differ and
the leftmost point where they coincide and ensuring that the distance between these
points is always at least 2k−i, where i is the the current round of play.

Figure 2(b) presents a cause-conflict chain for the preceding example. Most of the
conditions we identified in the previous section continue to hold for this chain. The only
exception is that we do not have a switch of individuals at the end of the chain. Instead,
we can remark that the initial cause-type is repeated further down the chain and can be
contradicted in the same way, and this is what we use to create the long chain structure
required in the proof. This leads us to define a second class of cause-conflict chains, in
which we replace C3 with a new condition which captures this repetition.

Definition 8. A cause-conflict chain for T and α whose sequence of inclusions is Υ0Γ0

Σ1Ω1Υ1 . . . Σn+1Ωn+1Υn+1 is said to be type-2 if it satisfies C1, C2, C4, C5, and C6:

(C6) Υ0 = Υn and Γ0 = Γn

The following theorem states that type-2 cause-conflict chains witness nonexistence
of a consistent rewriting. The proof generalizes the argument outlined in Example 5.

Theorem 2. If there exists a type-2 cause-conflict chain for T and α, then there is no

consistent first-order rewriting for α w.r.t. T .

We next establish the relationship between type-1 and type-2 chains.

Theorem 3. If there exists a type-1 cause-conflict chain for T and α, then there also

exists a type-2 cause-conflict chain. The converse does not hold (assuming P�=NP).

Proof (Sketch). For the first point, the idea to take a second copy of the type-1 chain,
reverse it, and append it to the original. For the second point, we show that consistent
instance checking for the TBox and IQ from Example 5 can be done in polynomial time
by iteratively applying the following rule: if R(a, c) ∈ A and there is no S(c, d) ∈ A,
then delete all incoming S-edges to c. We continue until either we find R(a, c) ∈ A
such that neither B(c) nor any S(c, d) belongs to A (in which case A(a) is consistently
entailed), or the rule is no longer applicable (and A(a) is not consistently entailed).

7 Rewriting Procedure

In this section, we develop a procedure which is guaranteed to produce a consistent
rewriting whenever the TBox T and query α = A(a) satisfy the following two criteria:
Ordering There exists a total order < on CauseT(A) such that whenever a cause-

conflict chain begins with inclusion B1 � A, ends with inclusion B2 � A, and
satisfies conditions C1 and C3, we have B2 < B1.

No loops Every cause-conflict chain for T , α of length n+1 which satisfies cpos(Σi) =
bpos(Ωi) for every 1 ≤ i ≤ n + 1 is such that Υi �= Υj for all i �= j < n + 1.

where CauseT(A) = {D | D � A ∈ cl(T )} is the set of cause-types of A. We define
the set of conflict-types of A analogously: ConflT(A) = {D | D � ¬A ∈ cl(T )}.
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Algorithm 1 Rewrite
Input: TBox T , IQ A(a) Output: a first-order query ϕ

Initialize ϕ to ⊥ and initialize G to the set of all tuples (C,D) which satisfy:
(a) C = {C ∈ CauseT(A) | ∃D ∈ D with D ∈ ConflT(C)}
(b) for all D ∈ D, there exists C ∈ C such that D ∈ ConflT(C)
(c) there do not exist D1, D2 ∈ D with D2 ∈ ConflT(D1)

For every (C,D) ∈ G // choose which cause-types to treat globally

Let D = {B1, . . . , Bk, ∃P1, . . . , ∃P�, ∃P−�+1, . . . , ∃P
−
m} (Bi ∈ NC, Pi ∈ NR)

S = {Bi(a)}k

i=1 ∪ {Pi(a, wi)}�

i=1 ∪ {Pi(wi, a)}m

i=�+1 // realize concepts in D at a

// compute inequalities needed to ensure consistency (treating variables as individuals)

I = {vi �= vj | vi, vj ∈ {a, w1, . . . , wm} and T , S ∪ {vi = vj} |= ⊥}
U = CauseT(A) \ C // cause-types not yet treated

ϕ = ϕ ∨ ∃w1...wm

V
β∈S

β ∧
V

γ∈I
γ ∧

V
C∈U

(∀x auxRewrite(T , A(a), C, x, S))
Output ¬ϕ

Our algorithm Rewrite creates a big disjunction, where each disjunct corresponds
to a choice of a set of cause-types to be conflicted globally, i.e. one single assertion in-
volving the query individual is used to conflict all causes of that type. For each disjunct,
we first fix the assertions which realize these global conflicts, and then invoke subrou-
tine auxRewrite to build one conjunct per untreated cause-type whose purpose is to
see whether for each cause of that type there is an assertion which conflicts with it and
can safely be added to the repair under construction. These conjuncts have a tree-like
structure whose “paths” are cause-conflict chains which satisfy cpos(Σi) = bpos(Ωi)
for all i. Property No Loops can thus be applied to show that the recursion depth of
auxRewrite is no more than |CauseT(A)|+1, ensuring termination. The difficult step
in the correctness proof is to show IA �|= Rewrite(T , q) implies T ,A�|=cons q. The
basic idea is to use the way the negation of the formula is satisfied to direct our con-
struction of a repair which conflicts with every cause of q. Ordering is used to decide
in which order we should treat the causes. We illustrate this idea on a concrete example:

Example 6. Let q = A(a) and T be the following TBox:

{ ∃R0 � A,∃R1 � A,∃R2 � A,∃R−
0 � ¬ ∃S,∃S− � ¬B1, B1 � ¬ ∃R−

1 ,

∃R−
1 � ¬D1, D1 � ¬ ∃T−, B1 � ¬ ∃T−,∃T � ¬ ∃R−

2 }
It can be verified that the negation of Rewrite(T , q) consists of a single disjunct:

∀xR0(a, x) → ∃y(S(x, y) ∧ (R1(a, y) → D1(y)))
∧ ∀xR1(a, x) → (B1(x) ∨D1(x))
∧ ∀xR2(a, x) → ∃y(T (x, y) ∧ ¬R1(a, y))

We show that if this formula is satisfied in IA, then we can construct a repair B of
A w.r.t. T which does not entail A(a). First we fix an order on CauseT(A) satisfying
the conditions in Ordering: ∃R0 < ∃R2 < ∃R1. This means we start by considering
causes via ∃R0. If R0(a, b) ∈ A, then the first conjunct allows us to find c such that
S(b, c) ∈ A and R1(a, c) ∈ A implies D1(c) ∈ A. We add S(b, c) to B, and also add
D1(c) if R1(a, c) ∈ A. We then move on to the next cause-type in the order, ∃R2. If
we have R2(a, b) ∈ A, then we use the third conjunct to find c such that T (b, c) ∈ A
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Algorithm 2 auxRewrite
Input: TBox T , IQ A(a), C ∈ CauseT(A), variable x, S set of atoms
Output: a first-order query χ

If C ∈ NC, output ¬C(a)
Set α = R(a, x), χ = ¬α, and B = ∃R− where C = ∃R // R basic role

For each D ∈ ConflT(B) // Consider different ways to contradict α on x

Set β = D(x) if D ∈ NC and β = T (x, y) [y fresh variable] if D = ∃T
If β is necessarily inconsistent with S given T , exit the for-loop
Else, let � be the inequalities needed to ensure {β} ∪ S is consistent with T
// Compute untreated causes which are affected by choice of β

Initialize ∆ to ∅
For all ∃V ∈ CauseT(A) such that T , S ∪ {β} ∪ {V (a, x)}�|= ⊥ and
ConflT(∃V −) ∩ ConflT(D) �= ∅

Add (∃V, x) to ∆ // need to find conflict for cause V (a, x)
If D = ∃T , then for all ∃V ∈ CauseT(A) with T , S ∪ {β} ∪ {V (a, y)}�|= ⊥
and ConflT(∃V −) ∩ ConflT(∃T−) �= ∅

Add (∃V, y) to ∆ // need to find conflict for cause V (a, y)
χ = χ ∨ (∃y)(β ∧ � ∧

V
(H,v)∈∆

auxRewrite(T , A(a), H, v, S ∪ {β}))
Output χ

and R1(a, c) �∈A , and we add T (b, c) to B. Finally we turn to the final cause-type ∃R1,
and let R1(a, b) ∈ A. Possibly we have already added D1(b) when dealing with the
first conjunct, in which case we do nothing. Otherwise, because of the second conjunct,
we have either B1(b) ∈ A or D1(b) ∈ A, which we can add to B. The set B is still
consistent with T after this step, since if T (e, b) ∈ B then we would have R1(a, b) �∈A ,
and if S(e, b) ∈ B, then we would have already added a conflict for R1(a, b). We have
thus found a set B which is consistent with T and contradicts every assertion which
could cause entailment of A(a). By Proposition 1, we have T ,A�|=cons A(a).

Theorem 4. If a TBox T and IQ q satisfy conditions Ordering and No Loops, then

Rewrite(T , q) terminates and outputs a consistent rewriting of q w.r.t. T .

Theorem 4 can be used to derive simpler sufficient conditions, like the following:

Corollary 1. Rewrite(T , A(a)) terminates with the correct output if there do not exist

basic roles R,S with T |= ∃R � A and T |= ∃R− � ¬ ∃S.

8 Approximating Consistent Query Answering

In order to obtain a more generally applicable positive result, we consider a sound ap-
proximation of consistent query answering, which we term cautious query answering.

Definition 9. A query q is cautiously entailed by a knowledge baseK = (T ,A), written

K |=caut q, if T ,∩B∈Rep(K)B |= q.

In [7], cautious conjunctive query answering (there called Intersection ABox Repair
semantics) was shown to be tractable for DL-LiteR KBs. The proposed algorithm first
deletes all assertions involved in some conflict, and then queries the resulting ABox. It
was left open whether query rewriting techniques could be used instead. We answer this
question in the affirmative and thus obtain an improved upper bound of AC0.
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Theorem 5. Cautious conjunctive query answering is in AC0 for DL-Litecore.

Proof (Sketch). Given a DL-Litecore TBox T and a CQ q, we first compute (in the
standard manner) a UCQ q� = q1 ∨ ... ∨ qn such that for all ABoxes A, we have
T ,A |= q if and only if IA |= q�. Then to each disjunct we add the negation of each
atomic query which could contradict one of the atoms in the disjunct.

Example 7. If q = ∃y B(x) ∧ R(x, y) and T = {A � B,A � ∃R,B � ¬D,∃R− �
¬∃S−}, standard rewriting yields A(x)∨ ∃y B(x)∧R(x, y). We then add ¬∃zS(z, y)
to the second disjunct and ¬D(x) to both to obtain the cautious rewriting.

Theorem 5 is easily extended to other DL-Lite logics enjoying FO-rewritability.

9 Conclusion and Future Work

In this paper, we took a closer look at the problem of consistent instance checking
in DL-Lite and identified some general conditions which can be used to prove the
absence or existence of a consistent rewriting. While our results were formulated for
DL-Litecore, we expect they can be easily lifted to more expressive DL-Lite dialects.

The main objective for future work is to strengthen our results so as to be able to
decide for every TBox and instance query whether a consistent rewriting exists. We
conjecture that the absence of a type-2 cause-conflict chain is both a necessary and
sufficient condition for existence of a consistent rewriting. Extending our investigation
to conjunctive queries would be interesting but quite challenging, as it would likely
involve confronting longstanding open problems from the database community, where
a full characterization of rewritable cases remains elusive [9].
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1 Introduction

In some knowledge domains, a correct handling of vagueness and imprecision is
fundamental for adequate knowledge representation and reasoning. For example,
when trying to diagnose a disease, medical experts need to confront symptoms
described by the patient, which are by definition subjective, and hence vague.
Moreover, a single malady may present a diversity of clinical manifestations in
different patients, which leads to imprecise (partial) diagnoses.

Fuzzy logic [15] is a prominent approach for dealing with imprecise knowl-
edge. It is based on the notion of fuzzy sets [25], where elements are assigned
a membership degree from the real interval [0, 1]. So-called t-norms are used
to define the interpretation of the logical connectives. The notion of member-
ship degrees and the operators used can be generalized to lattices, giving rise to
L-fuzzy sets [13] and lattice-based t-norms [26, 12].

During the last two decades, several fuzzy DLs have been defined by enriching
classical DLs first with fuzzy set semantics [24, 20, 19] and then t-norms [16,
7, 11]. Attempts have also been made at using L-fuzzy set semantics [21, 17].
However, all these approaches either disregard the terminological knowledge, or
allow only for a limited class of TBoxes. In fact, it is still unknown whether
standard reasoning in fuzzy DLs with general TBoxes is decidable [5, 3]. To the
best of our knowledge, the only approaches capable of dealing with full fuzzy
TBoxes are based on a finite total order with the �Lukasiewicz t-norm [6, 8] or
finite De Morgan lattices with the minimum t-norm [9].

In this paper we introduce the lattice-based fuzzy DL ALCL, where L is
a complete De Morgan lattice equipped with a t-norm operator. We show that
satisfiability in this logic is undecidable if L is infinite. Undecidability holds even
if L is a countable, residuated total order. On the other hand, if L is finite, then
satisfiability becomes decidable and, under some conditions on the lattice and
the t-norm, ExpTime-complete, i.e. not harder than satisfiability in crisp ALC.

Our reasoning procedure is in fact general enough to handle any kind of
truth-functional semantics, as long as the functions defining the connectives are
computable.

2 Lattices

We now give a brief introduction to lattices and t-norms. For a more compre-
hensive description of these notions, see e.g. [14, 12].
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1

�a �b

0

Fig. 1. The De Morgan lattice L2 with ∼ �a = �a and ∼ �b = �b. This lattice was first
considered by Belnap [4] for reasoning with incomplete and inconsistent knowledge.

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with two
binary operations supremum ∨ and infimum ∧ that are idempotent, associative,
and commutative and satisfy the absorption laws � ∨ (� ∧m) = � = � ∧ (� ∨m)
for all �,m ∈ L. The order ≤ on L is defined by � ≤ m iff � ∧ m = � for all
�,m ∈ L. A lattice is distributive if ∨ and ∧ distribute over each other, finite if
L is finite, and bounded if it has a minimum and a maximum element, denoted
as 0 and 1, respectively. It is complete if suprema and infima of arbitrary subsets
T ⊆ L exist; these are denoted by

�
t∈T t and

�
t∈T t, respectively. Notice that

every finite lattice is also bounded and complete. Whenever it is clear from the
context, we will simply use the carrier set L to represent the lattice (L,∨,∧).

A De Morgan lattice is a bounded distributive lattice extended with an in-
volutive and anti-monotonic unary operation ∼, called (De Morgan) negation,
satisfying the De Morgan laws ∼(�∨m) = ∼ �∧∼m and ∼(�∧m) = ∼ �∨∼m

for all �,m ∈ L. Figure 1 shows a simple De Morgan lattice.
In fuzzy logics, conjunctions and disjunctions are interpreted with the help

of t-norms and t-conorms. Given a De Morgan lattice L, a t-norm on L is an
associative and commutative binary operator ⊗ : L × L → L which has the
unit 1, and is monotonic in both arguments. Given a t-norm ⊗, its associated
t-conorm ⊕ is constructed using the negation as follows: �⊕m := ∼(∼ �⊗∼m).
For example, the infimum operator �⊗m := �∧m defines a t-norm; its associated
t-conorm is then given by �⊕m := � ∨m.

Another important operator is the residuum, which is used for interpreting
implications in the logic. The residuum of a t-norm ⊗ on a complete lattice L is
the binary operator⇒ defined by � ⇒ m :=

�
{x | �⊗x ≤ m}. If �⊗(� ⇒ m) ≤ m

for all �,m ∈ L (that is, if the supremum in the definition of residuum is always
a maximum), then ⊗ is called residuated and L a residuated lattice.1

In the following we will use two important properties of the residuum: for
every �,m ∈ L, (i) 1 ⇒ � = �, and (ii) if � ≤ m, then � ⇒ m = 1. Additionally,
if ⊗ is residuated, then � ⇒ m = 1 implies that � ≤ m.

In the next section, we describe the multi-valued description logic ALCL,
whose semantics uses the residuum ⇒ and the De Morgan negation ∼. We
emphasize, however, that the reasoning algorithm presented in Section 5 can be
used with any choice of operators, as long as these are computable. In particular
this means that our algorithm could also deal with other variants of multi-valued
semantics, e.g. [9, 21].

1 Residua are usually only defined for residuated lattices. However, as � ⇒ m is well-
defined for t-norms on complete De Morgan lattices, we remove this restriction.
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3 The Fuzzy Logic ALCL

In the following, we will assume that L is a complete De Morgan lattice and ⊗ is
a t-norm on L. The multi-valued description logicALCL is a generalization of the
crisp DLALC that allows the use of the elements of a complete De Morgan lattice
as truth values, instead of just the Boolean values true and false. The syntax
of concept descriptions in ALCL is the same as in ALC; that is, ALCL concept
descriptions are built from a set of concept names and role names through the
constructors �,�,¬,�,⊥, ∃ and ∀.

The semantics of this logic is based on interpretation functions that not
simply describe whether an element of the domain belongs to a concept or not,
but give a lattice value describing the membership degree of the element to this
concept; more formally, the semantics is based on L-fuzzy sets.

Definition 1 (semantics of ALCL). An interpretation is a pair I = (∆I
, ·I)

where ∆
I
is a non-empty (crisp) domain and ·I is a function that assigns to

every concept name A and every role name r functions A
I : ∆

I → L and

r
I : ∆I × ∆

I → L, respectively. The function ·I is extended to ALCL concept

descriptions as follows for every x ∈ ∆
I
:

– �I(x) = 1, ⊥I(x) = 0,

– (C �D)I(x) = C
I(x)⊗D

I(x), (C �D)I(x) = C
I(x)⊕D

I(x),
– (¬C)I(x) = ∼C

I(x),
– (∃r.C)I(x) =

�
y∈∆I r

I(x, y)⊗ C
I(y),

– (∀r.C)I(x) =
�

y∈∆I r
I(x, y) ⇒ C

I(y).

Notice that, unlike crisp ALC, the existential and universal quantifiers are
not dual to each other, i.e. in general ¬∃r.C and ∀r.¬C have different semantics.

The axioms in a TBox are also associated to a lattice value, allowing for a
general notion of subsumption between concepts that is based on the residuum.

Definition 2 (TBox). A TBox is a finite set of (labeled) general concept in-
clusions (GCIs) of the form �C � D,� �, where C,D are ALCL concept descrip-

tions and � ∈ L.

An interpretation I satisfies a GCI �C � D,� � if
�

x∈∆I C
I(x) ⇒ D

I(x) ≥ �.

I is called a model of the TBox T if it satisfies all axioms in T .

We emphasize here that ALC is a special case of ALCL, where the underlying
lattice contains only the elements 0 and 1, which may be interpreted as false

and true, respectively, and the t-norm and t-conorm are just conjunction and
disjunction, respectively. Accordingly, one can think of generalizing the reasoning
problems for ALC to the use of other lattices. We will focus on the problem of
deciding satisfiability of a concept. We are further interested in computing the
highest degree with which an individual may belong to a concept.

Definition 3 (satisfiability). Let C,D be ALCL concept descriptions, T a

TBox and � ∈ L. C is �-satisfiable w.r.t. T if there is a model I of T such that�
x∈∆I C

I(x) ≥ �. The best satisfiability degree for C w.r.t. T is the largest �

such that C is �-satisfiable w.r.t. T .
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Notice that if C is �-satisfiable and �
�-satisfiable w.r.t. T , then C is also �∨�

�-
satisfiable. Hence, the notion of the best satisfiability degree is well defined.

In some cases, however, this definition of satisfiability turns out to be too
weak, since a concept C may be �-satisfiable even if no element of the domain
may ever belong to C with a value ≥ �. Consider the following example.

Example 4. We use the lattice L2 from Figure 1 with t-norm �⊗ �
� := �∧ �

� and
the TBox T = {�� � (A � ¬A) � (B � ¬B),1�}. The concept A is 1-satisfiable
w.r.t. T since the interpretation I0 = ({x1, x2}, ·I0) with

A
I0(x1) = B

I0(x2) = �a and B
I0(x1) = A

I0(x2) = �b

is a model of T and �a ∨ �b = 1. However, since �∧∼ � �= 1 for every � ∈ L2, the
axiom can only be satisfied for any y ∈ ∆

I if {AI(y), BI(y)} = {�a, �b}. Thus,
we always have A

I(y) < 1.

For this reason, we consider a stronger notion of satisfiability that requires
at least one element of the domain to satisfy the concept with the given value.
A concept C is strongly �-satisfiable w.r.t. a TBox T if there is a model I of T
and an x ∈ ∆

I such that C
I(x) ≥ �. Obviously, strong �-satisfiability implies

�-satisfiability. As shown in Example 4, the converse does not hold.
Recall that the semantics of the quantifiers require the computation of a

supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. If the lattice is finite, then this is in fact a computation
over a finite set of values, but it may be a costly one. If the lattice is infinite,
then the problem is more pronounced. For that reason, it is customary in fuzzy
description logics to restrict reasoning to witnessed models [16].

Definition 5 (witnessed model). Let η ∈ N. A model I of a TBox T is called

η-witnessed if for every x ∈ ∆
I
and every concept description of the form ∃r.C

there are η elements x1, . . . , xη ∈ ∆
I
such that

(∃r.C)I(x) =
η�

i=1

r
I(x, xi)⊗ C

I(xi),

and analogously for the universal restrictions ∀r.C. In particular, if η = 1, then
the suprema and infima from the semantics of ∃r.C and ∀r.C become maxima

and minima, respectively. In this case, we simply say that I is witnessed.

As we will show, �-satisfiability, even w.r.t. η-witnessed models, is undecidable
in general. For finite De Morgan lattices, however, this problem is decidable
and belongs to the same complexity class as deciding satisfiability of crisp ALC
concepts, if the lattice operations are easily computable.

4 Undecidability

Consider the lattice L∞ over the domain ([0, 1] ∩Q) ∪{ −∞,∞} with the usual
total order, the De Morgan negation ∼ � = 1 − � if � ∈ [0, 1], ∼∞ = −∞, and
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∼(−∞) = ∞, and the t-norm ⊗ defined by

�⊗m :=






max{�+m− 1, 0} if �,m ∈ [0, 1] and �+m �= 0,

−∞ if � = m = 0, and

min{�,m} otherwise.

That is, ⊗ is the �Lukasiewicz t-norm on the rationals in (0, 1] extended with
two extreme elements −∞ and ∞. One can easily confirm that this is in fact a
residuated lattice and its t-conorm ⊕ is given by

�⊕m :=






min{l +m, 1} if �,m ∈ [0, 1] and �+m �= 2,

∞ if � = m = 1, and

max{�,m} otherwise.

We will reduce the well-known undecidable Post Correspondence Problem [18]
to decidability of ∞-satisfiability. Notice that for every T ⊆ L∞,

�
t∈T t = ∞

iff ∞ ∈ T . Thus, a concept is ∞-satisfiable iff it is strongly ∞-satisfiable and it
suffices to prove that strong ∞-satisfiability is undecidable.

Definition 6 (PCP). Let v1, . . . , vp and w1, . . . , wp be two finite lists of words

over an alphabet Σ = {1, . . . , s}. The Post Correspondence Problem (PCP)

asks whether there is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ p such that

vi1vi2 · · · vik = wi1wi2 · · ·wik . Such a sequence, if it exists, is called a solution of

the problem instance.

For a word ν = i1i2 · · · ik ∈ {1, . . . , p}∗ we will use vν , wν to denote the words
vi1vi2 · · · vik and wi1wi2 · · ·wik , respectively. Given an instance P of PCP, we will
construct a TBox TP and a concept name S such that S is strongly ∞-satisfiable
iff P has no solution. For doing this, we will encode words w from the alphabet
Σ as rational numbers 0.w in [0, 1] in base s+ 1; exceptionally, the empty word
will be encoded by the number 0. The two concept names V and W will store
the encoding of the concatenated words vν and wν , respectively.

Given two ALCL concept descriptions C,D and a role name r, the expression
�C ≡ D� abbreviates the two axioms �C � D,∞�,�D � C,∞� and the expression
�C r� D� abbreviates the two axioms �C � ∀r.D,∞�, �¬C � ∀r.¬D,∞�. For
an interpretation I, �C ≡ D� expresses that CI(x) = D

I(x) for every x ∈ ∆
I ,

while �C r� D� expresses that, for every x, y ∈ ∆
I such that r

I(x, y) = ∞,
it holds that C

I(x) = D
I(y). We will also use n · C as abbrevation for the

n-ary disjunction C � · · · � C, which is interpreted at x ∈ ∆
I as the value

min{CI(x) + · · ·+ C
I(x), 1} = min{n · CI(x), 1} whenever CI(x) ∈ [0, 1].

We now define the TBoxes T i
P for 0 ≤ i ≤ p as follows:

T 0
P := {�S � V, 0�, �S � ¬V, 1�, �S � W, 0�, �S � ¬W, 1�}∪

{�S � Vi, 0.vi�, �S � ¬Vi, 1− 0.vi�,
�S � Wi, 0.wi�, �S � ¬Wi, 1− 0.wi� | 1 ≤ i ≤ p},
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T i
P := {�� � ∃ri.�,∞�, �V � Vi

ri� V �, �W �Wi
ri� W �}∪

{�Vj ≡ (s+ 1)|vi| · Fij�, �Wj ≡ (s+ 1)|wi| ·Gij�,
�Fij

ri� Vj�, �Gij
ri� Wj� | 1 ≤ j ≤ p}.

Intuitively, T 0
P initializes a search tree for a solution of P, by setting both V and

W to the empty word, and describing each pair (vi, wi) by the concepts Vi and
Wi. Each TBox T i

P then extends the search tree by concatenating each pair of
words v, w produced so far with vi and wi, respectively. More formally, consider
the interpretation IP = (∆IP , ·IP ) where

– ∆
IP = {1, . . . , p}∗,

– V
IP (ν) = 0.vν ,W IP (ν) = 0.wν , V

IP
i (ν) = 0.vi

(s+1)|vν | ,W
IP
i (ν) = 0.wi

(s+1)|wν |

– r
IP
i (ν, νi) = ∞ and r

IP
i (ν,ν �) = −∞ if ν� �= νi, and

– S
IP (ε) = ∞.

It is easy to see that IP is in fact a model of the TBox T0 :=
�p

i=0 T i
P . More

interesting, however, is that every model of this TBox where S is ∞-satisfiable
must include IP , as stated in the following lemma.

Lemma 7. Let I be a model of T0 such that S
I(x) = ∞ for some x ∈ ∆

I
.

There exists a function f : ∆IP → ∆
I
such that C

IP (ν) = C
I(f(ν)) holds for

every concept name C occurring in T0 and ν ∈ ∆
IP .

Proof (Sketch). The function f is constructed by induction on the length of ν.
We can define f(ε) := x since S

I(x) = ∞ and I is a model of T 0
P . Let now ν be

such that f(ν) is already defined. The axioms �� � ∃ri.�,∞� ensure that, for
every i, 1 ≤ i ≤ p there is a γ ∈ ∆

I such that r
I
i (f(ν), γ) = ∞. The definition

f(νi) := γ satisfies the required property. ��

This lemma shows that every model of T0 must include a search tree for
a solution of P. Thus, in order to know whether a solution exists, we need to
decide if there is a node of this tree where the concept names V and W are
interpreted by the same value. Notice that, for any two values �,m ∈ [0, 1],
� �= m iff( ∼ �⊕m)⊗ (�⊕∼m) < 1. Moreover, � < 1 i ff�⊕� ≤ 1 or, equivalently,
∼ �⊗∼ � ≥ 0. Thus, as IP always interprets the concept names V and W in the
interval [0, 1], it is a model of the TBox

T � := {�E ≡ (¬A �B) � (A � ¬B)�} ∪{ �� � ∀ri.¬(E � E), 0� | 1 ≤ i ≤ p}

iff A
IP (ν) �= B

IP (ν) holds for every ν ∈ {1, . . . , p}+.

Theorem 8. The instance P of the PCP has a solution iff S is not ∞-satisfiable

w.r.t. TP := T0 ∪ T �
.

Notice that the interpretation IP is witnessed, which means that undecid-
ability holds even if we restrict reasoning to η-witnessed models, for any η ∈ N.

Corollary 9. (Strong) satisfiability is undecidable, even if the lattice is a count-

able, residuated total order and reasoning is restricted to η-witnessed models, with

η ∈ N.
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5 Deciding Strong Satisfiability

In the previous section, we have shown that satisfiability is undecidable in gen-
eral. We now show that if we consider only finite De Morgan lattices L, then
satisfiability in ALCL can be effectively decided. As the following lemmata show,
in this case we can restrict to strong �-satisfiability w.r.t. η-witnessed models.

Lemma 10. The best satisfiability degree for C w.r.t. T is the supremum of all

� such that C is strongly �-satisfiable.

Proof (Sketch). If C is strongly �-satisfiable and strongly �
�-satisfiable, there are

two models I, I � of T and x ∈ ∆,x
� ∈ ∆

� with C
I(x) ≥ � and C

I�
(x�) ≥ �

�. The
disjoint union of I and I � gives a model J where

�
y∈∆J C

J (y) ≥ � ∨ �
�. ��

We can then find out whether C is �-satisfiable by comparing � to the best
satisfiability degree of C. We will thus focus on finding all the lattice elements
that witness the strong �-satisfiability of a given concept.

Lemma 11. If L has width η ∈ N, i.e. the cardinality of the largest antichain

of L is η, then ALCL has the η-witnessed model property.

To simplify the description, we consider η = 1 only. The algorithm and the
proofs of correctness can be easily adapted for any other η ∈ N.

Our approach reduces strong �-satisfiability to the emptiness problem of an
automaton on infinite trees. Before giving the details of this reduction, we present
a brief introduction to these automata. The automata work over the infinite k-
ary tree K

∗ for K := {1, . . . , k} with k ∈ N. The positions of the nodes in this
tree are represented through words in K

∗: the empty word ε represents the root
node, and ui represents the i-th successor of the node u.

Definition 12 (looping automaton). A looping automaton (LA) is a tuple

A = (Q, I,∆ ) consisting of a finite set Q of states, a set I ⊆ Q of initial states,
and a transition relation ∆ ⊆ Q × Q

k
. A run of A is a mapping r : K∗ → Q

assigning states to each node of K
∗
such that (i) r(ε) ∈ I and (ii) for every

u ∈ K
∗
we have (r(u), r(u1), . . . , r(uk)) ∈ ∆. The emptiness problem for LA is

to decide whether a given LA has a run.

The emptiness problem for LA can be solved in polynomial time [23]. It is
worth to point out that this procedure not only decides emptiness, but actually
computes all the states that can be used as initial states to accept a non-empty
language. We will later exploit this for computing the best satisfiability degree.

The following automata-based algorithm uses the fact that a concept is
strongly �-satisfiable iff it has a well-structured tree model, called a Hintikka

tree. Intuitively, Hintikka trees are abstract representations of tree models that
explicitly express the membership value of all “relevant” concept descriptions.
The automaton we construct will have exactly these Hintikka trees as its runs.
Strong �-satisfiability is hence reduced to an emptiness test of this automaton.
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We denote as sub(C, T ) the set of all subconcepts of C and of the concept
descriptions D and E for all �D � E,�� ∈ T . The states of the automaton will be
so-called Hintikka sets. These are L-fuzzy sets over the domain sub(C, T )∪ {ρ},
where ρ is an arbitrary new element.

Definition 13 (Hintikka set). A function H : sub(C, T ) ∪ {ρ} → L is called

a (fuzzy) Hintikka set for C, T if the following four conditions are satisfied:

(i) H(D � E) = H(D)⊗H(E) for every D � E ∈ sub(C, T ),
(ii) H(D � E) = H(D)⊕H(E) for every D � E ∈ sub(C, T ),
(iii) H(¬D) = ∼H(D) for every ¬D ∈ sub(C, T ), and
(iv) H(D) ⇒ H(E) ≥ � for every GCI �D � E,�� in T .

The arity k of our automaton is determined by the number of existential
and universal restrictions, i.e. concept descriptions of the form ∃r.D or ∀r.D,
contained in sub(C, T ). Intuitively, each successor will act as the witness for one
of these restrictions. The additional domain element ρ will be used to express
the degree with which the role relation to the parent node holds. Since we need
to know which successor in the tree corresponds to which restriction, we fix an
arbitrary bijection ϕ : {E | E ∈ sub(C, T ) is of the form ∃r.D or ∀r.D} → K.
The following conditions define the transitions of our automaton.

Definition 14 (Hintikka condition). The tuple (H0, H1, . . . , Hk) of Hintikka
sets for C, T satisfies the Hintikka condition if:

(i) H0(∃r.D) = Hϕ(∃r.D)(ρ) ⊗ Hϕ(∃r.D)(D) for every existential restriction

∃r.D ∈ sub(C, T ), and additionally H0(∃r.D) ≥ Hϕ(F )(ρ) ⊗Hϕ(F )(D) for

every restriction F ∈ sub(C, T ) of the form ∃r.E or ∀r.E,

(ii) H0(∀r.D) = Hϕ(∀r.D)(ρ) ⇒ Hϕ(∀r.D)(D) for every universal restriction

∀r.D ∈ sub(C, T ), and additionally H0(∀r.D) ≤ Hϕ(F )(ρ) ⇒ Hϕ(F )(D) for
every restriction F ∈ sub(C, T ) of the form ∃r.E or ∀r.E.

A Hintikka tree for C, T is an infinite k-ary tree T labeled with Hintikka sets
where, for every node u ∈ K

∗, the tuple (T(u),T(u1), . . . ,T(uk)) satisfies the
Hintikka condition. The definition of Hintikka sets ensures that all axioms are
satisfied at any node of the Hintikka tree, while the Hintikka condition makes
sure that the tree is in fact a witnessed model.

The proof of the following theorem uses arguments similar to those in [2]. The
main difference is that one also has to find witnesses for the universal restrictions.

Theorem 15. Let C be a concept description and T a TBox. Then C is strongly

�-satisfiable w.r.t. T (in a witnessed model) iff there is a Hintikka tree T for C, T
such that T(ε)(C) ≥ �.

Proof (Sketch). A Hintikka tree can be seen as a witnessed model with do-
main K

∗ and interpretation function given by the Hintikka sets. The conditions
satisfied by the Hintikka sets and the Hintikka condition ensure that this in-
terpretation is well-defined. Thus, if there is a Hintikka tree T for C, T with
T(ε)(C) ≥ �, then C is strongly �-satisfiable w.r.t. T .
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On the other hand, every witnessed model I with a domain element x ∈ ∆
I

for which C
I(x) ≥ � holds can be unraveled into a Hintikka tree T for C, T

as follows. We start by labeling the root node by the Hintikka set that records
the membership values of x for each concept from sub(C, T ). We then create
successors of the root by considering every element of sub(C, T ) of the form
∃r.D or ∀r.D and finding the witness y ∈ ∆

I for this restriction. We create a
new node for y which is an r-successor of the root node with degree r

I(x, y).
By continuing this process, we construct a Hintikka tree T for C, T for which
T(ε)(C) ≥ � holds. ��

Thus, strong �-satisfiability w.r.t. witnessed models is equivalent to the non-
emptiness of the following automaton.

Definition 16 (Hintikka automaton). Let C be an ALCL concept descrip-

tion, T a TBox, and � ∈ L. The Hintikka automaton for C, T , � is the LA

AC,T ,� = (Q, I,∆ ) where Q is the set of all Hintikka sets for C, T , I contains all

Hintikka sets H with H(C) ≥ �, and ∆ is the set of all (k+1)-tuples of Hintikka
sets that satisfy the Hintikka condition.

The runs of AC,T ,� are exactly the Hintikka trees T having T(ε)(C) ≥ �.
Thus, C is strongly �-satisfiable w.r.t. T iff AC,T ,� is not empty.

The size of the automaton AC,T ,� is exponential in C, T and polynomial in L.
Hence, the emptiness test for this automaton uses time exponential in C, T and
polynomial in the complexity of the lattice operations on L. Notice however
that in general the encoding enc(L) of a lattice L may be much smaller than the
whole lattice L. For this reason we need to consider the complexity of the lattice
operations w.r.t. this encoding.

Theorem 17. If |L| is at most exponential in |enc(L)| and the lattice operations

are in a complexity class C w.r.t. the size of enc(L),2 then strong �-satisfiability

(w.r.t. witnessed models) is in ExpTimeC.

Furthermore, the emptiness test of AC,T ,� can be used to compute the set of
all Hintikka sets that may appear at the root of a Hintikka tree. From this set
we can extract the set of all values � such that T(�)(C) ≥ � for some Hintikka
tree T. From the presented results it follows that the best satisfiability degree
can also be computed in ExpTimeC.

Corollary 18. If L is fixed or of size polynomial in |enc(L)| and ∼, ⊗ can be

computed in time polynomial in |L|, then (strong) �-satisfiability (w.r.t. witnessed

models) is ExpTime-complete.

Proof. ExpTime-hardness follows from ExpTime-hardness of concept satisfia-
bility in crisp ALC [1]. By assumption, all lattice operations can be computed
in at most polynomial time by several nested iterations over L. Applying Theo-
rem 17 yields inclusion in ExpTimePTime = ExpTime. ��
2 More formally, deciding � ≤ m, �⊗m = n, etc. for given �,m, n ∈ L is in C.
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Notice that the definitions of Hintikka sets and Hintikka trees are independent
of the operators used. One could have chosen the residual negation � � := � ⇒ 0

to interpret the constructor ¬, or the Kleene-Dienes implication � ⇒ m := ∼ �∨m
instead of the residuum. The only restrictions are that the semantics must be
truth functional, i.e. the value of a formula must depend only on the values of
its direct subformulas, and the underlying operators must be computable.

As a last remark, we want to point out that the algorithm can be modified
for reasoning w.r.t. η-witnessed models with η > 1. One needs only extend the
arity of the Hintikka trees to account for η witnesses for each quantified formula
in sub(C, T ). The emptiness test of the automaton, and hence also satisfiability
w.r.t. η-witnessed models, is exponential in η.

6 Conclusions

We have introduced the fuzzy DL ALCL whose semantics is based on arbitrary
complete De Morgan lattices and t-norms. To the best of our knowledge, all
previously existing approaches for fuzzy ALC, either based on total orders or on
lattices, are special cases of ALCL.

We showed that reasoning in this logic is undecidable, even if restricted to a
very simple infinite lattice and t-norm. This result suggests, but does not prove,
that reasoning with the �Lukasiewicz t-norm over the interval [0, 1] may, contrary
to previous claims [22], be undecidable.

For the special case of finite lattices, we showed decidability by presenting
an automata-based decision procedure that runs in exponential time, assuming
a polynomial-time oracle for computing the lattice and t-norm operations. An
advantage of our decision procedure is that it can easily be adapted to deal with
different kinds of truth-functional semantics, and hence is useful for different
applications. Given the promising first steps towards an automata-based imple-
mentation of ALC reasoning shown in [10], we believe that our algorithm not
only yields an interesting theoretical result, but may be useful for a future im-
plementation. We intend to further study this possibility by developing adequate
optimizations and analyzing low-complexity instances of lattice operators.

There are three issues that we will pursue in future work. The first is to
explore the limits of undecidability: are there classes of infinite lattices and t-
norms in which reasoning is decidable? As said before, it is still unknown whether
reasoning in fuzzy ALC with continuous t-norms over [0, 1] is decidable.

The second issue is to explore the expressivity of DLs. We believe that our
approach can easily be adapted to fuzzy SI. Additionally, if we restrict to acyclic
TBoxes, we may be able to obtain a PSpace upper bound as in [2].

Finally, we want to develop an algorithm for deciding �-subsumption. Notice
that the residuum cannot, in general, be expressed using the t-norm, t-conorm
and negation. Thus, the usual idea of reducing subsumption to satisfiability by
constructing an equivalent concept cannot be applied.
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Abstract. In order to meet usability requirements, most logic-based applications
provide explanation facilities for reasoning services. This holds also for DLs,
where research focused on the explanation of both TBox reasoning and, more
recently, query answering. Besides explaining the presence of a tuple in a query
answer, it is important to explain also why a given tuple is missing. We address
this latter problem for (conjunctive) query answering over DL-Lite ontologies,
by adopting abductive reasoning, that is, we look for additions to the ABox that
force a given tuple to be in the result. As reasoning tasks, we consider existence
and recognition of an explanation, and relevance and necessity of a certain asser-
tion for an explanation. We characterize the computational complexity of these
problems for subset minimal and cardinality minimal solutions.

1 Introduction

Query answering over ontologies formulated in Description Logics (DLs) has received
considerable attention both in research and industry. Given an ontology, users typically
pose queries over the conceptual schema and get answers that take into account the con-
straints specified at the conceptual level. Many efforts have concentrated on lightweight
description logics. For instance, DL-LiteA has been tailored for query answering over
large data sets [7]. For this reason, expressive power is traded in favor of a better com-
putational behavior in terms of data-complexity. In fact, conjunctive query answering in
DL-LiteA enjoys FOL-rewritability, i.e., it can be reduced to the problem of evaluating
a suitably constructed FOL query over a database instance.

In order to meet usability requirements set by domain users, most logic-based ap-
plications provide explanation algorithms for reasoning services. This holds also for
DLs, where research focused on the explanation of both TBox reasoning [12,6,14,3]
and, more recently, query answering [5]. In addition, the latter paper advocates the
importance of tackling the problem of explaining the absence of a tuple in the an-
swers to a query over an ontology. This problem stems from the database community,
where it has been solved in the context of databases extended with provenance infor-
mation [9]. We address this problem by considering explanations for the absence of a
� This work was partially supported by the Austrian Science Fund (FWF) grant P20840.
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tuple in the context of query answering over DL-LiteA ontologies. We adopt abductive

reasoning [10,11], that is, we consider which additions need to be made to the ABox to
force the given tuple to be in the result. More precisely, given a TBox T , an ABox A,
and a query q, an explanation for a given tuple t is a new ABox U such that the answer
to q over �T ,A ∪ U � contains t. An important aspect in explanations is to provide the
user with solutions that are simple to understand and free of redundancy, hence as small
as possible. To address this requirement, we study various restrictions on solutions, in
particular, we focus on subset minimal and cardinality minimal ones. We consider stan-
dard decision problems associated to logic-based abduction: (i) existence of an expla-
nation, (ii) recognition of a given ABox as being an explanation, and (iii) relevance and
(iv) necessity of an ABox assertion, i.e., whether it occurs in some or all explanations.
After motivating such problems and formalizing them, we provide algorithms to solve
them and a precise characterization of their computational complexity for DL-LiteA.
The complexity results for the various reasoning tasks are summarized in Table 1.

2 Preliminaries

DL-LiteA. DL-LiteA is a member of the DL-Lite family of DLs [7], which have been
designed for dealing efficiently with large amounts of extensional information. In DL-

LiteA, concept expressions C, denoting sets of objects, and role expressions R, denoting
binary relations between objects, are formed as follows:

C −→ A | ∃R, R −→ P | P−.

where A denotes an atomic concept and P an atomic role3. In a DL-LiteA ontology
O = �T ,A�, the TBox T consists of axioms of the form

C1 � C2,
C1 � ¬C2,

R1 � R2,
R1 � ¬R2,

(funct R),

and the ABox A consists of assertions of the form A(c) and R(c, c�), where c, c� are
constants (or, individuals) from a countably infinite set C. An interpretation is a pair
I = �∆I , ·I�, where ∆I is a non-empty domain, and the interpretation function ·I is
defined as usual. We adopt here the unique name assumption (UNA), i.e., cI1 �= cI2 for
all c1, c2 ∈ C with c1 �= c2. We refer to [7] for more details.

Conjunctive Queries. Let V be a countably infinite set of variables. Expressions A(t)
and P (t, t�) are called atoms, where t, t� ∈ V ∪ C. A conjunctive query (CQ) q is
an expression q(x1, . . . , xn) ← a1, . . . , am, where each ai, 1 ≤ i ≤ m, is an atom.
Let V(q) denote the set of variables occurring in q, C(q) the set of constants in q,
and let at(q) =

�
1≤i≤m{ai}. A match for q in an interpretation I is a mapping π :

V(q) ∪ C(q) → ∆I such that π is the identity on constants, π(t) ∈ AI for each

3 We ignore here the distinction between data values and objects, since it is immaterial for our
results. As a consequence, we do not consider value domains and attributes, which are present
in DL-LiteA.
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A(t) ∈ at(q), and �π(t), π(t�)� ∈ P I for each P (t, t�) ∈ at(q). The tuple �x1, . . . , xn�

is the tuple of answer variables of q. The answer to q over I, denoted ans(q, I), is the
set of all n-tuples �d1, . . . , dn� ∈ Cn such that �dI1 , . . . , dIn� = �π(x1), . . . , π(xn)� for
some match π for q in I. A union of conjunctive queries (UCQ) is a set of CQs with
the same answer variable tuple. For a UCQ q, we let ans(q, I) =

�
q�∈q ans(q

�, I). The
certain answer to a CQ or a UCQ q over O is defined as cert(q,O) = {c ∈ Cn | c ∈

ans(q, I) for each model I of O}.

3 Explaining Negative Query Answers

We now define the problem considered in this paper:

Definition 1. Let O = �T ,A� be an ontology, q a UCQ, and c a tuple of constants. We

call P = �O, q, c� a query abduction problem (QAP). A solution to P (or an explana-
tion for P) is any ABox U such that the ontology O� = �T ,A ∪ U � is consistent and

c ∈ cert(q,O�). The set of all explanations for P is denoted expl(P).

If c /∈ cert(q,O), then we call c a negative answer to q over O. Note that a query
over the ontology can have a negative answer only if the ontology is satisfiable. Dif-
ferently, if the ontology is unsatisfiable then the QAP P does not have any solution.
In the following, we will examine various restrictions to expl(P) to reduce redundancy
in explanations. This is achieved by the introduction of a preference relation among
explanations. This relation is reflexive and transitive, i.e., we have a pre-order among
solutions.

Definition 2. Assume a QAP P . Let � denote a pre-order on the set expl(P) of solu-

tions. We write U ≺ U�
if U � U�

and U � � U . The preferred explanations expl�(P) of

a QAP P under the pre-order � are defined as follows: expl�(P) = {U∈ expl(P) |
there is no U � ∈ expl(P) s.t. U � ≺ U }, i.e., expl�(P) contains all the �-explanations
that are minimal under �.

Two preference orders are considered here: the subset-minimality order, denoted by
⊆, and the minimum explanation size order, denoted by ≤. The latter order is defined
by U ≤ U� iff |U| ≤|U �|. Observe that expl≤(P) ⊆ expl⊆(P).

We define now four decision problems related to (minimal) explanations, which are
parametric w.r.t. the chosen preference order �. Given a QAP P:

– �-EXISTENCE: Does there exist a �-explanation for P?
– �-RECOGNITION: Is a set U of ABox assertions a �-explanation for P?
– �-RELEVANCE: Does an assertion α occur in some �-explanation for P?
– �-NECESSITY: Does an assertion α occur in all �-explanations for P?

In the following, whenever no preference is applied (i.e., when � is the identity) we
omit to write � in front of the problem’s names. We provide an example, in which we
highlight the consequences of choosing among the various orderings.
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Table 1: Summary of main complexity results (completeness)
� �-EXISTENCE �-RECOGNITION �-RELEVANCE �-NECESSITY

none PTIME (4.1) NP PTIME (4.3) PTIME (4.2)
≤ PTIME DP PNP

� PNP
� (4.2)

⊆ PTIME DP ΣP
2 (4.3) PTIME (4.2)

Example 1. Let O = �T ,A� be an ontology describing a university domain, where T

is

PostGrad � Student ,
UnderGrad � Student ,
UnderGrad � ¬PostGrad ,
PartTime � UnderGrad .

Tutor � Professor ,
∃hasTutor � PartTime,

∃hasTutor
−
� Tutor ,

Advanced � Course,
∃teaches � Professor ,

∃teaches
−
� Course,

That is, there are two different kinds of students, PostGrad and UnderGrad . More-
over, PartTime students are tutored by Tutors, who are particular professors. Addi-
tionally, the university offers some Advanced courses. Let the ABox A consist of the
assertions teaches(rob,SWT ), hasTutor(peter , rob). Now, assume that a user is in-
terested in finding all those who both teach an advanced course and tutor a student.
Then, she would write the query

q(x) ← teaches(x, y),Advanced(y), hasTutor(z, x).

Moreover, she may expect rob to be part of the result, i.e., rob ∈ cert(q,O),
but this is not the case. Intuitively, rob satisfies all the constraints imposed by the
query, except that the SWT course is not known to be Advanced . One can easily
see that {teaches(rob,TOC ),Advanced(TOC ), hasTutor(john, rob)} is an expla-
nation, {teaches(rob,ALG),Advanced(ALG)} is a ⊆-minimal explanation, while
{Advanced(SWT )} is a ≤-minimal explanation.

In the next section, the complexity of the four main problems is studied in the light
of the different preference relations.

4 Complexity of Explanations

Table 1 provides an overview of our complexity results. Recall that the class ΣP
2 is

a member of the Polynomial Hierarchy [13]; it is the class of all decision problems
solvable in non-deterministic polynomial time using an NP oracle. Moreover, the class
PNP
� contains all the decision problems that can be solved in polynomial time with an

NP oracle, where all oracle calls must be first prepared and then issued in parallel. The
class DP contains all problems that, considered as languages, can be characterized as
the intersection of a language in NP and a language in CONP [13]. Note that: PTIME ⊆

NP ⊆ DP ⊆ PNP
� ⊆ ΣP

2 is believed to be a strict hierarchy of inclusions and here we
make such an assumption.
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Our results can be explained as follows. We show in the next section that EX-
ISTENCE can be reduced to the PTIME-complete satisfiability problem for DL-LiteA
without the UNA [1], which justifies our PTIME upper bound. This result can then be
used to characterize the complexity of RELEVANCE, NECESSITY, and ⊆-NECESSITY.
≤-RELEVANCE and ≤-NECESSITY are harder. The reason being that in order to solve
these problems one has to compute first the minimal size of a solution and, then, inspect
all the solutions of that size. Additionally, there is another increase in complexity when
dealing with ⊆-RELEVANCE. The intuition is that there is an exponential number of
candidate solutions to examine and for each of them one has to check that none of its
subsets is itself a solution, which requires a CONP computation. Due to space limita-
tions, the results on �-RECOGNITION are not detailed in this paper (see [8] for more
details). The intuition for the NP bound for RECOGNITION is that one needs simply to
check consistency and perform query evaluation to solve the problem. In case a prefer-
ence order is in place, one has to check minimality as well, which is a CONP check for
⊆- and ≤-minimal explanations that leads to completeness for DP.

4.1 Complexity of �-EXISTENCE

For �-EXISTENCE note first that the existence of an explanation for P implies the
existence of an explanation under the ⊆ and ≤ orderings. Thus, we only consider EX-
ISTENCE. Our first task is to show that we can restrict ourselves to explanations built
from the original signature of the input QAP plus a small number of fresh constants.

Proposition 1. If P = �O, q, c� has a solution, then P has a solution U �
with con-

cepts, roles, and attributes only from O and at most m = maxqi∈q|at(qi)| fresh ABox

individuals.

Proof. Assume an arbitrary solution U to P . Given the consistency of O� = �T ,A ∪ U �,
it follows that there exists a model I of O� under the UNA. W.l.o.g. we assume that
∆I = C with cI = c for each c ∈ C. Additionally, the interpretation I admits a match
π for some qi(x) ∈ q, such that π(x) = c. Let U � = {A(o) | A(t) ∈ at(qi) and π(t) =
o} ∪ {R(o, o�) | R(t, t�) ∈ at(qi) and π(t) = o and π(t�) = o�}. Observe that U �

has no more individuals than qi has variables. It remains to see that U � is a solution.
Clearly the original match π witnesses also c ∈ ans(qi,A ∪ U �). It remains to see that
O�� = �T ,A ∪ U �� is consistent. But this follows from the fact that I is a model of O�

and that the atoms in U � hold in I ��

The above restriction allows us to consider canonical explanations, i.e., explana-
tions resulting from suitable instantiations of the bodies of CQs qi ∈ q. Keeping in
mind that CQs, seen as FOL formulae, are always satisfiable, an explanation does not
exist only if the structure of the query is not compliant with the constraints expressed in
the ontology. That is, for all the interpretations J of q with ans(q,J ) �= ∅, there is no
model I of O, such that I ∪ J |= O. To check whether a UCQ is compliant with the
ontological constraints, a naïve method is to iteratively go through all the CQs in q and
instantiate them in the ABox. If for none of the CQs we obtain a consistent ontology,
then the query violates some of the constraints imposed at the conceptual level.
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Proposition 2. For DL-LiteA ontologies, EXISTENCE is PTIME-complete.

Proof. (MEMBERSHIP) Note that P = �O, q, c�, with q a UCQ, has a solution iff Pq� =
�O, q�, c� has a solution for some q� ∈ q. Hence, it suffices to show the upper bound
for CQs. To this end, we provide a logspace reduction from EXISTENCE to consistency
in DL-LiteA without UNA, which in turn is PTIME-complete [1]. Assume a QAP P =
�O, q, c�, where q is a CQ and O = �T ,A�. We argue that P has a solution iff O� =
�T ∪T �,A ∪ Uq ∪ A�� is consistent, where O� is an ontology obtained from O and
q(c) as follows. The ABox Uq is obtained from at(q(c)) by replacing each variable
x with a fresh individual name ax. The ABox A� consists of assertions Ao(o) for all
constants o occurring in T , A and Uq , where each Ao is a fresh concept name. The
TBox T � consists of axioms Ao �¬Ao� for all pairs o �= o� of constants occurring in A

and q(c). We now show that P has a solution iff O� is consistent.
Assume that P has a solution U . Then, due to consistency of O�� = (T ,A ∪ U),

there is a model I of O�� under the UNA. Additionally, I admits a match π for q(c). Let
I � be the extension of I that additionally interprets (i) constants in Uq as aI

�

x = π(x)
for all variables x in q, and (ii) AI�

o = {oI} for all freshly introduced Ao. It remains
to show that I � is a model of O�. Observe that since I is under the UNA, we have that
AI�

o ∩AI�

o� = ∅ for all constant pairs o �= o�. Thus I � satisfies all the disjointness axioms
Ao � ¬Ao� in T �. The assertions in A� are satisfied due to (ii), while the assertions in
Uq due to (i) above.

The other direction of the proof is obvious and we omit it here.
(HARDNESS) Let us reduce consistency in DL-LiteA without UNA to EXISTENCE.

Given O = �T ,A�, we create QAP P = �O�, q(), ��� simply by encoding the ABox A

in the CQ q by replacing each constant a ∈ A by a distinct variable name xa in q, while
the ontology O� consists only of the TBox T . ��

4.2 Complexity of (�-)NECESSITY

The existence of an explanation is most of the times not very informative to the user.
In fact, given a negative answer to a query, it is important to delineate the fundamental
reasons leading to the absence of the expected tuple. That is, users would like to know
which assertions occur in all the solutions to a QAP P .

Proposition 3. For DL-LiteA ontologies, the NECESSITY and ⊆-NECESSITY problems

are PTIME-complete.

Proof. (MEMBERSHIP) We assume a QAP P = �O, q, c� with O = �T ,A�, an asser-
tion ϕ(t) and consider NECESSITY first. This problem can be reduced to non-EXISTENCE,
which was shown to be in PTIME in the previous section. We build O� = �T �,A�� such
that ϕ(t) occurs in all explanations for P iff P � = �O�, q, c� has no explanation. We
define O� by setting A� = A ∪ {ϕ̄(t)} and T � = T ∪ {̄ϕ � ¬ϕ}, where ϕ̄ is a fresh
predicate name. It is easy to see that if P � has no explanation, then either P has no ex-
planation as well, or, all the explanations for P must contain ϕ(t). For ⊆-NECESSITY,
observe that ϕ(t) occurs in all explanation for P iff ϕ(t) occurs in all ⊆-minimal ex-
planations for P . Thus ⊆-NECESSITY can be decided in polynomial time using our
algorithm for NECESSITY.
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(HARDNESS) The lower-bound can be proved through a logspace reduction from
EXISTENCE to non-NECESSITY, that is, deciding whether there exists a solution to a
QAP that does not contain the given assertion. Let P = �O, q, c� be a QAP with q
a CQ, we build �P, α� such that P has a solution iff �P, α� is a negative instance to
NECESSITY. Let α = A(o), for some fresh concept A and constant o not occurring
in P . Now, assume P has a solution U . By Proposition 1, we know that there exists a
solution U � to P containing only concept and role names from O. Hence, A(o) �∈U �,
since concept name A is not in the ontology. Therefore, one can conclude that A(o) is
not a necessary assertion to P .

The other direction is straightforward. ��

Let us now show the complexity of necessity under the ≤ preference order.

Theorem 1. For DL-LiteA ontologies, ≤-NECESSITY is P
NP
� -complete.

Proof. (MEMBERSHIP only, HARDNESS in [8]) Let’s assume a QAP P = �O, q, c� and
an assertion α. By the use of canonical explanations, we know that the size m of the
largest solution to P corresponds to the size of the largest CQ in q. Observe that (P, α)
is a negative instance of ≤-NECESSITY iff there is an 0 ≤ i ≤ m such that (a) P has
an explanation U with |U| = i and α �∈U , and (b) U is ≤-minimal. Thus, we use an
auxiliary problem SIZE-OUT, which is to decide given a tuple �P �, α�, n��, where P � is
a QAP, α� is an assertion, and n� is an integer, whether there exists an explanation U �

for P � such that |U �| = n� and α� �∈U �. Furthermore, the problem NO-SMALLER is to
decide given a tuple �P �, n�� of a QAP and an integer whether there is no explanation
U � for P � such that |U �| < n�. Observe that SIZE-OUT is in NP, while NO-SMALLER
is in CONP. Take the tuple S = �A0, B0, . . . , Am, Bm�, where (a) Ai = (P, α , i),
for all 0 ≤ i ≤ m, and (b) Bi = (P, i), for all 0 ≤ i ≤ m. Due to the above
observation, α occurs in all ≤-minimal explanations U for P iff for all 0 ≤ i ≤ m, one
of the following holds: (i) Ai is a negative instance of SIZE-OUT, or (ii) Bi is a negative
instance of NO-SMALLER. Note that S can be built in polynomial time in the size of the
input, while the positivity of the instances in S can be decided by making 2m parallel
calls to an NP oracle. Thus we obtain membership in PNP

� . ��

4.3 Complexity of �-RELEVANCE

A domain user faced with a negative answer to a query may ask herself whether, the
absence of a certain ABox assertion α in the ontology is related with the lack of the tuple
in the results. That is, she would like to know whether α occurs in some explanation to
QAP P .

Proposition 4. For DL-LiteA ontologies, RELEVANCE is PTIME-complete.

Proof. (MEMBERSHIP) We assume a QAP P = �O, q, c� with O = �T ,A� and an
assertion φ(t). We now provide a reduction from RELEVANCE to EXISTENCE. We con-
struct O� = �T ,A��, where A� = A∪φ(t). Then, P has an explanation U with φ(t) ∈ U

iff there exists an explanation to P � = (O�, q, c). This is because, any explanation to
P � can be extended by adding φ(t). It is simple to see that any such explanation is an
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explanation to P , as well. Finally, if P � does not admit explanations, then φ(t) is a
source of inconsistency in P .

(HARDNESS) Hardness can again be proved with a reduction from EXISTENCE in a
similar way as done in Section 4.2. ��

Let us now tackle the problem of ⊆-RELEVANCE, for which we recall the FOL-
rewritability of query answering in DL-LiteA. Given an ABox A, let DB(A) be the fol-
lowing interpretation: (i) ∆DB(A) is the set of constants occurring in A, (ii) ADB(A) =
{o ∈ ∆DB(A) | A(o) ∈ A}, for each atomic concept A, and (iii) PDB(A) = {�o, o�� ∈
∆DB(A) | P (o, o�) ∈ A}, for each atomic role P .

Proposition 5 ([7]). Let PerfectRef(q, T ) be the perfect reformulation of q w.r.t. T ,

which is a UCQ obtained by applying the rewrite rules given in [7]. Then, cert(q,O) =�
r∈PerfectRef (q,T ) ans(r,DB(A)).

In other words, the certain answers to a UCQ can be computed by rewriting the query
into a FOL query to be evaluated over the ABox.

Theorem 2. For DL-LiteA ontologies, ⊆-RELEVANCE is ΣP
2 -complete.

Proof. (MEMBERSHIP) The membership in ΣP
2 is clear from Algorithm 1, which works

as follows. An explanation U containing φ(t) is non-deterministically computed by
guessing an instantiation of a subquery in PerfectRef(q(c), T ), where Anon is a set of
fresh ABox individuals (see Proposition 1). Let HAS-SUBEXPL solve the problem of
deciding whether a solution U has a subset which is itself an explanation. The prob-
lem can be easily proved to be in NP. Then, the algorithm checks the complement
of HAS-SUBEXPL in order to assure that none of the subsets of U is itself an expla-
nation, from which it follows that φ(t) is ⊆-relevant. Checking the complement of
HAS-SUBEXPL requires the power of a CONP machine. For this reason, the algorithm
is solvable in non-deterministic polynomial time by a TM with an NP oracle.

(HARDNESS) We prove it by a reduction from the ΣP
2 -complete problem co-CERT3COL

[15] (see also [4]). An instance of co-CERT3COL is given by a graph G = (V,E) with
vertices V = {0, . . . , n − 1} such that every edge is labeled with a disjunction of
two literals over the Boolean variables {p(i,j) | i, j < n}. G is a positive instance if
there is a truth value assignment t to the Boolean variables such that the graph t(G)

Algorithm 1
INPUT: QAP P = �q,O, c� and ABox assertion φ(t)
OUTPUT: yes iff φ(t) is relevant to P

1: Guess qi ∈ {q1, . . . , qn} = q
2: Guess the derivation of one rewriting r(c) in PerfectRef(qi(c), T )
3: Guess a set of atoms U ⊆ at(r)
4: Guess a mapping π from V(q) to constants in DB(A) and Anon
5: Check that (T ,A ∪ U) �|= ⊥, where U is the instantiation of U through π.
6: Check that φ(t) ∈ U and π is a match for r(c) over DB(A ∪ U)
7: Check that HAS-SUBEXPL (P,U) = no.
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obtained from G by including only those edges whose label evaluates to true under t
is not 3-colorable. Assume an instance G of co-CERT3COL. We show how to build in
polynomial time a QAP PG = �(TG,AG), qG, cG� and an ABox assertion αG such
that: G is a positive instance of co-CERT3COL iff αG is ⊆-relevant for PG. We use
an empty TBox and a Boolean query, thus TG = ∅ and cG = ��. The query qG is
a UCQ qG = qe1 ∪ · · · ∪ qek ∪ q�, where {e1, . . . , ek} = E, each qei is an atomic
query qei() ← Wei(x, y), and q� is defined as follows. Assume B = {t, f} to be the
set of truth values. The query q� has the following atoms for each edge e = (i, j) in E:
(a) B(xi), Re(xi, ye), Re(ye, xj), B(xj), and (b) P (ye, zpi), Api(zpi), Wpi(zpi , z

�
pi
),

where pi ∈ {p1, p2} and p1, p2 are the first and the second proposition in the labeling
of e, respectively. The query q� simply incorporates G together with the disjunctions on
the edges. Observe that if two edges have the same proposition in their label, then this
will be reflected in q� by some shared variables zpi .

To build AG we use individuals cp and c¬p for the truth value of proposition p.
Intuitively, the truth value of p will be determined by either Ap(cp) or Ap(c¬p) being
in the update. Assume a tuple t = �e, v1, v2, a, b�, where e ∈ E, {v1, v2} ⊆ B, and a, b
are individuals. Let p1, p2 be the first and the second propositions of e. For i ∈ {1, 2}
and vi = t , let li = pi if pi is positive and li = ¬pi otherwise. Similarly, for i ∈ {1, 2}
and vi = f , let li = ¬pi if pi is positive and li = pi otherwise. Then, the ABox A(t)
consists of the assertions Re(a, dT ), Re(dT , b), P (dT , cl1) and P (dT , cl2) depending
on the boolean values in input.

The ABox AG is the union of the following ABoxes:

(A1) A(�e, v, v�, ai, aj�) for all e ∈ E, v, v� ∈ B, 0 ≤ i, j ≤ 2, and i �= j;
(A2) A(�e, f, f, ai, ai�) for all e ∈ E, and 0 ≤ i ≤ 2;
(A3) A(�e, v, v�, b, b�) for all e ∈ E, v, v� ∈ B;
(A4) The ABox {B(a0), B(a1), B(a2)};
(A5) The assertions Wp(cp, c¬p) and Wp(c¬p, cp) for all propositions.

Let αG = B(b). It is not too difficult to see that G is a positive instance of co-
CERT3COL iff there exists an ⊆-explanation U to P such that αG ∈ U . Basically,
definitions (A1)-(A3) encode a triangular structure T in which edges in G that evaluate
to false according to a given truth assignment can be mapped on any edge of T , reflexive
edges included. If an edge of G evaluates to true, then it must be mapped to one of the
non-reflexive edges. This ensures that if G can be mapped to T under truth assignment
t, then t(G) is 3-colorable. Instead, definitions (A4)-(A5) define a cyclic structure C
into which any graph G can be embedded. It has to be noted that the node b is not
asserted to be a member of B, hence qG cannot be mapped there directly with any truth
assignment. We see this more formally next:

“⇒” Suppose there is a truth assignment t such that t(G) is not 3-colorable. Let
U = {B(b)}∪U1, where U1 = {Ap(cp) | t(p) = t}∪{Ap(c¬p) | t(p) = f}. It remains
to argue that U is a ⊆-explanation to P . It is not hard to see that U is an explanation.
Indeed qG matches already in the ABox obtained by point (A3) (hint: since B(b) ∈ U ,
we match qG by mapping all variables of qG to (interpretation of) b). Suppose there is
a smaller update U � ⊂ U . Observe that U1 ⊆ U �. This is because for all propositions p,
the symbol Ap does not occur in AG but does occur in qG. Then, U \{B(b)} must be an
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update. If this is the case, then qG can be matched in AG without the ABox from (A3),
i.e. in the triangle part. Then t(G) is 3-colorable, which contradicts the assumption.

“⇐” Let U be a ⊆-minimal explanation containing B(b). Due to the presence of
qe1 ∪ . . . ∪ qek in qG and the assumption, the role Wp cannot occur in U for any
proposition p. Since U is an explanation, by the definition of q� and (A5) we have
that Ap(cp) ∈ U or Ap(c¬p) ∈ U for all propositions p. Since for any proposition p
we have that Ap occurs in qG with one and only variable zp, we know that exactly one
of Ap(cp) ∈ U and Ap(c¬p) ∈ U holds. Due to the atoms Wp(zp, z�p) in qG, we also
have that individuals of the form cp and c¬p are the only ones that can get an Ap label.
Consider the assignment t defined as follows: t(e) = t if Ap(cp) ∈ U , and t(e) = f
if Ap(c¬p) ∈ U . It is not difficult to argue that t(G) is not 3-colorable and thus G is a
positive instance of co-CERT3COL. Indeed, if t(G) was 3-colorable, Q should be map-
pable into the triangle part obtained in (A1)-(A3). Then U \ {B(b)} would be a smaller
update, which would mean a contradiction. ��

Note that the above lower bound holds already for empty TBoxes.

Proposition 6. For DL-LiteA ontologies, ≤-RELEVANCE is P
NP
� -complete.

Proof. (MEMBERSHIP only, HARDNESS in [8]) ≤-RELEVANCE can be tackled in a way
similar to ≤-NECESSITY. In fact, the algorithm described in Theorem 1 can be modi-
fied in order to solve this problem. Let SIZE-IN solve the following problem: given a
tuple �P, α , n�, where P is a QAP, α an assertion, and n an integer, decide whether
there exists an explanation U , with |U| = n and α ∈ U . Then, we change the positivity
condition of the ≤-NECESSITY algorithm as follows: α occurs in some ≤-minimal ex-

planations U for P iff for some i, 0 ≤ i ≤ m, it holds that: (i) Ai is a positive instance

of SIZE-IN, and (ii) Bi is a positive instance of NO-SMALLER. It is easy to see that
SIZE-IN is solvable in NP, hence the whole problem is again in PNP

� . ��

5 Conclusions

In this paper we have provided the formalization of a new problem, namely the explana-
tion of negative answers to user queries over ontologies. A tuple is said to be a negative
answer, if the user expects it to be part of cert(q,O) but the tuple is actually not. In
our framework, an explanation consists of an ABox that when added to the ontology
leads the negative answer to be returned in the results of the query. We define various
problems that help us in characterizing the complexity of finding explanations, such
as the existence of explanations and relevance/necessity of assertions. We further con-
sider a minimality criterion to be applied over explanations, such as subset-minimal and
minimum-size preference orders. Within this framework, we provide a characterization
of the computational complexity of the various problems for the DL DL-LiteA.

Future work includes studying the application of this framework to other lightweight
description logics, starting with the EL-family. We would also like to investigate the
problem in the case where the ontology signature and the explanation signature may be
different. That is, the signature over which explanations can be constructed is restricted
only to a subset of the ontology signature [2].
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lastname@dis.uniroma1.it

Abstract. In this paper we introduce the notion of mapping-based knowledge
base (MKB), to formalize those ontology-based data access (OBDA) scenarios
where both the extensional and the intensional level of the ontology are deter-
mined by suitable mapping assertions involving the data sources. We study rea-
soning over MKBs in the context of Hi(DL-LiteR), a higher-order version of
the DL DL-LiteR. We show that answering queries posed to MKBs expressed in
Hi(DL-LiteR) can be done efficiently through FOL rewriting: hence, query an-
swering can be delegated to a DBMS, as in the case of traditional OBDA systems.

1 Introduction

Ontology-based data access (OBDA) [2] is a recent application of Description Logics
(DLs) that is gaining momentum. The idea behind OBDA is to use a DL ontology as
a means to access a set of data sources, so as to mask the user from all application-
dependent aspects of data, and to extract useful information from the sources based
on a conceptual representation of the domain, expressed as a TBox in a suitable DL.
In current approaches to OBDA, the intensional level of the ontology (the TBox) is
fixed once for all at design time, and the mapping assertions specify how the data at the
sources correspond to instances of the concepts, roles, and attibutes in the TBox. More
precisely, the various mapping assertions determine a sort of virtual ABox, in which
the individual objects are built out from data, and the instance assertions are specified
through the relationships between the sources and the elements of the ontology.

Several OBDA projects have been carried out in the last years [9], and OBDA sys-
tems have been designed to support OBDA applications [1]. The experience gained in
this work has shown that there are important aspects that are missing in current OBDA
technology. In this paper, we concentrate on three such aspects.

The first aspect is related to the need of making the intensional level of the ontol-
ogy more dynamic. Indeed, in real applications, the information about which are the
concepts and roles that are relevant in the domain of interest is often stored in the data
sources. Consider, for example, the database D of a motor industry shown in figure 1,
storing data about different types of cars (table T-CarTypes), and various cars of
such types (table T-Cars) manufactured by the firm. The key observation is that the
database D stores information not only about the instances of concepts, but also about
the concepts themselves, and their relationships. For example, table T-CarTypes tells
us that there are four concepts in our ontology that are subconcepts of the concept Car,
and, implicitely, tells us that they are mutually disjoint. Table T-Cars, on the other
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T-CarTypes

Code TypeName
T1 Coupé
T2 SUV
T3 Sedan
T4 Estate

T-Cars

NumberPlate CarType EngineSize BreakPower Color TopSpeed
AB111 T1 2000 200 Silver 260
AF333 T2 3000 300 Black 200
BR444 T2 4000 400 Grey 220
AC222 T4 2000 125 Dark Blue 180
BN555 T3 1000 75 Light Blue 180
BP666 T1 3000 600 Red 240

Fig. 1. The database of a motor industry

hand, provides information about the instances of the various concepts, as well as other
properties about such instances.

The second aspect is related to the need of metamodeling constructs in the lan-
guage used to specify the ontology [4, 6]. Metamodeling allows one to treat concepts
and properties as first-order citizens, and to see them as individuals that may constitute
the instances of other concepts, called meta-concepts. In our example, it is convenient
to introduce in the ontology the concept Car-Type, whose instances are exactly the
subconcepts of cars stored in table T-CarTypes. In this way, we allow users to dy-
namically acquire knowledge about relevant car types through simple queries asking
for the instances of the meta-concept Car-Type.

The third aspect deals with the need of designing tractable algorithms for query
answering in OBDA systems. In [8], it is argued that, since the data sources used in
OBDA systems are likely to be very large, such systems should be based on DLs that
are tractable in data complexity. In particular, [8] advocates the use of the DL-Lite
family, that allows for First-Order Logic (FOL) rewritability of (unions of) conjunctive
queries. We remind the reader that in a DL enjoing FOL rewritability, query answering
can be divided in two steps. In the first step, called rewriting, using the TBox only, the
query q is transformed into a new FOL query q

�, and in the second step q
� is evaluated

over the ABox. The correctness of the whole method relies on the fact the answers to
q
� over the ABox coincide with the certain answers to q over the whole ontology. The

challenge is now to design tractable query answering algorithms even in cases where
the mappings relate data at the sources both to the extensional and the intensional level
of the ontology, and meta-concepts and meta-roles are used in the queries. In this paper,
we address the above aspects, and present the following contributions.

(i) We introduce the notion of mapping-based knowledge base (MKB) (Section 3),
to formalize the situation where both the extensional and the intensional level of the
ontology are determined by suitable mapping assertions involving the data sources.

(ii) We describe the higher-order DL Hi(DL-LiteR) (Section 2), based on the ap-
proach presented in [5]. In that paper, it is shown how, starting from a traditional DL
L, one can define its higher-order version, called Hi(L). Here, we apply this idea, and
present Hi(DL-LiteR), which is the higher-order version of DL-LiteR [3].

(iii) We show that answering queries posed to MKBs expressed in Hi(DL-LiteR)
can be done efficiently through FOL rewriting (Section 4). More specifically, we de-
scribe an algorithm that, given a query q over a MKB, rewrites q into a FOL query that
is evaluated taking into account only the mapping assertions MA of the MKB involv-
ing the extensional level of the ontology. Hence query answering can be delegated to a
DBMS, as in the case of traditional OBDA systems.

2
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2 Higher-order DL-LiteR

In this section, we describe the higher-order DL Hi(DL-LiteR), based on the approach
presented in [5]. Every traditional DL L is characterized by a set OP(L) of operators,
used to form concept and role expressions, and a set of MP(L) of meta-predicates, used
to form assertions. Each operator and each meta-predicate have an associated arity. If
symbol S has arity n, then we write S/n to denote such a symbol and its arity. For
DL-LiteR, we have

– OP(DL-LiteR) = {Inv/1, Exists/1};
– MP(DL-LiteR) = {InstC/2, InstR/3, IsaC/2, IsaR/2,DisjC/2,DisjR/2}.

We assume that the reader is familiar with DL-LiteR. Therefore, the intuitive mean-
ing of all the above symbols should be clear. The formal specification of their semantics
will be given shortly.
Syntax. We assume the existence of two disjoint, countably infinite alphabets: S , the
set of names, and V , the set of variables. Intutively, the names in S are the symbols
denoting the atomic elements of a Hi(DL-LiteR) knowledge base. The building blocks
of such a knowledge base are assertions, which in turn are based on terms and atoms.

We inductively define the set of terms, denoted by τDL-LiteR(S,V), over the alpha-
bets S and V for Hi(DL-LiteR) as follows:

– if E ∈ S then E ∈ τDL-LiteR(S,V);
– if V ∈ V then V ∈ τDL-LiteR(S,V);
– if C/n ∈ OP(DL-LiteR) and t1, . . . , tn ∈ τDL-LiteR(S,V) then C(t1, . . . , tn) ∈

τDL-LiteR(S,V).
Ground terms, i.e., terms without variables, are called expressions, and the set of ex-
pressions is denoted by τDL-LiteR(S).

A DL-LiteR-atom, or simply atom, over the alphabets S and V for Hi(DL-LiteR)
is a statement of the form M(E1, . . . , En) where M ∈ MP(DL-LiteR), n is the arity
of M , and for every 1 ≤ i ≤ n, Ei ∈ τDL-LiteR(S,V). If X is a subset of V , a is
a DL-LiteR-atom, and all variables appearing in a belongs to X , then a is called an
X-atom in DL-LiteR.

Ground DL-LiteR-atoms, i.e., DL-LiteR-atoms without variables, are called
DL-LiteR-assertions, or simply assertions. Thus, an assertion is simply an application
of a meta-predicate to a set of expressions. Intuitively, an assertion is an axiom that
predicates over a set of individuals, concepts or roles.

A Hi(DL-LiteR) knowledge base (KB) over S is a set of DL-LiteR-assertions over
S . To agree with the usual terminology of DLs, we use the term TBox to denote a set of
IsaC , IsaR, DisjC and DisjR assertions, and the term ABox to denote a set of InstC
and InstR assertions.
Semantics. Our definition of semantics for Hi(DL-LiteR) is based on the notion of
interpretation structure. An interpretation structure is a triple Σ = �∆, Ic, Ir� where:
(i) ∆ is a non-empty (possibly countably infinite) set; (ii) Ic is a function that maps
each d ∈ ∆ into a subset of ∆; and (iii) Ir is a function that maps each d ∈ ∆ into a
subset of ∆×∆. In other words, Σ treats every element of ∆ simultaneously as: (i) an
individual; (ii) a unary relation, i.e., a concept, through Ic; and (iii) a binary relation,
i.e., a role, through Ir.

3
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An interpretation for S (simply called an interpretation, when S is clear from the
context) over the interpretation structure Σ is a pair I = �Σ, Io�, where

– Σ = �∆, Ic, Ir� is an interpretation structure, and
– Io is a function that maps:

1. each element of S to a single object in ∆; and
2. each element C/n ∈ OP(DL-LiteR) to an n-ary function C

Io : ∆n → ∆

that satisfies the conditions characterizing the operator C/n. In particular, the
conditions for the operators in OP(DL-LiteR) are as follows:
(a) for each d1 ∈ ∆, if d = InvIo(d1) then d

Ir = (dIr
1 )−1;

(b) for each d1 ∈ ∆, if d = Exists(d1) then d
Ic = {e | ∃e1 s.t. �e, e1� ∈

d
Ir
1 }.

We extend Io to ground terms in τDL-LiteR(S) inductively as follows: if C/n ∈

OP(DL-LiteR), then (C(t1, . . . , tn))Io = C
Io(EIo

1 , . . . , E
Io
n ).

We now turn our attention to the interpretation of terms in Hi(DL-LiteR). To in-
terpret non-ground terms, we need assignments over interpretations, where an assign-
ment µ over �Σ, Io� is a function µ : V → ∆. Given an interpretation I = �Σ, Io�

and an assignment µ over I, the interpretation of terms is specified by the function
(·)Io,µ : τDL-LiteR(S,V) → ∆ defined as follows:

– if t ∈ S then t
Io,µ = t

Io ;
– if t ∈ V then t

Io,µ = µ(t);
– if t is of the form C(t1, . . . , tn), then t

Io,µ = C
Io(tIo,µ

1 , . . . , t
Io,µ
n ).

Finally, we define the semantics of atoms, by defining the notion of satisfaction of
an atom with respect to an interpretation I and an assignment µ over I as follows:

– I, µ |= InstC(E1, E2) if EIo,µ
1 ∈ (EIo,µ

2 )Ic ;
– I, µ |= InstR(E1, E2, E3) if �EIo,µ

1 , E
Io,µ
2 � ∈ (EIo,µ

3 )Ir ;
– I, µ |= IsaC(E1, E2) if (EIo,µ

1 )Ic ⊆ (EIo,µ
2 )Ic ;

– I, µ |= IsaR(E1, E2) if (EIo,µ
1 )Ir ⊆ (EIo,µ

2 )Ir ;
– I, µ |= DisjC(E1, E2) if (EIo,µ

1 )Ic ∩ (EIo,µ
2 )Ic = ∅;

– I, µ |= DisjR(E1, E2) if (EIo,µ
1 )Ir ∩ (EIo,µ

2 )Ir = ∅.
A Hi(DL-LiteR) KB H is satisfied by I if all the assertions in H are satisfied by I1.

As usual, the interpretations I satisfying H are called the models of H. A Hi(DL-LiteR)
KB H is satisfiable if it has at least one model.

3 Mapping-based knowledge bases

As we said in the previous section, a Hi(DL-LiteR) KB is simply a set of assertions.
One might think of such a set of assertions as explicitly stated by the designer of the
KB. This is a reasonable assumption only in those cases where the ontology is managed
by an ad-hoc system, and is built from scratch for the specific application. However, in
many applications, it is of interest to derive the KB directly from a set of data sources,
so that the assertions of the KB are defined by specific mappings to such data sources.
The resulting notion will be called mapping-based knowledge base.

In the following, we assume that the data sources are expressed in terms of the
relational data model. In other words, all the technical development presented in the rest

1 We do not need to mention assignments here, since all assertions in H are ground.
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of this section assumes that the set of sources to be linked to the knowledge base is one
relational database. Note that this is a realistic assumption, since many data federation
tools are now available that are able to wrap a set of heterogeneous sources and present
them as a single relational database.

When mapping relational data sources to a knowledge base over S , one should
take into account that sources store “data values”, and such data values should not
be confused with the elements in S . To face this impedance mismatch problem, [8]
proposes to structure the mapping assertions in such a way that the elements of the
knowledge base are denoted by terms built out from data values stored at the sources
using special function symbols. Although we could in principle follow the same idea
here, for the sake of simplicity, in this paper we assume that the relational data sources
store directly elements of S . Note, however, that all the results presented in the next
sections easily extend to the case where mappings build complex terms for denoting the
elements of the knowledge base.

We are now ready to provide the definition of mapping-based knowledge base.

Definition 1. A Hi(DL-LiteR) mapping-based knowledge base (MKB) is a pair K =
�DB ,M� such that: (i) DB is a relational database; (ii) M is a mapping, i.e. a set
of mapping assertions, each one of the form Φ(x) ❀ ψ, where Φ is an arbitrary FOL
query over DB of arity n > 0 with free variables x = �x1, . . . , xn�, and ψ is an
X-atom in DL-LiteR, with X = {x1, . . . , xn}.

In the following, if K = �DB ,M� is a MKB, then we denote by MA the set of
mapping assertions from M whose head predicate is either InstC or InstR. Further-
more, we denote by MT the set M\MA, i.e., the set of mapping assertions from M

whose head predicate belongs to the set {IsaC , IsaR,DisjC ,DisjR}. We call a map-
ping M an instance-mapping if M = MA, i.e., if the metapredicates InstC and InstR
are the only ones to appear in the right-hand side of the mapping assertions in M.

In order to define the semantics of a Hi(DL-LiteR) MKB K = �DB ,M�, we need
to define when an interpretation satisfies an assertion in M with respect to a database
DB . To this end, we make use of the notion of ground instance of an atom, and the
notion of answer to a query over DB . Let ψ be an X-atom with X = {x1, . . . , xn}, and
let v be a tuple of arity n with values from DB . Then the ground instance ψ[x/v] of ψ is
the formula obtained by substituting every occurrence of xi with vi (for i ∈ {1, .., n}) in
ψ. Also, if DB is a relational database, and q is a query over DB , we write ans(Φ,DB)
to denote the set of answers to q over DB .

We now specify when an interpretation satisfies a mapping assertion with respect to
a database. We say that an interpretation I satisfies the mapping assertion Φ(x) ❀ ψ

with respect to the database DB , if for every tuple of values v ∈ ans(Φ,DB), the
ground atom ψ[x/v] is satified by I. We say that I is a model of K = �DB ,M� if I
satisfies every assertion in M with respect to DB .

The following example shows how Hi(DL-LiteR) mapping-based knowledge bases
can be used to model real world situations in a suitable manner.

Example 1. Consider the database D shown in the introduction. We define a
Hi(DL-LiteR) MKB K1 = �D,M�, where the mapping M is defined as follows:

– M1: {y | T-CarTypes(x, y)} ❀ IsaC(y,Car)
– M2: {(x, z) | T-Cars(x, y, t, u, v, q) ∧ T-CarTypes(y, z)} ❀ InstC(x, z)
– M3: {(x, y) | T-CarTypes(z1, x) ∧ T-CarTypes(z2, y) ∧ x �= y} ❀ DisjC(x, y)

5
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Intuitively, M1 states that every type of car (whose name appears in the second column
of table T-CarTypes, i.e. Coupé, SUV, Sedan, etc.) is a Car. M2, instead, indicates how
to correctly retrieve the instances of different types of cars (e.g. car with plate number
AB111 has to be retrieved as an instance of the concept Coupé, cars with plate numbers
AF333 and BR444 as instances of the concept SUV, and so on). Finally, the intended
meaning of assertion M3 is that different types of cars are pairwise disjoint (e.g. a
Coupé is not a SUV, a SUV is not a Sedan, and so on). Obviously, mapping assertions
are always written by people who know the semantics of the information stored in
the database. Notice that the mapping assertions in M are able to model the car-types
hierarchy without knowing a priori (i.e. at design-time) all the different kinds of cars
that are produced by the motor industry.

Suppose now that the motor industry decides to introduce new types of cars to its
car fleet, and in particular it decides to produce Campers and Caravans as well, thus
extending the hierarchy. As one can imagine, these new kinds of cars share some com-
mon characteristics with the previous car types, even though not all of them. Therefore,
it might be a reasonable choice for the database designers to introduce a new relational
table in D:

T-NewCars NumberPlate CarType Height Weight EngineSize BreakHorsePower
CM777 Camper 2,50 mt 680 Kg 4000 cc 200 bhp
CM888 Camper 2,20 mt 550 Kg 3000 cc 150 bhp
CV333 Caravan 2,30 mt 620 Kg 3000 cc 200 bhp
CV222 Caravan 2,50 mt 580 Kg 4000 cc 250 bhp

The new situation can be modeled in our framework by simply adding to M the fol-
lowing mapping assertions:

– M4: {y | T-NewCars(x, y, t, u, v, q)} ❀ IsaC(y,Car)
– M5: {(x, z) | T-NewCars(x, z, t, u, v, q)} ❀ InstC(x, z)
– M6: {(x, y) | T-NewCars(z1, x) ∧ T-NewCars(z2, y) ∧ x �= y} ❀ DisjC(x, y)

where mapping M4 states that the new kinds of cars (Camper and Caravan) are Cars,
the second assertion indicates how to correctly retrieve their instances, (e.g. car with
plate number CM777 as an instance of Camper), and mapping M6 states that the new
types of cars are pairwise disjoint (i.e. a Camper is not a Caravan).

Notice that if (instead of creating a new table) the new kinds of cars had been simply
introduced into the initial table T-CarTypes (thus without modifying D in any way), the
new concepts (Camper and Caravan) would been automatically detected at run-time by
mappings M1-M3, whitout requiring any further mapping definition.

Next, we introduce the notion of query, which in turn relies on the notion of “query
atom”. Intuitively, a query atom is a special kind of atom, constituted by a meta-
predicate applied to a set of arguments, where each argument is either an expression
or a variable. More precisely, we define the set of q-terms to be τDL-LiteR(S) ∪ V . We
define a query atom as an atom constituted by the application of a meta-predicate in
MP(DL-LiteR) to a set of q-terms, and we call a query atom ground if no variable oc-
curs in it. A query atom whose meta-predicate is InstC or InstR is called an instance-
query atom. A higher-order conjunctive query (HCQ) of arity n is an expression of
the form q(x1, . . . , xn) ← a1, . . . , am where q, called the query predicate, is a symbol
not in S ∪ V, every xi belongs to V , every ai is a (possibly non-ground) query atom,
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and all variables x1, . . . , xn occur in some aj . The variables x1, . . . , xn are called the
free variables (or distinguished variables) of the query, while the other variables oc-
curring in a1, . . . , am are called existential variables. A HCQ constituted by instance
atoms only is called an instance HCQ (IHCQ). A higher-order union of conjunctive
queries (HUCQ) of arity n is a set of HCQs of arity n with the same query predicate.
A HUCQ constituted by instance HCQs only is called an instance HUCQ (IHUCQ). A
HCQ/HUCQ is called Boolean if it has no free variables.

Let I be an interpretation and µ an assignment over I. A Boolean HCQ q of the
form q ← a1, . . . , an is satisfied in I, µ if every query atom ai is satisfied in I, µ.
A Boolean HUCQ Q is satisfied in I, µ if there exists a Boolean HCQ q ∈ Q that is
satisfied in I, µ. A Boolean HUCQ Q is satisfied in I, written I |= Q, if there exists
an assignment µ over I such that Q is satisifed in I, µ. Given a Boolean HUCQ Q and
a Hi(DL-LiteR) KB K, we say that Q is logically implied by K (denoted by K |= Q) if
for each model I of K there exists an assignment µ such that Q is satisfied by I, µ.

Given a non-Boolean HUCQ q of the form q(t1, . . . , tn) ← a1, . . . , am, a ground-
ing substitution of q is a substitution θ such that t1θ, . . . , tnθ are ground terms. We
call t1θ, . . . , tnθ a grounding tuple. The set of certain answers to q in K is the set of
grounding tuples t1θ, . . . , tnθ that make the Boolean query qθ ← a1θ, . . . , anθ logi-
cally implied by K. Notice that, in general, the set of certain answers may be infinite
even if the KB is finite. Therefore, it is of interest to define suitable notions of safeness,
which guarantee that the set of answers is bounded. This issue, however, is beyond the
scope of the present paper. Indeed, in this paper, we focus on Boolean queries only, so
as to address the computation of certain answers as a decision problem.

Example 2. Let us refer to the MKB K1 = �D,M� of example 1. Interesting queries
that can be posed to K1 include: (i) Return all the instances of Car manufactured by
the motor industry, each one with its own type: q(x, y) ← InstC(x, y), InstC(y,Car);
(ii) Return all the concepts which car with plate number ’AB111’ belongs to: q(x) ←

InstC(�AB111�, x).

4 Query answering

In this section, we study the problem of answering IHUCQs over Hi(DL-LiteR) MKBs.
Our query answering technique is based on query rewriting, so we will first deal with the
problem of computing a perfect reformulation of a IHUCQ over a Hi(DL-LiteR) KB.
Then, we will present a query answering algorithm for MKBs based on the above per-
fect reformulation technique. In the following, we assume that the MKB is consistent.
This does not constitute a limitation, since it is possible to show that checking consis-
tency of a MKB can also be done through query answering, by means of techniques
analogous to the ones defined for DL-Lite.

We start with some auxiliary definitions. Given an assertion α = InstC(e1, e2), we
say that e2 occurs as a concept argument in α. Given an assertion α = InstR(e1, e2, e3),
we say that e3 occurs as a role argument in α. Given an assertion α = IsaC(e1, e2),
we say that e1 and e2 occur as concept arguments in α. Given an assertion α =
IsaR(e1, e2), we say that e1 and e2 occur as role arguments in α. Given an assertion
α = DisjC(e1, e2), we say that e1 and e2 occur as concept arguments in α. Given an
assertion α = DisjR(e1, e2), we say that e1 and e2 occur as role arguments in α.
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A DL atom is an atom of the form N(t) or N(t1, t2), where N is a name
and t, t1, t2 are either variables or names. An extended CQ (ECQ) is a conjunc-
tion of DL atoms, InstC atoms and InstR atoms. An extended UCQ (EUCQ) is
a union of ECQs. Given an atom α, Pred(α) denotes the term appearing in pred-
icate position in α (such a term may be either a variable or an expression). Given
a TBox T , we denote by Concepts(T ) the set {e,Exists(e),Exists(Inv(e)) |

e ∈ E and e occurs as a concept argument in T } and denote by Roles(T ) the set
{e, Inv(e) | e ∈ E and e occurs as a role argument in T }. Given a mapping M and
a database DB , we denote by Retrieve(M,DB) the Hi(DL-LiteR) KB H defined as:

H = {ψ(t) | Φ(x) ❀ ψ ∈ M and DB |= Φ(t)}

Given an instance-mapping M and an ABox A, we say that A is retrievable through
M if there exists a database DB such that A = Retrieve(M,DB).

Query rewriting. We start by providing an intuitive explanation of our rewriting
technique. The basic idea is to reduce the perfect reformulation of an IHUCQ over a
Hi(DL-LiteR) TBox to the perfect reformulation of a standard UCQ over a DL-LiteR
TBox, which can be done e.g. by the algorithm PerfectRef presented in [3]. To do so,
we have to first transform a IHUCQ into a standard UCQ, actually an EUCQ. This is
done through a first partial grounding of the query (through the function PMG) and then
through the functions Normalize and τ presented below. Once computed the perfect re-
formulation of the EUCQ, we then have to transform the EUCQ back into a IHUCQ,
through the functions Denormalize and τ

− presented below.
Given two IHCQs q, q� and a TBox T , we say that q� is a partial metagrounding of

q with respect to T if q� = σ(q) where σ is a partial substitution of the metavariables
of q with the expressions occurring in T such that, for each metavariable x of q, either
σ(x) = x or: (i) if x occurs in a concept position in q, then σ(x) ∈ Concepts(T ); (ii)
if x occurs in a role position in q, then σ(x) ∈ Roles(T ). Given an IHCQ q and a TBox
T , we denote by PMG(q, T ) the set of all partial metagroundings of q with respect to
T , i.e., the following IHUCQ Q:

Q = {q
�
| q

� is a partial metagrounding of q with respect to T }

Moreover, given a IHUCQ Q and a TBox T , we define PMG(Q, T ) as the IHUCQ�
q∈Q PMG(q, T ).

Given an instance atom α, we define Normalize(α) as follows:
– if α = InstC(e1, e2) and e2 has the form Exists(e�) where e

� is an expression
which is not of the form Inv(e��), then Normalize(α) = InstR(e1, , e

�);
– if α = InstC(e1, e2) and e2 has the form Exists(Inv(e�)) where e

� is any expres-
sion, then Normalize(α) = InstR( , e1, e�);

– if α = InstR(e1, e2, e3) and e3 is of the form Invk(e�) where k ≥ 1 and k is
an even number and e

� is an expression which is not of the form Inv(e��), then
Normalize(α) = InstR(e1, e2, e�);

– if α = InstR(e1, e2, e3) and e3 is of the form Invk(e�) where k ≥ 1 and k is
an odd number and e

� is an expression which is not of the form Inv(e��), then
Normalize(α) = InstR(e2, e1, e�).
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Given an IHCQ q ← α1, . . . , αn, Normalize(q) returns the IHCQ q ←

Normalize(α1), . . . ,Normalize(αn). Finally, given an IHUCQ Q, we define
Normalize(Q) as

�
q∈Q Normalize(q).

Given an IHCQ q and an instance-mapping M, Denormalize(q,M) is the IHUCQ
Q defined inductively as follows:

– q ∈ Q;
– if q

� ∈ Q and q
� contains an atom α of the form InstR(t1, , t2), and either

Exists(t2) occurs in M or Exists(x) (where x is a variable) occurs in M, then
the query obtained from q

� by replacing α with the atom InstC(t1,Exists(t2))
belongs to Q;

– if q
� ∈ Q and q

� contains an atom α of the form InstR( , t1, t2), and ei-
ther Exists(Inv(t2)) occurs in M or Exists(Inv(x)) (where x is a variable)
occurs in M, then the query obtained from q

� by replacing α with the atom
InstC(t1,Exists(Inv(t2))) belongs to Q;

– if q� ∈ Q and q
� contains an atom α of the form InstR(t1, t2, t3) and either Inv(t2)

occurs in M or Inv(x) (where x is a variable) occurs in M, then the query obtained
from q

� by replacing α with the atom InstR(t2, t1, Inv(t3))) belongs to Q.
Finally, given an IHUCQ Q and a mapping M, we define Denormalize(Q,M) as�

q∈Q Denormalize(q,M).
Given an IHUCQ Q and a TBox T , we denote by PerfectRef (Q, T ) the EUCQ

returned by the query rewriting algorithm for DL-LiteR shown in [3].2
We now define the functions τ and τ

− which translate IHUCQs into EUCQs and
vice versa. Given an IHCQ q and a TBox T , τ(q, T ) is the ECQ obtained from q as fol-
lows: (i) for each atom of q of the form InstC(t1, t2), if t2 ∈ Concepts(T ) then replace
the atom with the atom t2(t1); (ii) for each atom of q of the form InstR(t1, t2, t3), if
t3 ∈ Roles(T ) then replace the atom with the atom t3(t1, t2). Then, given an IHUCQ
Q, we define τ(Q, T ) = {τ(q, T ) | q ∈ Q}.

Given a ECQ q and a TBox T , τ−(q, T ) is the IHCQ obtained from q as fol-
lows: (i) for each atom of q of the form t2(t1), replace the atom with the atom
InstC(t1, t2); (ii) for each atom of q of the form t3(t1, t2), replace the atom with the
atom InstR(t1, t2, t3). Then, given an IHUCQ Q, we define τ

−(Q, T ) = {τ−(q, T ) |
q ∈ Q}.

We are now ready to formally define our rewriting algorithm, which takes as input
a IHUCQ, a TBox and an instance-mapping, and returns a new IHUCQ.

ALGORITHM RewriteIUCQ(Q, T ,M)
INPUT: Boolean IHUCQ Q, DL-LiteR TBox T , instance-mapping M

OUTPUT: Boolean IHUCQ Q
�

Q0 = PMG(Q, T );
Q1 = Normalize(Q0);
Q2 = τ(Q1, T );
Q3 = PerfectRef (Q2, T );
Q4 = τ

−(Q3, T );
Q

� = Denormalize(Q4,M);
return Q

�;

2 We are actually considering a slight generalization of the algorithm, which allows for the
presence of a ternary relation (InstR) in the query.

9

100



The IHUCQ returned by RewriteIUCQ(Q, T ,M) constitutes a perfect reformula-
tion of the query Q with respect to the TBox T and the mapping M, as formally stated
by the following theorem.

Theorem 1. Let T be a TBox, let M be an instance-mapping and let Q be a IHUCQ.
Then, for every ABox A that is a retrievable through M, T ∪ A |= Q iff A |=
RewriteIUCQ(Q, T ,M).

Query answering. Based on the above query rewriting technique, we now present
an algorithm for query answering over MKBs. Our idea is to first compute a DL-LiteR
TBox by evaluating the mapping assertions involving the predicates IsaC , IsaR, DisjC ,
DisjR over the database of the MKB; then, such a TBox is used to compute the perfect
reformulation of the input IHUCQ.

To complete query answering, we now have to consider the mapping of the predi-
cates InstC and InstR, and to reformulate the query thus obtained replacing the above
predicates with the corresponding FOL queries of the mapping assertions. In this way
we obtain a FOL query expressed on the database. This second rewriting step, usually
called unfolding, can be performed by the algorithm UnfoldDB presented in [8].3

In the following, given a mapping M and a database DB , we denote by DBMA

the database constituted by every relation R of DB such that R occurs in MA. Analo-
gously, we denote by DBMT the database constituted by every relation R of DB such
that R occurs in MT . We are now ready to present our query answering algorithm.

ALGORITHM Answer(Q,K)
INPUT: Boolean IHUCQ Q, Hi(DL-LiteR) MKB K = �DB ,M�

OUTPUT: true if K |= Q, false otherwise
T = Retrieve(MT ,DBMT );
Q

� = RewriteIUCQ(Q, T ,MA);
Q

�� = UnfoldDB(Q�
,MA);

if DBMA |= Q
��

then return true
else return false

The algorithm starts by retrieving the TBox from the DB through the mapping MT .
Then, it computes the perfect reformulation of the query with respect to the retrieved
TBox, and next computes the unfolding of such a query with respect to the mapping
MA. Finally, it evaluates the query over the database.

The following property can be proved by slightly extending the proof of correctness
of the algorithm UnfoldDB shown in [8].

Lemma 1. Let M be an instance-mapping and let Q be a IHUCQ. Then, for every
database DB , �M,DB� |= Q iff DBMA |= UnfoldDB(Q,M).

3 Here we assume that the algorithm UnfoldDB takes as input a EUCQ and an instance-mapping.
This corresponds to actually considering a straightforward extension of the algorithm pre-
sented in [8] in order to deal with the presence of the ternary predicate InstR.
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The above lemma allows us to prove correctness of the algorithm Answer .

Theorem 2. Let K = �DB ,M� be a Hi(DL-LiteR) MKB, let Q be a IHUCQ. Then,
K |= Q iff Answer(Q,K) returns true.

Finally, from the algorithm Answer we are able to derive the following complexity
results for query answering over Hi(DL-LiteR) MKBs.

Theorem 3. Let K = �DB ,M� be a Hi(DL-LiteR) MKB, and let Q be a IHUCQ.
Deciding whether K |= Q is in AC

0 with respect to the size of DBMA , is in PTIME
with respect to the size of K, and is NP-complete with respect to the size of K ∪Q.

5 Conclusions
In this paper we have investigated the possibility of generating a knowledge base on the
fly, while computing instance queries, from data stored in data sources through asserted
mappings. A key point to obtain such a degree of flexibility is relying on higher-order
description logics which blur the distinction between classes/roles at the intensional
level and individuals at the extensional level. This paper is only scratching the surfaces
of the immense possibilities that this approach opens. For example, we may allow the
coexistence of multiple TBoxes within the same data sources, and allow the user to
select which TBox to load when querying the system, possibly depending on the query,
much in the spirit of [7]. The user can in principle even compose on the fly the TBox to
use when answering a query. Obviously notions such as authorization views acquire an
intriguing flavor in this setting (hiding intensional as well as extensional knowledge),
as well as consistency, since we may even allow for contradicting assertions to coexist
as long as they are not used together when performing query answering.

References
1. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,

R. Rosati, M. Ruzzi, and D. F. Savo. The Mastro system for ontology-based data access.
Semantic Web Journal, 2(1):43–53, 2011.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati. Ontology-
based database access. In Proc. of SEBD 2007, pages 324–331, 2007.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

4. W. Chen, M. Kifer, and D. S. Warren. HILOG: A foundation for higher-order logic program-
ming. J. of Logic Programming, 15(3):187–230, 1993.

5. G. De Giacomo, M. Lenzerini, and R. Rosati. Higher-order description logics for domain
metamodeling. In Proc. of AAAI 2011, 2011.

6. J. Z. Pan and I. Horrocks. OWL FA: a metamodeling extension of OWL DL. In Proc. of
WWW 2006, pages 1065–1066, 2006.

7. J. Parsons and Y. Wand. Emancipating instances from the tyranny of classes in information
modeling. ACM Trans. on Database Systems, 25(2):228–268, 2000.

8. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

9. D. F. Savo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodrı́guez-Muro, V. Romagnoli, M. Ruzzi,
and G. Stella. MASTRO at work: Experiences on ontology-based data access. In Proc. of
DL 2010, volume 573 of CEUR, ceur-ws.org, pages 20–31, 2010.

11

102



Correcting Access Restrictions to a Consequence
More Flexibly

Eldora1�, Martin Knechtel2, and Rafael Peñaloza1
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Abstract. Recent research has shown that labeling ontologies can be
useful for restricting the access to some of the axioms and their implicit
consequences. However, the labeling of the axioms is an error-prone and
highly sensible task. In previous work we have shown how to correct the
access restrictions if the security administrator knows the precise access
level that a consequence must receive, and axioms are relabeled to that
same access level. In this paper, we look at a more general situation
in which access rights can be granted or denied to some specific users,
without having to fully specify the precise access level. We also allow a
more flexible labeling function, where the new access level of the relabeled
axioms may differ from the level of the restriction. We provide black-box
algorithms for computing suggestions of axioms to be relabeled.

1 Introduction

Description Logics (DL) [1] have been successfully used to represent knowledge
of various application domains. One of the main advantages of using a logic-
based knowledge representation language is the possibility of reasoning within
the system; that is, deriving implicit consequences from the explicitly stated
knowledge in the ontology.

In some application domains it is desirable to restrict users to access only
portions of the ontology. For instance, in a security scenario [5], users with a low
security clearance should not be able to access classified information. Other mo-
tivations for restricting access to users are the reduction of information overload,
or filtering w.r.t. a level of specialization. Rather than maintaining different sub-
ontologies for each definable user level, we have previously proposed [2] to label
each axiom with information on which users can access it. Reasoning then gener-
alizes to the task of finding an adequate label for each implicit consequence of the
ontology. This label, called a boundary, can be computed through black-box [2]
as well as glass-box [9] techniques.

However, the task of labeling axioms according to their access level is error-
prone and highly sensitive to noise. Indeed, a set of seemingly innocuous axioms

� This work was developed while the author worked for SAP Research Dresden.
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may allow a user to derive some unwanted consequence. Dually, a too restrictive
access level may hide a consequence from relevant users. This problem becomes
more pronounced if neither the security administrator nor the knowledge engi-
neer is an expert in logic. We thus want to develop a system that can automat-
ically suggest changes in the labeling function that correct the access to a given
consequence.

In previous work [8, 7] we have developed and implemented efficient algo-
rithms for correcting access restrictions to implicit consequences if (i) the knowl-
edge engineer knows the exact access level the consequence must receive (called
the goal label) and (ii) axioms are always relabeled to the goal label. In this
paper we relax these both conditions. On the one hand, we allow the knowledge
engineer to specify a bound on the desired access level, rather than an exact
value. This is useful, for instance, to express that a set of users must all have
access to the consequence, but it is irrelevant which other users (if any) can also
derive it. On the other hand, the knowledge engineer is also able to specify a
so-called target label to which the axioms are relabeled. Contrary to the previous
approach, the target label needs not be equal to the goal label.

We develop black-box algorithms for finding the minimal sets of axioms that
need to be relabeled to the target label in order for the access of the consequence
to satisfy the restriction imposed. Additionally, we show that our methods can be
improved if one is only interested in finding one such set of minimal cardinality.
All our methods are based on results and ideas from axiom-pinpointing [11, 3],
but optimized by considering the labels of the axioms used.

2 Preliminaries

To keep our presentation and results as general as possible, we impose only
minimal restrictions to our ontology language. We just assume that an ontology

is a finite set, whose elements are called axioms. An ontology language specifies
which sets of axioms are admitted as ontologies, with the only restriction that
every subset of an ontology is itself an ontology. If O� ⊆ O and O is an ontology,
then O� is called a sub-ontology of O. A monotone consequence relation |= is a
binary relation between ontologies O and consequences c such that if O |= c,
then for every ontology O� ⊇ O it holds that O� |= c. If O |= c, we say that c
follows from O or that O entails c. Consider, for instance, a description logic
L. Then, an ontology is a finite set of general concept inclusion axioms (GCIs)
of the form C � D, with C,D L-concept descriptions and assertion axioms of
the form C(b), with C an L-concept description and b an individual name. An
example of a consequence is the subsumption relation A � B between concept
names A,B.

If O |= c, we may be interested in finding the axioms responsible for this
fact. A sub-ontology S ⊆ O is called a MinA for O,c if S |= c and for every
S � ⊂ S,S � �|= c. The dual notion of a MinA is that of a diagnosis. A diagnosis for
O,c is a sub-ontology S ⊆ O such that O \ S�|= c and O \ S � |= c for all S � ⊂ S.
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For a lattice (L,≤) and a set K ⊆ L, we denote as
�

�∈K � and
�

�∈K � the
join (least upper bound) and meet (greatest lower bound) of K, respectively. We
consider that ontologies are labeled with elements of the lattice. More formally,
for an ontology O there is a labeling function lab that assigns a label lab(a) ∈ L
to every element a of O. We will often use the notation Llab := {lab(a) | a ∈ O}.

For a user labeled with the access level � ∈ L, we denote as O≥� the sub-
ontology O≥� := {a ∈ O | lab(a) ≥ �} visible for him. The sub-ontologies
O≤�,O=�,O �=�,O �≥�, and O �≤� are defined analogously. Conversely, for a sub-
ontology S ⊆ O, we define

λS :=
�

a∈S lab(a) and µS :=
�

a∈S lab(a).

An element � ∈ L is join prime relative to Llab if for every K1, . . . ,Kn ⊆ Llab, it
holds that � ≤

�n
i=1 λKi implies that there is i, 1 ≤ i ≤ n such that � ≤ λKi . For

instance, in the lattice from Figure 1, �1 and �4 are the only elements that are not
join prime relative to Llab = {�1, . . . , �5}, since �1 ≤ �2 ⊕ �4 but neither �1 ≤ �2
nor �1 ≤ �4 and similarly �4 ≤ �5⊕�3 but neither �4 ≤ �5 nor �4 ≤ �3. Join prime
elements relative to Llab are called user labels. The set of all user labels is denoted
as U . When dealing with labeled ontologies, the reasoning problem of interest
consists on the computation of a boundary for a consequence c. Intuitively, the
boundary divides the user labels � of U according to whether O≥� entails c or
not.

Definition 1 (Boundary). Let O be an ontology, lab a labeling function and

c a consequence. An element ν ∈ L is called a boundary for O,c,lab if for every

join prime element relative to Llab � it holds that � ≤ ν iff O≥� |= c.

Given a user label �u, we will say that the user sees a consequence c if �u ≤ ν
for some boundary ν. The following lemma relating MinAs and boundaries was
shown in [2].

Lemma 2. If S1, . . . ,Sn are all MinAs for O,c, then
�n

i=1 λSi is a boundary

for O,c.

A dual result relating the boundary with the set of diagnoses, also holds.

Lemma 3. If S1, . . . ,Sn are all diagnoses for O,c, then
�n

i=1 µSi is a boundary

for O,c.

Example 4. Let (Ld,≤d) be the lattice shown in Figure 1, and O a labeled
ontology from a marketplace in the Semantic Web with the following axioms

a1 : EUecoService �HighperformanceService(ecoCalculatorV1 )
a2 : HighperformanceService

� ServiceWithLowCustomerNr � LowProfitService

a3 : ServiceWithLowCustomerNr � ServiceWithComingPriceIncrease

a4 : EUecoService � ServiceWithLowCustomerNr � LowProfitService

a5 : LowProfitService � ServiceWithComingPriceIncrease
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Fig. 1. Lattice (Ld,≤d) with 4 user labels and an assignment of 5 axioms to labels

where the function lab assigns to each axiom ai the label �i as shown in Figure 1.
This ontology entails ServiceWithComingPriceIncrease(ecoCalculatorV1 ). The
MinAs for O,c are {a1, a2, a3}, {a1, a2, a5}, {a1, a3, a4}, {a1, a4, a5}, and its diag-
noses are {a1}, {a2, a4}, {a3, a5}. Using Lemma 3, we can compute the boundary
as µ{a1}⊗µ{a2,a4}⊗µ{a3,a5} = �1⊗�1⊗�4 = �4. The join prime elements relative
to Llab, which define valid user labels, are �0, �2, �3, �5. These labels represent the
user roles as illustrated. Thus, the consequence c is only visible for the user roles
�0, �5 and �3, i.e. for customer service employees, customers, and development
engineers.

3 Modifying the Boundary

An efficient implementation of a black-box algorithm for computing the bound-
ary of DL consequences already exists [2]. However, a desirable addition to this
method is the capability of automatically relabeling some of the axioms to cor-
rect the access level of some implicit consequence. Indeed, labeling axioms w.r.t.
their access restrictions is highly error-prone, and very small changes in the la-
beling function may produce consequences to become visible to unauthorized
users, or inaccessible to the relevant users.

We have previously shown [8, 7] how to detect a set of axioms of minimal
cardinality that needs to be relabeled for obtaining a given boundary. However,
in that setting the knowledge engineer must specify the exact boundary that
the consequence must receive, and all axioms are relabeled to that value. We
now relax these restrictions, by allowing more general constraints on the new
boundary, and a more flexible relabeling function.

Definition 5 (Boundary Constraint, Change Set). A boundary constraint
is a tuple β = (c,∝ �g, �t), where c is a consequence, ∝ �g, with ∝∈{≤ ,≥, �≥, �≤},

�g ∈ L is a condition and �t is the target label with �t ∝ �g.
Let O be an ontology, S ⊆ O, lab a labeling function, and � ∈ L. We define

the modified labeling function labS,� as

labS,�(a) =

�
� if a ∈ S,

lab(a) otherwise.
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A sub-ontology S ⊆ O is called a change set (CS) for the boundary constraint

β = (c,∝ �g, �t) if the boundary ν for O, c, labS,�t satisfies ν ∝ �g.

For the rest of this paper, we assume, w.l.o.g. that the boundary for O, c, lab
does not satisfy the condition ∝ �g since otherwise, the empty set is already a
CS and nothing needs to be changed in the labeling function.

Notice that, since �t ∝ �g, the whole ontology O is always a change set.
However, using the whole ontology as a change set would set �t as the boundary
of every consequence of O. In general, we want to make the least possible changes
when correcting the boundary of a given consequence. For that reason, we will
focus on finding all those change sets that are minimal w.r.t. set inclusion. These
sets are useful if the knowledge engineer wants to obtain several suggestions
of correction, and then choose the adequate one by some external criterion.
However, due to the huge number (possibly exponentially many [4]) of change
sets that may exist, one may also look for the “best” change set, and use it
automatically in the correction. Hence, we also study how to find a smallest

change set; that is, one with the least cardinality.
We divide this section in two parts. First we look at the case where the bound-

ary restriction is of the form ≤ or ≥. We show that previously known techniques
can be used also in this setting. We then look at the negative restrictions, which
require new methods to be developed.

3.1 Positive Conditions

We now focus on the case where the condition of the boundary constraint is of
the form ≥ �g. Due to the duality of MinAs and diagnoses, the case for ≤ �g can
be treated in an analogous way (see e.g. [8]).

Let β = (c,≥ �g, �t) be a boundary constraint and �t ≥ �g. Recall (Lemma 2)
that the boundary can be computed as the supremum of all λSi , where Si is a
MinA for O, c. Thus, if we relabel all the axioms in a MinA S to �t, then the
boundary for O, c, labS,�t is ≥ �t ≥ �g; that is, every MinA is a change set. Yet,
this change set may not be minimal. In fact, we only need that the infimum of
the labels of all the axioms in this MinA is ≥ �g. This can be achieved by only
relabeling the axioms in S that are not already ≥ �g.

Example 6. Continuing Example 4, recall that we have computed the label �4
as the boundary of the consequence c. Suppose now that we want to change
this boundary to be ≥ �2, using �2 also as the relabeling target. As described
above, every MinA is also a change set for this consequence. If we consider the
MinA S = {a1, a2, a3}, then under the new labeling labS,�2 we obtain the new
boundary

λ{a1,a2,a3} ⊕ λ{a1,a2,a5} ⊕ λ{a1,a3,a4} ⊕ λ{a1,a4,a5} = �2 ⊕ �0 ⊕ �3 ⊕ �0 = �2.

However, it is easy to see through a simple computation, that the set {a3} is
also a change set, which is strictly included in the previous MinA. This set is
obtained from the MinA by removing all axioms whose label is greater or equal
�2, namely a1 and a2.
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Intuitively, we simply consider every axiom a ∈ O with lab(a) ≥ �g as fixed

in the sense that its label cannot be changed, as changing it will be superfluous
for any CS. We thus consider a generalization of MinAs, called IAS.

Definition 7 (IAS). A minimal inserted axiom set (IAS) for � is a subset

I ⊆ O such that O≥� ∪ I |= c and O≥� ∪ I � �|= c for all I � ⊂ I.

The known algorithms for computing all MinAs [6, 12] through a hitting set
tree (HST) method [10] can easily be adapted for also computing IAS [8]. More
interestingly, the set of all minimal change sets corresponds to the set of all IAS.

Theorem 8. Let O be an ontology, β = (c,≥ �g, �t) a boundary constraint and

S ⊆ O. S is a minimal CS for β iff S is an IAS for �g.

In [8, 7] it is shown how to compute the set of all IAS for a consequence c.
Moreover, the algorithms presented there have been also optimized for finding
the smallest IAS, through the inclusion of a cardinality restriction. Basically,
the construction of an IAS stops once that this has reached the cardinality of
the smallest IAS found so far. It was shown that using these (partial) IAS can
drastically reduce the search space, while preserving correctness of the method.
Due to Theorem 8, all the algorithms for computing IAS and IAS of minimal
cardinality can be used for finding the minimal change sets and a change set of
minimal cardinality, for positive boundary constraints.

3.2 Negative Conditions

We now consider the case in which the boundary constraint has a condition of
the form �≥ �g. As in the previous section, the case for �≤ �g can be solved dually
by simply interchanging MinAs and diagnoses.

Given an ontology O, a labeling function lab and a consequence c, if the
boundary for O, c, lab is greater or equal to �g, then we know that for every
diagnosis S for O, c it holds that µS ≥ �g (see Lemma 3). Hence, if we relabel
all the axioms in any diagnosis S to �t �≥ �g, it follows that the boundary is then
changed to a new value �≥ �g; that is, S is a CS. However, just as in the previous
section, this CS may not be minimal. One idea to try to find a minimal CS is
to follow the same intuition as in the previous section, and fix all axioms whose
labels already satisfy the condition �≥ �g. Unfortunately, this idea is not correct,
as shown by the following example.

Example 9. Returning to Example 4, suppose now that we want to change the
boundary from �4 to some value �≥ �4, using �5 as a target label. Recall that
{a2, a4} and {a3, a5} are diagnoses for the consequence. If we consider the axioms
having a label �≥ �4 as fixed, then none of these diagnoses produces a change set.
In the first one, the axiom a2 would be fixed, but then, under the relabeling
lab{a4},�5 we will obtain the boundary

µ{a1} ⊗ µ{a2,a4} ⊗ µ{a3,a5} = �1 ⊗ (�2 ⊕ �5)⊗ (�3 ⊕ �5) = �1 ⊗ �1 ⊗ �4 = �4,
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Algorithm 1 Compute one minimal CS contained in a diagnosis
Procedure compute-one-CS(S, β)
Input: S: diagnosis; β = (c, �≥ �g, �t): boundary constraint;
Output: T ⊆ S: minimal CS for β contained in S
1: if �t ≥ �g then
2: return ∅
3: T := S
4: � := �t

5: for every a ∈ S do
6: if �⊕ lab(a) �≥ �g then
7: T := T \ {a}
8: � := �⊕ lab(a)
9: return T

which does not satisfy the restriction �≥ �4; hence, {a4} is not a change set.
In the case of the second diagnosis, the problem is even greater, since both

axioms will be considered as fixed. Thus, the approach would deduce that no
axiom needs to be relabeled to obtain a boundary �≥ �4, which is obviously not
true.

Despite this, it is still possible to use diagnoses as a basis for computing the
minimal CS. Suppose that we have a diagnosis S containing an axiom a0 such
that �t ⊕ lab(a0) �≥ �g. Then, S � = S \ {a0} is also a CS, since

�

a∈S
labS�,�t(a) = �t ⊕ lab(a0) �≥ �g.

Obviously, this result holds not only for a single axiom a0 but for any subset T
of S such that �t ⊕

�
a∈T lab(a) �≥ �g.

Lemma 10. Let S be a diagnosis for O, c and β = (c, �≥ �g, �t) a boundary

constraint. If T is a subset of S such that �t ⊕
�

a∈T lab(a) �≥ �g, then S \ T is

a CS for β.

Proof. For every axiom a ∈ S \ T , labS\T ,�t(a) = �t. Additionally, we know that�
a∈S lab(a) ≥ �g, and hence T �= S. Thus, under the new labeling, we have

that �

a∈S
labS\T ,�t(a) = �t ⊕

�

a∈T
lab(a) �≥ �g

Since S is a diagnosis, Lemma 3 implies that the new boundary satisfies the
condition, and hence S \ T is a CS. ��

A simple consequence of this lemma is that, given a maximal subset T of S
satisfying �t ⊕

�
a∈T lab(a) �≥ �g, S \ T is a minimal change set for β contained

in S. Algorithm 1 describes how to compute one such minimal change set from
a diagnosis. This, however, might not be a “globally” minimal change set; that
is, there might still exist other change sets strictly contained in it, as shown in
the following example.

109



Example 11. Consider the lattice in Figure 1, an ontology O having four axioms
{a1, a2, a3, a4}, and a consequence c such that the diagnoses for O, c are the
sets {a1, a2, a3} and {a1, a4}. Assume that the labeling function lab is given by
the mapping lab(a1) = �4, lab(a2) = �5, lab(a3) = lab(a4) = �2. It is easy to see
that the boundary for this consequence is �1. If we apply Algorithm 1 to the
diagnosis {a1, a2, a3} and the boundary constraint β = (c, �≥ �1, �3), where at
Line 5, we first choose a3, then � is changed to �2 at Line 8, and hence the test
�⊕ lab(a) �≥ �1 fails for axioms a1 and a2. Thus, the algorithm returns the change
set {a1, a2}. However, {a1} is also a change set, since if a1 is relabeled to �3,
then µ{a1,a4} = �2,and thus the boundary is �≥ �1.

Although Algorithm 1 does not always output a globally minimal change set,
one can still use it for computing all the minimal change sets for β. The idea is
based on the following lemma, which is a simple consequence of the definition of
diagnoses and change sets.

Lemma 12. Let S be a minimal change set for (c, �≥ �g, �t). Then, there exists

a set T such that (i) �t ⊕
�

a∈T lab(a) �≥ �g and (ii) S ∪ T is a diagnosis for

O, c.

For instance, in Example 11 we found the minimal change set {a1}. The set
T = {a4} satisfies the two conditions stated in Lemma 12.

To compute all minimal change sets, one then needs to compute all diagnoses,
and from each of these diagnoses compute all the minimal change sets that are
contained in it. This is possible through a nesting of two hitting set tree (HST)
algorithms: the external one produces all different diagnoses for O, c, while the
internal generates, for any given diagnosis, all the maximal subsets of axioms
that can be removed to obtain a CS. Algorithm 2 shows how this internal HST
algorithm works.

The idea behind all HST-like algorithms is the following. One first computes
a set of axioms T satisfying some property; in the case of Algorithm 2, the set
is a minimal CS for β contained in S. This set is then used to label the root
of the tree. The algorithm then branches as follows. For each axiom a in T , a
new branch is created and a is removed from the search space. A new set T �

satisfying the property is then computed, and used to label the successor node.
The removal of the axiom a ∈ T from the search space ensures that T �⊆T �.
This process is then iterated until the property is not satisfied by the search
space; that is, Algorithm 1 returns the empty set. This process stops after at
most exponentially many iterations, on the size of S, and the labels of the tree
contain all the minimal sets of axioms satisfying the property; in our case, all
minimal change sets contained in the diagnosis.

There are two common optimizations for HST algorithms, which are also used
in Algorithm 2. The first one is called early path termination. The idea behind
this optimization is that if one can distinguish parts of the tree that will yield no
new minimal sets of axioms, then one can stop exploring those branches. The two
conditions for early path termination described in Line 1 of expand-hst test for a
path where the search space is contained in a search space already explored in a
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Algorithm 2 HST to compute all minimal CS contained in a diagnosis
Procedure compute-all-CS(S, β)
Input: S: diagnosis; β = (c, �≥ �g, �t): boundary constraint;
Output: C: all minimal CS for β contained in S
1: Global C,H := ∅
2: T :=compute-one-CS(S, β)
3: C := {T }
4: for each a ∈ T do
5: expand-hst(S, (c, �≥ �g, �t ⊕ lab(a)), {a})
6: return C

Procedure expand-hst(S, β,H)
Input: S: diagnosis; β = (c, �≥ �g, �t): boundary constraint; H: list of axioms
Side effects: modifications to C,H

1: if exists some H
� ∈ H such that H � ⊆ H or

H
� contains a prefix path P with P = H then

2: return (early path termination)
3: T � := ∅
4: if exists some T ∈ C such that �t ⊕

�
a∈S\T lab(a) ∝ �g then

5: T � := T (CS reuse)
6: else
7: T � :=compute-one-CS(S, β)
8: if T � �= ∅ then
9: C := C ∪ {T �}
10: for each a ∈ T � do
11: expand-hst(S, (c, �≥ �g, �t ⊕ lab(a)), H ∪ {a})
12: else
13: H := H ∪ {H} (normal termination)

previous branch. The second optimization is the reuse of sets. When expanding
a tree, we only ask for a set of axioms satisfying the property that is contained in
the current search space. If these conditions hold in a previously computed label,
then we can reuse it, avoiding this way a possibly expensive call to Algorithm 1.

To find all “global” minimal change sets, we use an additional HST algo-
rithm that computes all diagnoses, and for each of these, calls Algorithm 2. This
algorithm uses the same kind of optimizations. However, to improve the func-
tionality of the reuse of solutions, the set of all change sets computed so far is
kept in a global variable, accessible from every call to compute-all-CS. Thus, a
change set that has been previously computed from a diagnosis S, can be reused
in a call with a different diagnosis S �.

It is worth noticing that in some cases, a diagnosis may contain several axioms
labeled with the same lattice element. Moreover, the condition for obtaining a
minimal CS from Lemma 10 depends only on the labeling, and not in the axiom
itself. Thus, it is sometimes possible to optimize the search for the minimal
CS by considering only the labels and not the individual axioms, as described
in Algorithm 3. The correctness of this algorithm is justified by the following
lemma, whose proof is analogous to the one of Lemma 10.
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Algorithm 3 Compute one minimal CS contained in a diagnosis (optimized)

Procedure compute-one-CS(S, β)
Input: S: diagnosis; β = (c, �≥ �g, �t): boundary constraint;
Output: T ⊆ S: minimal CS for β

1: if �t ≥ �g then
2: return no CS
3: T := S
4: � := �t

5: L := {lab(a) | a ∈ S}
6: for every m ∈ L do
7: if �⊕m �≥ �g then
8: T := T \ {a | lab(a) = m}
9: � := �⊕m

10: return T

Lemma 13. Let S be a diagnosis for O, c, β = (c, �≥ �g, �t) a boundary con-

straint, and LS = {lab(a) | a ∈ S}. If M ⊆ LS is such that �t ⊕
�

�∈M � �≥ �g,
then S \ {a | lab(a) ∈ M} is a CS for β.

As in the case for positive conditions, these algorithms can be further op-
timized if one is only interested in a change set of minimal cardinality. Notice
simply that in Algorithms 1 and 3, whenever the condition in the for loop is
violated, then at least an axiom is ensured to belong to the output change set.
Thus, it is easy to adapt these algorithms to include a cardinality bound, return-
ing a partial CS once it has reached a given size. Since our method uses an HST
approach, the proofs of correctness of the variant of HST capable of exploiting
cardinality restrictions [8] hold also in this case. In other words, Algorithm 2 can
be further optimized to compute only one change set of minimal cardinality.

4 Conclusions

We have presented algorithms for correcting the boundary of a consequence in
a more flexible manner than previous approaches. Our framework allows the
knowledge engineer to set bounds on what the new boundary should be, and
specify a label as the target of the relabeling. This flexibility is useful if, for
instance, she wants to grant access to a consequence to some user, but is not
willing to specify the exact set of users that should access it.

We developed algorithms that output all the minimal change sets. Addition-
ally, we show how these algorithms can be optimized if one is only interested in
an arbitrary change set of minimal cardinality.

As future work, we will first implement and test the performance of our
methods on large-scale real-world ontologies and applications. We also plan to
generalize our framework to allow axioms to be relabeled to different elements
of the lattice, according to an adequate minimality criterion.
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1 Introduction

ICOM is an advanced conceptual modelling tool, which allows the user to design multi-
ple ER or UML class diagrams with inter- and intra-model constraints. Complete logical
reasoning is employed by the tool to verify the specification, infer implicit facts, devise
stricter constraints, and manifest any inconsistency.

For the ontology creation and maintenance tasks, ICOM interface supports ontology
engineers in engineering ontologies that meets clear and measurable quality criteria.
Indeed, recently we observe the development of large numbers of ontologies which
have, however, usually been developed in an ad hoc manner by domain experts, often
with only a limited understanding of the semantics of ontology languages. The result
is that many ontologies are of low quality - they make poor use of the languages in
which they are written and do not accurately capture the author’s rich knowledge of
the domain. This problem becomes even more acute as ontologies are maintained and
extended over time, often by multiple authors. Poor quality ontologies usually require
localised “tuning” in order to achieve the desired results within applications. This leads
to further degradation in their overall quality, increases the brittleness of the applications
that use them, and makes interoperability and reuse difficult or impossible. To overcome
these problems tools are needed which support the design and the development of the
basic infrastructure for building, merging, and maintaining ontologies.

The leverage of automated reasoning to support the domain modelling is enabled
by a precise semantic definition of all the elements of the class diagrams. The diagrams
and inter-model constraints are internally translated into a class- based logic formalism.
The same underlying logic enables the use of a view definition language to specify addi-
tional constraints, not captured at the diagram level. The conceptual modelling language
supported by ICOM can express most of features of the Extended Entity-Relationship
data model or the UML class diagrams (we are working on supporting Object-Role

Modelling [5] as well). Moreover it extends with disjoint and covering constraints and
definitions attached to classes and relations by means of view expressions over other
classes and relationships in the ontology; as well as inter-ontology mappings, as in-
clusion and equivalence statements between view expressions involving classes and
relationships possibly belonging to different ontologies.

The main purpose of the ICOM project is not to provide to the ontology community
a robust tool potentially replacing the many other tools available, and we do not claim
that ICOM is currently more usable than any of the existing conceptual modelling tools
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for ontology design (such as, for example, [8, 1]). ICOM is meant to be a proof of
concept, willing to showcase two main points: (1) the effectiveness of using a class
diagram graphical syntax for expressing ontologies, even with complex languages; (2)
the emphasis to the use of complex automated reasoning tasks to deduce implied facts,
as opposed to mere subsumption (classification) and consistency.

The two above points are novel and in our opinion very important in the context of
the existing ontology design tools and methodologies (see next Section). Indeed ICOM
proves (point 1) the feasibility and the ease of use of a class diagram graphical syntax
for expressing ontologies, even with complex ontology languages, by relying on the
notion of views (which roughly correspond to OCL constructs) in order to capture the
(typically very few) cases where a larger expressivity than graphical class diagrams is
needed.
ICOM is based on a deduction-complete notion of reasoning support relative to the
class diagram graphical syntax (point 2). Users will see the original ontology graphi-

cally completed with all the deductions making sense given the provided ontology, and
expressed in the graphical class diagram language itself. This includes checking class
and relationship consistency, discovering implied class and relationship inter-relations
(e.g., subsumption) or cardinality constraints, and in general discovering any implied
but originally implicit class diagram graphical construct. Customarily, ontology design
tools just provide a support limited to class subsumption and consistency.

ICOM is a fairly mature project, its first release has been published in 2000 (see
[7, 4]). The version 3.0 of the ICOM tool is loosely based on the ICOM tool previously
released in 2000 as an Entity-Relationship editor (which had around 3,000 registered
installations, mostly in academic environments and for teaching purposes in industry),
and a demo of a preliminary version was presented few years ago [3]. The founda-
tions of the user-computer interaction have been radically changed according to the
experience of the first ICOM and the research in this last decade. The system has been
completely re-implemented, using different graphic libraries. The graphical interface
has been completely rewritten to improve the usability and intuitiveness of the tool. In-
teroperability with other tools is a crucial aspect; so, import and export modules have
been developed for XMI 2.x and Description Logics based ontology languages via DIG.

The ICOM tool is written in standard Java 5.0, and it is distributed on Linux, Mac,
and Windows machines.3 ICOM communicates via the DIG 1.1 protocol with a de-
scription logic server, such as, for example, RACER. ICOM provides an interface for
importing and exporting ontologies in UML-XMI class diagrams format.

2 Ontology Integration and Views in ICOM

In this section we introduce a scenario of usage of the tool in the context of ontology
integration by making use of the view facility of ICOM.

Figure 1a shows two ontologies in the phase to be integrated by the ontology engi-
neer. The top ontology describes concepts where information about Italian ISO certified
companies is held; in particular, the information about their contact person is specified.

3 Available as a free download at http://www.inf.unibz.it/~franconi/icom/
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The facts described by the diagram state that a company should have at least one em-
ployee, and that it should be involved in at least one sector. Among the employees there
is the contact person of the company, which should be unique. Moreover, the Italian
companies are exactly defined as those companies which are in a country called Italy,
while the ISO certified Italian companies are exactly those Italian companies having
an ISO certification (specified as a boolean property called isoCert). Please note the
particular use of the ’slash’ “/” operator in front of the completely intensionally de-
fined classes—in the ontology the classes Italian Company and Italian ISO

Company are completely defined by means of the properties specified in the diagram.
This is the simplest case of a view defined in the ontology.

Company

+companyName : char[80]
+country : char[40]
+interestedExport : boolean
+isoCert : boolean
+numWorkers : int
+prodFor : enum{Man, Woman}

/Italian Company

+country : char[40] = 'Italy'

/Italian ISO Company

+isoCert : boolean = true

Sector

+description : char[80]

Employee

+name : char[80]
+role : char[80]
+staffID : char[6]

Contact Person

+email : char[40]
+fax : char[20]
+tel : char[20]

1contacts

1..* 1..*

Italian Company

+address : char[200]
+companyName : char[80]

view : 
   classOf arg2 contacts

Non ISO Company

/Sales Rep

+email : char[40]
+tel : char[20]

ISO Company

+isoCert : char[10]

Contact

+email : char[40]
+tel : char[20]

-arg1 -arg2
contacts

{disjoint, complete}

(a) Without deductions

Company

+companyName : char[80]

+country : char[40]

+interestedExport : boolean

+isoCert : boolean

+numWorkers : int

+prodFor : enum{Man, Woman}

/Italian  Company

+country : char[40] = 'Italy'

/Italian  ISO  Company

+isoCert : boolean = true

Sector

+description : char[80]

Employee

+name : char[80]

+role : char[80]

+staffID : char[6]

Contact  Person

+email : char[40]

+fax : char[20]

+tel : char[20]

1contacts

1..* 1..*

Italian  Company

+address : char[200]

+companyName : char[80]

view : 

   classOf arg2 contacts

Non  ISO  Company

/Sales  Rep

+email : char[40]

+tel : char[20]

ISO  Company

+isoCert : char[10]

Contact

+email : char[40]

+tel : char[20]

-arg1 -arg2
contacts

{disjoint, complete}

0..1

1
contacts

(b) With deductions

Fig. 1: The first integration scenario.

The lower ontology of Figure 1a describes a slightly different perspective about
the same domain. Still, there are Italian companies and their contact persons (but now
without any cardinality constraint, and without mentioning that contact persons of com-
panies should be employees), plus the specification that the companies are either ISO
certified or not—here the ISO companies are identified by the code of their ISO certifi-
cation institution. In addition, the ontology includes the view class Sales Rep, which
is completely defined by means of its attributes together with the view expression stat-
ing that sales representative is the range of the contacts association. Note that the
view definition can be written in any reasonable textual ontology language, such as an
OCL constraint, or an OWL axiom, or a SQL check constraint, or first order logic sen-
tence. The view definition mechanism is the hook that allows to use the full power of the
ontology language—if the user wants. Most of the ontologies will not need to use this
hook, and they will be more directly understandable by the engineers. In the case when
subtle integration constraints have to be written, views will come in handy, by providing
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an expressive language to the engineers in a way which is perfectly integrated with the
diagrammatical paradigm proposed here.

Figure 1a includes also the mappings between the two ontologies. You can see that
the Italian ISO companies in the top ontology are declared to be the same as the (Italian)
ISO companies in the lower ontology, and that the Italian companies in both ontologies
are declared to be equivalent as well. Moreover, the contacts association in the lower
ontology is declared to specialise the homologous association in the top ontology. Inter-
ontology mappings are declared by simply drawing directed links between pairs of
classes (or pairs of associations) belonging to different ontologies; these can state either
equivalence, or containment, or disjointness.

Now, the whole picture seems very reasonable to any ontology engineer; however
there are interesting, unexpected, and clarifying consequences that our design tool will
automatically draw—still in a diagrammatic fashion. These are shown in Figure 1b.

/No Profit

+noProfit : boolean = true

/Profit

+noProfit : boolean = false

Public lender

+contact name : char[40]

Bank

+bankName : char[40]
+SWIFTCode : char[20]

Fair lender

+address : char[200]
+fax : char[20]
+instName : char[40]

Building society

+tel : char[20]

{disjoint}
{disjoint, complete}

Bank_s

+SWIFTCode : char[20]

Lending inst

+address : char[200]
+fax : char[20]
+instName : char[40]

(a) Without deductions

/No  Profit

+noProfit : boolean = true

/Profit

+noProfit : boolean = false

Public  lender

+contact name : char[40]

Bank

+bankName : char[40]

+SWIFTCode : char[20]

Fair  lender

+address : char[200]

+fax : char[20]

+instName : char[40]

Building  society

+tel : char[20]

{disjoint}
{disjoint, complete}

Bank_s

+SWIFTCode : char[20]

Lending  inst

+address : char[200]

+fax : char[20]

+instName : char[40]

{disjoint}

(b) With deductions

Fig. 2: The second integration scenario.

The first consequence relates to the equivalence stated between the two Italian ISO
certified company class definitions in the two ontologies. The two classes have a type
incompatibility in the attribute isoCert: one is declared to be a boolean value, while
the other is declared to be a string of ten characters. Indeed, the system deduces that
if such an integration has to be taken seriously, then the two classes have to be empty
in any possible context, since an object in one context which, say, represents an Italian
ISO Company by having an attribute isoCert with the value true, can not be at the
same time an instance of a class whose isoCert is declared to be of an incompatible
type (i.e., string). Therefore, such an instance can not exist, and, as a matter of fact, no
instances of the two classes can exist at all. This first deduction by the tool (indicated
by the question marks on the corner of the two classes) is actually a hint to the designer
to actually take care of this data reconciliation problem, by, for example, providing
local conversion functions between the two attribute types. Please note that the tool
also correctly derives the fact that any object which is instance of the Italian Company
class (in any of the two contexts/ontologies) should also be an instance of a non ISO
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company. In fact, since no Italian ISO companies can exist in the current version of the
scenario, any Italian company will necessarily be a non ISO certified company. This is
made explicit by the dashed equivalence link added by the tool between the Italian
Company class and the Non ISO Company class in the lower ontology.

If we go on with the analysis of the deductions made by the tool, we see that a
stricter cardinality constraint has been deduced: now any Italian company can have
at most one contact person (in the sense of the lower ontology)—this is the [0..1]
cardinality constraint found at the right end of the contacts association. The system
has deduced this stricter constraint by observing that Italian companies are companies,
which have exactly one contact person (in the sense of the top ontology); moreover, each
Italian company should have contact persons (in the lower ontology sense) among the
contact persons in the top ontology sense. Therefore, no Italian company can have more
than one contact person (in the lower ontology sense). The lower bound is not derived
since the specialisation of the contacts association may not necessarily consider all
the Italian companies. So, this is an example of a deduction which is not just an IS-
A link or an inconsistent class, which are the only kind of deductions that the most
advanced ontology design tools (like, e.g., OILEd, or Protege) are capable of.

Another deduction which can not be done by any other ontology design tool is
the one which makes explicit a contacts association in the lower ontology between
Italian companies and sales representative, plus the now stricter cardinality constraint
stating that each Italian company has exactly one sales representative. Please note how
powerful this deduction mechanism is: an isolated class is automatically fully put in
context, by considering all the possible constraints which may relate it to the other terms
of the integrated ontologies. As a matter of fact it can be proved that the design tools
derives all (and only) the implied constraints representable within the diagrammatic
ontology language.

Finally, we note that the tool derives also that sales representative are both contact
persons in the top ontology sense and contact persons in the lower ontology sense.

All these deductions may help the ontology engineer in validating the design—if the
derived constraints make sense to the engineer; they may help in suggesting changes;
or they may show serious but subtle conceptual mistakes. The next case scenario shown
in Figure 2a is an example of the latter case.

In this new integration scenario, the top ontology describes fair lenders which are
partitioned into public lenders and building societies. Public lenders are no profit com-
panies, and in addition it is stated that banks are not building societies.

In the lower less detailed ontology, we have the generic class of lending institutions
which specialises into the bank class. We also assume that actually the lower ontology,
in spite of the fact that it uses more generic terms, describes a world which is actually a
portion of the world described more accurately by the top ontology.

A very natural integration between the two ontologies is pursued by the ontology
engineer: she/he states that banks of the lower ontology are among the banks of the top
ontology, and that lending institutions of the lower ontology are fair lenders and profit
companies as defined in the top ontology.

The consequences of this integration attempt are immediately drawn by the tool as
depicted in Figure 2b. As a first (more or less obvious) deduction we can observe that
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the profit and the no profit classes are derived to be disjoint, as expected. However,
it turns out—from the big question mark at the corner of the Bank_s class—that no
banks can exist according to the lower ontology! This is somehow unexpected, since we
thought we were playing a rather simple game in this case. Why is this? A quick glance
at the attribute types shows that they are perfectly compatible this time. The reason is
the following. First of all, we can derive that lending institutions are building society (as
pointed out by the tool); in fact, lending institutions are fair lenders, which can be either
public lenders or building societies. On the other hand we have that lending institution
are profit companies, which are provably disjoint from public lenders. therefore, any
lending institution has necessarily to be a building society. At this point, we are closer
to the answer to our original question about the inconsistency of the Bank_s class.
Those lower ontology banks are at the same time a kind of top ontology banks and
building societies (by transitivity). However the two latter classes are disjoint, hence no
common instance can exist—i.e., no bank can be a lending institution according to this
integration system.

Of course, there should be something wrong the way the two ontologies have been
integrated, and this calls for a revision of the mappings. The engineer should either
omit the mapping stating that lending institutions are necessarily profit companies, or
the mapping stating that lending institutions are necessarily fair lenders. In both cases,
the outcome will be acceptable by the engineer, and she/he should choose the one that
best fits further analysis of the domain that she/he may have done after this unexpected
discovery.

3 The Ontology Editor

The Ontology Editor works on projects, which may contain one or more UML class
diagrams. The diagrams are referred as models. Multiple projects can be opened at the
same time, but objects cannot be moved across them. Only one project is visible at
a time and the editing of each project is independent. The user can switch between
different projects using the tabs at the top of the project area. Classes are represented by
boxes and n-ary associations by diamonds. Associations may have so-called association
classes specifying their attributes. IsA relationships are represented as arrows with a
disc in the middle (e.g. see MobileCall and Call).

The tool does not implement special visual techniques for handling very large on-
tologies. The tasks that it supports, i.e. authoring of concept description and structuring
the ontology, are not aimed at working simultaneously with thousands of concepts.
However, a set of functionalities that are very useful in managing such ontologies are
available. First, the interface is zoomable, that is, the level of detail and size of the icons
that represent the model can be smoothly changed by pressing the right mouse button
and dragging left to zoom our or right to zoom in. Also, the window can be panned
by pressing the middle button and dragging. This allows the user to focus the attention
in a specific region of the ontology. There are also two dedicated buttons for zooming:
one will show the complete graph, and the other will zoom in to show the selected el-
ements. Selection works by left-clicking on icons or by left click and drag; also, there
is a button for expanding the selection to all connected nodes, which is very useful in
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combination with the zoom-to-selection button. Finally, custom automatic layout algo-
rithms for ontologies are under development. These combine known layout algorithms
for drawing large graphs, with special conventions used in ontologies, like IsAs hierar-
chies are drawn top-down and associations are drawn in the middle of related concepts.
New metrics to measure the "quality" of ontology graphs were developed for this pur-
pose.

Editing Models Most of the model editing is done in the project panel, where each
model in the project is displayed in a separate model panel. In addition, two dialogues
are used to elicit additional information about model objects. The attribute domain di-
alogue allows the domain of attributes to be set. The definition dialogue enables the
characterisation of a class or association by means of a view written in the language
described in the next Section.

Objects can be created by selecting the appropriate button in the toolbar, or an en-
try under the Diagram menu, or a contextual menu in the project area. Most object-
creating operations require further inputs to complete the operation. Usually, the user is
requested to select an existing object in the diagram (e.g. during the creation of an IsA
relationship). In this case, the system will highlight only objects in the diagram suitable
for the specific operation.

All the objects of the diagram have a name. Upon their creation the system allocates
a new fresh name, which can be edited by the user. To improve the identification of the
nodes, when icons become smaller because of the zoom level, all the nodes show their
name on a tool-tip when the mouse is hovering over them. Names are scoped by the
model they belong; e.g. classes with the same name in different models are considered
different.

Metadata fields can be associated to every kind of objects. These fields are ignored
in the reasoning process.

The creation of a new class adds a new box in the diagram with a new default name.
Every class can optionally have attributes. Attributes are added and edited by means of
a specific attribute dialogue. Similar to classes, attributes of the same name in different
models are considered different. Attributes of the same name within the same model
represent the same attribute. For each attribute, a domain should be indicated. There the
set of possible domains is not predefined, and the user is allowed to enter an arbitrary
name. Unlike the classes and associations, domains have a global context. Therefore,
domains of the same name in different models are considered be the same.

Associations are created by default with no roles. N-ary associations can be speci-
fied by adding new roles to existing ones. The creation of a new association introduces a
corresponding association class, which can be edited as a normal class (e.g. it can have
attributes).

Adding new roles to an existing association requires the user to select the association
and a class which restricts the domain of the argument of the association corresponding
to the role. Similar to class and associations names, role names have a model scope.

For example, assume there are two models M1 and M2, each one with a binary asso-
ciation lives having the roles subject and object. Note that, being association
scoped over models, from the global perspective there are two associations M1:lives
and M2:lives. Now, the modelling of the domain requires that M2:lives is more
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specific (i.e. a subset) of M1:lives. Since also role names are scoped over each
model, overall there are four different roles. Therefore, the more specific association
(M2:lives) inherits the roles of the general one, ending up being of arity four (namely
the roles M2:object, M2:subject and M1:object, M1:subject).

Roles denote the connection of a class to an association and are also used to express
the cardinality constraints of a class in an association. A role may have two constraints:
totality, or the minimum cardinality, and uniqueness representing the maximum car-
dinality. In the current version of the system, the numbers expressing cardinality are
restricted to be 0 and 1. A minimum cardinality of 1 indicates that all instances of
a class must participate in the association at least once (i.e. mandatory constraint). A
maximum cardinality of 1 indicates that all instances of a class can only participate
once in the association (i.e. functional constraint).

Within a project, equivalence and subset role mappings can be defined between roles
in the same or different models. These allow a better characterisation of the relationship
between associations across different models. In the former example, M2:lives can
be set as a binary association by saying that M1:object contains M2:object, and
that M1:subject contains M2:subject.

The system enables the user to specify inheritance relationships among classes and
associations. The relationships can be arbitrary (e.g. cycles are allowed) provided that
classes can only inherit from classes, and associations from associations. Formally, the
inheritance is expressed by the inclusion (subclass) constraint.

On the diagram, inheritance is specified by means of IsA links (in the diagram indi-
cated by arrows with a circle in the middle) connecting nodes. IsA links can be speci-
fied one-to-one, or many-to-one. The latter groups together more than one (association)
class and restrict all of them to be a subclass of the link target.

The possibility of grouping more than one descendant, not only provides way of
visually organising the layout of the model; but enables the user to specify additional
constraints among the (association) classes. In particular, the covering and disjointness

constraints. The first one expresses the fact that the (association) class is equivalent to
the union of the specified descendant, while the second constraints the grouped (asso-
ciation) classes to be mutually disjoint.

Note that disjointness among classes is not assumed by default; so, in absence of a
specific constraint, (association) classes may overlap.

Inter-Model Axioms Additional constraints among classes and associations can be ex-
pressed by means of intra- as well as inter-model axioms. The Ontology Editor provides
four types of axioms: Node Definition, Equivalence, Subsumption and Disjointness. As
discussed in Section 1 these constraints provide a powerful modelling tool in the context
of data integration and ontology mapping.

Each class and association can be fully defined by means of a view expression. The
view expression language is more expressive that the diagrammatic definition language,
so enables the expert user to add constraints that cannot be expressed by the UML
diagram alone.

The adopted view language is based on the DLR description logic. A definition has
a global context, meaning it can express inter-model relationships as well as intra-model
relationships. The view language includes two syntactic sorts: one for classes and one
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for associations. Full boolean operators are allowed, plus a selection operator (selecting
tuples in an association with a specific class type in some named role argument) and
a unary projection operator (projecting an association over a named role argument). A
generalised projection operator with cardinality restrictions is available as well.

Since a definition can refer to objects in different models, a name-prefix is used
in definitions to distinguish objects with the same name but from different models.
The name-prefix used is the model’s name followed by a colon symbol. For example,
class1 in Model1 and class1 in Model2would be referred to as Model1:class1
and Model2:class1 respectively.

Any two (associations) classes in any model can be related by semantic relation-
ships stating their equivalence, subsumption, or disjointness. Creating one of these re-
lationships requires the user to specify source and target node. The system prevents the
creation of a relationship between non-homogeneous nodes by restricting the scope of
the second node to be selected.

Exporting and Importing Projects ICOM projects can saved and retrieved in an own
XML format, preserving the meaning of all elements including view definitions. It is
also possible to import UML class diagrams saved in the XMI format. The tool only
recognises the subset of XMI determined by classes, associations, attributes, roles and
primitive datatypes defined within an UML model. Functional and mandatory con-
straints on roles are the only type of imported constraints. Aggregation relationships
in the UML model are ignored. We are currently working on exporting projects in XMI
files, but this translation would be necessarily carried out with some loss of meaning
because, for example, not all view definitions can be expressed in XMI even with at-
taching OCL expressions to the model elements (e.g. names in OCL expressions have
a scope which is local to a given class, rather than global as in ICOM).

4 Automated Reasoning

Although the Ontology Editor can be used as a standalone modelling tool, exploiting
its full capabilities requires the coupling of the system with a Description Logic rea-
soner. Without such an automated reasoning tool the Ontology Editor would be unable
to perform deduction-complete automated reasoning over the models. As we noted, this
includes checking class and relationship consistency, discovering implied class and re-
lationship inter-relations (e.g., subsumption) or cardinality constraints, and in general
discovering any implied but originally implicit class diagram graphical construct.

Instead of implementing its own dedicated reasoner, the Ontology Tool can exploit
any DIG enabled DL reasoner (see [2]). Being DIG a standardised communication pro-
tocol, the user can choose the most suitable DL reasoner (e.g. the one used by other
in-house project), or upgrade to the latest version of the preferred reasoner without
being forced to upgrade to a different version of the Ontology Editor.

The so called verification process can be computationally expensive, so it is acti-
vated only on user’s request. This process includes the following operations. The se-
lected project is encoded into an appropriate Description Logics knowledge base and
shipped to the DIG reasoner. Each class, association in the project is checked for sat-
isfiability (i.e. non-emptiness). For each class, association in the project, its equivalent
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peers, and super-classes are determined. For each class-role-association triple, the sys-
tem calculates the stricter minimum and maximum cardinality constraints. To perform
these operations, the system formulates a sequence of queries to be sent to the DIG rea-
soner. Accordingly to the received answers the Ontology Editor infers properties of the
models in the project. To perform these operations, the system formulates a sequence
of queries to be sent to the DIG reasoner, which is linear in the number of project el-
ements. Accordingly to the received answers the Ontology Editor infers properties of
the models in the project. The algorithm for this inference is quadratic in the number
of concepts and roles, and linear in the number of axioms and IsA links. Thus, the tool
can reasonable manage projects with several hundreds of elements, calling a current
state-of- the-art reasoner.

After the verification process, the system provides the user with a visual account of
the deductions by modifying the appearance of the model diagrams in the project. All
unsatisfiable objects will appear in red in the model diagrams. An object is unsatisfiable
when necessarily describes an empty set of tuples of objects. Additional non explicit de-
ductions will appear in green, to be distinguished from the user specified elements of
the diagrams. Semantically equivalent objects are connected with newly inserted equiv-
alent axiom links. Objects discovered to hold an inclusion relationships between them
are connected with subsumption axiom links. Cardinality constraints which are stricter
than those originally specified. Although the deductions are displayed on the actual di-
agrams, it is up to the user to decide whether they should be permanently added to the
models or discarded. The rational behind this behaviour is that the automated reasoning
process may detect unwanted deductions caused by a wrong modelling of the domain.
In this case the user should correct the project before any subsequent editing. Another
reason is that, in spite of the fact that only the non-trivial deductions are presented,
the user is satisfied by the fact that they are implicit without the need of having them
explicitly asserted.

The user can discard the deductions and the entire project will be returned to its
original state (and any information about unsatisfiability will be discarded). Editing one
of the models in the project will also discard the deductions before the editing is car-
ried out. Alternatively, the equivalence, subsumption association, and role cardinality
deductions can be added permanently to the project by committing them.

5 Conclusions and Future Works

In this paper we presented ICOM, an advanced conceptual modelling tool grounded on
more than ten years of research on the use of automated reasoning to support the devel-
opment and integration of ontologies. ICOM employes a diagrammatic based language
to represent most of the constructs used in ontology design; although it enables the use
of non graphical ontology languages, experience with users demonstrates that the de-
sign of the diagrammatic language is sufficiently expressive to describe rich domains.
Moreover, deductions are expressed within the same diagrammatic language, providing
a uniform view over design and analysis of models.

By means of use cases we demonstrated the importance of exploiting basic reason-
ing tasks (such as subsumption) in order to provide richer information on ontologies.
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This is a crucial step towards guaranteeing the quality of the ontologies designed using
a tool like ICOM.

The research and development of ICOM continues on two main tracks: from one
side we are improving the modelling workflow by considering alternative modelling
languages and reasoning services, while on the other hand we are enhancing the user
experience by improving the graphical user interface and the interoperability.

We are currently considering the adoption of modelling features from ORM [5]
conceptual modelling methodology and representation. Its adoption would have the ad-
vantage of leveraging the vast research which has been carried on supporting the user in
the modelling tasks, including the integration of natural language generation. The use
of ORM modelling style would require also a redesign of the reasoning tasks in order
to align the inferences to the new graphical representation.

On the interface we are improving the automatic layout algorithms and working on
the support of undo actions. We also plan to include a role browser tab to show the
role hierarchy in the same style of the class browser. Moreover, we are improving the
interoperability with other tools by tackling the import and export compatibility with
XMI and OWL.

References

[1] S. Bechhofer, I. Horrocks, C. Goble, and G. Stevens. Oiled: a reason-able ontology editor
for the semantic web. In Proceedings of KI2001, pages 396–408. Springer-Verlag, 2001.

[2] S. Bechhofer, R. Möller, and P. Crowther. The dig description logic interface. In Proceed-

ings of DL 2003, volume 81 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.
[3] P. Fillottrani, E. Franconi, and S. Tessaris. The new icom ontology editor. In Proceedings

of DL 2006, volume 189 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.
[4] E. Franconi and G. Ng. The i.com tool for intelligent conceptual modeling. In Proceedings

of the 7th International Workshop on Knowledge Representation meets Databases (KRDB

2000), volume 29 of CEUR Workshop Proceedings. CEUR-WS.org, 2000.
[5] T.A. Halpin, A.J. Morgan, and T. Morgan. Information modeling and relational databases.

Morgan Kaufmann series in data management systems. Elsevier/Morgan Kaufman Publish-
ers, 2008.

[6] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the owl 1.1 touch paper: The owl api.
In Proceedings of OWLED 2007, volume 258 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[7] M. Jarke, C. Quix, D. Calvanese, M. Lenzerini, E. Franconi, S. Ligoudistianos, P. Vassil-
iadis, and Y. Vassiliou. Concept based design of data warehouses: The dwq demonstrators.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of

Data, page 591. ACM, 2000.
[8] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The protégé owl plugin:

An open development environment for semantic web applications. In Proceedings of ISWC

2004, volume 3298 of Lecture Notes in Computer Science. Springer, 2004.
[9] T. Liebig, M. Luther, O. Noppens, M. Rodriguez, D. Calvanese, M. Wessel, M. Horridge,

S. Bechhofer, D. Tsarkov, and E. Sirin. Owllink: Dig for owl 2. In Proceedings of OWLED

2008, volume 432 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.
[10] C. Lutz, F. Baader, E. Franconi, D. Lembo, R. Möller, R. Rosati, U. Sattler, B. Suntisrivara-

porn, and S. Tessaris. Reasoning support for ontology design. In Proceedings of OWLED

2006, volume 216 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

124



Efficient Reasoning in Combinations of EL and
(Fragments of) FL0

Francis Gasse1,2 and Viorica Sofronie-Stokkermans1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Universität des Saarlandes, Saarbrücken, Germany

Abstract. We study possibilities of combining (fragments) of the light-
weight description logics FL0 and EL, and identify classes of subsump-
tion problems in a combination of EL and Horn-FL0, which can be
checked in PSPACE resp. PTIME. Since FL0 allows universal role re-
strictions and EL allows existential role restrictions, we thus have a
framework where subsumption between expressions including both types
of role restrictions (but for disjoint sets of roles) can be checked in poly-
nomial space or time.

1 Introduction

Description logics [5] are a family of knowledge representation formalisms that
can model the terminological knowledge of a given domain; they are, for instance,
the logical foundation of the W3C language for the Semantic Web. Their most
interesting feature is that they aim at maximizing expressive power while re-
taining decidability. However, with the size of the ontologies appearing in many
applications, decidability alone is not enough because the complexity of the rea-
soning procedures combined with the size of the ontologies makes reasoning too
costly. This consideration triggered the development of lightweight sub-families
of description logics. Among them, we mention EL (which only allows the use of
conjunction and existential role restrictions) [1] and some of its extensions such
as EL+ and EL++ [2, 4, 3]. These logics can model some very interesting domains
sufficiently well to be used widely, for example in the SNOMED ontology [16].
Another lightweight description logic is FL0 (which only allows the use of con-
junction and universal role restrictions). While subsumption without TBoxes in
FL0 is decidable in PTIME, its subsumption problem is in PSPACE for stan-
dard terminologies and EXPTIME for general terminologies [8, 4]. Since some
very interesting forms of knowledge require universal restrictions in order to be
modeled adequately, recent research has identified tractable fragments of FL0,
such as the Horn-FL0 fragment (defined by syntactic restrictions) for which the
subsumption problem is in PTIME [9].

A combination of EL and (fragments of) FL0 is clearly interesting because
of the added expressivity it offers. At the same time, if we allow an unrestricted
combination we lose the lower complexity of the components. In this paper we
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Table 1. Constructors and their semantics

Constructor name Syntax Semantics

negation ¬C DI\CI

conjunction C1 !C2 CI
1 ∩ CI

2

disjunction C1 #C2 CI
1 ∪ CI

2

existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}
universal restriction ∀r.C {x | ∀y((x, y) ∈ rI → y ∈ CI)}

present a way to combine these description logics such that we can verify sub-
sumption between two mixed concept expressions w.r.t. TBoxes efficiently, and
identify situations in which this can be done in PSPACE, resp. PTIME.

Structure of the Paper. In Sect. 2 we give general definitions and introduce
the description logics ALC, EL and FL0 and their combination. Sect. 3 presents
the algebraic semantics for each logic and their combination. Sect. 4 presents
generalities on local theory extensions and hierarchical reasoning (which we use
in our approach). These methods are used in Sect. 5, where we present pos-
sibilities of hierarchical reasoning in a combination of EL and (fragments of)
FL0.

2 Description Logics

The central notions in description logics are concepts and roles. In any descrip-
tion logic a set NC of concept names and a set NR of roles is assumed to be given.
Complex concepts are defined starting with the concept names in NC , with the
help of a set of concept constructors. The semantics of description logics is de-
fined in terms of interpretations I = (∆I , ·I), where ∆I is a non-empty set, and
the function ·I maps each concept name C ∈ NC to a set CI ⊆ ∆I and each
role name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . Table 1 shows the con-
structor names used in ALC and their semantics. The extension of ·I to concept
descriptions is inductively defined using the semantics of the constructors.

Terminology. A terminology (TBox, for short) is a finite set of primitive con-
cept definitions of the form C ≡ D, where C is a concept name and D a concept
description; and general concept inclusions (GCI) of the form C , D, where C
and D are concept descriptions. A TBox which only contains primitive concept
definitions and every concept name is defined at most once is called standard.
(As definitions can be expressed as double inclusions, by TBox (or general TBox)
we will refer to a TBox consisting of general concept inclusions only.) An inter-
pretation I is a model of a TBox T if it satisfies:

– all concept definitions in T , i.e. CI=DI for all definitions C≡D ∈ T ;
– all general concept inclusions in T , i.e. CI⊆DI for every C,D ∈ T .
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Constraint Box. A constraint box (CBox, for short) consists of a TBox T and
a set RI of role inclusions of the form r1 ◦ · · · ◦ rn , s. (We will view CBoxes as
unions GCI ∪RI of general concept inclusions (GCI) and role inclusions (RI).)
An interpretation I is a model of the CBox C = GCI∪RI if it is a model of GCI
and satisfies all role inclusions in C, i.e. rI1 ◦ . . . ◦rIn ⊆ sI for all r1◦ . . . ◦rn⊆s∈RI.

Definition 1. Let C1, C2 be two concept descriptions.

– If T is a TBox, we say that C1 is subsumed by C2 w.r.t. T (denoted C1 ,T

C2) i ffCI
1 ⊆ CI

2 for every model I of T .
– If C is a CBox, then C1 ,C C2 iff CI

1 ⊆ CI
2 for every model I of C.

The simplest propositionally closed description logic is ALC which allows for
conjunction, disjunction, negation and existential and universal role restrictions.
For description logics that allow full negation, subsumption tests w.r.t. TBoxes
or CBoxes are reducible to satisfiability testing for concepts (i.e. checking if
there exists a model of the TBox resp. CBox for which the interpretation of
the concept is non-empty). It is well-known that for ALC subsumption checking
(w.r.t. TBoxes and CBoxes) is in EXPTIME (cf. [5]). For lightweight description
logics which do not allow negation, things are different: The main reasoning task
is subsumption testing, which is the problem we consider in this paper.

We now define the fragments of the description logics FL0 used in this paper
as well as the description logic EL. 3

The Description Logic FL0. FL0 is a lightweight description logic that only
allows as concept constructors conjunction, universal role restrictions, and top
concept. The subsumption problem w.r.t. general TBoxes is known to be in
EXPTIME [4]. Fragments of FL0 resp. specific classes of subsumption for which
the complexity is known to be lower include:

– Subsumption w.r.t. standard TBoxes has PSPACE complexity [8].
– Subsumption w.r.t. acyclic TBoxes is co-NP complete (where an acyclic

TBox is a standard TBox that does not contain concept definitions A1 ≡
C1, . . . , Ak ≡ Ck such that A

i+1 mod k
is used in Ci for all i < k [10]).

– Horn-FL+
0 [9] is a variant of FL0 that both extends and restricts its expres-

sivity in such a way that the subsumption problem remains in PTIME. It
restricts FL0 axioms to the form shown in Table 2. The form of the axioms is
limited in such a way that they can be rewritten into 3-variable function-free
Horn-logic. It follows from this correspondence that verifying consistency of
a Horn-FL+

0 knowledge base can be done in polynomial time. A Horn-FL0

TBox (CBox) consists only of inclusions of the form indicated in the first
two lines of Table 2.

The Description Logic EL+. The description logic EL [1] allows as concept
constructors only conjunction, existential role restrictions, and the bottom con-
cept. EL+ [2, 4, 3] additionally allows for nominals and role composition. For
EL+, checking CBox subsumption can be done in PTIME [4, 2].

3 For the sake of simplicity, everywhere in what follows we consider fragments of these
logics without nominals and without ABoxes.
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A ! C " ! C R ! T A ! ∀R.C
A $ B ! C A ! ⊥ R ◦ S ! T
R(i, j) A(i) i ≈ j

Table 2. Normal form for Horn FL+
0 . A, B, C are names of atomic concepts;

R, S, T are (possibly inverse) role names.

2.1 Combining FL0 and EL

Let NC be a set of concept names, and NR, NR′ be disjoint sets of role names.
We propose a combination of EL (with roles in NR) and FL0 (with roles in NR′).
The problem we study for such combinations is subsumption between concept
expressions using constructs from both logics (such that existential restriction is
used only for roles in NR and universal restriction only for roles in NR′) w.r.t.
mixed TBoxes, consisting of an EL part and an FL0 part. We allow these TBoxes
to share concept names (but the role names used in each type of axioms have to
be disjoint). We have to impose the restriction that NR∩NR′ = ∅ in order to be
sure that fine-grained complexity results can be obtained for TBox subsumption
in such combinations, since the description logic combining these features freely,
ALEU , has an EXPTIME complexity for the subsumption problem w.r.t. TBox4.

Definition 2. A mixed TBox is a TBox T = TE ∪ TF which consists of two
distinct parts: A set TE of EL GCI (with role names NR), and a set TF of FL0

GCI (with role names NR′), each respecting the syntactic restrictions imposed
by their logic. In a mixed TBox with acyclic FL0 part, TF is a standard acyclic
TBox; in a mixed TBox with standard FL0 part, TF is a standard TBox.

We will use the names EL-TBox and FL-TBox to denote the set of EL (resp.
Horn-FL0) inclusion axioms in a mixed TBox.

3 Algebraic Semantics

We assume known notions such as partially-ordered set, semilattice, lattice and
Boolean algebra. For further information cf. [11]. We define a translation of
concept descriptions into terms in a signature naturally associated with the set
of constructors. For every role name r, we introduce unary function symbols,
f∃r, f∀r. The renaming is inductively defined by:

– C = C for every concept name C;
– ¬C = ¬C; C1 ! C2 = C1 ∧ C2, C1 # C2 = C1 ∨ C2;
– ∃r.C = f∃r(C), ∀r.C = f∀r(C).

There exists a one-to-one correspondence between interpretations I = (D, ·I)
and Boolean algebras of sets (P(D),∪,∩,¬, ∅, D, {f∃r, f∀r}r∈NR

), together with

4 This follows from the fact that ALEU can simulate ALC [7].
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valuations v : NC → P(D), where f∃r, f∀r are defined, for every U ⊆ D, by:

f∃r(U) = {x | ∃y((x, y) ∈ rI and y ∈ U)}

f∀r(U) = {x | ∀y((x, y) ∈ rI ⇒ y ∈ U)}.

Consider the following classes of algebras:

– BAONR
, the class of all Boolean algebras with operators

(B,∨,∧,¬, 0, 1, {f∃r, f∀r}r∈NR
), where

• f∃r is a join-hemimorphism, i.e. f∃r(x∨y) = f∃r(x)∨f∃r(y), f∃r(0) = 0;
• f∀r is a meet-hemimorphism, i.e. f∀r(x ∧ y)=f∀r(x) ∧ f∀r(y), f∀r(1)=1;
• f∀r(x) = ¬f∃r(¬x) for every x ∈ B.

– BAO
∃
NR

the class of boolean algebras with operators
(B,∨,∧,¬, 0, 1, {f∃r}r∈NR

), such that f∃r is a join-hemimorphism.
– BAO

∀
N

R′
the class of boolean algebras with operators

(B,∨,∧,¬, 0, 1, {f∀r}r∈N
R′

), such that f∀r is a meet-hemimorphism.

– SLO
∃
NR

the class of all ∧-semilattices with operators
(S,∧, 0, 1, {f∃r}r∈NR

), such that f∃r is monotone and f∃r(0) = 0.
– SLO

∀
NR′

the class of all ∧-semilattices with operators
(S,∧, 0, 1, {f∀r}r∈N

R′
), such that f∀r is a meet-hemimorphism and f∀r(1)=1.

– SLO
∃∀
NR,NR′

the class of all ∧-semilattices with operators
(S,∧, 0, 1, {f∃r}r∈NR

, {f∀r}r∈N
R′

), such that f∃r is monotone and f∃r(0) = 0,
and f∀r is a meet-hemimorphism and f∀r(1)=1.

It is known that the TBox subsumption problem for ALC can be expressed as a
uniform word problem for Boolean algebras with suitable operators (cf. e.g. [6]).

Let RI, RI ′ be sets of axioms of the form r,s and r1◦r2,r, with r, s, r1, r2∈NR

(resp. r, s, r1, r2∈NR′). We associate with RI, RI ′ the following set of axioms:

RIa = {∀x (f∃r2
◦ f∃r1

)(x) ≤ f∃r(x) | r1 ◦ r2 , r ∈ RI} ∪

{∀x f∃r(x) ≤ f∃s(x) | r , s ∈ RI}

RI
′

a = {∀x (f∀r2
◦ f∀r1

)(x) ≥ f∀r(x) | r1 ◦ r2 , r ∈ RI ′} ∪

{∀x f∀r(x) ≥ f∀s(x) | r , s ∈ RI ′}

where f ◦g denotes the composition of the functions f, g. Let BAO
∃
NR

(RI) (resp.

SLO
∃
NR

(RI)) be the subclass of BAO
∃
NR

(SLO
∃
NR

) consisting of those algebras

which satisfy RIa, and BAO
∀
NR′

(RI ′) (resp. SLO
∀
NR′

(RI ′)) be the subclass of

BAO
∀
NR′

(SLO
∀
NR′

) consisting of the algebras satisfying RI
′

a.
In [13] we studied the link between TBox subsumption in EL and uniform

word problems in the corresponding classes of semilattices with monotone func-
tions, and in [14] we studied an extension to EL+. We will present these results
here, together with an algebraic semantics for FL0.

Theorem 1 ([13]) Assume that the only concept constructors are intersection
and existential restriction. Then for all concept descriptions D1, D2 and every
EL+ CBox C=GCI∪RI, with concept names NC = {C1, . . . , Cn}:

D1,CD2 iff SLO
∃
NR

(RI) |= ∀C1 . . . Cn((
∧

C%D∈GCI C≤D)→ D1≤D2).
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We give a similar result for FL+
0 .

Theorem 2 Assume that the only concept constructors are intersection and
universal restriction. Then for all concept descriptions D1, D2 and every FL+

0

CBox C=GCI∪RI, with concept names NC = {C1, . . . , Cn}:

D1,CD2 iff SLO
∀
NR′

(RI) |= ∀C1 . . . Cn((
∧

C%D∈GCI C≤D)→ D1≤D2).

3.1 Algebraic Semantics for a Combination of EL and FL0

Theorem 3 Assume the only concept constructors are intersection, existential
restriction over roles in NR and universal restriction over roles in NR′ . Let T
be a mixed TBox consisting of an EL-TBox TE (with roles in NR) and an FL0-
TBox TF (with roles in NR′), where NR∩NR′ = ∅. Then for all concept descrip-
tions D1, D2 in the combined language, with concept names NC = {C1, . . . , Cn}:

D1,T D2 iff SLO
∃∀
NR,NR′

|= ∀C1 . . . Cn((
∧

C%D∈T C≤D) → D1≤D2).

Note: The results can be extended in a natural way to EL+, FL+
0 and CBoxes

(we will then take the combination of the role inclusions RI, RI ′, and the corre-
sponding subclass SLO

∃∀
NR,NR′

(RI, RI ′) satisfying the axioms RIa ∪RI ′a).

In what follows we show that we can reduce, in polynomial time and with a poly-
nomial increase in the length of the formulae, the validity tasks w.r.t. SLO

∃∀
NR,NR′

to satisfiability tasks w.r.t. SLO
∀
NR′

which can in general be solved in EXPTIME.
We obtain the following finer grained results:

– If TF is a standard TBox, the subsumption tasks are in PSPACE;
– If TF is in the Horn-FL0 fragment, the reduction generates formulae whose

satisfiability can be checked in PTIME.

For obtaining these results, we use the notion of local theory extensions, which
is briefly introduced in what follows.

4 Local Theories and Local Theory Extensions

We here consider theories specified by their sets of axioms, and extensions of
theories, in which the signature is extended by new function symbols. Let T0 be
a theory with signatureΠ0 = (Σ0, Pred), whereΣ0 a set of function symbols, and
Pred a set of predicate symbols. We consider extensions T1 of T0 with signature
Π = (Σ, Pred), where Σ = Σ0 ∪ Σ1 (i.e. the signature is extended by new
function symbols). We assume that T1 is obtained from T0 by adding a set K of
(universally quantified) clauses in the signature Π , each of them containing at
least a function symbol in Σ1 and denote this by writing T1 = T0 ∪K.

Locality. Let K be a set of (universally quantified) clauses in the signature Π .
In what follows, when referring to sets G of ground clauses we assume they are
in the signature Πc = (Σ ∪ Σc, Pred) where Σc is a set of new constants. An
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extension T0 ⊆ T0 ∪ K is local if satisfiability of a set G of clauses w.r.t. T0 ∪ K
only depends on T0 and those instances K[G] of K in which the terms starting
with extension functions are in the set st(K, G) of ground terms which already
occur in G or K, i.e. if condition (Loc) is satisfied:

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G |=⊥

where K[G] = {Cσ | C ∈ K, for each subterm f(t) of C, with f ∈ Σ1,
f(t)σ ∈ st(K, G), and for each variable x which does not
occur below a function symbol in Σ1, σ(x) = x}.

Hierarchical Reasoning. In local theory extensions hierarchical reasoning is
possible. All clauses in K[G]∪G have the property that the function symbols in
Σ1 have as arguments only ground terms. Therefore, K[G] ∪ G can be purified
(i.e. the function symbols in Σ1 are separated from the other symbols) by intro-
ducing, in a bottom-up manner, new constants ct for subterms t = f(g1, . . . , gn)
with f ∈ Σ1, gi ground Σ0∪Σc-terms (where Σc is a set of constants which con-
tains the constants introduced by flattening, resp. purification), together with
corresponding definitions ct ≈ t. The set of clauses thus obtained has the form
K0∪G0∪D, where D is a set of ground unit clauses of the form f(g1, . . . , gn) ≈ c,
where f ∈ Σ1, c is a constant, g1, . . . , gn are ground terms without function sym-
bols in Σ1, and K0 and G0 are clauses without function symbols in Σ1.

For the sake of simplicity in what follows we will always first flatten and then
purify K[G] ∪ G. Thus we ensure that D consists of ground unit clauses of the
form f(c1, . . . , cn) ≈ c, where f ∈ Σ1, and c1, . . . , cn, c are constants.

Theorem 4 ([12]) Let K be a set of clauses. Assume that T0 ⊆ T0 ∪ K is a
local theory extension. For any set G of ground clauses, let K0 ∪ G0 ∪ D be
obtained from K[G] ∪G by flattening and purification, as explained above. Then
the following are equivalent:

(1) T0∪K∪G |=⊥.
(2) T0∪K[G]∪G |=⊥.
(3) T0 ∪ K0 ∪G0 ∪N0 |=⊥, where

N0 = {
n∧

i=1

ci ≈ di → c ≈ d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

Theorem 5 ([15]) The extension of any semilattice-ordered theory with mono-
tone functions is local. In particular, the extension SLO

∀
NR′

⊆ SLO
∃∀
NR,NR′

of the
theory of semilattices with meet-hemimorphisms in a set {f∀R | R ∈ NR′} with
monotone functions in a set {f∃R | R ∈ NR}, where NR ∩NR′ = ∅, is local.

Thus, the method for hierarchical reasoning described in Theorem 4 can be used
in this context to reduce the proof tasks in SLO

∃∀
NR,NR′

to proof tasks in SLO
∀
NR′

.
We describe the approach in the next section. For the sake of simplicity, in what
follows we use the notation ∃R.C for f∃R(C) and ∀S.D for f∀S(D). 5

5 In [14] we proved generalized locality results also for extensions with monotone
functions satisfying axioms of the form RIa, so the results can be further extended to
give a reduction of proof tasks in SLO

∃∀
NR,N

R′
(RI,RI ′) to proof tasks in SLO

∀
N

R′
(RI ′).
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5 The Combination of EL and FL0

We consider the subsumption problem for the combination of EL and FL0 intro-
duced in Section 3.1 and illustrate the way hierarchical reasoning can be used for
reasoning in this combination, and for identifying fragments of this combination
and subsumption tasks which can be checked in PSPACE/PTIME. 6

We first have to purify the expressions for which we want to verify subsump-
tion. Consider for instance the subsumption C , ∃R.D, where C and D are
resp. an FL0 and an EL concept description. To purify it, we add the axiom
D′ ≡ ∃R.D to the EL-TBox (where D′ is a new concept name) and rewrite the
subsumption as C , D′. We apply this process in an ”inside-out” fashion such
that the final result is checking subsumption between concept names w.r.t. to
an augmented TBox. This procedure does not affect complexity when we use
new names for EL concept descriptions (EL allows for equalities and inequalities
TBoxes). In what follows, C[∃R.C′] is a notation indicating that C is a concept
description in the combination of EL and FL0 containing a subterm of the form
∃R.C′, R ∈ NR; the notation C[C′′] indicates the concept description obtained
by replacing ∃R.C′ with C′′ in C.

Theorem 6 Consider the subsumption problem C[∃R.C′] ,T D (where C′ is an
EL concept description) w.r.t. a mixed TBox T = TE ∪ TF and the subsumption
problem C[C′′] ,T ′ D w.r.t. the extension T ′ of T with a new concept name C′′

together with its definition C′′ ≡ ∃R.C′. Then the following are equivalent:

(1) SLO
∃∀
NR,NR′

|= (
∧

C1%C2∈TE∪TF
C1 ≤ C2) → C[∃R.C′] ≤ D

(2) SLO
∃∀
NR,N

R′
|= (

∧
C1%C2∈TE∪TF

C1 ≤ C2 ∧ C′′ ≈ ∃R.C′)→ C[C′′] ≤ D

This also holds for subsumption problems of the form C , D[∃R.D′].

Theorem 7 Consider the subsumption problem C[∀S.C′] ,T D (where C′ is an
FL0 concept description) w.r.t. a mixed TBox T = TE∪TF and the subsumption
problem C[C′′] ,T ′ D w.r.t. the extension T ′ of T with a new concept name C′′

and a definition for it (C′′ ≡ ∀S.C′). Then the following are equivalent:

(1) SLO
∃∀
NR,NR′

|= (
∧

C1%C2∈TE∪TF
C1 ≤ C2) → C[∀S.C′] ≤ D

(2) SLO
∃∀
NR,NR′

|= (
∧

C1%C2∈TE∪TF
C1 ≤ C2 ∧ C′′ ≈ ∀S.C′)→ C[C′′] ≤ D.

This also holds for subsumption problems of the form C , D[∀S.D′].

FL0 with Standard TBoxes. Assume that we consider a combination of EL
with the fragment of FL0 with standard TBoxes. Then TF is a standard FL0-
TBox, hence also TF ∪ {C′′ ≡ ∀S.C′} is a standard TBox.

FL0 with Acyclic TBoxes. Assume that we consider a combination of EL
with the fragment of FL0 with acyclic standard TBoxes, i.e. TF is a standard

6 The results can be extended to combinations of EL+ and FL+
0 and to subsumption

tasks w.r.t. CBoxes. Due to space constraints this extension is not presented here.
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acyclic TBox {Ai ≡ Ci | i = 1, ..., k}. Assume that C′ does not contain any of
the atomic concept names Ai. Since C′′ is a new concept name, the FL0-TBox
TF ∪ {C′′ ≡ ∀S.C′} is an acyclic TBox. After the elimination of ∃R.C concepts
and introduction of new concept names and definitions, the resulting TBox is a
standard FL0-TBox (which is acyclic only if additional acyclicity assumptions
are made on TE).

Horn-FL0. The restriction imposed on the form of the TBox axioms in Horn-
FL0 prevents purification by adding definitions of the form C′′ ≡ ∀S.C′ (we
cannot allow universal restriction on the left-hand side of an axiom). For the
case where we have to purify the left-hand side that causes no problem since if
∀S.C′ occurs on the left-hand side we only need to add C′′ , ∀S.C′ to the TBox:

Theorem 8 Consider the subsumption problem C[∀S.C′] ,T D (where C′ is an
FL0 concept description) w.r.t. a mixed TBox T = TE∪TF , and the subsumption
problem C[C′′] ,T ′ D w.r.t. the extension T ′ of T with a new concept name C′′

and an inclusion of the form (C′′ , ∀S.C′). Then the following are equivalent:

(1) SLO
∃∀
NR,NR′

|= (
∧

C1%C2∈TE∪TF
C1 ≤ C2) → C[∀S.C′] ≤ D.

(2) SLO
∃∀
NR,NR′

|= (
∧

C1%C2∈TE∪TF
C1 ≤ C2 ∧ C′′ ≤ ∀S.C′)→ C[C′′] ≤ D.

However, we cannot replace universal restriction on the right-hand side with a
name in general which prevents us to purify arbitrary expressions.

Hierarchical Reasoning. Consider the purified form of the problem. We re-
place all terms of the form ∃R.C in TE with a new constant, say C∃R.C . Let Def

be the set of all definitions for these new constants, of the form C∃R.C ≡ ∃R.C.
Let M0 be the set of corresponding instances of monotonicity axioms:

M0 = {C1 ≤ C2 → C∃R.C1
≤ C∃R.C2

| C∃R.Ci
= ∃R.Ci ∈ Def}.

Let (TE)0 be the purified form of TE . By Theorem 4, the following are equivalent:

(i) SLO
∀∃
NR,NR′

|=
∧

(D%D′)∈T D ≤ D′ → C1 ≤ C2.

(ii) G0∧M0 is unsatisfiable in SLO
∀
NR′

, where G0 = (TE)0∧TF ∧(¬(C1 ≤ C2))0.

Note that in the presence of the monotonicity axioms, the instances of the con-
gruence axioms in N0 (cf. notation in Theorem 4) are redundant.

Theorem 9 Assume that the only concept constructors are intersection and
existential restrictions over roles in NR and universal restrictions over roles
in NR′ . Assume that we have a mixed TBox, consisting of an EL-TBox TE

(with roles in a set NR) and an FL0-TBox TF (with roles in a set NR′), where
NR ∩ NR′ = ∅. Then for all concept descriptions D1, D2 with concept names
NC = {C1, . . . , Cn} over this signature, the following hold:

(1) If TF is a standard TBox, then:
(a) For any subsumption problem purification yields a new mixed TBox T ′ =

T ′
E ∪ T ′

F = TE ∧ Def ∧ TF with a standard FL0 part, and after the
elimination of ∃R.C concepts, (T ′

E)0 ∪ T ′
F is a standard FL0 TBox.
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(b) Checking whether D1,TE∪TF
D2 can be done in PSPACE.

(2) If TF is a Horn-FL0 TBox and C is an arbitrary concept description in the
combined language and D does not contain terms of the form ∃R.D1, where
R ∈ NR with subterms of the form ∀S.D2, S ∈ NR′ , then:
(a) Purification yields a new mixed TBox with a Horn-FL0 part; after the

elimination of ∃R.C concepts, (T ′
E)0 ∪ T ′

F is a Horn-FL0 TBox. Since
(i) C ,T D1 !D2 iff( C ,T D1 and C ,T D2), and
(ii) ∀S commutes with intersections,
we can consider, w.l.o.g. only subsumption problems D1 ,T ∀S1. . . .∀Sn.D,
n ≥ 0, where D2, D are concept names.

(b) Checking whether D1,TE∪TF
D2 where D2 = ∀S1. . . .∀Sn.D (where n ≥

0 and C, D are concept names) can be done in PTIME.

Proof. (1)(a) and (2)(a) are simple consequences of the purification procedure.
Consider the purified form of the problem By Theorems 3 and 4, D1,TE∪TF

D2

iff SLO
∀∃
NR,NR′

|=
∧

D%D′∈T (D ≤ D′ → D1 ≤ D2 iff G0 ∧ M0 is unsatisfiable

in SLO
∀
NR′

, where G0 = (TE)0 ∧ TF ∧ (¬(C1 ≤ C2))0. In order to test the
unsatisfiability of the latter problem we proceed as follows. We first note that,
due to the convexity of SLO

∀
N

R′
, if G0 ∧M0 |=⊥, then there exists a clause C =

(c1 ≤ d1 → c ≤ d) ∈M0 such that G0 |= c1 ≤ d1 and G0∧{c ≤ d}∧M0\{C} |=⊥.
By iterating the argument above we can always successively entail sufficiently
many premises of monotonicity axioms in order to ensure that there exists a set
{C1, . . . , Cn} of clauses in M0 with Cj = (cj

1 ≤ dj
1 → cj ≤ dj), such that for all

k ∈ {0, . . . , n − 1}, G0 ∧
∧k

j=1(c
j ≤ dj) |=

∧
ck+1
i ≤ dk+1

i and G0 ∧
∧n

j=1(c
j ≤

dj) |=⊥ . Conversely, if the last condition holds, then G0 ∧M0 |=⊥. This means
that in order to test satisfiability of G0 ∧ M0 we need to: (i) test entailment
of the premises of M0 from G0; when all premises of some clause are provably
true we delete the clause and add its conclusion to G0, and (ii) in the end check
whether G0 ∧

∧n
j=1(c

j ≤ dj) |=⊥ .

Under the assumptions in (1), every entailment task in (i) and the test in
(ii) are in PSPACE. Since space can be reused, the process terminates and is in
PSPACE. Under the assumptions in (2), T0 = (TE)0 ∪ TF and G0 are in Horn
FL0. Therefore, every entailent task in (i) above can be done in PTIME. The
task (ii) - for the case that G0 is derived from a subsumption problem of the
form C ,T ∀S1. . . .∀Sn.D, where n ≥ 0, and C, D are concept names, can be
translated to a satisfiability test in Horn-FL0, so it can be done in PTIME. !

6 Conclusion

We identified a class of subsumption problems in a combination of EL and Horn-
FL0, which can be checked in PTIME. Since FL0 allows universal role restriction
and EL allows existential role restrictions, we thus have a framework where
subsumption between expressions including both types of role restrictions (but
for disjoint sets of roles) can be checked in polynomial space or time.
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Status QIO: An Update
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Abstract. We prove co-N2ExpTime-hardness for conjunctive query entailment in
the description logicALCOIF , thus improving the previously known 2ExpTime
lower bound. The result transfers to OWL DL and OWL2 DL, of whichALCOIF
is an important fragment. A matching upper bound remains open.

1 Introduction

Due to its importance for ontology-based data access and data integration, conjunctive
query (CQ) answering has developed into one of the most widely studied reasoning
tasks in description logic (DL). Nevertheless, the precise complexity (and sometimes
even decidability) of CQ answering in several important expressive DLs is still an open
problem. In particular, this concerns fragments of the W3C-standardized OWL DL on-
tology language that comprise nominals, inverse roles, and number restrictions, a com-
bination of expressive means that is notorious for interacting in intricate ways. In this
paper, we concentrate on the basic such fragment ALCOIF in which number restric-
tions take the form of global functionality constraints.

Decidability of CQ answering inALCOIF and its extensionALCOIQwith qual-
ified number restrictions has been shown only very recently [1]. Since the proof is based
on a mutual enumeration of finite models and theorems of first-order logic, it does
not yield any upper complexity bound. The best known lower bound for CQ answer-
ing in ALCOIF is 2ExpTime, inherited from the fragment ALCI of ALCOIF that
does not include nominals and functionality constraints [2, 3]. The aim of this paper is
to improve upon this lower bound by establishing co-N2ExpTime-hardness. Note that
CQ answering in the fragment ALCIF of ALCOIF that does not include nominals
is in 2ExpTime [4], and the same is true for the fragment ALCQO that does not in-
clude inverse roles [5] andALCOI that does not include functionality restrictions [6].
Thus, our result shows that the combination of nominals, inverse roles, and number
restrictions leads to an increase of complexity of CQ answering from 2ExpTime to (at
least) co-N2ExpTime. This parallels the situation for the subsumption problem, which
is co-NExpTime-complete for ALCOIF , but ExpTime-complete in any of ALCIF ,
ALCQO, andALCOI. SinceALCOIF is a fragment of OWL DL (in both the OWL1
and the OWL2 version), our co-N2ExpTime lower bound obviously also applies to CQ
answering in this language.

We prove our result by a reduction of the tiling problem that requires to tile a torus
of size 22n × 22n . Our construction combines elements of two existing hardness proofs,
but also requires the development of novel ideas. We follow the general strategy of the
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proofs that show N2ExpTime-hardness of satisfiability in SROIQ [7] and in the ex-
tension of SHOIF with role conjunctions [8]. One central part of those proofs is the
realization of a counter that counts up to 22n . We realize this counter using a (rather sub-
tle!) adaptation of the conjunctive queries that have been developed in [2, 3] to establish
2ExpTime-hardness of CQ-answering inALCI.

An extended technical report including proofs and further details is available [9].

2 Preliminaries

We assume standard notation for the syntax and semantics of ALCOIF knowledge
bases [10]. The presence of nominals allows for only working with TBoxes, which
consist of concept inclusions (CIs) C � D. A knowledge base (KB) is then simply a
TBox. Let NV be a countably infinite set of variables. An atom is an expression C(v) or
r(v, v�), where C is a (potentially compound) ALCOIF -concept, r is an atomic role,
and v, v� ∈ NV .3 A conjunctive query q is a finite set of atoms. We use Var(q) to denote
the set of variables that occur in the query q. Let K be an ALCOIF KB, I = (·I, ∆I)
a model of K , q a conjunctive query, and π : Var(q) → ∆I a total function. We write
I |=π C(v) if π(v) ∈ C

I and I |=π r(v, v�) if �π(v), π(v�)� ∈ r
I. If I |=π at for all at ∈ q,

we write I |=π q and call π a match for I and q. We say that I satisfies q and write
I |= q if there is a match π for I and q. If I |= q for all models I of a KB K , we
write K |= q and say that K entails q. The conjunctive query entailment problem is,
given a knowledge baseK and a query q, to decide whetherK |= q. This is the decision
problem corresponding to query answering, see e.g. [11].

A domino system is a triple D = (T,H,V), where T = {1, . . . , k} is a finite set of
tiles and H,V ⊆ T × T are horizontal and vertical matching relations. A tiling of m×m

for a domino system D with initial condition c
0 = �t0

1, . . . , t
0
n
�, t

0
i
∈ T for 1 ≤ i ≤ n, is a

mapping t : {0, . . . ,m−1} × {0, . . . ,m−1} → T such that �t(i, j), t(i+1 mod m, j)� ∈ H,
�t(i, j), t(i, j + 1 mod m)� ∈ V , and t(i, 0) = t

0
i−1 (0 ≤ i, j < m). There exists a domino

system D0 for which it is N2ExpTime-complete to decide, given an initial condition c
0

of length n, whether D0 admits a tiling of 22n × 22n with initial condition c
0 [12].

3 Conjunctive Query Entailment inALCOIF

Our aim is to construct, for an initial condition c
0 of length n, an ALCOIF -KB K0

and conjunctive query q0 such thatK0 �|= q0 iff D0 admits a tiling of 22n ×22n with initial
condition c

0.
Intuitively, the models of K0 that we are interested in have the form depicted in

Figure 1: a torus of dimension 22n × 22n , where the lower left corner is identified by
the nominal o, the upper right corner by the nominal e, each horizontal dashed arrow
denotes the role h, and each vertical dotted arrow the role v. We will install two counters
that identify the vertical and horizontal position of torus nodes. To store the counter
values, we use binary trees of (roughly) depth n below the torus nodes, where each

3 Complex concepts C in atoms C(x) are used w.l.o.g.; to eliminate them, we can replace C(x)
with AC(x) for a fresh atomic concept AC and add C � AC to the TBox.
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{e}

{o}

22n

22n

2n

Fig. 1. Schematic depiction of the torus

of the 2n leaves store one bit of each counter (represented via concept names X and
Y). The filled circles in Figure 1 denote true torus nodes, which are labeled by a tile
later on, while the unfilled circles denote auxiliary nodes that will help us in properly
incrementing the counters. This incrementation is the main difficulty of the reduction,
and it is achieved with the help of the query q0. As the details are intricate, we defer a
discussion of the details until later, and first concentrate on the construction of K0.

The following concept inclusions (1) to (9) of K0 lay the foundation for enforcing
the torus structure with attached trees. Successors in trees are connected via the com-
position of the roles r

− and r, from now on denoted by r
−; r. This is needed in the query

construction later on, similar to the use of symmetric roles in [2, 3]. We call additional
nodes between r

− and r the ‘intermediate’ tree nodes. Note that no branching occurs
at intermediate nodes. Also for the query construction, the root of a tree below a true
torus node is the torus node itself while the root of a tree below an auxiliary torus node
is reachable by traveling one step along the role r (see Figure 1). To distinguish these
two kinds of trees, we label trees of the former kind with the concept name B and call
them black trees, and trees of the latter kind with the concept name W and call them
white trees. Later on, we will use white trees that are on the vertical axis to increment
the vertical counter and white trees that are on the horizontal axis to increment the hor-
izontal counter. To support this, we further label white trees of the former kind with V

and white trees of the latter kind with H. The basic idea for constructing the torus itself
is similar to what is done in [13, 7, 8]: the maximum value of both counters (indicated
by the concept names MX and MY ) identifies the upper right corner, which has to sat-
isfy the nominal e and is thus unique. Inverse functionality for h and v then guarantees
uniqueness of elements for all other values of the horizontal and vertical counters, and
that the torus ‘closes’ in the expected way. We use concept names L0, . . . , Ln to mark
the levels of the trees, to deal with the symmetry of the composition r

−; r. Thus, the
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B
L0

L1

L2

W

H W L0

L1

L2

A1 ¬A1

A1
A2

A1
¬A2

¬A1
A2

¬A1
¬A2

A1 ¬A1

A1
A2

A1
¬A2

¬A1
A2

¬A1
¬A2

Fig. 2. A black and a white tree, for n = 2

concept B � L0 identifies the true torus nodes.

{o} � B � L0 (1)
B � L0 � ∃h.(W � ∃r.(H �W � L0) � ∃h.(B � L0)) (2)
B � L0 � ∃v.(W � ∃r.(V �W � L0) � ∃v.(B � L0)) (3)

B � L0 � MX � MY � {e} (4)
Li � ∃r

−.∃r.(Ai+1 � Li+1) � ∃r
−.∃r.(¬Ai+1 � Li+1) i<n (5)

Ai � Lj � ∀r
−.∀r.(Lj+1 → Ai) 1≤i≤ j<n (6)

¬Ai � Lj � ∀r
−.∀r.(Lj+1 → ¬Ai) 1≤i≤ j<n (7)

C � ∀r.C � ∀r
−.C for all C ∈ {B,W,H,V} (8)

� � � 1h
−.� � � � 1v

−.� (9)

Note that the concept names A1, . . . , An implement a binary counter for the leafs of
the trees, i.e., for counting the bit positions in the horizontal and vertical counters. In
summary, the internal structure of the trees is as shown in Figure 2 where branching
tree nodes have dark background and intermediate nodes have light background.

The next step is to make sure that the horizontal and vertical counter have value 0
at the origin and that MX is true at the root of a tree when the horizontal counter has
reached the maximum value, and similarly for MY . We use ∀(r−; r)n.C to denote the 2n-
quantifier prefixed ∀r

−.∀r. · · · ∀r
−.∀r.C. Recall that the concept name X represents the

truth value of bits of the horizontal counter, and likewise for Y and the vertical counter.

{o} � ∀(r−; r)n.(¬X � ¬Y) (10)
Ln � (X ↔ MX) � (Y ↔ MY ) (11)

Li−1 � ∃r
−.∃r.(Li � Ai � MX) � ∃r

−.∃r.(Li � ¬Ai � MX) � MX 0<i≤n (12)
Li−1 � ∃r

−.∃r.(Li � Ai � MY ) � ∃r
−.∃r.(Li � ¬Ai � MY ) � MY 0<i≤n (13)

Li−1 � ∃r
−.∃r.(Li � ¬MX) � ¬MX 0<i≤n (14)

Li−1 � ∃r
−.∃r.(Li � ¬MY ) � ¬MY 0<i≤n (15)

The general strategy for updating the horizontal and vertical counter is as follows. We
introduce additional concept names X

� and Y
�, which represent the truth value of the

bits of two additional binary counters, the ‘primed versions’ of the horizontal and verti-
cal counter. Using K0, we ensure that, in black trees, the X-counter has the same value
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as the X
�-counter, and likewise for the Y- and Y

�-counter. In white trees, we distinguish
between horizontal incrementation indicated by the concept name H and vertical incre-
mentation indicated by the concept name V: if the tree satisfies H, then the value of
the X

�-counter is the value of the X-counter incremented by one, while the values of
the Y- and Y

�-counter coincide; if the tree satisfies V , it is the other way around. The
remaining job to be accomplished by the query q0 is then to
(∗) ensure that the value of the X

�-counter (resp. Y
�-counter) in a (black or white) tree

is identical to the value of the X-counter (resp. Y-counter) in its ‘successor trees’, i.e.,
in trees that can be reached by traveling a single step in the torus along the roles h or v.
This behavior of the counters, with the exception of (∗), is implemented by the subse-
quent concept inclusions. To increment a counter, we use a concept name F to mark the
bits that have to be flipped. Another concept name S , which is propagated down from
the root to a single leaf, is used to mark the unique bit of the incremented counter such
that (i) all bits to the right are flipped from 1 to 0, (ii) the bit itself is flipped from 0 to
1, and (iii) all bits to the left remain unchanged. As a special case, all bits flip when the
maximum counter value has been reached. In the following, CIs (16) to (20) implement
the proper marking by F and S , CIs (21) to (23) realize the actual incrementation of
the X-counter to the X

�-counter in (white) H-trees, and CI (24) ensures that the Y- and
Y
�-counters have the same value in H-trees and in black trees. We also need CIs (21)

to (24) with H replaced by V , X by Y , X
� by Y

�, Y by X, and Y
� by X

�.

L0 � (¬MX � ¬MY ) � S (16)
L0 � (MX � MY ) � F � ¬S (17)

Li−1 � S � ∀r
−.∀r.[Li → (Ai � ¬F � ¬S ) � (¬Ai � S )] �
∀r
−.∀r.[Li → (Ai � S ) � (¬Ai � F � ¬S )] 0<i≤n (18)

Li−1 � F � ¬S � ∀r
−.∀r.(Li → F � ¬S ) 0<i≤n (19)

Li−1 � ¬F � ¬S � ∀r
−.∀r.(Li → ¬F � ¬S ) 0<i≤n (20)

H � Ln � F � ¬S � X � ¬X
� (21)

H � Ln � S � ¬X � X
� (22)

H � Ln � ¬F � ¬S � (X � X
�) � (¬X � ¬X

�) (23)
(B � H) � Ln � (Y � Y

�) � (¬Y � ¬Y
�) (24)

To enable the construction of a query q0 that enforces (∗), we add a further (single) r
−; r-

successor to each leaf in each tree. At this extra node, which is marked with the concept
name Ln+1, the truth value of all concept names Ai, X, X

�, Y , Y
� is complemented com-

pared to its predecessor Ln-node. We also introduce a marker concept Q that is true at
the intermediate node between each Ln-node and Ln+1-node. This is similar to what is
done in [2, 3]. We call such intermediate nodes Q-nodes.

Ln � ∃r
−.(Q � ∃r.Ln+1) (25)

Ln � C � ∀r
−.∀r.(Ln+1 → ¬C) Ln � ¬C � ∀r

−.∀r.(Ln+1 → C)
for all C ∈ {A1, . . . , An, X, X

�,Y,Y �} (26)

The construction of K0 is not yet finished. However, it will be more convenient to
construct the remaining part along with the query q0. The query is assembled from
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�
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v v
�

n n 1

n n 11

Fig. 3. A counting component of the query q0 and the two ways to fold it

two types of components: counting components and copying components. We start with
presenting and explaining a simplified version of counting components, which are then
refined in a second step. The final query q0 will contain one counting component for
each bit of the counter A1, . . . , An that counts the leaves of our trees. The simplified
version of the counting component for Ai is shown as the topmost cycle in Figure 3,
where, for the moment, every arrow should be interpreted as a role atom that uses the
role name r. The goal is that matches of this query component should map (i) v to a
Q-node of a black tree and v

� to the Q-node of a white successor tree such that the
two predecessor Ln-nodes agree on the value of Ai or, symmetrically, (ii) v

� to a Q-
node of a white tree and v to the Q-node of a black successor tree such that the two
predecessor Ln-nodes agree on the value of Ai. By taking the union of all counting
queries for A1, . . . , An such that the variables v and v

� are shared, we thus link leaves
of successor trees that represent the same bit position for the horizontal and vertical
counter, which is the first important step towards enforcing (∗).

Due to the Q-concept at v and v
�, each variable labeled with Ai or ¬Ai is matched

to an Ln-node or an Ln+1-node. Ignoring the presence of the role names h and v in the
torus and pretending that white trees are rooted directly on the torus, each match of the
counting component gives rise to one of the two ‘foldings’ presented in Figure 3. These
foldings are obtained by identifying variables that are matched to the same domain
element, as indicated by the dotted lines. Intuitively, the two foldings correspond to
the bit Ai being false (upper folding) and true (lower folding). For brevity, we omit the
concept names Q, B,W in the foldings. Since the long sides of the counting component
are of length 2n + 1 (counted in terms of compositions r

−; r) and trees are of depth n,
the two trees involved in a match cannot be further away than one step in the torus. Due
to the use of B and W, they cannot be identical.

In the discussion of the simplified counting components above, we have neglected
the presence of the roles h and v in the torus that we need to ‘cross’ when matching
the query in the described way. Refining the counting queries to deal with these roles
is the major challenge in the current reduction, compared to the 2ExpTime lower bound
in [2, 3] where only a single role r is used. Note that we cannot just introduce a single

141



r
−

1
v r

−
2

v
−

r
−

3
h r

−
4

h
−

r
−

5
r

5
h r

4
h
−

r

3
v r

2
v
−

r

1
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Fig. 5. Side chains for branching (upper) and intermediate (lower) nodes

h-arrow and v-arrow into the counting components since we want to match either h or v,
but not both; moreover, the position of the h-arrow/v-arrow would shift back and forth
with the different ways to fold the query. To solve the problem, we replace each role
composition r

−; r in the query (but not in the trees!) with a composition of 18 roles that
we call a ‘meta role’, see Figure 4.

Note that the meta role is symmetric, like the composition r
−; r. The aim is that

each meta-role in the refined counting query matches one r
−; r-role composition that

connects two successor nodes in a tree. To resolve the mismatch between the role com-
position r

−; r of length two and the meta role of length 18, the meta role is designed
such that the remaining parts can be folded away into ‘side chains’ that we will add to
each tree, i.e., chains of roles that start at each tree node. There are five ways to achieve
such a folding, one for each corresponding pair of r

−- and r-arrows in the left and right
half of the meta role. For example, we can use the 3rd r

−-arrow and the 3rd r-arrow to
match the r

−; r-composition in the tree, and then have to fold away the prefix compo-
sition r

−; v; r
−; v
− before the 3rd r

−-arrow, the infix composition h; r
−; h

−; r
−; r; h; r; h

−

between the 3rd r
−-arrow and the 3rd r-arrow, and the postfix composition v; r; v

−; r

following the 3rd r-arrow. Observe that the infix composition is symmetric and thus
can be folded into a chain. The postfix composition is the converse of the infix compo-
sition, which will allow us to leave a side chain that we have entered with the postfix
composition using the prefix composition of the subsequent meta role. Similar foldings
allow us to match the r

−; r; h; r-compositions required to move up one level in a black
tree and then cross via an h-edge to the root of a white successor tree, the r

−; h; r
−; r-

compositions that allows us to cross from the root of a white tree to a black tree and
then move down one level, and to perform the two remaining crossing with h replaced
by v.

The scheme for adding side chains is shown in Figure 5, where intermediate tree
nodes (lower node on the center line) receive different chains than branching tree nodes
(upper node on the center line). These chains are added to every node in each tree
with the exception of the roots of black trees, as those are directly on the torus and
adding side chains would violate inverse functionality of h and v. Note that the side
chains attached to branching tree nodes are precisely the possible postfix compositions
mentioned above, while the side chains attached to intermediate tree nodes are foldings
of what we called infix compositions above. The chains are generated by the following
CIs, to be added to K0. We use the concept NB = (L0 � W) � �1≤i≤n+1 Li to identify
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Fig. 6. From black to white trees via h (left) and from white to black trees via h (right)

branching tree nodes and NI = ∃r.
�

1≤i≤n+1 Li to identify intermediate tree nodes.

NB � ∃h.∃r.∃h
−.∃r.∃v.∃r.∃v

−.∃r.� � ∃v.∃r.∃v
−.∃r.� �

∃h
−.∃r.∃v.∃r.∃v

−.∃r.� � ∃v
−.∃r.� (27)

NI � ∃v.∃r
−.∃v

−.∃r
−.∃h.∃r

−.∃h
−.∃r

−.� � ∃h.∃r
−.∃h

−.∃r
−.� �

∃v
−.∃r

−.∃h.∃r
−.∃h

−.∃r
−.� � ∃h

−.∃r
−.� (28)

In matches of the refined query, the endpoints of the two foldings shown in Figure 3 will
match at the end of (possibly empty) side chains at the level n+1, v and v

� will match at
the end of the side chains between the levels n and n + 1, and the adjacent inner nodes
labeled with ¬Ai resp. Ai will match at the end of the side chains at the level n. For this
reason, we propagate all relevant concept names to the end of those chains. For C ∈
{A1, . . . , An,¬A1, . . . ,¬An, X,¬X, Y,¬Y}, C� ∈ {Q, B,W}, add the concept inclusions

(Ln � Ln+1) � C � ∀h.∀r.∀h
−.∀r.∀v.∀r.∀v

−.∀r.C � ∀v.∀r.∀v
−.∀r.C �

∀h
−.∀r.∀v.∀r.∀v

−.∀r.C � ∀v
−.∀r.C (29)

Q � C� � ∀v.∀r
−.∀v

−.∀r
−.∀h.∀r

−.∀h
−.∀r

−.C� � ∀h.∀r
−.∀h

−.∀r
−.C� �

∀v
−.∀r

−.∀h.∀r
−.∀h

−.∀r
−.C� � ∀h

−.∀r
−.C� (30)

Figure 6 shows, for n = 2, how to fold the refined counting query such that v is mapped
to a Q-node of a black tree and v

� to a Q-node of a white successor tree that can be
reached via crossing an h-edge in the torus, and likewise for the case where v

� is mapped
to a white tree, and v to a black successor tree reachable via h. We display only those
side chains that are needed for accommodating the query match. To get started, note
that in the left part of Figure 6, the h-edge in the right half of a meta role as shown in
Figure 4 is matched onto the crossing h-edge in the model. The square and diamond
nodes indicate where the middle and end parts of each meta role in the query match.
Crossings of v-edges are similar.

We now define counting query parts in a more precise way. Note that each counting
query consists of 4n+ 4 meta roles. In the subsequent definition, q

i, j
m is a meta role used

in the counting query for Ai, where j ranges over 0, . . . , 4n + 3.
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Definition 1. For all i, j with 1 ≤ i ≤ n and 0 ≤ j < 4n + 4, put

q
i, j
m := { r(vi, j

1 , v
i, j
0 ), v(vi, j

1 , v
i, j
2 ), r(vi, j

3 , v
i, j
2 ), v(vi, j

4 , v
i, j
3 ), r(vi, j

5 , v
i, j
4 ), h(vi, j

5 , v
i, j
6 ),

r(vi, j
7 , v

i, j
6 ), h(vi, j

8 , v
i, j
7 ), r(vi, j

9 , v
i, j
8 ), r(vi, j

9 , v
i, j
10), h(vi, j

10, v
i, j
11), r(vi, j

11, v
i, j
12),

h(vi, j
12, v

i, j
13), r(vi, j

13, v
i, j
14), v(vi, j

14, v
i, j
15), r(vi, j

15, v
i, j
16), v(vi, j

17, v
i, j
16), r(vi, j

17, v
i, j+1
0 )}

with v
i,4n+4
0 = v

i,0
0 . For each i with 1 ≤ i ≤ n, the counting query for Ai is

q
i

c
:= { Ai(vi,0

0 ),¬Ai(vi,1
0 ), Ai(vi,2n+2

0 ),¬Ai(vi,2n+3
0 )} ∪

�

0≤ j<4n+4

q
i, j
m

with v
i,0
9 = v, vi,2n+2

9 = v
�
. The counting query qc for the whole counter is

qc := {B(v),Q(v),W(v�),Q(v�)} ∪
�

1≤i≤n

q
i

c

Note that each counting query q
i

c
is a cycle as intended since v

i,4n+4
0 = v

i,0
0 .

As explained above, the overall counting query qc links a Q-node x1 of a tree to the
Q-nodes x2 of its successor trees that represent the same bit position for the horizontal
and vertical counters. To establish the central property (∗) in models of K0 that do not

match the query q0 to be constructed, it thus remains to modify q0 such that it matches
only if the truth assignment at the Ln-predecessor x

�
1 of x1 to X

� and Y
� is not identical

to the truth assignment at the Ln-predecessor x
�
2 of x2 to X and Y . This is achieved by

the second type of component queries in q0, the copying components.
To prepare for these components, let us distinguish two types of side chains in the

tree nodes: the outgoing chains starting with h and v shown to the left in Figure 5 and
the incoming chains starting with the inverses of h and v show to the right in Figure 5.
As can be seen in Figure 6, when the query has a match, the incoming chains are used
in a predecessor tree and the outgoing chains are used in a successor tree. We will
distinguish the ends of incoming chains from the ends of the outgoing chains on the
levels n and n + 1 using an additional concept P:

(Ln � Ln+1) � ∀h.∀r.∀h
−.∀r.∀v.∀r.∀v

−.∀r.P � ∀v.∀r.∀v
−.∀r.P �

∀h
−.∀r.∀v.∀r.∀v

−.∀r.¬P � ∀v
−.∀r.¬P (31)

The copying components take the form displayed in Figure 7, i.e., there are 8 such
components in total. Each component is like the upper half of a counting component,
except that the concept labels have changed to negated conjunctions. In Figure 7, the
four copying components in each row take care of each possible truth assignment to
X
� and Y

� for the predecessor and the corresponding assignment to X and Y for the
successor. We need two queries per truth assignment to deal with the two possible ways
in which a counting query can match for the variables v and v

�:

(a) v matches into a tree that satisfies B, and v
� into a successor tree that satisfies W;

(b) v
� matches into a tree that satisfies W, and v into a successor tree that satisfies B;

To explain in detail how the copying queries work, consider case (a). Due to the Q-
label in the counting queries, the variables v and v

� can only be matched to Q-nodes.
Thus assume that v is matched to a Q-node x1 of a predecessor tree that satisfies B and
v
� to a Q-node x2 of a successor tree that satisfies W. The relevant queries are those
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Fig. 7. The 8 query copying components

from the first row in Figure 7. Let u be the neighboring variable of v in the copying
components, and u

� the neighboring variable of v
�; thus, both u and u

� are labeled with
negated conjunctions. Similar to the situation in Figure 6, u can only be matched to the
ends of two outgoing chains (satisfying P): one chain is at level n and another one is at
level n + 1. Let us refer to the ends of these chains as x

�
1 and x

��
1 respectively. Likewise,

u
� can only be matched to one of the two ends x

�
2 and x

��
2 of incoming chains (satisfying

¬P) at the levels n and n + 1, respectively.
First assume that the truth assignment at x

�
1 to X

� and Y
� is identical to the truth

assignment at x
�
2 to X and Y and thus there should be no match of the overall query

q0. Take the corresponding counting component from the first row, e.g., the first one
when X

�, Y
�, X, and Y are all interpreted as true. It can be seen that, in this situation,

the matches with u �→ x
�
1 or with u

� �→ x
�
2 are not possible because they violate the

concept labels of u and respectively u
�. The match u �→ x

��
1 and u

� �→ x
��
2 is also not

possible because the path from u to u
� is not long enough. Thus, there is no match of

this component, whence no match of the overall query q0.
Conversely, assume that the truth assignment at x

�
1 to X

� and Y
� is different from the

truth assignment at x
�
2 to X and Y , e.g., that x

�
1 satisfies X

� but x
�
2 does not satisfy X.

Since by (26) the truth values of X
� and X are complemented at the level n + 1, x

��
1 does

not satisfy X
� and x

��
2 satisfies X. Then the first two components from the first row have

a match u �→ x
��
1 and u

� �→ x
�
2 and the next two components have a match u �→ x

�
1 and

u
� �→ x

��
2 . All components in the second row have a match due to the use of the concept

name P in the labels (note the swapped v, v�). Thus,the overall query q0 matches.
A formal definition of copying queries can be found in [9].
This finishes the construction of the query q0 and of the part ofK0 that enforces the

torus structure. It remains to encode tilings of the domino system D0:

� � T1 � · · · � Tk Ti � T j � ⊥ 1 ≤ i < j ≤ k (32)
Ti � ∃h.T j � ⊥ Tk � ∃v.T� � ⊥ �i, j� � H, �k, �� � V (33)

Finally, we enforce the initial condition c
0 = �t0

1, . . . , t
0
n
� of the torus.

{o} � T
t
0
1
� ∀h.(T

t
0
2
� ∀h.(T

t
0
3
� ∀h.(T

t
0
4
� . . .∀h.T

t
0
n
. . .))) (34)

More details regarding the correctness of the reduction can be found in [9]. The most
challenging issue is to show that when D0 admits a tiling with initial condition c

0 and
we build a model I of K that has the intended torus shape, then I�| = q0: we need to
prove that there are no unintended foldings and matchings of the query q0.

Theorem 1. Conjunctive query entailment byALCOIF knowledge bases is co-N2Exp-
Time-hard.
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4 Conclusions

We have shown that conjunctive query entailment in the Description LogicALCOIF
is hard for co-N2ExpTime. The challenging problem of finding a matching upper bound,
or in fact any elementary upper bound, remains open.
Acknowledgments B. Glimm is supported by EPSRC grant EP/F065841/1, Y. Kazakov
by EPSRC grant EP/G02085X, and C. Lutz by DFG SFB/TR 8 “Spatial Cognition”.
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Rafael S. Gonçalves, Bijan Parsia, and Uli Sattler

School of Computer Science, University of Manchester, UK
{goncalvj,bparsia,sattler}@cs.man.ac.uk

Abstract. The detection of changes between OWL ontologies is an important
service for ontology engineering. There are several approaches to this problem,
both syntactic and semantic. A purely syntactic analysis of changes is insufficient
to detect changes with logical effect, while the current state of the art in semantic
diffing ignores logically ineffectual changes, which might be of great interest to
the user. We develop an exhaustive categorisation of ineffectual changes, based
on their justifications. In order to verify the applicability of our approach, we col-
lected 88 OWL versions of the National Cancer Institute (NCI) Thesaurus (NCIt),
and extracted all pairwise, consecutive diffs. We discovered a substantial number
of ineffectual changes and, as a result, argue that the devised categorisation of
changes is beneficial for ontology engineers. We devised and applied a method
for performance impact analysis (culprit finding) based on the diff between on-
tologies, and identified a number of culprits between two NCIt versions.

1 Motivation

The comparison of ontologies is a valuable service whether for purely analytic pur-
poses, versioning systems [3], or collaboration. When comparing two ontologies it is
desirable to detect both syntactic and logical changes. OWL defines a high level notion
of syntactic equivalence, so-called “structural equivalence”, which abstracts from such
concrete details as the order of axioms. Associated with structural equivalence is struc-

tural difference. A different syntactic approach is that of an edit-based diff, wherein
change records are produced within the ontology editor being used thereby capturing
the history of change, as implemented in Swoop [8]. The diffs mentioned so far, as well
as PROMPTDIFF [12], do not recognize the logical impact of changes. When analysing
the impact of changes, it is sensible to inspect not only logically effectual changes, but
also ineffectual ones since these might have been intended to have logical impact, and
thus may be of interest to users. Semantic diffs, such as CEX [10, 4], OWLDiff [11]
or ContentCVS [7] detect only effectual changes. So on the one hand, syntactic diffs
detect without distinction both effectual and ineffectual changes, and on the other hand
semantic diffs do not analyse ineffectual changes.

In this paper we propose a diff notion that builds on structural diff with a logical im-
pact analysis, which we refer to as intentional difference, incorporating a categorisation
of ineffectual axioms based on their justifications. The goal of this categorisation is to
suggest on the intent behind such changes. For the purpose of verifying the suitability
of our approach, we collected all 88 versions of the National Cancer Institute (NCI)
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Thesaurus (NCIt) available in OWL format, freely downloadable1 from the web, and
conducted a diachronic study of the corpus. This study consisted of the extraction of
all pairwise, consecutive diffs between NCIt versions. Our diff revealed a fairly high
number of ineffectual changes across the corpus, averaging at 13% and even reaching
values above 90%. In addition to this we carried out a reasoner performance test to in-
spect the performance impact of both effectual and ineffectual changes throughout the
NCIt. While ineffectual changes carry no logical impact, it is still the case that they have
a performance impact.2 The test revealed an unusual performance increase between 2
versions, the latter of which was 89% faster and also slightly bigger in number of ax-
ioms. This motivated a more in-depth performance impact analysis, wherein we attempt
to find subsets of the slow ontology without which the ontology performs considerably
faster (referred to as culprits). We devise a culprit finding method based on the diff
between ontologies, and demonstrate its applicability with a number of culprits for the
NCIt case.

2 Preliminaries

We assume the reader to be reasonably familiar with OWL [13], as well as the under-
lying description logics (DLs) [5], though detailed knowledge is not required. We do
use the notion of entailment [2], which is identical to the standard first order logic en-
tailment (albeit restricted to certain syntactic forms for consequences, typically atomic
subsumption). When comparing two versions of an ontology we refer to the earlier
version as O1, and the more recent as O2. A justification J of a consequence α is a
minimal subset of an ontology O that is sufficient for α to hold [9]. The signature of an
ontology O is denoted �O. An axiom α ∈ O1 is logically ineffectual for an ontology O2

iff α /∈ O2 and O2 |= α, and we often describe it as having no impact.

3 Ontology Difference

The problem of computing the difference between pairs of ontologies has been ap-
proached both syntactically and semantically. We distinguish two major aspects of on-
tology diffing: (i) the detection of changes, and (ii) the presentation of changes to the
end-user. As we analyse existing diff approaches, we point out that most effort has been
largely dedicated to (i). It is often the case that the output of diff operations is the set of
axioms or terms in the diff. While this may reflect the desired identification of change, it
does not convey sufficient information to the user w.r.t. the intent of changes, or whether
these are effectual or not.

3.1 Diff Desiderata

Table 1 summarises useful features of an ontology diff, and whether existing approaches
exhibit such desiderata.

1 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
2 A trivial example is adding all inferred subsumptions, therefore speeding up reasoning tasks.
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Table 1. Desiderata of ontology diffing approaches.

Properties ContentCVS CEX OWLDiff [11] PROMPTDIFF Swoop Diff

Difference Detection

Syntactic analysis � ✗ � � �
Semantic analysis � � � ✗ ✗
Effectively computable � ✗ � � �
OWL 2 adequacy � ✗ � ✗ �

Difference Output

Axiom-based � � � ✗ �
Term-based ✗ � ✗ � �
Effectual change analysis � � � N/A N/A
Ineffectual change analysis ✗ ✗ ✗ N/A N/A

Among the stated properties, an ideal logical diff should combine effective com-
putability for OWL 2 ontologies while providing some analysis of the impact of
changes, whether these be effectual or ineffectual. Although this is a complex task
in itself, from Table 1 we see that some diffs analyse effectual changes, but none of
them inspects ineffectual changes. This desideratum leads to the categorisation method
proposed in this paper for the latter type of changes.

3.2 Intentional Diff

Given the limitations of diff approaches described in Table 1 w.r.t. (ii) (as described
at the beginning of Section 3), we build on the notion of structural difference with a
categorisation mechanism for ineffectual axioms. This requires checking if axioms in
the first ontology are entailed by the second (and vice-versa), if that is not the case then
those axioms are regarded as effectual changes.

Consider the following ontologies O1 and O2, which are referred to in examples
throughout this section:

O1 = {α1 : A � C, O2 = {β1 : A � B � C,

α2 : B � C, β2 : A � B,

α3 : E ≡ D, β3 : B � C,

α4 : D � F, β4 : E � D,

α5 : F � G, β5 : D � E,

α6 : G � H � ∃s.H, β6 : E � B � ∃r.C,

α7 : F � I, β7 : D � E �G,

α8 : F � G � I � J} β8 : G � ∃s.H �H,

β9 : F � G � I}

The notion of structural difference is based on OWL’s notion of structural equiva-
lence (denoted ≡s) [13]. The latter deems the order of axioms in an ontology as irrele-

2 For DLs up to SROIQ.
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vant, as well as the order of disjunctions or conjunctions between concepts. Therefore
one can rule out differences that an otherwise syntactic equality based diff would detect.

Definition 1 (Structural Difference [6]) The structural difference between O1 and O2

are the following sets:

• Additions(O1,O2) = {β ∈ O2 | there is no α ∈ O1 s.t. α ≡s β}

• Removals(O1,O2) = {α ∈ O1 | there is no β ∈ O2 s.t. α ≡s β}

So if there is an axiom β s.t. β ∈ Additions, this implies that β ∈ O2 \ O1, and
similarly for Removals. Examine the following example:

Example 1 From the defined ontologies O1 and O2 we have that:

� Additions(O1,O2) = {β1, β2, β4, β5, β6, β7, β9}

� Removals(O1,O2) = {α1, α3, α4, α5, α7, α8}

Note that the axiom α2 is syntactically equal to β3; α2 = β3. We also have that

α6 ≡s β8. Therefore these axioms are not reported as changes.

Based on these two sets, the logical difference pinpoints which axioms in Additions
(or Removals) affect the set of entailments of O1 (or O2). In other words, it distin-
guishes between those axioms in the structural difference which are entailed by O1 (or
O2), as follows:

Definition 2 (Logical Difference) The logical difference between O1 and O2 are the

following sets:

• EffectualAdditions(O1,O2) = {β ∈ Additions(O1,O2) | O1 � β}

• EffectualRemovals(O1,O2) = {α ∈ Removals(O1,O2) | O2 � α}

• IneffectualAdditions(O1,O2) = Additions \EffectualAdditions
• IneffectualRemovals(O1,O2) = Removals \EffectualRemovals

The resulting sets IneffectualAdditions and IneffectualRemovals are composed of
those axioms which do not change the set of entailments of O1 and O2, respectively. An
axiom β is in IneffectualAdditions iff O1 |= β, and similarly for IneffectualRemovals
(Example 2).

Example 2 Given the sets Additions and Removals (from Example 1) we have that:

� EffectualAdditions(O1,O2) = {β2, β6}

� EffectualRemovals(O1,O2) = {α4, α8}

� IneffectualAdditions(O1,O2) = {β1, β4, β5, β7, β9}

� IneffectualRemovals(O1,O2) = {α1, α3, α5, α7}

In order to characterise ineffectual changes, we devise a categorisation of axioms
based on their justifications as follows:

Definition 3 (Intentional difference) An axiom α ∈ IneffectualRemovals is:
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• Strengthened, if there is a J for α with J ∩ EffectualAdditions �= ∅.

• Rewritten, if there is a justification J for α with J ∩Additions �= ∅, and α |= J .

If J ⊆ Additions then α is a complete rewrite, otherwise a partial rewrite.

• Redundant, if there is a J for α with J ⊆ (O1 ∩ O2). If J ⊆ (O1 ∩ O2) ∪
IneffectualAdditions then α is an avoided redundancy.

To obtain the corresponding categories for added axioms β ∈ IneffectualAdditions, re-

place α, Additions, EffectualAdditions and IneffectualAdditions with β, Removals,
EffectualRemovals and IneffectualRemovals respectively. In IneffectualAdditions
the label for the criteria of Strengthened axioms changes to Weakened axioms.

The intentional difference gives possibly overlapping sets of axioms, as demon-
strated in Example 3. Also we note that these categories are exhaustive, in the sense
that there is no axiom such that the justifications of which do not imply one of the
defined categories. Consider an axiom α and ontologies O1 and O2, with α ∈ O1

but α /∈ O2, and O2 |= α. Then there must be a justification J ⊆ O2 for
α. If J ⊆ (O1 ∩ O2) ∪ IneffectualAdditions then α is redundant, otherwise if
J ∩ EffectualAdditions �= ∅, then α is strengthened.

Example 3 Given the sets IneffectualAdditions and IneffectualRemovals (from Ex-

ample 2) we have that:

O1 −→O 2 O2 −→O 1

� Rewritten = {α3} � Rewritten = {β9}

� Strengthened = {α1} � Weakened = {β7, β9}

� Redundant = {α1, α3, α5, α7} � Redundant = {β1, β4, β5, β7, β9}

Note that the existence of a rewritten axiom from O1 to O2 does not imply that the

same holds in the opposite direction. This is applicable to all categories. Also we can

have that an axiom is in more than one categorical set, exemplified as follows:

Rewritten and redundant The axiom α3 has been rewritten from O1 to O2. The justi-

fication for α3 is J1 = {β4, β5}, which is categorised as a rewrite since α3 |= J1.

However, since {β4, β5} ∈ IneffectualAdditions, J1 also indicates a redundancy.

So the axiom α3 is part rewritten part redundant.

Strengthened and redundant Consider axiom α1; we can see that O2 |= α1. A jus-

tification J1 for α1 is J1 = {β2, β3}, which indicates a strengthening (since

β2 ∈ EffectualAdditions), as well as a redundancy (β3 ∈ O1∩O2). Another justi-

fication J2 = {β1, β3} indicates a strict redundancy; β1 ∈ IneffectualAdditions.
Rewritten, weakened and redundant Axiom β9 is categorised as rewritten, weak-

ened and redundant. A justification for β9 is J1 = {α5, α7}, where β9 |= J1,

pointing to a rewrite. We also have that {α5, α7} ∈ IneffectualRemovals, there-

fore being categorised as redundant as well. A second justification is J2 = {α8},

and since α8 ∈ EffectualRemovals, β9 is categorised as weakened.

While the logical diff identifies those logically ineffectual axioms in the difference,
it does not suggest on the intent of change or present appropriate reasons for it, i.e.
justifications. With the categorisation method described, users have, at the very least, an

151



indicator as to why such axioms have no impact. Note that these categories are merely
suggestive of the developers’ intent. In order to ensure the real intent one would require
either a detailed edit-based diff or contact with the ontology developers.

4 Empirical results

In order to substantiate our approach to ontology diffing, we carried out a diachronic
study of the NCIt using the methods described. The NCIt archive3 contains 88 ver-
sions of the ontology in OWL format, two of which were unparsable (releases 05.03F
and 05.04d) with the OWL API,4 and consequently Protégé.5 The experiment ma-
chine is an Intel Xeon Quad-Core 3.20GHz, with 12Gb DDR3 RAM dedicated to
the Java Virtual Machine (JVM v1.5). The system runs Mac OS X 10.6.7, and all
tests were run using the OWL API (v3.1). All gathered test data is available from
http://owl.cs.manchester.ac.uk/ncit, a part of it is published on Google
Public Data Explorer,6 and can be visualised at http://bit.ly/jFKU3R.

4.1 Axioms Difference

The logical difference throughout the NCIt time-line consists mostly of subclass axioms
(see Figure 1, and for complete results the mentioned website), with an average of 75%
(excluding O14 and O16). The average proportion of logical changes is 15%, and the
remaining are annotation changes. It should be noted that, despite the large number of
annotations, NCIt developers devoted considerable effort towards the logical part of the
ontology. Version O6 is a curious case, where a large number of classes (5170) were
renamed,7 and around 220,000 annotations and 14,418 subclass axioms were deleted.
This indicates a possible re-modelling, or mass-renaming of classes in the NCIt at this
point. More evidence to support this includes the addition of 30,859 subclass axioms,
9,070 classes and 23 object properties (and roughly 240,000 entity annotations). Simi-
larly in O25 a series of changes were carried out to the subsumption hierarchy, with the
removal of 8,231 subclass axioms and 2,899 equivalent class axioms compared to the
previous version, and also the addition of 10,591 subclass axioms and 3,011 equivalent
class axioms.

There is a fair amount of ineffectual removals in the corpus, reaching values of 93%
in O29 or 97% in O16, and with an average of 35% of all logical removals (see Figure
1). Out of these ineffectual removals 92% turned out to be strengthened axioms (e.g.
O27 has 3,104 strengthened axioms out of 3,843 removals), while 42% were removed
redundancies. On average 5% of logical additions are ineffectual, yet there are some
high values such as 61% in O24. Among these 73% are added redundancies, and 82%
are weakened axioms. We also identified a number of rewrites in the corpus. Particularly

3 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
4 http://owlapi.sourceforge.net/
5 http://protege.stanford.edu/
6 http://www.google.com/publicdata/home
7 Since throughout the NCIt evolution no classes are removed.
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from O32 to O33 there are 227 rewritten axioms, typically taking a form as shown in
Example 4.

Example 4 A ≡ B � (∃r.D) � (∃s.F ) � (∀t.G) rewritten into:

A ≡ B � ((∃r.D) � (∃s.F )) � (∀t.G)

This kind of change is not only syntactic but also trivial and easily detected. While
ideally the underlying structural diff would not include these, at least with our categori-
sation and alignment with source axioms, it is easy to spot and recognize the triviality.
One can also argue that certain ineffectual changes are in fact refactorings of one version
into another, albeit in the case of strengthened and weakened axioms one could say that
the intention was exactly that but turned out not to have the desired effect. The distinc-
tion here should be made that the strengthening of an axiom does not necessarily mean
strengthening of the ontology. Consider an ontology O1 = {α1 : A � B,α2 : A � C},
and a change of α1 into A � B �C. The axiom α1 was strengthened, but the resulting
ontology O2 = {α1 : A � B � C,α 2 : A � C} was not. However, if we change
α2 ∈ O2 into A � C �D, then we can say both the axiom α2 and the ontology O2 are
strengthened.

We noted a recurring trend throughout the NCIt corpus, which is the addition of
redundancies. This trend has more incidence up until O8, but there are high values in
the rest of the corpus as well, such as O35 with 174 added redundant axioms (see Figure
1). The highest value found is in O17, where 482 redundant axioms were added. Upon
investigating this phenomenon, we found that such added redundancies are, in most or
all cases, entailments from previous versions. These entailments are those derived from
the transitivity of the subclass relationship, e.g. O1 = {α1 : A � ∃r.B,α 2 : C � A},
O2 = {α1, α2, α3 : C � ∃r.B}. From the example we see that α3 is redundant; C � A

suffices for C � ∃r.B to hold.
Overall the average of ineffectual changes is 13%, while the remaining are

effectual. However there are cases where the number of ineffectual changes is quite
high, such as O24 where 52% of logical changes are ineffectual, as well as O27, O29

and O30 with 48% each. In retrospect this is a high amount of changes that would go
unexplained by existing diffs, and while structural diff captures this it does not analyse
the logical impact of such changes.

4.2 Reasoner Performance

It is often the case that, for reasoner testing, only a few or even one ontology version
is tested against. There is no reported reasoner benchmark using a corpus of the same
kind as the one here described. So, in the process of analysing the NCIt, we evaluated
how modern reasoners handle all published OWL versions of the NCIt. Three major DL
reasoners were put to the test; FaCT++ (v1.5.1), Pellet (v2.2.2) and HermiT (v1.3.3).
Since we also possess the axioms in the difference between NCIt versions, this allows
us to test incremental reasoning as well.8 In Figure 2 we plot the reasoning times in a

8 As implemented within Pellet.
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Fig. 1. Logical diff across selected versions of the NCIt (number of axioms).

logarithmic scale of each reasoner, comprising consistency checking, classification and
concept satisfiability (denoted RT(O)). Out of the three reasoners put to test, FaCT++
behaves consistently faster than Pellet and HermiT (O14 and O16 aside).

This performance test also shows that, to some degree, incremental reasoning pro-
vides a big advantage when handling the NCIt (or other large ontologies) in terms of
reasoning time. However it did not terminate upon classifying O14 and, like HermiT,9
O16. This is due to the abundance of individuals: incremental reasoning is based on
locality-based modules [1], and these behave poorly in the presence of individuals.
Aside from these two cases, the timings gathered using the incremental classifier were
consistently below 5 seconds per version, across the corpus.

5 Culprit Finding

Upon completing the reasoner performance test we noted that, from O79 to O80

(in Figure 2), there is a significant performance improvement in HermiT. While our
initial premise was to categorise logical diff-based impact between ontologies, now
we encounter another problem: identifying and dissecting performance impact. We
ascertained that the source of the bad performance is in the diff removals between
those versions (R = Removals(O79,O80)), as with the additions of O80 the rea-
soning time was substantially lower. In order to investigate this phenomenon, we
started with a brute-force culprit finding approach: for each axiom α ∈ R check if
RT(O80 ∪ {α}) � RT(O80). The size of R is 4,583 axioms, making this an expen-
sive approach. It is also naive in the sense that culprits are not necessarily singleton
sets. Nevertheless we examined RT(O80 ∪ {α ∈ R}) and found 13 (effectual) axioms
which yield reasoning times ranging from 76 to 8,490 seconds. Surprisingly adding all

9 HermiT returns a “StackOverflowError” when classifying O16, both in Protégé and OWL API.
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Fig. 2. Reasoner performance across NCIt (in seconds).

13 axioms to O80 results in a reasoning time of little over 9 hours. Thus some of the
non-culprit additions exhibit a protective effect.

However, this approach is not only computationally expensive, but also relies on
the existence of a diff which is not always available. We might want, given an “un-
manageable” ontology, to find a subset thereof with which one can work with. As such
we carried out a test partly based on the method described in [14], wherein we test the
satisfiability checking time of each concept in the ontology. Such a test may be sugges-
tive of the amount of time the reasoner spends on those concepts during classification
(our culprit finding method is described in Algorithm 1). In order to extract a logically
coherent subset of the ontology, which would be useful for repairing the culprit, we use
the notion of a locality-based module [1]. We found a total of 12 concepts which have
satisfiability checking times far greater than the average (see Table 2). The locality-
based modules for the signature of the usage closure of each concept are significantly
smaller than O79, the largest of which has 4,305 axioms (out of 116,587 logical ax-
ioms in O79). We found 9 modules Mi for which RT(O79 \Mi) is nearly an order of
magnitude faster than RT(O79) (RT(O79) = 430 seconds).

6 Discussion and Outlook

We have demonstrated with the diachronic study of the NCIt that merely syntactic diffs
do not provide nearly enough insight into the impact of changes carried out, since log-
ical differences are not identified. We found that ineffectual changes exist and account
for a significant amount of logical changes throughout the NCIt. Such changes are dis-
carded by semantic diffs, yet we show that they may provide helpful modelling insights.
The axiom categorisation we devised allows ontology engineers to understand the lack
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Algorithm 1 Identify subsets of an ontology O for which reasoning times are consid-
erably better than the original ontology.

Input: Ontology O

Output: Set of modules S, wherein for each Mi ∈ S: RT(O \Mi) � RT(O)

S ← ∅; BadConcepts ← ∅

for all concepts C ∈ �O do

T imes ← T imes ∪ �C, SATtime(C)�
end for

for all C ∈ �O do

if SATtime(C) ≥ average(SATtimes ∈ T imes)× 50 then

BadConcepts ← BadConcepts ∪ C
end if

end for

for all C ∈ BadConcepts do

Σ = {terms t ∈ Usage(C)}
M = �⊥*-mod(Σ)
if RT(O \M) � RT(O) then

S ← S ∪M

end if

end for

return S

Concept #Mi HermiT-RT(O \Mi) Pellet-RT(O \Mi)
Cerebral Glioblastoma 3029 56.7 38.1
TP53 Gene 3933 50.4 61.5
TP53 wt Allele 3871 51.8 44.3
Erlotinib Paclitaxel Trastuzumab 4021 53.9 94.6
Tumor Protein-p53 3894 51.4 102.2
Platelet-Derived Growth Factor 3201 54.8 60.6Receptor-Like Protein
HRAS wt Allele 3302 63.1 44.2
p21 H-Ras Protein 3329 62.9 89.7
AC-T-T Regimen 4305 50.7 97.2

Table 2. Extracted culprits and corresponding concepts found in O (time in seconds).

of impact of their changes, and possibly refine these before publishing newer versions,
particularly if redundancies are present.

From our structural analysis, we were able to gain considerable insight into the NCIt
and its evolution. By looking at the entire history, it became relatively straightforward
to identify tool artefacts and significant events and thus to disentangle accidental and
essential features of the ontology. We are currently confirming our interpretation of var-
ious events with the EVS and thus far it conforms to their understanding of the history.
Such an analysis is proving useful to the EVS as they find instances of the OWL version
that do not correspond with their intent, and thus allowing them to publish corrections.
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In the future we plan to apply a similar categorization to logically effectual changes. We
also intend to examine the stability of entailments, i.e., whether an entailment persists
throughout some or all NCIt versions. Finally, more elaborate forms of structural anal-
ysis, such as examining the justificatory structure [9], hold great promise for exposing
the axiomatic richness of the modelling.

The reasoner performance results identify areas of performance weakness that
would not have been evident using standard “grab a version” methods. Furthermore,
we demonstrate the advantage (in terms of time) of using incremental reasoning for on-
tology engineering tasks, especially when large and complex ontologies are involved.
We found in the NCIt corpus a realistic case for performance impact analysis, based on
which we identified a number of meaningful culprits. The preliminary culprit finding
methods and results described indicate that this approach works reasonably well. How-
ever the question of how to present these culprits to, and validate our approach with
users still remains.
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Abstract. We consider the setting of ontological database access, where an A-
box is given in form of a relational database D and where a Boolean conjunctive
query q has to be evaluated against D modulo a T -box Σ formulated in DL-
Lite or Linear Datalog±. It is well-known that (Σ, q) can be rewritten into an
equivalent nonrecursive Datalog program P that can be directly evaluated over
D. However, for Linear Datalog± or for DL-Lite versions that allow for role
inclusion, the rewriting methods described so far result in a nonrecursive Datalog
program P of size exponential in the joint size of Σ and q. This gives rise to
the interesting question of whether such a rewriting necessarily needs to be of
exponential size. In this paper we show that it is actually possible to translate
(Σ, q) into a polynomially sized equivalent nonrecursive Datalog program P .

1 Introduction

This paper is about query rewriting in the context of ontological database access. Query
rewriting is an important new optimization technique specific to ontological queries.
The essence of query rewriting, as will be explained in more detail below, is to com-
pile a query and an ontological theory (usually formulated in some description logic or
rule-based language) into a target query language that can be directly executed over a
relational database management system (DBMS). The advantage of such an approach
is obvious. Query rewriting can be used as a preprocessing step for enabling the ex-
ploitation of mature and efficient existing database technology to answer ontological
queries. In particular, after translating an ontological query into SQL, sophisticated
query-optimization strategies can be used to efficiently answer it. However, there is
a pitfall here. If the translation inflates the query excessively and creates from a rea-
sonably sized ontological query an enormous exponentially sized SQL query (or SQL
DDL program), then the best DBMS may be of little use.

Main results. We show that polynomially sized query rewritings into nonrecur-
sive Datalog exist in specific settings. Note that nonrecursive Datalog can be efficiently
translated into SQL with view definitions (SQL DDL), which, in turn, can be directly
executed over any standard DBMS. Our results are — for the time being — of theoret-
ical nature and we do not claim that they will lead to better practical algorithms. This
will be studied via implementations in the next future. Our main result applies to the
� Future improvements and extended versions of this paper will be published in arXive-CORR

at http://arxiv.org/abs/1106.3767
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setting where ontological constraints are formulated in terms of tuple-generating de-

pendencies (tgds), and we make heavy use of the well-known chase procedure [17, 14].
For definitions, see Section 2. The result after chasing a tgd set Σ over a database D is
denoted by chase(D,Σ ).

Consider a set Σ of tgds and a database D over a joint signature R. Let q be a
Boolean conjunctive query (BCQ) issued against (D,Σ ). We would like to transform q

into a nonrecursive Datalog query P such that (D,Σ ) |= q iff D |= P . We assume here
that P has a special propositional goal goal, and D |= P means that goal is derivable
from P when evaluated over D. Let us define an important property of classes of tgds.

Definition 1. Polynomial witness property (PWP). The PWP holds for a class C of

tgds if there exists a polynomial γ such that, for every finite set Σ ⊆ C of tgds and each

BCQ q, the following holds: for each database D, whenever (D,Σ ) |= q, then there is

a sequence of at most γ(|Σ|, |q|) chase steps whose atoms already entail q.

Our main technical result, which is more formally stated in Section 3, is as follows.
Theorem 1. Let Σ be a set of tgds from a class C enjoying the PWP. Then each BCQ

q can be rewritten in polynomial time into a nonrecursive Datalog program P of size

polynomial in the joint size of q and Σ, such that for every database D, (D,Σ ) |= q if

and only if D |= P . Moreover, the arity of P is max(a+2, 9), where a is the maximum

arity of any predicate symbol occurring in Σ, in case a sufficiently large linear order

can be accessed in the database, or otherwise by O(max(a + 2, 9) · logm), where m

is the joint size of q and Σ.

Other Results. From this result, and from already established facts, a good number
of further rewritabliity results for other formalisms can be derived. In particular, we can
show that conjunctive queries based on other classes of tgds or description logics can
be efficiently translated into nonrecursive Datalog. Among these formalisms are: linear
tgds, originally defined in [5] and equivalent to inclusion dependencies, various major
versions of the well-known description logic DL-Lite [9, 20], and sticky tgds [8] as well
as sticky-join tgds [6, 7]. For space reasons, we will just give an overview and very short
explanations of how each of these rewritability results follows from our main theorem.

Structure of the Paper. The rest of the paper is structured as follows. In Section 2
we state a few preliminaries and simplifying assumptions. In Section 3, we explain the
idea of the proof of the main result. Section 4, contains the other results following from
the main result. A brief overview of related work concludes the paper in Section 5.

2 Preliminaries and Assumptions

We assume the reader to be familiar with the terminology of relational databases and
the concepts of conjunctive query (CQ) and Boolean conjunctive query (BCQ). For
simplicity, we restrict our attention to Boolean conjunctive queries q. However, our
results can easily be reformulated for queries with output, see the extended version of
this paper [13]).

Given a relational schema R, a tuple-generating dependency (tgd) σ is a first-order
formula of the form ∀X∀Y Φ(X, Y )→∃Z Ψ(X,Z), where Φ(X,Y ) and Ψ(X,Z)
are conjunctions of atoms over R, called the body and the head of σ, denoted body(σ)
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and head(σ), respectively. We usually omit the universal quantifiers in tgds. Such σ is
satisfied in a database D for R iff, whenever there exists a homomorphism h that maps
the atoms of Φ(X,Y ) to atoms of D, there exists an extension h� of h that maps the
atoms of Ψ(X,Z) to atoms of D. All sets of tgds are finite here. We assume in the rest
of the paper that every tgd has exactly one atom and at most one existentially quantified
variable in its head. A set of tgds is in normal form if the head of each tgd consists
of a single atom. It was shown in [4, Lemma 10] that every set Σ of TGDs can be
transformed into a set Σ� in normal form of size at most quadratic in |Σ|, such that Σ
and Σ� are equivalent with respect to query answering. The normal form transformation
shown in [4] can be achieved in logarithmic space. It is, moreover, easy to see that this
very simple transformation preserves the polynomial witness property.

For a database D for R, and a set of tgds Σ on R, the set of models of D and Σ,
denoted mods(D,Σ ), is the set of all (possibly infinite) databases B such that (i) D⊆B

and (ii) every σ ∈Σ is satisfied in B. The set of answers for a CQ q to D and Σ, denoted
ans(q,D,Σ ), is the set of all tuples a such that a ∈ q(B) for all B ∈mods(D,Σ ). The
answer for a BCQ q to D and Σ is yes iff the empty tuple is in ans(q,D,Σ ), also
denoted as D ∪Σ |= q.

Note that, in general, query answering under tgds is undecidable [2], even when the
schema and tgds are fixed [4]. Query answering is, however, decidable for interesting
classes of tgds, among which are those considered in the present paper.

The chase procedure [17, 14] uses the following oblivious chase rule.
TGD CHASE RULE. Consider a database D for a relational schema R, and a tgd σ

on R of the form Φ(X,Y ) → ∃Z Ψ(X, Z). Then, σ is applicable to D if there
exists a homomorphism h that maps the atoms of Φ(X,Y ) to atoms of D. Let σ be
applicable to D, and h1 be a homomorphism that extends h as follows: for each Xi ∈

X , h1(Xi) = h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a fresh null value
(i.e., a Skolem constant) different from all nulls already introduced. The application of

σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D (which is possible when
Z is empty).

The chase algorithm for a database D and a set of tgds Σ consists of an exhaustive
application of the tgd chase rule in a breadth-first (level-saturating) fashion, which leads
as result to a (possibly infinite) chase for D and Σ. Each atom from the database D is
assigned a derivation level. Atoms in D have derivation level 0. If an atom has not
already derivation level ≤ i but can be obtained by a single application of a tgd via the
chase rule from atoms having derivation level ≤ i, then its derivation level is i+1. The
set of all atoms of derivation level ≤ k is denoted by chasek(D,Σ ). The chase of D
relative to Σ, denoted chase(D,Σ ), is then the limit of chasek(D,Σ ) for k → ∞.

The (possibly infinite) chase relative to tgds is a universal model, i.e., there exists
a homomorphism from chase(D,Σ ) onto every B ∈mods(D,Σ ) [11, 4]. This result
implies that BCQs q over D and Σ can be evaluated on the chase for D and Σ, i.e.,
D∪Σ |= q is equivalent to chase(D,Σ ) |= q.

A chase sequence of length n based on D and Σ is a sequence of n atoms such that
each atom is either from D or can be derived via a single application of some rule in Σ

from previous atoms in the sequence. If S is such a chase sequence and q a conjunctive
query, we write S |= q if there is a homomorphism from q to the set of atoms of S.
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We assume that every database has two constants, 0 and 1, that are available via
the unary predicates Zero and One, respectively. Moreover, each database has a binary
predicate Neq such that Neq(a, b) is true precisely if a and b are distinct values.

We finally define N -numerical databases. Let D be a database whose domain does
not contain any natural numbers. We define DN as the extension of D by adding the
natural numbers 0, 1, . . . , N to its domain, a unary relation Num that contains exactly
the numbers 1, . . . , N , binary order relations Succ and < on 0, 1, . . . , N , expressing
the natural successor and “<” orders on N , respectively. 3 We refer to DN as the
N -numerical extension of D, and, a so extended database as N -numerical database.
We denote the total domain of a numerical database DN by domN (D) and the non-
numerical domain (still) by dom(D). Standard databases can always be considered to
be N -numerical, for some large N by the standard type integer, with the < predicate
(and even arithmetic operations). A number maxint corresponding to N can be defined.

3 Main Result

Our main result is more formally stated as follows:

Theorem 1. Let C be a class of tgds in normal form, enjoying the polynomial wit-

ness property and let γ be the polynomial bounding the number of chase steps (with

γ(n1, n2) ≥ max(n1, n2), for all naturals n1, n2). For each set Σ ⊆ C of tgds and

each Boolean CQ q, one can compute in polynomial time a nonrecursive Datalog pro-

gram P of polynomial size in |Σ| and |q|, such that, for every database D it holds

D,Σ |= q if and only if D |= P . Furthermore:

(a) For N -numerical databases D, where N ≥ γ(|Σ|, |q|), the arity of P is max(a +
2, 9), where a is the maximum arity of any predicate symbol occurring in Σ;

(b) otherwise (for non-numerical databases), the arity of P is O(max(a + 2, 9) ·
log γ(|Σ|, |q|)), where a is as above.

We note that N is polynomially bounded in |Σ| and |q| by the polynomial γ that
only depends on C. The rest of this section explains the basic ideas of the proof of this
result. A more detailed proof is given in [13].

High-level idea of the proof. We first describe the high level idea of the con-
struction of the Datalog program P . It checks whether there is a chase sequence
S = t1, . . . , tN with respect to D and Σ and a homomorphism h from q to (the set
of atoms of) S. To this end, P consists of one large rule rgoal of polynomial size in N

and some shorter rules that define auxiliary relations and will be explained below.
The aim of rgoal is to guess the chase sequence S and the homomorphism q at the

same time. We recall that N does not depend on the size of D but only on |Σ| and
|q| and thus rgoal can well be as long as the chase sequence and q together. One of the
advantages of this approach is that we only have to deal with those null values that
are actually relevant for answering the query. Thus, at most N null values need to be
represented.

3 Of course, if dom(D) already contains some natural numbers we can add a fresh copy of
{0, 1, . . . , N} instead.
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One might try to obtain rgoal by just taking one atom Ai for each tuple ti of S and
one atom for each atom of q and somehow test that they are consistent. However, it is
not clear how consistency could possibly be checked in a purely conjunctive fashion.4
There are two ways in which disjunctive reasoning is needed. First, it is not a priori
clear on which previous tuples, tuple ti will depend. Second, it is not a priori clear to
which tuples of S the atoms of q can be mapped.

To overcome these challenges we use the following basic ideas.

(1) We represent the tuples of S (and the required tuples of D) in a symbolic fashion,
utilizing the numerical domain.

(2) We let P compute auxiliary predicates that allow us to express disjunctive relation-
ships between the tuples in S.

Example 1. We illustrate the proof idea with a very simple running example, shown in
Figure 1.

(a) Σ :
σ1: R1(X,Y ) → ∃Z R4(X,Y, Z)
σ2: R2(Y, Z) → ∃X R4(X,Y, Z)
σ3: R3(X,Z) → ∃Y R4(X,Y, Z)
σ4: R4(X1, Y1, Z1), R4(X2, Y2, Z2) → R5(X1, Z2)

(b) q : R5(X,Y ), R3(Y,X)
(c) D :

R1

a b
c d

R2

e g
R3

g a
g h

Fig. 1. Simple example with (a) a set Σ of tgds, (b) a query q and (c) a database D.

A possible chase sequence in this example is shown in Figure 2(a). The mapping X �→ a

and Y �→ g, maps R5(X,Y ) to t5 and R3(Y,X) to t6, thus satisfying q.

(a)

– t1: R1(a, b)
– t2: R4(a, b,⊥2)
– t3: R2(e, g)
– t4: R4(⊥4, e, g)
– t5: R5(a, g)
– t6: R3(g, a)

(b)

– t1: R1(a, b, a)
– t2: R4(a, b,⊥2)
– t3: R2(e, g, e)
– t4: R4(⊥4, e, g)
– t5: R5(a, g, a)
– t6: R3(g, a, g)

(c)

i ri fi xi1 xi2 xi3 si ci1 ci2
1 1 0 a b a 0 0 0
2 4 1 a b 2 1 1 1
3 2 0 e g e 0 0 0
4 4 1 4 e g 2 3 3
5 5 1 a g a 4 2 4
6 3 0 g a g 0 0 0

Fig. 2. (a) Example chase sequence, (b) its extension and (c) its encoding. t2 is obtained by
applying σ1 to t1. Likewise t4 and t5 are obtained by applying σ2 to t3 and σ4 to t2 and t4,
respectively.

Notation and conventions. Let C be a class of tgds enjoying the PWP, let Σ be a set
of tgds from C, and let q be a BCQ. Let R1, . . . Rm be the predicate symbols occurring
in Σ or in q. We denote the number of tgds in Σ by �.

4 Furthermore, of course, there are no relations to which the atoms Ai could possible be
matched.
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Let N := γ(|Σ|, |q|) where γ is as in Definition 1, thus N is polynomial in |Σ| and
|q|. By definition of N , if (D,Σ ) |= q, then q can be witnessed by a chase sequence
Γ of length ≤ N . Our assumption that γ(n1, n2) ≥ max(n1, n2), for every n1, n2,
guarantees that N is larger than (i) the number of predicate symbols occurring in Σ, (ii)
the cardinality |q| of the query, and (iii) the number of rules in Σ.

For the sake of a simpler presentation, we assume that all relations in Σ have the
same arity a and all rules use the same number k of tuples in their body. The latter
can be easily achieved by repeating tuples, the former by filling up shorter tuples by
repeating the first tuple entry. Furthermore, we only consider chase sequences of length
N . Shorter sequences can be extended by adding tuples from D.

Example 2. Example 1 thus translates as illustrated in Figure 3. The (extended) chase
sequence is shown in Figure 2 (b). The query q is now satisfied by the mapping X �→ a,
Y �→ g, U �→ g, V �→ a, thus mapping R5(X,Y,X) to t5 and R3(Y,X, Y ) to t6.

(a) Σ :
σ1: R1(X,Y,X), R1(X,Y,X) → ∃Z R4(X,Y, Z)
σ2: R2(Y, Z, Y ), R2(Y, Z, Y ) → ∃X R4(X,Y, Z)
σ3: R3(X,Z,X), R3(X,Z,X) → ∃Y R4(X,Y, Z)
σ4: R4(X1, Y1, Z1), R4(X2, Y2, Z2) →

R5(X1, Z2, X1)

(b) q :R5(X,Y, U), R3(Y,X, V )
(c) D :

R1

a b a
c d c

R2

e g e
R3

g a g
g h g

Fig. 3. Modified example with (a) a set Σ of tgds, (b) a query q and (c) a database D.

Proof idea (continued). On an abstract level, the atoms that make up the final rule
rgoal of P can be divided into three groups serving three different purposes. That is, rgoal
can be considered as a conjunction rtuples ∧ rchase ∧ rquery. Each group is “supported”
by a sub-program of P that defines relations that are used in rgoal, and we refer to these
three subprograms as Ptuples, Pchase and Pquery, respectively.

– The purpose of rtuples is basically to lay the ground for the other two. It consists of
N atoms that allow to guess the symbolic encoding of a sequence S = t1, . . . , tN .

– The atoms of rchase are designed to verify that S is an actual chase sequence with
respect to D.

– Finally, rquery checks that there is a homomorphism from q to S.

Ptuples and rtuples. The symbolic representation of the tuples ti of the chase se-
quence S uses numerical values to encode null values, predicate symbols Ri (by i),
tgds σj ∈ Σ (by j) and the number of a tuple ti in the sequence (that is: i).

In particular, the symbolic encoding uses the following numerical parameters.5

– ri to indicate the relation Rri to which the tuple belongs;
– fi to indicate whether ti is from D (fi = 0 ) or yielded by the chase ( fi = 1);

5 We use the names of the parameters as variable names in rgoal as well.
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– Furthermore, xi1, . . . , xia represent the attribute values of ti as follows. If the j-
th attribute of ti is a value from dom(D) then xij is intended to be that value,
otherwise it is a null represented by a numeric value.

Since each rule of Σ has at most one existential quantifier in its head, at each chase step,
at most one new null value can be introduced. Thus, we can unambiguously represent
the null value (possibly) introduced in the j-th step of the chase by the number j.

The remaining parameters si and ci1, . . . , cik are used to encode information about
the tgd and the tuples (atoms) in S that are used to generate the current tuple. More
precisely, si is intended to be the number of the applied tgd σsi and ci1, . . . , cik are
the tuple numbers of the k tuples that are used to yield ti. In the example, e.g., t5 is
obtained by applying σ4 to t2 and t4. The encoding of our running example can be
found in Figure 2 (c).

We use a new relational symbol T of arity a + k + 4 not present in the schema of
D for the representation of the tuples from S. Thus, rtuples is just:
T (1, r1, f1, x11, . . . , x1a, s1, c11, . . . , c1k), . . .,

T (N, rN , fN , xN1, . . . , xNa, sN , cN1, . . . , cNk).
The sub-program Ptuples is intended to “fill” T with suitable tuples. Basically, T

contains all encodings of tuples in D (with fi = 0) and all syntactically meaningful
tuples corresponding to possible chase steps (with fi = 1).

Pchase and rchase. The following kinds of conditions have to be checked to ensure
that the tuples “guessed” by rtuples constitute a chase sequence.

(1) For every i, the relation Rri of a tuple ti has to match the head of its rule σsi .
– In the example, e.g., r4 has to be 4 as the head of σ2 is an R4-atom.

(2) Likewise, for each i and j the relation number of tuple tcij has to be the relation
number of the j-th atom of σsi .

– In the example, e.g., r2 must be 4, as c5,1 = 2 and the first atom of σs5 = σ4 is
an R4-atom.

(3) If the head of σsi contains an existentially quantified variable, the new null value is
represented by the numerical value i.

– This is illustrated by t4 in the example: the first position of the head of rule 2
has an existentially quantified variable and thus x4,1 = 4.

(4) If a variable occurs at two different positions in σsi then the corresponding positions
in the tuples used to produce ti carry the same value.

(5) If a variable in the body of σsi also occurs in the head of σsi then the values of the
corresponding positions in the body tuple and in ti are equal.

– Z2 occurs in position 3 of the second atom of the body of σ4 and in position 2
of its head. Therefore, x4,3 and x5,2 have to coincide (where the 4 is determined
by c5,2.

It turns out that all these tests can be done by rchase, given some relations that
are precomputed by Pchase. More precisely, we let Pchase specify a 4-ary predicate
IfThen(X1, X2, U1, U2) that is intended to contain all tuples fulfilling the condition:
if X1 = X2 then U1 = U2. Similar predicates are defined for conditions with two and
three conjuncts in the IF-part. Their definition by Datalog rules is straightforward.
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Pquery and rquery. Finally, we explain how it can be checked that there is a ho-
momorphism from q to S. We explain the issue through the little example query
R3(x, y) ∧ R4(y, z). To evaluate this query, rquery makes use of two additional vari-
ables q1 and q2, one for each atom of q. The intention is that these variables bind to the
numbers of the tuples that the atoms are mapped to. We have to make sure two kinds
of conditions. First, the tuples need to have the right relation symbol and second, they
have to obey value equalities induced by the variables of q that occur more than once.

The first kind of conditions is checked by adding atoms IfThen(q1, i, ri, 3) and
IfThen(q2, i, ri, 4) to rquery, for every i ≤ N . The second condition is checked simi-
larly. As we do not need any further auxiliary predicates, Pquery is empty.

This completes the description of P . Note that P is nonrecursive, and has polyno-
mial size in the size of q and Σ. Furthermore, the arity of P is as required. This proves
part (a) of Theorem 1.

In order to prove part (b), we must get rid of the numeric domain (except for 0
and 1). This is actually very easy. We just replace each numeric value by a logarithmic
number of bits (coded by our 0 and 1 domain elements), and extend the predicate arities
accordingly. As a matter of fact, this requires an increase of arity by a factor of logN =
O(log |q|). This concludes our explanation of the proof ideas underlying Theorem 1.

Remark 1. Note that the evaluation complexity of the Datalog program obtained
for case (b) is not significantly higher than the evaluation complexity of the program P

constructed for case (a). For example, in the most relevant case of bounded arities, both
programs can be evaluated in NPTIME combined complexity over a database D. In
fact, it is well-known that the combined complexity of a Datalog program of bounded
arity is in NPTIME (see [10]). But it is easy to see that if we expand the signature of
such a program (and of the underlying database) by a logarithmic number of Boolean-
valued argument positions (attributes), nothing changes, because the possible values for
such vectorized arguments are still of polynomial size. It is just a matter of coding. In a
similar way, the data complexity in both cases (a) and (b) is the same (PTIME).

Remark 2. It is easy to generalize this result to the setting where q is actually a
union of conjunctive queries (UCQ).

4 Further Results Derived From the Main Theorem

We wish to mention some interesting consequences of Theorem 1 that follow easily
from the above result after combining it with various other known results.

4.1 Linear TGDs

A linear tgd [5] is one that has a single atom in its rule body. The class of linear tgds
is a fundamental one in the Datalog± family. This class contains the class of inclusion

dependencies. It was already shown in [14] for inclusion dependencies that classes of
linear tgds of bounded (predicate) arities enjoy the PWP. That proof carries over to
linear tgds.

By Theorem 1, we then conclude:
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Theorem 2. Conjunctive queries under linear tgds of bounded arity are polynomially

rewritable as nonrecursive Datalog programs in the same fashion as for Theorem 1. So

are sets of inclusion dependencies of bounded arity.

4.2 DL-Lite

A pioneering and highly significant contribution towards tractable ontological reasoning
was the introduction of the DL-Lite family of description logics (DLs) by Calvanese et
al. [9, 20]. DL-Lite was further studied and developed in [1].

A DL-lite theory (or TBox) Σ = (Σ−, Σ+) consists of a set of negative constraints
Σ− such as key and disjointness constraints, and of a set Σ+ of positive constraints
that resemble tgds. As shown in [9], the negative constraints Σ− can be compiled into a
polymomially sized first-order formula (actually a union of conjunctive queries) of the
same arity as Σ− such that for each database and BCQ q, (D,Σ ) |= q iff D �|= Σ−

and (D,Σ +) |= q. In (the full version of) [5] it was shown that for the main DL-Lite
variants defined in [9], each Σ+ can be immediately translated into an equivalent set of
linear tgds of arity 2. By virtue of this, and the above we obtain the following theorem.

Theorem 3. Let q be a CQ and let Σ = (Σ−, Σ+) be a DL-Lite theory expressed

in one of the following DL-Lite variants: DL-LiteF,�, DL-LiteR,�, DL-Lite
+
A,�, DLR-

LiteF,�, DLR-LiteR,�, or DLR-Lite
+
A,�. Then Σ+

can be rewritten into a nonrecursive

Datalog program P such that for each database D, (D,Σ +) |= q iff D |= P . Regarding

the arities of P , the same bounds as in Theorem 1 hold.

4.3 Sticky and Sticky Join TGDs

Sticky tgds [6] and sticky-join tgds [6] are special classes of tgds that generalize linear
tgds but allow for a limited form of join (including as special case the cartesian product).
They allow one to express natural ontological relationships not expressible in DLs such
as OWL. For space reasons, we do not define these classes here, and refer the reader
to [8]. By results of [8], which will also be discussed in detail in a future extended
version [13] of the present paper, both classes enjoy the Polynomial Witness Property.
By Theorem 1, we thus obtain the following result:

Theorem 4. Conjunctive queries under sticky tgds and sticky-join tgds over a fixed

signature R are rewritable into polynomially sized nonrecursive Datalog programs of

arity bounded as in Theorem 1.

5 Related Work on Query Rewriting

Several techniques for query-rewriting have been developed. An early algorithm, in-
troduced in [9] and implemented in the QuOnto system6, reformulates the given query
into a union of CQs (UCQs) by means of a backward-chaining resolution procedure.

6 http://www.dis.uniroma1.it/ quonto/
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The size of the computed rewriting increases exponentially w.r.t. the number of atoms
in the given query. This is mainly due to the fact that unifications are derived in a
“blind” way from every unifiable pair of atoms, even if the generated rule is superflu-
ous. An alternative resolution-based rewriting technique was proposed by Peréz-Urbina
et al. [19], implemented in the Requiem system7, that produces a UCQs as a rewriting
which is, in general, smaller (but still exponential in the number of atoms of the query)
than the one computed by QuOnto. This is achieved by avoiding the useless unifica-
tions, and thus the redundant rules obtained due to these unifications. This algorithm
works also for more expressive non-first-order rewritable DLs. In this case, the com-
puted rewriting is a (recursive) Datalog query. Following a more general approach, Calı̀
et al. [3] proposed a backward-chaining rewriting algorithm for the first-order rewritable
Datalog± languages mentioned above. However, this algorithm is inspired by the orig-
inal QuOnto algorithm, and inherits all its drawbacks. In [12], a rewriting technique
for linear Datalog± into unions of conjunctive queries is proposed. This algorithm is an
improved version of the one already presented in [3]. However, the size of the rewriting
is still exponential in the number of query atoms.

Of more interest to the present work are rewritings into nonrecursive Datalog.
In [15, 16] a polynomial-size rewriting into nonrecursive Datalog is given for the de-
scription logics DL-LiteFhorn and DL-Litehorn. For DL-LiteNhorn, a DL with counting, a
polynomial rewriting involving aggregate functions is proposed. It is, moreover, shown
in (the full version of) [15] that for the description logic DL-LiteF a polynomial-size
pure first-order query rewriting is possible. Note that neither of these logics allows for
role inclusion, while our approach covers description logics with role inclusion axioms.
Other results in [15, 16] are about combined rewritings where both the query and the
database D have to be rewritten. A recent very interesting paper discussing polynomial
size rewritings is [22]. Among other results, [22] provides complexity-theoretic argu-
ments indicating that without the use of special constants (e.g, 0 and 1, or the numerical
domain), a polynomial rewriting such as ours may not be possible. Rosati et al. [21]
recently proposed a very sophisticated rewriting technique into nonrecursive Datalog,
implemented in the Presto system. This algorithm produces a non-recursive Datalog
program as a rewriting, instead of a UCQs. This allows the “hiding” of the exponential
blow-up inside the rules instead of generating explicitly the disjunctive normal form.
The size of the final rewriting is, however, exponential in the number of non-eliminable
existential join variables of the given query; such variables are a subset of the join vari-
ables of the query, and are typically less than the number of atoms in the query. Thus,
the size of the rewriting is exponential in the query size in the worst case. Relevant
further optimizations of this method are given in [18].
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Abstract. In this paper, we present an approach to determining the cognitive
complexity of justifications for entailments of OWL ontologies. We introduce
a simple cognitive complexity model and present the results of validating that
model via experiments involving OWL users. The validation is based on test data
derived from a large and diverse corpus of naturally occurring justifications. Our
contributions include validation for the cognitive complexity model, new insights
into justification complexity, a significant corpus with novel analyses of justifi-
cations suitable for experimentation, and an experimental protocol suitable for
model validation and refinement.

1 Introduction

A justification is a minimal subset of an ontology that is sufficient for an entailment
to hold. More precisely, given O |= η, J is a justification for η in O if J ⊆ O,
J |= η and, for all J � � J , J � �|= η. Justifications are the dominant form of ex-
planation in OWL,1 and justification based explanation is widely deployed in popular
OWL editors. The primary focus of research in this area has been on explanation for
the sake of debugging problematic entailments [3], whether standard entailments, such
as class unsatisfiability or ontology inconsistency, or user selected entailments such as
arbitrary subsumptions and class assertions. The debugging task is naturally directed
toward “repairing” the ontology and the use of “standard errors” further biases users
toward looking for problems in the logic of a justification.

The Description Logic that underpins OWL, SROIQ, is N2ExpTime-complete
[5], which suggests that even fairly small justifications could be quite challenging to
reason with. However, justifications are highly successful in the field, thus the compu-
tational complexity argument is not dispositive. We do observe often that certain jus-
tifications are difficult and frustrating to understand for ontology developers. In some
cases, the difficulty is obvious: a large justification with over 70 axioms is going to be at
best cumbersome however simple its logical structure. However, for many reasonably
sized difficult justifications (e.g. of size 10 or fewer axioms) the source of cognitive
complexity is not clearly known.

We present the results of several experiments into the cognitive complexity of OWL
justifications. Starting from a simple cognitive complexity model, we test how well the
model predicts error proportions for an entailment assessment task. We find that the

1 Throughout this paper, “OWL” refers to the W3C’s Web Ontology Language 2 (OWL 2).
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model does fairly well with some notable exceptions. A follow-up study with an eye
tracker and think aloud protocol supports our explanations for the anomalous behaviour
and suggests both a refinement to the model and a limitation of our experimental proto-
col.

While there have been several user studies in the area of debugging [6,4], ontology
engineering anti-patterns [9], and an exploratory investigation into features that make
justifications difficult to understand [1], to the best of our knowledge there have not
been any formal user studies that investigate the cognitive complexity of justifications.

2 Cognitive Complexity & Justifications

In psychology, there is a long standing rivalry between two accounts of human deduc-
tive processes: (1) that people apply inferential rules [8], and (2) that people construct
mental models [2].2 In spite of a voluminous literature (including functional MRI stud-
ies), to date there is no scientific consensus [7], even for propositional reasoning.

Even if this debate were settled, it would not be clear how to apply it to ontology en-
gineering. The reasoning problems that are considered in the literature are quite differ-
ent from understanding how an entailment follows from a justification in an expressive
logic. Furthermore, the artificiality of our problems may engage different mechanisms
than more “natural” reasoning problems: e.g. even if mental models theory were cor-
rect, people can produce natural deduction proofs and might find that they outperform
“reasoning natively”. For ontology engineering, we do not need a true account of hu-
man deduction, but just need a way to determine how usable justifications are for our
tasks. What is required is a theory of the weak cognitive complexity of justifications, not
one of strong cognitive complexity [10].

A similar practical task is generating sufficiently difficult so-called “Analytical Rea-
soning Questions” (ARQs) problems in Graduate Record Examination (GRE) tests. In
[7], the investigators constructed and validated a model for the complexity of answering
ARQs via experiments with students. Analogously, we aim to validate a model for the
complexity of “understanding” justificiations via experiments on modellers.

3 A Complexity Model

We have developed a cognitive complexity model for justification understanding. This
model was derived partly from observations made during an exploratory study in which
people attempted to understand justifications from naturally occuring ontologies, and
partly from intuitions on what makes justifications difficult to understand. Table 1 de-
scribes the model, wherein J is the justification in question, η is the focal entailment,
and each value is multiplied by its weight and then summed with the rest. The final
value is a complexity score for the justification. Broadly speaking, there are two types
of components: (1) structural components, such as C1, which require a syntactic analy-
sis of a justification, and (2) semantic components, such as C4, which require entailment
checking to reveal non-obvious phenomena.

2 (1) can be crudely characterised as people use a natural deduction proof system and (2) as
people use a semantic tableau.

170



Table 1. A Simple Complexity Model

Name Base value Weight
C1 AxiomTypes Number of axiom types in J & η. 100
C2 ClassConstructors Number of constructors in J & η. 10
C3 UniversalImplication If an α ∈ J is of the form ∀R.C � D or D ≡ ∀R.C then 50 else

0.
1

C4 SynonymOfThing If J |= � � A for some A ∈ Signature(J ) and � � A �∈J and
� � A �= η then 50 else 0.

1

C5 SynonymOfNothing If J |= A � ⊥ for some A ∈ Signature(J ) and A � ⊥ �∈J and
A � ⊥ �= η then 50 else 0.

1

C6 Domain&NoExistential If Domain(R,C) ∈ J and J�| = E � ∃R.D for some class
expressions E and D then 50 else 0.

1

C7 ModalDepth The maximum modal depth of all class expressions in J . 50
C8 SignatureDifference The number of distinct terms in Signature(η) not in Signature(J ). 50
C9 AxiomTypeDiff If the axiom type of η is not the set of axiom types of J then 50 else 0 1
C10 ClassConstructorDiff The number of class constructors in η not in the set of constructors of

J .
1

C11 LaconicGCICount The number of General Concept Inclusion axioms in a laconic version
of J

100

C12 AxiomPathLength The number of maximal length expression paths3 in J plus the number
of axioms in J which are not in some maximal length path of J

10

Components C1 and C2 count the number of different kinds of axiom types and
class expression types as defined in the OWL 2 Structural Specification.4 The more
diverse the basic logical vocabulary is, the less likely that simple pattern matching will
work and the more “sorts of things” the user must track.

Component C3 detects the presence of universal restrictions where trivial satisfac-

tion can be used to infer subsumption. Generally, people are often surprised to learn
that if �x, y� �∈ RI for all y ∈ ∆I , then x ∈ (∀R.C)I . This was observed repeatedly in
the exploratory study.

Components C4 and C5 detect the presence of synonyms of � and ⊥ in the sig-
nature of a justification where these synonyms are not explicitly introduced via sub-
sumption or equivalence axioms. In the exploratory study, participants failed to spot
synonyms of � in particular.

Component C6 detects the presence of a domain axiom that is not paired with an
(entailed) existential restriction along the property whose domain is restricted. This
typically goes against peoples’ expectations of how domain axioms work, and usually
indicates some kind of non-obvious reasoning by cases. For example, given the two
axioms ∃R.� � C and ∀R.D � C, the domain axiom is used to make a statement
about objects that have R successors, while the second axiom makes a statement about
those objects that do not have any R successors to imply that C is equivalent to �.
This is different from the typical pattern of usage, for example where A � ∃R.C and
∃R.� � B entails A � B.

Component C7 measures maximum modal depth of sub-concepts in J , which tend
to generate multiple distinct but interacting propositional contexts.

Component C8 examines the signature difference from entailment to justification.
This can indicate confusing redundancy in the entailment, or synonyms of �, that may
not be obvious, in the justification. Both cases are surprising to people looking at such
justifications.

4 http://www.w3.org/TR/owl2-syntax/
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Components C9 and C10 determine if there is a difference between the type of, and
types of class expressions in, the axiom representing the entailment of interest and the
types of axioms and class expressions that appear in the justification. Any difference can
indicate an extra reasoning step to be performed by a person looking at the justification.

Component C11 examines the number of subclass axioms that have a complex left
hand side in a laconic version of the justification. Complex class expressions on the left
hand side of subclass axioms in a laconic justification indicate that the conclusions of
several intermediate reasoning steps may interact.

Component C12 examines the number of obvious syntactic subsumption paths through
a justification. In the exploratory study, participants found it very easy to quickly read
chains of subsumption axioms, for example, {A � B,B � C,D � D,D � E} to
entail A � E. This complexity component essentially increases the complexity when
these kinds of paths are lacking.

The weights were determined by rough and ready empirical twiddling, without a
strong theoretical or specific experimental backing. They correspond to our sense, esp.
from the exploratory study, of sufficient reasons for difficulty.

4 Experiments

While the model is plausible and seems to behave reasonably well in applications, its
validation is a challenging topic. In principle, the model is reasonable if it successfully
predicts the difficulty an arbitrary OWL modeller has with an arbitrary justification
sufficiently often. Unfortunately, the space of ontology developers and of OWL justifi-
cations (even of existing, naturally occurring ones) is large and heterogeneous enough
to be difficult to randomly sample.

4.1 Design Challenges

To cope with the heterogeneity of users, any experimental protocol should require mini-
mal experimental interaction, i.e. it should be executable over the internet from subjects’
own machines with simple installation. Such a protocol trades access to subjects, over
time, for the richness of data gathered. To this end, we adapted one of the experimental
protocols described in [7] and tested it on a more homogeneous set of participants—a
group of MSc students who had completed a lecture course on OWL.

While the general experimental protocol in [7] seems reasonable, there are some is-
sues in adapting it to our case. In particular, in ARQs there is a restricted space of possi-
ble (non-)entailments suitable for multiple choice questions. That is, the wrong answers
can straightforwardly be made plausible enough to avoid guessing. (The questions are,
in essence, enumeration problems.) A justification inherently has one statement that it
is a justification for (even though it will be a minimal entailing subset for others). Thus,
there isn’t a standard “multiple set” of probable answers to draw on. In the exam case,
the primary task is successfully answering the question and the relation between that
success and predictions about the test taker are outside the remit of the experiment (but
there is an established account, both theoretically and empirically). In the justification
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case the standard primary task is “understanding” the relationship between the justifica-
tion and the entailment. Without observation, it is impossible to distinguish between a
participant who really “gets” it and one who merely acquiesces. In the exploratory study
we performed to help develop the model, we had the participant rank the difficulty of
the justification, but also used think aloud and follow-up questioning to verify the suc-
cess in understanding by the participant. This is obviously not a minimal intervention,
and requires a large amount of time and resources on the part of the investigators.

To counter this, the task was shifted from justification understanding task to some-
thing more measurable and similar to the question answering task in [7]. In particular,
instead of presenting the justification/entailment pair as a justification/entailment pair
and asking the participant to try to “understand” it, we present the justification/entailment
pair as a set of axioms/candidate entailment pair and ask the participant to determine

whether the candidate is, in fact, entailed. This diverges from the standard justification
situation wherein the modeller knows that the axioms entail the candidate (and form
a justification), but provides a metric that can be correlated with cognitive complexity,
which is error proportions.

4.2 Justification Corpus

To cope with the heterogeneity of justifications, we derived a large sample of justifi-
cations from ontologies from several well known ontology repositories: The Stanford
BioPortal repository5 (30 ontologies plus imports closure), the Dumontier Lab ontology
collection6 (15 ontologies plus imports closure), the OBO XP collection7 (17 ontologies
plus imports closure) and the TONES repository8 (36 ontologies plus imports closure).
To be selected, an ontology had to (1) entail one subsumption between class names with
at least one justification that (a) was not the entailment itself, and (b) contains axioms in
that ontology (as opposed to the imports closure of the ontology), (2) be downloadable
and loadable by the OWL API (3) processable by FaCT++.

While the selected ontologies cannot be said to generate a truly representative sam-
ple of justifications from the full space of possible justifications (even of those on the
Web), they are diverse enough to put stress on many parts of the model. Moreover, most
of these ontologies are actively developed and used and hence provide justifications that
a significant class of users encounter.

For each ontology, the class hierarchy was computed, from which direct subsump-
tions between class names were extracted. For each direct subsumption, as many justi-
fications as possible in the space of 10 minutes were computed (typically all justifica-
tions; time-outs were rare). This resulted in a pool of over 64,800 justifications.

While large, the actual logical diversity of this pool is considerably smaller. This is
because many justifications, for different entailments, were of exactly the same “shape”.
For example, consider J1 = {A � B,B � C} |= A � C and J2 = {F � E,E �

G} |= F � G. As can be seen, there is an injective renaming from J1 to J2, and J1 is

5 http://bioportal.bioontology.org
6 http://dumontierlab.com/?page=ontologies
7 http://www.berkeleybop.org/ontologies/
8 http://owl.cs.manchester.ac.uk/repository/
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therefore isomorphic with J2. If a person can understand J1 then, with allowances for
variations in name length, they should be able to understand J2. The initial large pool
was therefore reduced to a smaller pool of 11,600 non-isomorphic justifications.

4.3 Items and Item Selection

Each experiment consists of a series of test items (questions from a participant point of
view). A test item consists of a set of axioms, one following axiom, and a question, “Do
these axioms entail the following axiom?”. A participant response is one of five possible
answers: “Yes” (it is entailed), “Yes, but not sure”, “Not Sure”, “No, but not sure”, “No”
(it is not entailed). From a participant point of view, any item may or may not contain a
justification. However, in our experiments, every item was, in fact, a justification.

It is obviously possible to have non-justification entailing sets or non-entailing sets
of axioms in an item. We chose against such items since (1) we wanted to maximize the
number of actual justifications examined (2) justification understanding is the actual
task at hand, and (3) it is unclear how to interpret error rates for non-entailments in
light of the model. For some subjects, esp. those with little or no prior exposure to
justifications, it was unclear whether they understood the difference between the set
merely being entailing, and it being minimal and entailing. We did observe one person
who made use of this metalogical reasoning in the follow-up study.
Item Construction: For each experiment detailed below, test items were constructed
from the pool of 11,600 non-isomorphic justifications. First, in order to reduce variance
due primarily to size, justifications whose size was less than 4 axioms and greater than
10 axioms were discarded. This left 3199 (28%) justifications in the pool. In particular,
this excluded large justifications that might require a lot of reading time, cause fatigue
problems, or intimidate, and excluded very small justifications that tended to be trivial.9

For each justification in the pool of the remaining 3199 non-isomorphic justifica-
tions, the complexity of the justification was computed according to the model pre-
sented in Table 1, and then the justification was assigned to a complexity bin. A total
of 11 bins were constructed over the range of complexity (from 0 to 2200), each with a
complexity interval of 200. We discarded all bins which had 0 non-isomorphic justifi-
cations of size 4-10. This left 8 bins partitioning a complexity range of 200-1800.

Figure 1 illustrates a key issue. The bulk of the justifications (esp. without the triv-
ial), both with and without isomorphic reduction, are in the middle complexity range.
However, the model is not sophisticated enough that small differences (e.g. below a
difference of 400-600) are plausibly meaningful. It is unclear whether the noise from
variance in participant abilities would wash out the noise from the complexity model.
In other words, just from reflection on the model, justifications whose complexity dif-
ference is 400 or less do not seem reliably distinguishable by error rates. Furthermore,
non-isomorphism does not eliminate all non-significant logical variance. Consider a

9 Note that, as a result, nearly 40% of all justifications (essentially, the 0-200 bin) have no
representative in the pruned set (see Figure 2). Inspection revealed that most of these were
trivial single axiom justifications (e.g. of the form {A ≡ B} |= A � B or {A ≡ (B�C)} |=
A � B, etc.
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chain of two atomic subsumptions vs. a chain of three. They have the same basic log-
ical structure, but are not isomorphic. Thus, we cannot yet say whether this apparent
concentration is meaningful.

Since we did not expect to be able to present more than 6 items and keep to our
time limits, we chose to focus on a “easy/hard” divide of the lowest three non-empty
bins (200-800) and the highest three non-empty bins (1200-1800). While this limits
the claims we can make about model performance over the entire corpus, it, at least,
strengthens negative results. If error rates overall do not distinguish the two poles
(where we expect the largest effect) then either the model fails or error rates are not
a reliable marker. Additionally, since if there is an effect, we expect it to be largest in
this scenario thus making it easier to achieve adequate statistical power.

Each experiment involved a fixed set of test items, which were selected by randomly
drawing items from preselected spread of bins, as described below. Please note that the
selection procedure changed in the light of the pilot study, but only to make the selection
more challenging for the model.

The final stage of item construction was justification obfuscation. All non-logical
terms were replaced with generated symbols. Thus, there was no possibility of using
domain knowledge to understand these justifications. The names were all uniform, syn-
tactically distinguishable (e.g. class names from property names) and quite short. The
entailment was the same for all items (i.e. C1 � C2). It is possible that dealing with
these purely symbolic justifications distorted participant response from response in the
field, even beyond blocking domain knowledge. For example, they could be alienating
and thus increase error rates or they could engage less error prone pattern recognition.

Fig. 1. Justification Corpus Complexity Distribution
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4.4 Pilot study

Participants: Seven members of a Computer Science (CS) Academic or Research Staff,
or PhD Program, with over 2 years of experience with ontologies and justifications.
Materials and procedures: The study was performed using an in-house web based
survey tool, which tracks times between all clicks on the page and thus records the time
to make each decision.

The participants were given a series of test items consisting of 3 practice items,
followed by 1 common easy item (E1 of complexity 300) and four additional items,
2 ranked easy (E2 and E3 of complexities 544 and 690, resp.) and 2 ranked hard (H1
and H2 of complexities 1220 and 1406), which were randomly (but distinctly) ordered
for each participant. The easy items were drawn from bins 200-800, and the hard items
from bins 1200-1800. The expected time to complete the study was a maximum of 30
minutes, including the orientation, practice items, and brief demographic questionnaire
(taken after all items were completed).
Results: Errors and times are given in Table 2(a). Since all of the items were in fact jus-
tifications, participant responses were recoded to success or failure as follows: Success
= (“Yes” | “Yes, but not sure”) and Failure = (“Not sure” | “No, Not sure” | “No”). Error
proportions were analysed using Cochran’s Q Test, which takes into consideration the
pairing of successes and failures for a given participant. Times were analysed using two
tailed paired sample t-tests.

An initial Cochran Q Test across all items revealed a strong significant difference in
error proportions between the items [Q(4) = 16.00, p = 0.003]. Further analysis using
Cochran’s Q Test on pairs of items revealed strong statistically significant differences
in error proportion between: E1/H1 [Q(1) = 6.00, p = 0.014], E1/H2 [Q(1) = 6.00,
p = 0.014] E2/H2 [Q(1) = 5.00, p = 0.025] and E3/H2 [Q(1) = 5.00, p = 0.025].
The differences in the remaining pairs, while not exhibiting differences above p = 0.05,
were quite close to significance, i.e. E2/H1 [Q(1) = 3.57, p = 0.059] and E3/H1
[Q(1) = 2.70, p = 0.10]. In summary, these error rate results were encouraging.

An analysis of times using paired sample t-tests revealed that time spent understand-
ing a particular item is not a good predictor of complexity. While there were significant
differences in the times for E1/H1 [p = 0.00016], E2/H1 [p = 0.025], and E3/H1
[p = 0.023], there were no significant differences in the times for E1/H2 [p = 0.15],
E2/H2 [p = 0.34] and E3/H2 [p = 0.11]. This result was anticipated, as in the ex-
ploratory study people gave up very quickly for justifications that they felt they could
not understand.

Table 2. Failures and times

(a) Pilot Study Items
Item Failures Mean Time (ms) Time S.D. (ms)
E1 0 65839 39370
E2 1 120926 65950
E3 2 142126 61771
H1 6 204257 54796
H2 6 102774 88728

(b) Experiment 1
Item Failures Mean Time (ms) Time S.D. (ms)
EM1 6 103454 68247
EM2 6 162928 87696
EM3 10 133665 77652
HM1 12 246835 220921
HM2 13 100357 46897
HM3 6 157208 61437
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4.5 Experiment 1

Participants: 14 volunteers from a CS MSc class on OWL ontology modelling, who
were given chocolate for their participation. Each participant had minimal exposure to
OWL (or logic) before the class, but had, in the course of the prior 5 weeks, constructed
or manipulated several ontologies, and received an overview of the basics of OWL 2,
reasoning, etc. They did not receive any specific training on justifications.
Materials and procedures: The study was performed according to the protocol used in
the pilot study. A new set of items were used. Since the mean time taken by pilot study
participants to complete the survey was 13.65 minutes, with a standard deviation of
4.87 minutes, an additional hard justification was added to the test items. Furthermore,
all of the items with easy justifications ranked easy were drawn from the highest easy
complexity bin (bin 600-800). In the pilot study, we observed that the lower ranking
easy items were found to be quite easy and, by inspection of their bins, we found that
it was quite likely to draw similar justifications. The third bin (600-800) is much larger
and logically diverse, thus is more challenging for the model.

The series consisted of 3 practice items followed by 6 additional items, 3 easy
items(EM1, EM2 and EM3 of complexities: 654, 703, and 675), and 3 hard items
(HM1, HM2 and HM3 of complexities: 1380, 1395, and 1406). The items were ran-
domly ordered for each participant. Again, the expectation of the time to complete the
study was a maximum of 30 minutes, including orientation, practice items and brief
demographic questionnaire.
Results Errors and times are presented in Table 2(b). The coding to error is the same
as in the pilot. An analysis with Cochran’s Q Test across all items reveals a significant
difference in error proportion [Q(5) = 15.095, p = 0.0045].

A pairwise analysis between easy and hard items reveals that there are significant
and, highly significant, differences in errors between EM1/HM1 [Q(1) = 4.50, p =
0.034], EM1/HM2 [Q(1) = 7.00, p = 0.008], EM2/HM1 [Q(1) = 4.50, p = 0.034],
EM2/HM2 [Q(1) = 5.44, p = 0.02], and EM3/HM2 [Q(1) = 5.44, p = 0.02].

However, there were no significant differences between EM1/HM3 [Q(1) = 0.00,
p = 1.00], EM2/HM3 [Q(1) = 0.00, p = 1.00], EM3/HM3 [Q(1) = 2.00, p = 0.16]
and EM3/HM1 [Q(1) = 0.67, p = 0.41].

With regards to the nonsignificant differences between certain easy and hard items,
there are two items which stand out: An easy item EM3 and a hard item HM3, which
are shown in Figure 2.

In line with the results from the pilot study, an analysis of times using a paired
samples t-test revealed significant differences between some easy and hard items, with
those easy times being significantly less than the hard times EM1/HM1 [p = 0.023],
EM2/HM2 [p = 0.016] and EM3/HM1 [p = 0.025]. However, for other pairs of
easy and hard items, times were not significantly different: EM1/HM1 [p = 0.43],
EM2/HM1 [p = 0.11] and EM3/HM2 [p = 0.10]. Again, time is not a reliable predic-
tor of model complexity.
Anomalies in Experiment 1: Two items (EM3 and HM3) did not exhibit their pre-
dicted error rate relations. For item EM3, we conjectured that a certain pattern of su-
perfluous axiom parts in the item (not recognisable by the model) made it harder than
the model predicted. That is, that the model was wrong.
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For item HM3 we conjectured that the model correctly identifies this item as hard,10

but that the MSc students answered “Yes” because of misleading pattern of axioms at
the start and end of item HM3. The high “success” rate was due to an error in reasoning,
that is, a failure in understanding.

In order to determine whether our conjectures were possible and reasonable, we
conducted a follow-up study with the goal of observing the conjectured behaviours in
situ. Note that this study does not explain what happened in Experiment 1.

4.6 Experiment 2
Participants: Two CS Research Associates and one CS PhD student, none of whom
had taken part in the pilot study. All participants were very experienced with OWL.
Materials and procedures: Items and protocol were exactly the same as Experiment
1, with the addition of the think aloud protocol. Furthermore, the screen, participant
vocalization, and eye tracking were recorded.
Results: With regard to EM3, think aloud revealed that all participants were distracted
by the superfluous axiom parts in item EM3. Figure 2 shows an eye tracker heat map
for the most extreme case of distraction in item EM3. As can be seen, hot spots lie over
the superfluous parts of axioms. Think aloud revealed that all participants initially tried
to see how the ∃prop1.C6 conjunct in the third axiom contributed to the entailment and
struggled when they realised that this was not the case.

Fig. 2. Eye Tracker Heat Maps for EM3 & HM3

In the case of HM3, think aloud revealed that none of the participants understood
how the entailment followed from the set of axioms. However, two of them responded
correctly and stated that the entailment did hold. As conjectured, the patterns formed
by the start and end axioms in the item set seemed to mislead them. In particular,
when disregarding quantifiers, the start axiom C1 � ∀prop1.C3 and the end axiom
C2 � ∃prop1.C3 � . . . look very similar. One participant spotted this similarity and
claimed that the entailment held as a result. Hot spots occur over the final axiom and
the first axiom in the eye tracker heat map (Figure 2), with relatively little activity in
the axioms in the middle of the justification.
10 It had been observed to stymie experienced modellers in the field. Furthermore, it involves

deriving a synonym for �, which was not a move this cohort had experience with.
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5 Discussion and Future Work

In this paper we presented a methodology for validating the predicted cognitive com-
plexity of justifications. The main advantages of the experimental protocol used in the
methodology is that minimal study facilitator intervention is required. This means that,
over time, it should be possible to collect rich and varied data fairly cheaply and from
geographically distributed participants. In addition to this, given a justification corpus
and population of interest, the main experiment is easily repeatable with minimal re-
sources and setup. Care must be taken in interpreting results and, in particular, the pro-
tocol is weak on “too hard” justifications as it cannot distinguish a model mislabeling
from people failing for the wrong reason.

The cognitive complexity model that was presented in this paper fared reasonably
well. In most cases, there was a significant difference in error proportion between model
ranked easy and hard justifications. In the cases where error proportions revealed no dif-
ference better than chance, further small scale follow-up studies in the form of a more
expensive talk-aloud study was used to gain an insight into the problems. These inspec-
tions highlighted an area for model improvement, namely in the area of superfluity. It
is unclear how to rectify this in the model, as there could be justifications with super-
fluous parts that are trivial to understand, but the location and shape of superfluity seem
an important factor.

The refinement and validation of our model is an ongoing task and will require
considerably more experimental cycles. We plan to conduct a series of experiments
with different cohorts as well as with an expanded corpus. We also plan to continue the
analysis of our corpus with an eye to performing experiments to validate the model over
the whole (for some given population).
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Abstract. This paper introduces relaxed abduction, a novel non-standard
reasoning task for description logics. Although abductive reasoning over
description logic knowledge bases has been applied successfully to various
information interpretation tasks, it typically fails to provide adequate (or
even any) results when confronted with spurious information or incom-
plete models. Relaxed abduction addresses this flaw by ignoring such
pieces of information automatically based on a joint optimization of the
sets of explained observations and required assumptions. We present a
method to solve relaxed abduction over EL+ TBoxes based on the notion
of multi-criterion shortest hyperpaths.

Keywords: abduction, interpretation, non-standard reasoning

1 Introduction

Abduction was introduced in the late 19th century by Charles Sanders Pierce
as an inference scheme aimed at deriving potential explanations for some obser-
vation [7]. It is conveniently expressed by the derivation rule

φ ⊃ ω ω
φ

which can be understood as an inversion of the modus ponens rule that permits
to derive φ as a hypothetical explanation for the occurrence of ω, given that the
presence of φ in some sense justifies ω. Note that this general formulation does
not presuppose any causality between φ and ω; various notions of how φ sanctions
the presence of ω give rise to different notions of abductive inference such as
the set-cover-based approach, logic-based approaches, and the knowledge-level
approach (see [12] for a survey). This paper focuses on logic-based abduction
over EL+ TBoxes, however all results except the algorithm presented in Sect. 3
carry over to other logic-based representation schemes straightforwardly.

Due to its hypothetical nature, an abduction problem typically does not have
a single solution but a collection of alternative answers A1, A2, . . . , Ak among
which optimal solutions are selected by means of a preference order �. We denote
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2 Relaxed Abduction for Incomplete Models

Ai being not worse than Aj by Ai � Aj , indifference (Ai � Aj ∧ Aj � Ai) is
abbreviated by Ai � Aj , and strict preference (Ai � Aj ∧Ai �� Aj ) by Ai ≺ Aj .
Then a (normal) preferential abduction problem can be defined as follows:

Definition 1 (Preferential abduction problem PAP = (T ,A,O,�A)).
Given a set of axioms T called the theory, a set of abducible axioms A, a set
O of axioms representing observations such that T�| = O, and a (not necessarily
total) order relation �A ⊆ P(A)×P(A), determine all �A-minimal sets A ⊆ A

such that T ∪A is consistent and T ∪A |= O.

Typical preference orders over sets include subset-minimality (Ai�
sAj ↔

Ai ⊆ Aj ), minimum cardinality (Ai�
cAj ↔ |Ai | ≤ |Aj |), and weighting-based

orders defined by a function w that assigns numerical weights to subsets of A
(Ai�

wAj ↔ w(Ai) ≤ w(Aj )). The first two orders prefer a set A over any of its
supersets, this monotonicity property is formalized in Def. 2.

Definition 2 (Monotone and anti-monotone order). An order � (≺) over
sets is monotone (strictly monotone) for set inclusion if and only if S� ⊆ S
implies S� � S (S� ⊂ S implies S� ≺ S). Conversely, � (≺) is anti-monotone
(strictly anti-monotone) for set inclusion if and only if S� ⊇ S implies S� � S
(S� ⊃ S implies S� ≺ S).

Applications of abductive information interpretation using a formal domain
model include media interpretation [4] and diagnostics for complex technical
systems such as production machinery [9]. These domains are characterized by
an abundance of low-level observations due to a large number of sensors whereas
the model is often unelaborate or incomplete. The next example illustrates how
the classical definition of abduction may fail to handle such situations adequately.

Example 1 (Sensitivity to spurious information). Consider the diagnostic unit
of a production system whose model states that a fluctuating power supply man-
ifests by intermittent outages of the main control unit while the communication
links remain functional and the mechanical gripper of the production system is
unaffected (the observations entailed by the diagnosis). Assume a new vibration
sensor additionally observes low-frequency vibrations of the system. If the diag-
nostic model has not been extended yet to encompass these observations, the
additional data will in fact distract the diagnostic process and invalidate the di-
agnosis concerning the power supply, although it might be completely unrelated.

This flaw rests on the requirement that every single observation oi ∈ O be
entailed by an admissible solution. It severely restricts the practical applicability
of logic-based abduction to real-world industrial applications where an ever-
growing amount of sensor data almost inevitably generates pieces of information
that the model cannot account for. We therefore extend logic-based abduction
in Sect. 2 to handle such cases in a more flexible yet formally sound way, and
propose a method to solve such extended abduction problems expressed in the
description logic EL+ in Sect. 3. Section 4 contrasts our proposal with relevant
related work on logics and abduction, and we conclude in Sect. 5.
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2 Relaxed Abduction

While for very simple models it is possible to identify and remove spurious in-
formation in a preprocessing step, this is not feasible for reasonably complex
models since the (ir-)relevance of a piece of information depends on the inter-
pretation and is thusly not known beforehand. We therefore propose a general
approach based on the intuition that spurious and missing information are two
complementary facets of information imperfection and should thus be treated
similarly: In addition to assuming information as needed based on the set of
abducibles A, relaxed abduction ignores observations from O during hypotheses
generation if required. This intuition is formalized in the next definition.

Definition 3 (Relaxed abduction problem RAP = (T ,A,O,�A,�O)).
Given a set of axioms T called the theory, a set of abducible axioms A, a set O
of axioms representing observations such that T�| = O, and two (not necessarily
total) order relations �A ⊆ P(A) × P(A) and �O ⊆ P(O) × P(O), determine
all �-minimal tuples (A, O) ∈ P(A) × P(O) such that T ∪ A is consistent and
T ∪A |= O. The order � is defined based on �A and �O as follows:

– (A, O) � (A�, O�) ↔ A�
A

A� ∧O�
O

O�

– (A, O) ≺ (A�, O�) ↔ (A�AA� ∧O≺
O

O�) ∨ (A≺
A

A� ∧O�O O�)
– (A, O) � (A�, O�) ↔ ((A, O) ≺ (A�, O�)) ∨ ((A, O) � (A�, O�))

Intuitively, a good solution will have high expressive power regarding the ob-
servations while being as non-assumptive as possible, which suggests to chose �A
monotone and �O anti-monotone for set inclusion, respectively. The following
example uses one such combination to solve the problem presented in Ex. 1.

Example 2 (Sensitivity to irrelevant data (cont.)). Using inclusion as order cri-
terion over sets, we let A �A A� ↔ A ⊆ A� and O �O O� ↔ O ⊇ O�. As
intended, the resulting order � gives rise to the minimal solution which explains
all observations but the vibrations and only requires to assume the diagnosis,
namely a fluctuating power supply.

Proposition 1 (Conservativeness). A ⊆ A is a solution to the preferential
abduction problem PAP = (T ,A,O,�A) if and only if (A,O) is a solution to
the relaxed abduction problem RAP = (T ,A,O,�A,�O) for an arbitrary order
�O that is anti-monotone for set inclusion.

Proof. Assume A solves PAP. Then T ∪ A is consistent, T ∪ A |= O, and A
is �A-minimal. As �O is anti-monotone for set inclusion O is naturally �O-
minimal; (A,O) is therefore �-minimal and thus solves RAP.
Conversely if (A,O) solves RAP then T ∪A is consistent, T ∪A |= O, and (A,O)
is �-minimal. Assume A� ≺

A
A s. t. A� ⊆ A, T ∪ A� is consistent, T ∪ A� |= O.

Then (A�,O) ≺ (A,O), contradicting �-minimality of (A,O). ��
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4 Relaxed Abduction for Incomplete Models

Conservativeness states that, under natural conditions, relaxed abduction
is guaranteed to reproduce all (if any) solutions of the corresponding standard
abduction problem. Since �A and �O will typically represent competing opti-
mization objectives, it is convenient to treat relaxed abduction as a bi-criterion
optimization problem. �-minimal solutions then correspond to Pareto-optimal
points in the space of all combinations (A, O) meeting the logical requirements
of a solution (consistency and entailment) as shown next.

Proposition 2 (Pareto-optimality of RAP). Let RAP = (T ,A,O,�A,�O)
be a relaxed abduction problem. (A∗, O∗) is a solution to RAP if and only if it
is a Pareto-optimal element (subject to �A and �O) of the candidate space
{(A, O) ∈ P(A)× P(O) | T ∪ A |= O ∧ T ∪ A �|= ⊥}.

Proof. If (A∗, O∗) solves RAP, then T ∪ A∗ is consistent and T ∪ A∗ |= O∗

holds. (A∗, O∗) is thus an element of the explanation space (ES), furthermore
(A∗, O∗) must be �-minimal. Now assume (A∗, O∗) is not Pareto-optimal for
ES, and let (A�, O�) ∈ ES such that (w. l. o. g.) A� ≺

A
A∗ and O� �O O∗. Then

(A�, O�) ≺ (A∗, O∗), contradicting �-minimality of (A∗,O∗). Thus, (A∗, O∗) is a
Pareto-optimal element of the explanation space.
Analogously, let (A�, O�) be a Pareto-optimal element of ES. To show that the
tuple is �-minimal, let (A∗, O∗) be a solution to RAP such that (A∗, O∗) ≺
(A�, O�). Then w. l. o. g. A∗≺

A
A� and O∗�O O�, contradicting Pareto-optimality

of (A�, O�). Conclusively, (A�, O�) must be �-minimal and therefore solves RAP.
��

The next section presents an approach to solving relaxed abduction for EL+

that explicitly addresses the bi-criterial nature of the problem.

3 Solving Relaxed Abduction for EL+

The description logic EL+ is a member of the EL family of lightweight DLs for
which subsumption can be tested in PTime [1]. EL+ concept descriptions are
defined by C ::= � | A | C � C | ∃r.C (for A ∈ NC, r ∈ NR a basic concept /
role name); EL+ axioms are either concept inclusion axioms C �D or role inclu-
sion axioms r1◦· · ·◦rk � r (C, D concept descriptions, r, r1, . . . , rk ∈ NR, k ≥ 1).
Since any EL+ TBox can be normalized with only a linear increase in size, we can
assume w. l. o. g. that all axioms are of one of the following forms (NF1) A1 � B,
(NF2) A1 � A2 � B, (NF3) A1 � ∃r.B, (NF4)∃r.A2 � B, (NF5) r1 � s, and
(NF6) r1 ◦ r2 � s (for A1, A2, B ∈ N�

C = NC ∪{ �} and r1, r2, s ∈ NR). In ad-
dition to standard refutation-based tableau reasoning, the EL family allows for
a completion-based reasoning scheme that explicitly derives valid subsumptions
using a set of rules in the style of Gentzen’s sequent calculus. The rules are
depicted in Fig. 1, the graph-structure created by applying them to derive sub-
sumptions provides the basis for our approach as shown in the next subsection.

In contrast to other work such as [3, 5] where observations and abducibles
are represented by means of named concepts, we assume that both A and O are
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Relaxed Abduction for Incomplete Models 5

A � A1(CR1) [A1 � B ∈ T ]
A � B

A � A1 A � A2(CR2) [A1 �A2 � B ∈ T ]
A � B

A � A1(CR3) [A1 � ∃r.B ∈ T ]
A � ∃r.B

A � ∃r.A1 A1 � A2(CR4) [∃r.A2 � B ∈ T ]
A � B

A � ∃r1.B(CR5) [r1 � s ∈ T ]
A � ∃s.B

A � ∃r1.A1 A1 � ∃r2.B(CR6) [r1 ◦ r2 � s ∈ T ]
A � ∃s.B

(IR1)
A � A

(IR2)
A � �

Fig. 1. Completion rules for EL+

sets of DL axioms just like T . In our experience the axiom-oriented represen-
tation provides greater flexibility and information reuse as well as being easier
to understand for non-expert users; we furthermore conjecture without formal
proof that the concept-based definition is subsumed by the axiom-based one.3

3.1 From Completion Rules to Hypergraphs

Since the rules shown in Fig. 1 constitute a sound and complete proof system
for EL

+, any normalized axiom set can be represented equivalently as a hy-
pergraph whose vertices are all axioms of type (NF1) and (NF3) over the con-
cept and role names used in the axiom set (corresponding to all statements
admissible as premise or conclusion in a derivation step). The hyperedges are in-
duced by instantiations of the rules (CR1)-(CR6); for example an instantiation of
(CR4) that derives C � F from C � ∃r.D and D � E using the axiom ∃r.E � F
induces a hyperedge e = (T (e), h(e), w(e)) with T (e) = {C � ∃r.D, D � E},
h(e) = C � F , and w(e) = ∃r.E � F .

This correspondence can be extended to relaxed abduction problems as fol-
lows: Both T and A contain arbitrary EL+ normal form axioms that can justify
3 First observe that T |= A1�· · ·�An � O as required in [3] straightforwardly implies
{� � A1, . . . ,� � Ak} ∪ T |= � � O, i. e. a special case of our definition. Concept
abduction and contraction introduced in [5] can conceptually be seen as abduction
problems in the line of [3] with additional limitations on the solution A (namely
A = {C, H} in the former and A = {K, D} in the latter case).
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6 Relaxed Abduction for Incomplete Models

single derivation steps represented by a hyperedge (to simplify presentation we
assume w. l. o. g. that A∩O = ∅). Elements from O on the other hand represent
information to be justified (i. e. derived), they therefore correspond to vertices of
the hypergraph. This leads to the requirement that axioms in O may be of type
(NF1) and (NF3) only – this restriction is however negligible in practice since
(NF2)- and (NF4)-axioms can be translated into a (NF1)-axiom by introducing
a new concept name, and role inclusion axioms are not required for expressing
observations about domain objects. To keep track of required assumptions and
explained observations, the hyperedges are labelled according to these criteria.
This intuition is formalized in the next definition.

Definition 4 (Induced hypergraph H
RAP

). Let RAP = (T ,A,O,�A,�O)
be a relaxed abduction problem. The weighted hypergraph H

RAP
= (V,E) induced

by RAP is defined by V = {(A � B), (A � ∃r.B) | A, B ∈ N�

C , r ∈ NR} where
V
�

= {(A, A), (A,�) | A ∈ N�

C } ⊆ V denotes the set of terminal states, and E
the set of all hyperedges e = (T (e), h(e), w(e)) s. t. there is an axiom ax ∈ T ∪ A

justifying the derivation of h(e) ∈ V from T (e) ⊆ V due to one of (CR1)-(CR6).
The edge weight w(e) = (A, O) is defined by

A =

�
{ax} if ax ∈ A,

∅ otherwise
, O =

�
{h(e)} if h(e) ∈ O,

∅ otherwise
.

Note that the size of H
RAP

is bounded polynomially in |NC| and |NR|. Check-
ing whether a concept inclusion D � E (C � ∃r.D) is derivable corresponds to
checking if in the graph there exists a hyperpath from V

�
to the vertex D � E

(C � ∃r.D). Intuitively, there is a hyperpath from X to t if there is a hyperedge
connecting some set of nodes Y to t, and each yi ∈ Y is reachable from X via a
hyperpath; Def. 5 formalizes this intuitive picture.

Definition 5 (Hyperpath). pX ,t = (VX ,t , EX ,t) is a hyperpath in H = (V,E)
from X to t if and only if (i) t ∈ X and pX ,t = ({t}, ∅), or (ii) there is an edge
e ∈ E such that h(e) = t, T (e) = {y1, . . . , yk}, pX ,yi

are hyperpaths from X to
yi , V ⊇ VX ,t = {t} ∪

�
yi∈T (e) VX ,yi

, and E ⊇ EX ,t = {e} ∪
�

yi∈T (e) EX ,yi
.

3.2 Hyperpath Search for Relaxed Abduction

This section presents an algorithm for solving a relaxed abduction problem RAP

by determining bi-criterion shortest hyperpaths. The graph algorithm extends
a label-correcting algorithm for finding bi-criterion shortest paths in graphs,
which is one of the most efficient algorithms known for this problem [14]. It
compactly represents the graph using two lists S and R as proposed in [1], the
entries are however extended with labels encoding the Pareto-optimal paths to
the vertex found so far, and changes are propagated along the weighted edges
using two operators called meet (⊗) and join (⊕). When saturation has ter-
minated, the labels of all �-minimal paths in H

RAP
are collected in the set

MP (H
RAP

) :=
�

v∈V label(v). Algorithm 1 depicts the label propagation algo-
rithm restricted to rule (CR4) only due to space limitations. Note that while
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Relaxed Abduction for Incomplete Models 7

the order of propagations is irrelevant for correctness, it may have a significant
effect on the number of candidates generated: Finding near-optimal solutions
early leads to many suboptimal solutions being dominated and therefore not
propagated further. As a heuristic to improve performance, we therefore suggest
to exhaustively apply T -propagations first, and introduce assumptions only if
no other propagation is possible.

Algorithm 1: Label correcting construction of H
RAP

Data : RAP = (T ,A,O,�A,�O), a relaxed abduction problem over N�

C and
NR.

Result : HRAP , the induced hypergraph.

// initialization
1 foreach r ∈ NR do

2 R (r) ← ∅;

3 foreach C ∈ N�

C do

4 S (C) ← { �: {(∅, ∅)}, C : {(∅, ∅)}};

// propagation
5 repeat

6 changed ← false;
7 foreach ax ∈ T ∪ A do

8 else if ax = ∃r.A2 � B then // CR4

9 foreach A1 ∈ N�

C s. t. S(A1) � A2 : LA1,A2
do

10 foreach A ∈ N�

C s. t. R(r) � (A, A1) : LA,r,A1
do

11 L ← ∅;
12 if S(A) � B : LA,B then L ← LA,B;
13 L∗ ← join(L, meet(LA1,A2

, LA,r,A1
, ax, A � B));

14 if L∗ �= L then

15 S(A) ← (S(A) \ {B : LA,B}) ∪ {B : L∗};
16 changed ← true;

17 until changed = false;

Proposition 3 (Correctness). The set of all solutions to a relaxed abduc-
tion problem RAP = (T ,A,O,�A,�O) is given by the �-minimal closure of
MP(H

RAP
) under component-wise union (A, O)� (A�, O�) := (A∪A�, O ∪O�).

Proof. Due to space limitations we can only present an outline of the proof here.
Following the argumentation in [13, 8], it is clear that hyperpaths in H

RAP

starting in V
�

do indeed represent derivations, and that labels constructed from
the hyperpaths can be used to encode relevant pieces of information used during
that derivation. By Prop. 2, it then suffices to show that the proposed algorithm
correctly determines the labels of all Pareto-optimal paths in H

RAP
starting in
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8 Relaxed Abduction for Incomplete Models

Function meet(L1, L2, just, concl)
Input : L1, L2, two label sets; just, concl, two normal form axioms.
Output : The label set produced by the meet-operator ⊗.

1 result ← {(A1 ∪A2, O1 ∪O2) | (A1, O1) ∈ L1, (A2, O2) ∈ L2};
2 if just ∈ A then result ← {(A ∪ {just}, O) | (A, O) ∈ result};
3 if concl ∈ O then result ← {(A, O ∪ {concl}) | (A, O) ∈ result};
4 return result;

Function join(L1, L2)
Input : L1, L2, two label sets.
Output : The label set produced by the join-operator ⊕.

1 result ← L1 ∪ L2;
2 result ← remove-dominated(result, �A, �O);
3 return result;

V
�

. This can be proven inductively based on the correctness of the operators ⊕
and ⊗, which can easily be established in a case-by-case analysis. The terminal
closure of

�
v∈V label(v) under component-wise union is based on the intuition

that, having proved two statements a and b, we can obviously prove a ∧ b by
joining the two proofs (corresponding to the ⊗ operator). Graphically, this can
be seen as adding a dedicated vertex � such that any other v ∈ V is connected
to � by a hyperedge ({v},�, {∅, ∅}), and determining the label of this node that
intuitively represents anything that can be derived at all. ��

Since the node labels may grow exponentially in the size of A and O for
general preference orders such as set inclusion, it is worthwhile investigating
the benefit of our method as compared to the following simple brute-force ap-
proach: Iterating over all pairs (A, O) ∈ P(A) × P(O), collect all (A, O) such
that T ∪ A |= O holds and finally drop all �-dominated tuples among them.
This approach obviously requires 2|A|+|O| entailment tests, each set passing this
test is consequently tested for �-minimality. We argue that the our approach is
superior to the brute-force method due to three aspects:

1. In contrast to the uninformed search outlined above, the approach proposed
in this paper realizes an informed search as it does not generate all possible
(A, O)-pairs haphazardly but only those for which the property T ∪A |= O
actually holds, without requiring any additional entailment tests. The net
effect of this property depends on the model T as well as on A and O;
problems having only few solutions at all will obviously benefit most.

2. Dropping �-dominated labels for �O and �A being (anti-)monotone for set
inclusion reduces the worst-case size of node labels from by at least a factor of
O(

�
|A| · |O|). This can be justified as follows: Fixing a set A∗ ⊆ A, the sets

Oi ⊆ O that constitute the (non-dominated) label entries (A∗, Oi) must form
an antichain w. r. t. set inclusion. The maximum size of such an antichain is
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Relaxed Abduction for Incomplete Models 9

given by
�

|O|

�|O|/2�

�
according to Sperner’s theorem [15], and can be bounded

by 2|O|/
�

π/2 · |O| using Stirling’s approximation.4 An analogous argument
holds for fixed O∗; the size of the cross product can therefore be bounded
by O((2|A|/

�
|A|) · (2|O|/

�
|O|)), resulting in the factor stated above.

3. In addition to the strict upper bound to the size of labels provided by
the preceding line of argumentation, we can also determine the expected
number of non-dominated paths to a state as follows: We assume two ar-
bitrary orders over the elements of A and O such that any subset can be
encoded straightforwardly as a binary vector of length |A| (resp. |O|). Fix-
ing A∗ ⊆ A, an estimate of the expected number of label entries (A∗, Oi)
is given by the expected number A(n, l) of maximal (0, 1)-vectors of length
l = |O| among a set of k distinct such vectors chosen uniformly at random.
For our estimation, we let k := 2|O| to get an upper bound though the
actual number is expected to be less (c. f. aspect 1). Adapting the tech-
nique used in [2], A(n, l) can be expressed by the recurrence A(n, l) ≤

�
n
2 � ·

A(n,l−1)
n + �

n
2 � ·

A(�n/2�,l−1)
�n/2� ≈

1
2 · A(n, l − 1) + A(n/2, l − 1).5 As-

suming n ≥ 2l−1 , the recursion is limited only by l and terminates with the
terms A(n, 1) = A(n1/(l−1), 1) = 1 at depth l − 1. An upper bound is thus
given by A(n, l) ≤ A�(l) = A�(l − 1) + 1

2 · A(l − 1) = 3
2 · A(l − 1) = (3

2 )l−1 ;
the expected label size is thus O(1.5|A|+|O|).

Other choices for �A and �O can lead to more substantial savings; since
the preference orders are used as a pruning criterion during solution generation
this may however turn the approach into an approximate one. For instance if
the assumption and observation sets are not compared by set inclusion but by
cardinality, the maximum label size is reduced to |A| · |O| – dependent on the
order of rule application the algorithm may however fail to find the optimal
solutions. In a more complex setting, assigning numerical weights to observations
and abducibles allows to drop only solutions that are significantly worse than
others, or to compute bounds on the maximum score a partial solution may still
achieve, and use this value as a pruning criterion.

4 For m → ∞ it holds that
`
2m
m

´
∼

4m
√

π·m
. Letting m := �

n
2 �, this yields the estimate

`
n

�
n
2 �

´
∼

4
� n

2 �
√

π·�n
2 �
≈

4
n
2

√
π·n

2
=

2n
√

π
2 ·n

.
5 This recurrence can be understood as follows: Assume the vectors are arranged in

a (n× l)-matrix, sorted by the first component. A randomly chosen vector v starts
with 1 or 0 with probability 0.5 each. In the former case, v cannot be dominated by
any vector starting with a 0, i. e. the ”lower half” of the table is ruled out instantly,
and its probability of being dominated by another vector starting with 1 is given
by the expected number of maxima among the remaining �n/2� vectors divided by
their number, taken together v is maximal with probability A(�n/2�, l − 1)/�n/2�.
If v starts with 0, we can similarly determine its probability of being maximal to be
A(n, l−1)/n. Summing up these probabilities and and multiplying the result by the
number n of original vectors yields the expected number of maxima given above.

188



10 Relaxed Abduction for Incomplete Models

4 Related Work

While abductive reasoning naturally addresses the problem of missing observa-
tions, there are to the authors’ best knowledge no other approaches providing a
formally sound solution to logic-based abduction with incomplete models.

The idea of considering abduction as a multi-criteria optimization problem
is also central to [10], where multi-criteria decision making techniques are em-
ployed to red-cell antibody identification in blood samples. The task is solved
using domain-specific operators for combining entries in tables representing the
hypotheses. Being an instance of the set-cover approach to abduction, the pro-
posed method does however not address the problem of hypotheses generation,
and requires a simple tabular mapping from hypotheses to effects. In the context
of abductive (or diagnostic) inference in Bayesian networks, [11] distinguishes be-
tween most informative and most simple explanations which correspond to the
�O-minimal and the �A-minimal solution in our approach, respectively. How-
ever, intermediary Pareto-optimal combinations are not considered in their ap-
proach which is furthermore limited to propositional Bayes nets. The algorithm
presented in [4] for ABox abduction resembles our approach as it determines
alternative explanation sets with varying expressive power, keeping track of the
assumptions required for each of them. Unlike the approach presented in this pa-
per, the work by Castano et al. requires special handcrafted models combining
forward- and backward-chaining rules, and uses an iterative approach to handle
models expressed in the more expressive description logic ALCQ.

[13, 8] use an automaton which is structurally similar to the hypergraph
H
RAP

introduced in Def. 4 to generate a formula encoding all solutions to a
pinpointing respectively a (standard) abduction problem. In contrast to our ap-
proach these works guarantee polynomial runtime for solution generation, they
do however impose strong restrictions on the combination function, and are
inherently limited to uni-criterion problems. Assumption-based Truth Mainte-
nance Systems (ATMSs) [6] impose fewer restrictions on edge weights as com-
pared to the previously mentioned approaches, and similarly to our approach
labels containing information on required assumptions are propagated between
vertices in a hypergraph structure. We are however not aware of any extension
to ATMSs allowing for a tradeoff between assumptions and explanatory power,
nor do ATMSs consider any order over labels other than implication.

5 Conclusions and Outlook

We have introduced relaxed abduction, a novel non-standard reasoning task for
description logics. Relaxed abduction extends logic-based abduction to a gen-
eral and formally sound framework for interpreting spurious information w. r. t.
incomplete models. We have presented an algorithm for relaxed abduction over
EL

+ knowledge bases based on the notion of Pareto-optimal hyperpaths in the
derivation graph, and motivated its superiority to a straightforward enumeration
approach despite the inherent exponential growth of node labels. The proposed
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Relaxed Abduction for Incomplete Models 11

algorithm is straightforwardly extensible to other DLs for which subsumption
can be decided by completion such as EL++ which supports nominals and thus
ABox abduction. The very general notion of relaxed abduction allows for sev-
eral interesting specializations resulting from different choices for �A and �O:
Approximate solutions can for example be generated very efficiently (i. e. with
linear label size) if we use set cardinality as a dominance criterion. More elabo-
rate schemes based on weights assigned to the axioms allow for early and even
lossless pruning of suboptimal partial solutions while also reducing label sizes.
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Abstract. We analyze the complexity of subsumption in probabilistic variants of
the description logic EL. In the case where probabilities apply only to concepts,
we map out the borderline between tractability and EXPTIME-completeness. One
outcome is that any probability value except zero and one leads to intractability
in the presence of general TBoxes, while this is not the case for classical TBoxes.
In the case where probabilities can also be applied to roles, we show PSPACE-
completeness. This result is (positively) surprising as the best previously known
upper bound was 2-EXPTIME and there were reasons to believe in completeness
for this class.

1 Introduction

The fact that traditional description logics (DLs) do not provide any built-in means for
representing uncertainty has led to various proposals for probabilistic extensions, see
for example [14, 10, 5, 13, 12] and references therein. Recently, a new family of prob-
abilistic DLs was introduced in [15], with the distinguishing feature that its members
relate to the well-established probabilistic first-order logic (FOL) of Halpern and Bac-
chus [7, 4] in the same way as classical DLs relate to traditional FOL. The main purpose
of DLs from the new family, from now on called Prob-DLs, is to enable concept defini-
tions that require reference to (degrees of) possibility, likelihood, and certainty. To this
effect, Prob-DLs provide a probabilistic constructor P∼p with ∼ ∈ {<,≤,=,≥, >}
and p ∈ [0, 1] that can be applied to concepts and sometimes also to roles. For example,

Patient � ∃finding.(Disease � P>0.25Infectious)

describes patients having a disease that is infectious with probability at least .25. It
was argued in [15] that Prob-DLs are well-suited to capture aspects of uncertainty in
biomedical ontologies such as SNOMED CT. Since such ontologies are often formulated
in DLs from the EL family for which subsumption can be solved in polynomial time [2,
16], probabilistic extensions of EL in the style of Prob-DLs is particularly relevant in
this context. Some initial results have already been obtained in [15].

In this paper, we establish a rather complete picture of the complexity of subsum-
tion in Prob-DLs based on EL. In the first part, we consider Prob-EL in which prob-
abilities can only be applied to concepts, but not to roles. In [15], it was shown that
some concrete combinations of probability constructors such as P>0 and P>0.4 lead
to intractability (in fact, EXPTIME-completeness) of subsumption while a restriction
to the probability values zero and one does not. Here, we prove the much more gen-
eral result that the extension of EL with any single concept constructor P∼p, where
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∼ ∈ {<,≤,=,≥, >} and p ∈ (0, 1), results in EXPTIME-completeness. More specif-
ically, this result applies to general TBoxes, i.e., to sets of concept inclusions C � D
when ∼ ∈ {=,≥, >} and even to the empty TBox when ∼ ∈ {<,≤, }. Inspired by
the observation that many biomedical ontologies such as SNOMED CT are classical
TBoxes, i.e., sets of concept definitions A ≡ D with atomic and unique left-hand sides,
we then show that probabilities other than zero and one can be used without losing
tractability in (possibly cyclic) classical TBoxes for the cases ∼ ∈ {>,≥}. More pre-
cisely, subsumption in Prob-EL is tractable when only the constructors P∼p and P=1

are admitted, for any (single!) choice of ∼ ∈{≥ , >} and p ∈ (0, 1). The resulting logic
actually ‘coincides’ for all possible choices. We also show that when a second probabil-
ity value from the range (0, 1) sufficiently ‘far away’ from p is added, the complexity
of subsumption snaps back to EXPTIME-completeness.

In the second part of the paper, we consider Prob-ELr, where probabilities can be
applied to both concepts and roles, concentrating on general TBoxes. While decidability
is an open problem for full Prob-ELr, it was known that subsumption is in 2-EXPTIME
and PSPACE-hard in Prob-EL>0;=1

r , where probability values are restricted to zero and
one. Since subsumption in the ALC-version of Prob-EL>0;=1

r is 2-EXPTIME-complete
and the complexity of the EL-version and the ALC-version of many-dimensional DLs
(such as Prob-DLs) coincides in all known cases, it was thus tempting to conjecture
2-EXPTIME-completeness also of subsumption in Prob-EL>0;=1

r . We show that this
is not the case by establishing a tight PSPACE upper bound for subsumption in Prob-
EL>0;=1

r . This also implies PSPACE-completeness for the two-dimensional DL S5EL,
in sharp contrast with the 2-EXPTIME-completeness of S5ALC .

This paper is a workshop version of [6]. Proofs can be found in the long version of
that paper, to be found at http://www.informatik.uni-bremen.de/˜clu/papers/.

2 Preliminaries

Let NC and NR be countably infinite sets of concept names and role names. Prob-EL is
the extension of EL that allows the application of probabilities to concepts, i.e., Prob-
EL concepts are built according to the rule

C,D ::= � | A | C �D | ∃r.C | P∼pC

where A ranges over NC, r over NR, ∼ over {<,≤,=,≥, >}, and p ∈ [0, 1]. The
concept P∼pC denotes the class of objects that are an instance of C with probability
∼ p. For example, the SNOMED CT concept ‘animal bite by potentially rabid animal’
can be expressed as

Bite � ∃by.(Animal � P>0.5∃has.Rabies).

When we admit only a few values for ∼ and n, we put them in superscript; for example,
Prob-EL>0.4,<0.1 denotes the extension of EL with P>0.4C and P<0.1C. Probabilities
can be applied to roles using the concept constructors ∃P∼pr.C where ∼ and p range
over the same values as above, expressing that there is an element satisfying C that is
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related to the current element by the role name r with probability ∼ p. For example, the
SNOMED CT concept ‘disease of possible viral origin’ can be modeled as

Disease � ∃P>0origin.Viral.

We denote the extension of Prob-EL with the constructor ∃P∼pr.C with Prob-ELr. We
also consider the restriction Prob-EL>0;=1

r of Prob-ELr to probabilities 0 and 1 (both
on concepts and roles).

The semantics of the probabilistic DLs is given in terms of a probabilistic interpre-
tation I = (∆I ,W, (Iw)w∈W , µ), where ∆I is the (non-empty) domain, W a non-
empty set of possible worlds, µ a discrete probability distribution on W , and for each
w ∈ W , Iw is a classical DL interpretation with domain ∆I . We usually write CI,w

for CIw , and likewise for rI,w. For concept names A and role names r, we define the
probability

– pId (A) that d ∈ ∆I is an A as µ({w ∈ W | d ∈ AI,w});
– pId,e(r) that d, e ∈ ∆I are related by r as µ({w ∈ W | (d, e) ∈ rI,w}).

Next, we extend pId (A) to compound concepts C and define the extension CI,w of
compound concepts by mutual recursion on C. The definition of pId (C) is exactly as in
the base case, with A replaced by C. The extension of compound concepts is defined as
follows:

�I,w = ∆I (C �D)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ ∆I | ∃e.(d, e) ∈ rI,w ∧ e ∈ CI,w}
(P∼pC)I,w = {d ∈ ∆I | pId (C) ∼ p}

(∃P∼pr.C)I,w = {d ∈ ∆I | ∃e ∈ CI,w : pId,e(r) ∼ p}

A general TBox is a finite set of concept inclusions C � D, where C,D are concepts.
A classical TBox is a set of concept definitions A ≡ C, where A is a concept name
and the left-hand sides of concept definitions are unique. Note that cyclic definitions
are allowed.

A probabilistic interpretation I satisfies a concept inclusion C � D if CI,w ⊆
DI,w and a concept definition A ≡ C if AI,w = CI,w, for all w ∈ W . I is a model of
a TBox T if it satisfies all inclusions/definitions in T . A concept C is subsumed by a
concept D relative to a TBox T (written T |= C � D) if every model I of T satisfies
C � D.

The above definition is the result of transferring the notion of subsumption from
standard DLs to probabilistic DLs in a straightforward way. However, there is an al-
ternative variant of subsumption that is natural for probabilistic DLs: a concept C is
positively subsumed by a concept D relative to a TBox T (written T |=+ C � D)
if CI,w ⊆ DI,w for every probabilistic model I = (∆I ,W, (Iw)w∈W , µ) and every
w ∈ W with µ(w) > 0. Intuitively, classical subsumption is about subsumptions that
are logically implied whereas positive subsumption is about subsumptions that are cer-
tain. For example, when T∅ is the empty TBox, then T∅ �|= P=1A � A, but we can only
have d ∈ (P=1A)I,v \AI,v when µ(v) = 0, thus non-subsumption is only witnessed by
worlds that we are certain to not be the actual world. Consequently, T∅ |=+ P=1A � A.
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In the extension Prob-ALC of Prob-EL with negation studied in [15], positive sub-
sumption can easily be reduced to subsumption. This does not seem easily possible in
Prob-EL. In fact, we will sometimes use (Turing) reductions in the opposite direction.

3 Probabilistic Concepts

In [15], it was shown that subsumption in Prob-EL>0;=1 with general TBoxes is in
PTIME, whereas the same problem is EXPTIME-complete in Prob-EL>0;>0.4 (both in
the positive and in the unrestricted case). This raises the question whether any proba-
bility except 0,1 can be admitted in Prob-EL without losing tractability. The following
theorem provides a strong negative result.

Theorem 1. For all p ∈ (0, 1), (positive) subsumption in Prob-EL∼p relative to

1. general TBoxes is EXPTIME-hard when ∼ ∈ {=, >,≥}
2. the empty TBox is EXPTIME-hard when ∼ ∈{≤ , <}

Matching upper bounds are an immediate consequence of the fact that each logic Prob-
EL∼p is a fragment of the DL Prob-ALCc for which subsumption was proved EX-
PTIME-complete in [15]. To prove the lower bounds, it suffices to show that each
logic Prob-EL∼p is non-convex, i.e., that there are a general TBox T and concepts
C,D1, . . . , Dn, n ≥ 2, such that T |= C � D1 � · · · �Dn, but T�| = C � Di for all i.
Once that this is established, standard proof techniques from [2] can be used to reduce
satisfiability in ALC relative to general TBoxes, which is EXPTIME-complete, to sub-
sumption in Prob-EL∼p. The following constructions work for standard subsumption
and positive subsumption alike.

First consider ∼ = ≥ and assume p ≤ 0.5. Fix a k > 0 such that k · p > 1 and set

T = {Ai �Aj � P≥pBij | 1 ≤ i < j ≤ k}
C = P≥pA1 � · · · � P≥pAk

Dij = P≥pBij

Intuitively, the probabilities stipulated by C sum up to > 1, thus some of the Ai have
to overlap, but there is a choice as to which ones these are. Formally, we can show non-
convexity by proving that T |= C � �1≤i<j≤k Dij , but T�| = C � Dij for any i, j.
The comparisons ∼ ∈ {=, >} can be handled similarly.

Now assume that p > 0.5. We start with the case ∼ = > and use a variation of the
above. The main idea is to employ P>pC to simulate P>qC, for some q ≤ 0.5, which
brings us back to a case already dealt with. More precisely, let n > 0 be smallest such
that n > 1

2(1−p) and set q = pn−n+1. An easy computation shows that 0 ≤ q < 0.5.
Moreover, it can be shown that

P>pX1 � · · · � P>pXn � P>q(X1 � · · · �Xn)

which allows us to redo the above reduction with probability q < 0.5. Details are given
in the long version of [6]. The comparisons ∼ ∈ {=,≥} can be handled similarly.
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For the remaining cases ∼ ∈ {<,≤}, there is a very simple argument for non-
convexity even w.r.t. the empty TBox: we have � � P<pA � P<pP<pA, but neither
� � P<pA nor � � P<pP<pA, and likewise when ∼ is ≤.

When ∼ ∈ {=, >,≥}, the proof of Theorem 1 relies on general TBoxes in a crucial
way. It turns out that when we restrict ourselves to classical TBoxes, tractability can be
attained even with probabilities other than 0 and 1.

Theorem 2. For all ∼ ∈ {>,≥} and p ∈ [0, 1], (positive) subsumption in Prob-
EL∼p;=1 relative to classical TBoxes is in PTIME.

To prove Theorem 2, we start with positive subsumption. We can assume p > 0 since
subsumption in Prob-EL>0;=1 is in PTIME even with general TBoxes. To prove a
PTIME upper bound, we use a ‘consequence-driven’ procedure similar to the ones in
[2, 11]. A concept name A is defined in a classical TBox T if there is a concept defi-
nition A ≡ C ∈ T , and primitive otherwise. We can w.l.o.g. restrict our attention to
the subsumption of defined concept names relative to TBoxes. We also assume that the
input TBox is normalized to a set of concept definitions of the form

A ≡ P1 � · · · � Pn � C1 � · · · � Cm

n,m ≥ 0, and where P1, . . . , Pn are primitive concept names and C1, . . . , Cm are of
the form P∼pA, P=1A, and ∃r.A with A a defined concept name (note that the top
concept is completely normalized away). It is well-known that such a normalization
can be achieved in polytime, see [1] for details. For a given TBox T and a defined
concept name A in T , we write CA to denote the defining concept for A in T , i.e.,
A ≡ CA ∈ T . Moreover, we deliberately confuse the concept CA = D1 � · · · � Dk

with the set {D1, . . . , Dk}. We define a set of concepts ‘certain for CA’ as

cert(CA) = {P∗B | P∗B ∈ CA} ∪
�

P=1B∈CA

{CB}

where, here and in what follows, P∗ ranges over P=1 and P>p. Intuitively, cert(CA)
contains concepts that hold with probability 1 whenever A is satisfied in some world.
The algorithm starts with the normalized input TBox and then exhaustively applies the
completion rules displayed in Figure 1. As a general proviso, each rule can be applied
only if it adds a concept that occurs in T and actually changes the TBox, e.g., R1 can
only be applied when ∃r.B� occurs in T and ∃r.B� /∈ CA. Exemplarily, we explain rule
R5 in more detail. If all defining concepts CB of B are certain for A, then A � P=1B,
thus we can add P=1B to CA. Let T ∗ be the result of exhaustive rule application and
let C∗

A be the defining concept for A in T ∗, for all concept names A. The ‘only if’
direction requires a careful and surprisingly subtle model construction.

Lemma 1. For all defined concept names A,B, we have T |=+ A � B iff C∗
B ⊆ C∗

A.

It is easy to see that TBox completion requires only polytime: every rule application
extends the TBox, but both the number of concept definitions and of conjuncts in each
concept definition is bounded by the size of the original TBox.

To prove Theorem 2 for unrestricted subsumption, we provide a Turing reduction
from unrestricted subsumption to positive subsumption. We again assume that the input
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R1 If ∃r.B ∈ CA, and CB� ⊆ CB

then replace A ≡ CA with A ≡ CA ∪ { ∃r.B�}

R2 If P=1B ∈ CA

then replace A ≡ CA with A ≡ CA ∪ CB

R3 If P=1B ∈ CA

then replace A ≡ CA with A ≡ CA ∪ {P∼pB}

R4 If P∼pB ∈ CA, and D ∈ cert(CB)

then replace A ≡ CA with A ≡ CA ∪ {D}

R5 If CB ⊆ cert(CA)

then replace A ≡ CA with A ≡ CA ∪ {P=1B}

R6 If P∼pB ∈ CA and CB� ⊆ cert(CA) ∪ CB

then replace A ≡ CA with A ≡ CA ∪ {P∼pB
�}

Fig. 1. TBox completion rules for positive subsumption

TBox is in the described normal form and then exhaustively apply the rules shown in
Figure 2, calling the result T ∗ with defining concept of the form C∗

A.

Lemma 2. For all defined concept names A,B, we have T |= A � B iff C∗
B ⊆ C∗

A.

Clearly, the Turing reduction and thus the overall algorithm runs in polytime.
It is interesting to note that the proof of Theorem 2 is based on exactly the same

algorithm, for all ∼ ∈{≥ , >} and p ∈ (0, 1]. It follows that there is in fact only a
single logic Prob-EL∼p, for all such ∼ and p. Formally, given a Prob-EL∼p-concept
C, ≈ ∈{≥ , >} and q ∈ (0, 1], let C≈q denote the result of replacing each subconcept
P∼pD in C with P≈qD in C and similarly for Prob-EL∼p-TBoxes T .

Theorem 3. For any p, q > 0, ∼,≈ ∈ {>,≥}, EL∼p-concepts C,D and -TBox T ,
we have T |=+ C � D iff T≈q |=+ C≈q � D≈q , and likewise for unrestricted
subsumption.

Consequently, the (potentially difficult!) choice of a concrete ∼ ∈{≥ , >} and p ∈
(0, 1] is moot. In fact, it might be more intuitive to replace the constructor P∼pC with
a constructor LC that describes elements which ‘are likely to be a C’, and to replace
P=1C with the constructor C C to describe elements that ‘are certain to be a C’, see e.g.
[8, 9] for other approaches to logics of likelihood. Note that the case p = 0 is differ-
ent from the cases considered above: for example, we have T∅ |=+ ∃r.A � ∃r.P>pA
iff p = 0, and likewise T∅ |= P>p∃r.A � P>p∃r.P>pA iff p = 0. In the spirit of
the constructors C and L, P>0C can be replaced with a constructor PC that describes
elements for which ‘it is possible that they are a C’. For example, the SNOMED CT con-
cepts ‘definite thrombus’ and ‘possible thrombus’ can then be written as C Thrombus

and P Thrombus (although we speculate that the SNOMED CT designers mean ‘likely’
rather than ‘possible’).
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S1 If ∃r.B ∈ CA, and CB� ⊆ CB

then replace A ≡ CA with A ≡ CA ∪ { ∃r.B�}

S2 If T |=+ cert(CA) � P∗B

then replace A ≡ CA with A ≡ CA ∪ {P∗B}

Fig. 2. TBox completion rules for Turing reduction

It is a natural question whether the PTIME upper bound for classical TBoxes extends
to the case of multiple probability values (except one, which is apparently always un-
critical). The following result shows that many combinations of two probability values
lead to (non-convexity, thus) intractability, even without any TBox.

Theorem 4. Let ∼ ∈ {>,≥}, and p, q ∈ [0, 1). Then (positive) subsumption in Prob-
EL∼p;∼q relative to the empty TBox is EXPTIME-hard if (i) q = 0, (ii) p ≤ 1/2 and
q < p2, or more generally (iii) 2p− 1 < q < p2.

In particular, we cannot combine the constructors P and L mentioned above without
losing tractability. The above formulation of Theorem 4 is actually only a consequence
of a more general (but also more complicated to state) result established in the long
version of [6]. We conjecture that (positive) subsumption in Prob-EL∼p;∼q relative to
classical TBoxes is in PTIME whenever p ≥ q ≥ p2 and that, otherwise, it is EXPTIME-
hard.

4 Probabilistic Roles

Adding probabilistic roles to Prob-EL tends to increase the complexity of subsump-
tion. While for full Prob-ELr even decidability is open, it was shown in [15] that sub-
sumption is in 2-EXPTIME and PSPACE-hard in Prob-EL>0;=1

r . As discussed in the
introduction, there were reasons to believe that this problem is actually 2-EXPTIME-
complete. We show that this is not the case by proving a PSPACE upper bound, thus
establishing PSPACE-completeness. This result holds both for positive and unrestricted
subsumption, we start with the positive case.

We again concentrate on subsumption between concept names and assume that the
input TBox is in a certain normal form, defined as follows. A basic concept is a concept
of the form �, A, P>0A, P=1A, or ∃α.A, where A is a concept name and, here and in
what follows, α is a role, i.e., of the form r, P>0r, or P=1r with r a role name. Now,
every concept inclusion in the input TBox is required to be of the form

X1 � · · · �Xn � X

with X1, . . . , Xn, X basic concepts. It is not hard to show that every TBox can be trans-
formed into this normal form in polynomial time such that (non-)subsumption between
the concept names that occur in the original TBox is preserved.

Let T be the input TBox in normal form, CN the set of concept names that occur
in T , BC the set of basic concepts in T , and ROL the set of roles in T . Call a role
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probabilistic if it is of the form P=1r or P>0r. Our algorithm maintains the following
data structures:

– a mapping Q that associates with each A ∈ CN a subset Q(A) ⊆ BC such that
T |= A � X for all X ∈ Q(A);

– a mapping Qcert that associates with each A ∈ CN a subset Qcert(A) ⊆ BC such
that T |= A � P=1X for all X ∈ Qcert(A);

– a mapping R that associates with each probabilistic role α ∈ ROL a binary relation
R(α) on CN such that T |= A � P>0(∃α.B) for all (A,B) ∈ R(α).

Some intuition about the data structures is already provided above; e.g., X ∈ Q(A)
means that T |= A � X . However, there is also another view on these structures
that will be important in what follows: they represent an abstract view of a model of
T , where each set Q(A) describes the concept memberships of a domain element d
in a world w with d ∈ AI,w and R describes role memberships, i.e., when (A,B) ∈
R(α), then d ∈ AI,w implies that in some world v with positive probability, d has an
element described by Q(B) as an α-successor. In this context, Qcert(A) contains all
concepts that must be true with probability 1 for any domain element that satisfies A
in some world. Note that non-probabilistic roles r and probabilistic roles P=1r are not
represented in the R(·) data structure; we will treat them in a more implicit way later
on.

The data structures are initialized as follows, for all A ∈ CN and relevant roles α:

Q(A) = {�, A} Qcert(A) = {�} R(α) = ∅.

The sets Q(·), Qcert(·), and R(·) are then repeatedly extended by the application of
various rules. Before we can introduce these rules, we need some preliminaries. As the
first step, Figure 3 presents a (different!) set of rules that serves the purpose of saturating
a set of concepts Γ . We use cl(Γ ) to denote the set of concepts that is the result of
exhaustively applying the displayed rules to Γ , where any rule can only be applied if
the added concept is in BC, but not yet in Γ . The rules access the data structure Q(·)
introduced above and shall later be applied to the sets Q(A) and Qcert(A), but they will
also serve other purposes as described below. It is not hard to see that rule application
terminates after polynomially many steps.

R1 If X1 � . . . �Xn � X ∈ T and X1, . . . , Xn ∈ Γ then add X to Γ

R2 If P=1A ∈ Γ then add A to Γ

R3 If ∃P=1r.A ∈ Γ then add ∃r.A to Γ

R4 If A ∈ Γ then add P>0A to Γ

R5 If ∃r.A ∈ Γ then add ∃P>0r.A to Γ

R6 If ∃α.A ∈ Γ and B ∈ Q(A) then add ∃α.B to Γ

Fig. 3. Saturation rules for cl(Γ )
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The rules that are used for completing the data structures Q(·), Qcert(·), and R(·)
are more complex and refer to ‘traces’ through these data structures.

Definition 1. Let B ∈ CN. A trace to B is a sequence S,A1, α2, A2, . . . , αn, An where

1. S = A for some P>0A ∈ Q(A1) or S = (r,B) for some (A1, B) ∈ R(P>0r);
2. each Ai ∈ CN and each αi ∈ ROL is a probabilistic role, such that An = B;
3. (Ai, Ai−1) ∈ R(αi) for 1 < i ≤ n.

If t is a trace of length n, we use tk, k ≤ n, to denote the trace S,A1, α2, . . . , αk, Ak.
Intuitively, the purpose of a trace is to deal with worlds that are generated by concepts
P>0A and ∃P>0r.A; there can be infinitely many such worlds as Prob-EL>0;=1

r lacks
the finite model property, see [15]. The trace starts at some domain element represented
by a set Q(A1) in the world generated by the first element S of the trace, then repeat-
edly follows role edges represented by R(·) backwards until it reaches the final domain
element represented by Q(B). The importance of traces stems from the fact that infor-
mation can be propagated along them, as captured by the following notion.

Definition 2. Let t = S,A1, α2, . . . , αn, An be a trace of length n. Then the type
Γ (t) ⊆ BC of t is
• cl({A} ∪Qcert(A1)) if n = 1 and S = A;
• cl(Qcert(A1) ∪{∃ r.B� ∈ BC | B� ∈ Qcert(B)}) if n = 1 and S = (r,B);
• cl(Qcert(An) ∪{∃ αn.B� ∈ BC | B� ∈ Γ (tn−1)}) if n > 1.

Note that the rules R1 to R6 are used in every step of this inductive definition. The
mentioned propagation of information along traces is now as follows: if there is a trace
t to B, then any domain element that satisfies B in some world must satisfy the concepts
in Γ (t) in some other world. So if for example P>0A ∈ Γ (t), we need to add P>0A
also to Qcert(B) and to Q(B).

Figure 4 shows the rules used for completing the data structures Q(·), Qcert(·), and
R(·). Note that S6 and S7 implement the propagation of information along traces,
as discussed above. Our algorithm for deciding (positive) subsumption starts with the
initial data structures defined above and then exhaustively applies the rules shown in
Figure 4. To decide whether T |=+ A � B, it then simply checks whether B ∈ Q(A).

Lemma 3. Let T be a Prob-EL>0;=1
r -TBox in normal form and A,B be concept names.

Then T |=+ A � B iff, after exhaustive rule application, B ∈ Q(A).

We now argue that the algorithm can be implemented using only polynomial space.
First, it is easy to see that there can be only polynomially many rule applications: every
rule application extends the data structures Q(·), Qcert(·), and R(·), but these structures
consist of polynomially many sets, each with at most polynomially many elements. It
thus remains to verify that each rule application can be executed using only polyspace,
which is obvious for all rules except those involving traces, i.e., S6 and S7. For these
rules, we first note that it is not necessary to consider all (infinitely many!) traces. In
fact, a straightforward ‘pumping argument’ can be used to show that there is a trace
t to B with some relevant concept C ∈ Γ (t) iff there is a non-repeating such trace,
i.e., a trace t� of length n such that for all distinct k,� ≤ n, we have Γ (t�k) �= Γ (t��).
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S1 apply R1-R6 to Q(A) and Qcert(A)

S2 if P∗B ∈ Q(A)

then add P∗B to Qcert(A)

S3 if C ∈ Qcert(A)

then add P=1C and C to Q(A)

S4 If ∃α.B ∈ Q(A) with α a probabilistic role
then add (A,B) to R(α).

S5 If P>0B1 ∈ Q(A), (B1, B2) ∈ R(α), B3 ∈ Qcert(B2)

then add ∃α.B3 to Qcert(A)

S6 if t is a trace to B and P∗A ∈ Γ (t)

then add P∗A to Qcert(B)

S7 if t is a trace to B and ∃α.A ∈ Γ (t) with α a probabilistic role

Fig. 4. The rules for completing the data structures.

Clearly, the length of non-repeating traces is bounded by 2m, m the size of T . To get
to polyspace, we use a non-deterministic approach, enabled by Savitch’s theorem: to
check whether there is a trace t to B with C ∈ Γ (t), we guess t step-by-step, at each
time keeping only a single Ai, αi and Γ (ti) in memory. When we reach a situation
where Ai = B and C ∈ Γ (ti), our guessing was successful and we apply the rule. We
also maintain a binary counter of the number of steps that have been guessed so far. As
soon as this counter exceeds 2m, the maximum length of non-repeating traces, we stop
the guessing and do not apply the rule. Clearly, this yields a polyspace algorithm.

Theorem 5. Deciding positive subsumption in Prob-EL>0;=1
r with respect to general

TBoxes is PSPACE-complete.

As a byproduct, the proof of Lemma 3 yields a unique least model (in the sense of
Horn logic), thus proving convexity of Prob-EL>0;=1

r . Note that positive subsumption
in Prob-EL>0;=1

r is actually the same as subsumption in the two-dimensional descrip-
tion logic S5EL, which is thus also PSPACE-complete. Using a Turing reduction similar
to that shown in Figure 2, we can ‘lift’ the result from positive subsumption to unre-
stricted subsumption.

Theorem 6. Subsumption in Prob-EL>0;=1
r relative to general TBoxes is PSPACE-

complete.

5 Conclusion

We have established a fairly complete picture of the complexity of subsumption in Prob-
EL, although some questions remain open. We speculate that Theorem 2 can be proved
also when ∼ is = with only minor changes (e.g. rule R3 becomes unsound). It would be
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interesting to verify the conjecture made below Theorem 4 that (positive) subsumption
in Prob-EL∼p;∼q relative to classical TBoxes is in PTIME whenever p ≥ q ≥ p2 and
that, otherwise, it is EXPTIME-hard relative to the empty TBox. It is even conceivable
that the conjectured PTIME result can be further generalized to any set of probability
values P ⊆ [0, 1] as long as q ≥ p2 whenever p, q ∈ P and p ≥ q. Moreover, variants
of Theorem 4 that involve, additionally or exclusively, the case where ∼ is = would
also be of interest.
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Unchain My EL Reasoner
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Abstract. We study a restriction of the classification procedure for
EL

++ where the inference rule for complex role inclusion axioms (RIAs)
is applied in a “left-linear” way in analogy with the well-known procedure
for computing the transitive closure of a binary relation. We introduce
a notion of left-admissibility for a set of RIAs, which specifies when a
subset of RIAs can be used in a left-linear way without loosing conse-
quences, prove a criterion which can be used to effectively check this
property, and describe some preliminary experimental results analyzing
when the restricted procedure can give practical improvements.

1 Introduction

The description logic (DL) EL and its extension EL++ [1] provide the bases of
the OWL EL profile of the Web Ontology Language [6] and are distinguished
by having tractable worst-case complexity for the standard DL reasoning prob-
lems. The nice computational properties of EL-style reasoning procedures such
as optimal (polynomial) worst-case complexity and “pay-as-you-go” behavior, are
commonly mentioned as main reasons for the improved practical performance of
reasoners based on such procedures for large ontologies such as SNOMED CT
[2,5,3,8].

Although EL++ admits a polynomial reasoning procedure, different features
of EL++ contribute differently to the degree of this polynomial [4]. In particu-
lar, the EL++ rule for dealing with complex role inclusion axioms (RIAs) has
O(n4) time complexity, which is higher than for other rules. Even for a single
transitivity axiom, the rule can result in O(n3) inferences. Although complex
role inclusion axioms are not used as commonly as other constructors in exist-
ing ontologies such as SNOMED CT, this might change in the future as more
OWL EL ontologies emerge.

Inspired by an O(n2) algorithm for computing the transitive closure of a
binary relation, in this paper we propose a refinement of the EL++ rule for deal-
ing with complex RIAs. Our main idea is to restrict the rule so that inferences
are applied in a left-linear way, that is, only a restricted number of the “initial”
axioms can be used in all premises of the rule except for the left-most. To this
end, we (i) formulate a notion of left-admissibility describing subsets of com-
plex RIAs that can be used in a left-linear way without losing consequences,
(ii) prove a criterion for left-admissibility that can be checked in polynomial
time, and (iii) provide an experimental evaluation measuring the proportion of
left-admissible RIAs and reduction in the number of inferences for a selection of
commonly-used ontologies.
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Table 1. The inference rules for ELR, with NC the set of all concept names

C0
C � C

: C ∈ NC

C1
C � C�

C � D
: C�

� D ∈ KB

C2
(C � Ci)

n
i=1

C � D
:
n > 1�n

i=1 Ci � D ∈ KB

C3
C � C�

C � ∃R.D
: C�

� ∃R.D ∈ KB

C4
C � ∃R.D D � D�

C � E
: ∃R.D�

� E ∈ KB

C5
C � ∃S.D
C � ∃R.D

: S � R ∈ KB

C6
(Ci−1 � ∃Ri.Ci)

n
i=1

C0 � ∃R.Cn
:
n > 1
R1 · . . . ·Rn � R ∈ KB

2 Reasoning in ELR

We first introduce a basic classification calculus for the description logic ELR
that will serve as a baseline for our study. ELR is the DL that supports only
conjunction, existential role restrictions, role hierarchies, and role inclusion ax-
ioms, each of which can be used in arbitrary general concept inclusions and role
inclusion axioms. We do not require regularity of RBoxes, and ELR can thus
be viewed as a fragment of EL++ without top, bottom, nominals, and concrete
domains. We use the following notation for role inclusion axioms.

Definition 1. A role chain ρ is an expression of the form R1 · . . . · Rn, n ≥ 0;
when n = 0 then ρ = � is the empty role chain and when n ≥ 2 then ρ is a
complex role chain. We denote by ρ1 · ρ2 the concatenation of two role chains
ρ1 and ρ2. A (complex) role inclusion axiom (short RIA) is an expression of the
form ρ � R where ρ is a non-empty (complex) role chain and R a role. An RBox
R is a finite set of RIAs.

Table 1 shows the rules of a classification calculus for ELR, obtained by re-
stricting the calculus for EL++ [1]. The input to the rules are axioms from an
ELR knowledge base that have been normalized as in [1]. The main difference
is that we treat n-ary conjunctions/role chains in a single application of C2/C6,
corresponding to the implementation we used for experiments. Each rule of in-
ference consists of a premise, a conclusion, and possible side conditions. The
calculus derives axioms of the form C � D and C � ∃R.D based on an input
knowledge base KB, and it is sound and complete for classification in the sense
that an axiom C � D is entailed by KB if and only if the exhaustive application
of the inference rules can be used to derive C � D. This follows immediately
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from the according result in [1] since it is easy to see that our rules correspond
to the inference rules in that paper: C0 corresponds to the initialization, C1 to
CR1, C2 to CR2, C3 to CR3, C4 to CR4, C5 to CR10, and C6 to CR11.

3 Linear Use of Role Inclusion Axioms

One of the simplest examples of complex RIAs is a transitivity axiom:

R ·R � R. (1)

Transitivity axioms occur in many ontologies where they are used to express hi-
erarchical relations between concepts, such as “part-of” or “child-of” hierarchies.
Let us consider an ontology containing axioms expressing a simple R-hierarchy:

Ai � ∃R.Ai+1, 1 ≤ i < n. (2)

If we apply rule C6 to these axioms, we derive exactly axioms of the form:

Ai � ∃R.Aj , 1 ≤ i < j ≤ n, (3)

using the following instances of rule C6:

Ai � ∃R.Aj Aj � ∃R.Ak

Ai � ∃R.Ak
: 1 ≤ i < j < k ≤ n. (4)

There are exactly n · (n − 1)/2 possible axioms of the form (3) and there are
exactly n · (n− 1) · (n− 2)/6 rule applications in (4). In particular, every axiom
in (3) is derived (n− 2)/3 times in average. Clearly, this demonstrates that rule
C6 can be a source of inefficiency, especially for large n.

The inferences (4) look like the computation of the transitive closure for a
binary relation, if we read C � ∃R.D as �C,D� ∈ R. Using this correspondence,
we can apply a more efficient algorithm for computing the transitive closure by
restricting the second premise in C6 to the initial axioms only. Specifically, let
us use �0 to distinguish the initial (told) axioms C �0 ∃R.D from the axioms
C � ∃R.D that are derived using inference rules. Then one can restrict rule C6

for transitivity axioms as follows:

C1 � ∃R.C2 C2 �0 ∃R.C3

C1 � ∃R.C3
: R ·R � R ∈ KB. (5)

We will call the rule (5) a left-linear rule in analogy with left-linear production
rules in context-free grammars because the conclusions of other inferences can
be used here only in the left premise. By applying (5) to the input axioms (2)
(written using �0), we obtain inferences of the following form:

Ai � ∃R.Aj Aj �0 ∃R.Aj+1

Ai � ∃R.Aj+1
: 1 ≤ i < j < n. (6)

204



Table 2. Left-linear inference rules for ELR

L0
C �L C

: C ∈ NC

L1
C �L C�

C �L D
: C�

� D ∈ KB

L2
(C �L Ci)

n
i=1

C �L D
:
n > 1�n

i=1 Ci � D ∈ KB

L3
C �L C�

C �0
L ∃R.D

: C�
� ∃R.D ∈ KB

L4
C �L ∃R.D D �L D�

C �L E
: ∃R.D�

� E ∈ KB

L5
C �L ∃S.D
C �L ∃R.D

: S � R ∈ R

L5
� C �

0
L ∃S.D

C �0
L ∃R.D

: S � R ∈ R

L6
(Ci−1 �L ∃Ri.Ci)

n
i=1

C0 �L ∃R.Cn
:
n > 1
R1 · . . . ·Rn � R ∈ R \ L

L6
� C0 �L ∃R1.C1 (Ci−1 �

0
L ∃Ri.Ci)

n
i=2

C0 �L ∃R.Cn
:
n > 1
R1 · . . . ·Rn � R ∈ L

It is easy to see that there are exactly (n− 1) · (n− 2)/2 rule applications in (6)
producing exactly those axioms in (3) that are not in (2), and that every such
axiom is derived exactly once. Clearly, this strategy represents an improvement
over the application of the (unrestricted) rule C6.

We use the idea above to formulate a calculus for ELR with a restricted
version of rule C6. In order to do that, we need to specify where the “initial”
axioms C �0 ∃R.D come from. Clearly, we cannot take such axioms just from the
knowledge base, since otherwise, e.g., we would not be able to derive A � ∃R.D

for KB consisting of A � ∃R.B, B � C, C � ∃R.D, and R · R � R, as we
cannot avoid using B � ∃R.D in the second premise of C6. Similarly, we need
to allow initial axioms to be produced by C5, since otherwise A � ∃R.C cannot
be derived for KB consisting of A � ∃R.B, B � ∃S.C, S � R, and R ·R � R.

The new calculus for ELR is formulated in Table 2. The calculus is para-
metrized with a distinguished subset L ⊆ R of complex RIAs. The RIAs in L
can, similar to the transitivity axiom in the example above, only be used in a
left-linear version L6

� of rule C6. The remaining axioms from R \ L can be used
without restrictions in rule L6. The initial axioms of the form C �0

L ∃R.D are
produced by rules L3 and L5

� . We use L in the subscripts of �L and �0
L to em-

phasize that these relations depend on L. We implicitly assume that �0
L ⊆ �L;

in particular, axioms of the form C �0
L ∃R.D can also be used as premises of

rules L4 and L6 and as the first premise of rule L6
� . Note that if L = ∅, our new

calculus coincides with the original calculus for ELR (ignoring the distinction
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Table 3. Left-linear composition of roles

E0
R �0

L R
: R ∈ NR

E1
ρ �L S
ρ �L R

: S � R ∈ R

E1
� T �

0
L S

T �0
L R

: S � R ∈ R

E2
(ρi �L Ri)

n
i=1

ρ1 · . . . · ρn �L R
:
n > 1
R1 · . . . ·Rn � R ∈ R \ L

E2
� ρ1 �L R (Ti �

0
L Ri)

n
i=2

ρ1 · T2 · . . . · Tn �L R
:
n > 1
R1 · . . . ·Rn � R ∈ L

between �0
L and �L). Clearly, the larger L is, the more restricted our rules are,

and so the less inferences are possible. Thus, in the remainder of the paper we
are concerned with the problem of finding subsets L of a given R which do not
result in lost consequences relative to the original calculus in Table 1.

4 Left-Admissible Role Inclusion Axioms

In this section we are concerned with the problem of how to determine, given a
set of complex RIAs L ⊆ R, whether the calculus in Table 2 produces the same
consequences as the original calculus in Table 1. In order to study the properties
of the calculus in Table 2 for different subsets L of R, consider the smallest
relations �0

L ⊆ �L on role chains satisfying the properties in Table 3. Note the
similarities between the rules in Table 3 and rules in Table 2. Also note that
unlike the derivation relation �0

L in Table 2, the relation �0
L in Table 3 does not

depend on L and coincides with the closure of the role hierarchy. The following
lemma can be easily proved using the correspondence between the rules L3, L5,
L5
� , L6 and L6

� and the rules E0, E1, E1
� , E2 and E2

� .

Lemma 1. For every subset L ⊆ R of complex RIAs, all concepts A and B,
and every role R, the following two conditions are equivalent:

(i) A �L ∃R.B.
(ii) There exist C0, . . . , Cn and R1 · . . . · Rn �L R such that A = C0, B = Cn,

and Ci−1 �0
L ∃Ri.Ci (1 ≤ i ≤ n).

The following properties can be proved by induction on S �0
L T :

if R �0
L S and S �0

L T , then R �0
L T , (7)

if ρ �L S and S �0
L T , then ρ �L T . (8)

The necessary and sufficient condition on L ⊆ R that guarantees that our
new calculus for ELR derives the same consequences as the original calculus,
can now be defined as follows:
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Definition 2. A set of complex RIAs L ⊆ R is left-admissible for R if the
following condition holds:

if (ρi �L Ri)
n
i=1 and R1 · . . . ·Rn � R ∈ R, then ρ1 · . . . · ρn �L R. (9)

Intuitively, L ⊆ R is left-admissible if the relation �L is closed under the
unrestricted version of the rule E2 when RIAs R1 · . . . ·Rn � R can be taken not
only from R\L, but from the whole R (note the similarity of (9) and E2). Left-
admissibility thus ensures that the relation �L coincides with the unrestricted
relation �∅, i.e., the relation for L = ∅.

Example 1. Consider R consisting of the axiom

isPartOf · isProperPartOf � isProperPartOf. (10)

It is easy to show that the following relations hold for any (of the two) L ⊆ R:

isPartOf �0
L isPartOf (by E0), (11)

isProperPartOf �0
L isProperPartOf (by E0), (12)

isPartOf · isProperPartOf �L isProperPartOf (by E2 or E2
� ). (13)

The following relation, however, holds only for L = ∅:

isPartOf · isPartOf · isProperPartOf �L isProperPartOf (by E2). (14)

When L = R, one cannot use E2
� to produce (14) from (11) and (13) using (10).

Therefore L = R is not left-admissible for R according to Definition 2.
Now suppose R is extended with the transitivity axiom

isPartOf · isPartOf � isPartOf. (15)

Then, similarly, for any L ⊆ R we have

isPartOf · isPartOf �L isPartOf (by E2 or E2
� ). (16)

And now (14) can be produced from (16) and (12) using (10) for any L ⊆ R. In
fact, one can show that any L ⊆ R will be left-admissible for the extended R.

Theorem 1. Let KB be a knowledge base with RBox R, and L ⊆ R be left-
admissible for R. Then C � D is derivable by rules in Table 1 using KB iff
C �L D is derivable by rules in Table 2 using KB.

Proof. The “if” direction of the theorem is straightforward since each rule in
Table 2 is a restriction of a corresponding rule in Table 1.

To prove the “only if” direction, assume to the contrary that there exists C �
D derivable by rules in Table 1 such that C ��L D. Without loss of generality,
C � D is produced by some rule in Table 1 from some premises Ci � Di,
0 ≤ i < n, n ≥ 0, such that Ci �L Di. We obtain contradiction by considering
all possible cases for such a rule.
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The only non-trivial case is an application of the rule C6 since all other rules
have a direct counterpart in Table 2. In this case Di−1 = ∃Ri.Ci (1 ≤ i ≤ n),
C = C0, D = ∃R.Cn and R1 · . . . · Rn � R ∈ R. By case (i) ⇒ (ii) of Lemma 1
applied to each Ci−1 �L ∃Ri.Ci, there exist Cj−1

i �0
L ∃Rj

i .C
j
i (1 ≤ j ≤ mi) such

that C0
i = Ci−1, Cmi

i = Ci and R1
i · . . . ·R

mi
i �L Ri. Define ρi := R1

i · . . . ·R
mi
i .

Since ρi �L Ri (1 ≤ i ≤ n), R1·. . .·Rn � R ∈ R, and L is left-admissible, we have
ρi · . . . · ρn �L R. By case (i) ⇐ (ii) of Lemma 1 for ((Cj−1

i �0
L ∃Rj

i .C
j
i )

mi
j=1)

n
i=1

using ρi · . . . · ρn �L R we obtain C = C0 = C0
1 �L ∃R.Cmn

n = ∃R.Cn = D,
which contradicts C ��L D. This proves the theorem. ��

5 Recognizing Left-Admissibility

It is difficult in general to verify the conditions of left-admissibility formulated
in Definition 2 since this requires checking property (9) for a potentially infinite
number of role chains ρi. In this section we give an equivalent formulation for
left-admissibility, which can be checked in polynomial time.

We start with the following sufficient condition for left-admissibility:

Lemma 2. Let L ⊆ R be sets of complex RIAs that satisfy the property:

if ρ � S ∈ R and ρ1 · S · ρ2 �L R, then ρ1 · ρ · ρ2 �L R. (17)

Then L is left-admissible for R.

Proof. We first show that (17) implies the following stronger property:

if ρ �L S and ρ1 · S · ρ2 �L R, then ρ1 · ρ · ρ2 �L R. (18)

The proof of (18) is by induction on the derivation of ρ �L S. In the base case
E0 we have ρ = S and the claim ρ1 ·S ·ρ2 �L R is part of the precondition. In all
other cases E1–E2

� there exist (σi �L Si)ni=1, n ≥ 1 such that ρ = σ1 · . . . ·σn and
S1 · . . . · Sn � S ∈ R. By (17) ρ1 · S1 · . . . · Sn · ρ2 �L R. Now use the induction
hypothesis (18) for each σi �L Si to iteratively expand the left-hand side of
ρ1 ·S1 · . . . ·Sn ·ρ2 �L R to obtain the claim ρ1 ·ρ ·ρ2 = ρ1 ·σ1 · . . . ·σn ·ρ2 �L R.

To finish the proof of the lemma, we now show that (18) implies (9). To
this end, consider any (ρi �L Ri)ni=1 and R1 · . . . · Rn � R ∈ R. We must
prove that ρ1 · . . . · ρn �L R. For this, note that R1 · . . . · Rn � R ∈ R implies
R1 · . . . · Rn �L R, and use (18) for each ρi �L Ri to iteratively expand the
left-hand side of R1 · . . . ·Rn �L R to obtain the desired ρ1 · . . . · ρn �L R. ��

The following lemma formulates some useful closure properties of the relation
�L, which hold for arbitrary L:

Lemma 3. Let L ⊆ R be sets of RIAs. If ρ1 �L S1, (Ti �0
L Si)ni=2, n ≥ 1, and

S1 · . . . · Sn �L R, then ρ1 · T2 · . . . · Tn �L R.

Proof. Let ρ = ρ1 · T2 · . . . · Tn. We will show ρ �L R by induction on the
derivation of S1 · . . . · Sn �L R.
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E0: n = 1 and S1 = R. The claim ρ1 �L R is part of the precondition.
E1: S1 · . . . · Sn �L S and S � R ∈ R. By the induction hypothesis ρ �L S from

which ρ �L R follows by E1.
E1
� : Analogous to the case of E1.

E2: S1 · . . . ·Sn = σ1 · . . . ·σm, m > 1, (σi �L Ri)mi=1 and R1 · . . . ·Rm � R ∈ R\L.
Let si and ei be the start and the end indices of σi in S1 · . . . · Sn. By the
induction hypothesis ρ1 · T2 · . . . · Te1 �L R1 and (Tsi · . . . · Tei �L Ri)mi=2,
from which ρ �L R follows by E2.

E2
� : S1 · . . . · Sk �L R1, k ≥ 1, (Si+k−1 �0

L Ri)mi=2, m > 1, k + m = n + 1 and
R1 · . . . · Rm � R ∈ L. By the induction hypothesis ρ1 · T2 · . . . · Tk �L R1.
By (7) we have (Ti+k−1 �0

L Ri)mi=2. Then ρ �L R follows by E2
� . ��

We are now ready to formulate our main criterion for left-admissibility:

Theorem 2. A subset L ⊆ R of complex RIAs is left-admissible for an RBox
R if and only if the following property holds:

if ρ � S1 ∈ R, S1 �0
L S2 and ρ1 · S2 · ρ2 � R ∈ L, then ρ1 · ρ · ρ2 �L R. (19)

Proof. The “only if” direction of the theorem can be easily shown using Defini-
tion 2 since ρ � S1 ∈ R and S1 �0

L S2 imply ρ �L S2.
To show the “if” direction, we first prove the following strengthening of (19):

if ρ � S1 ∈ R, S1 �0
L S2 and ρ1 · S2 · ρ2 �L R, then ρ1 · ρ · ρ2 �L R. (20)

The proof of (20) is by induction on the derivation of ρ1 · S2 · ρ2 �L R.

E0: S2 = R and ρ1 = ρ2 = �. Then (20) follows from (8).
E1: ρ1 ·S2 ·ρ2 �L S and S � R ∈ R. By the induction hypothesis ρ1 ·ρ ·ρ2 �L S,

from which ρ1 · ρ · ρ2 �L R follows by E1.
E1
� : Analogous to the case of E1.

E2: ρ1 · S2 · ρ2 = σ1 · . . . · σn, (σi �L Ri)ni=1 and R1 · . . . · Rn � R ∈ R \ L. Let
k be such that S2 occurs in σk, that is σ1 · . . . · σk−1 = ρ�1, σk = ρ��1 · S2 · ρ��2 ,
σk+1 · . . . ·σn = ρ�2 and ρ1 = ρ�1 ·ρ��1 , ρ2 = ρ��2 ·ρ�2. By the induction hypothesis
ρ��1 ·ρ·ρ��2 �L Rk, from which ρ1·ρ·ρ2 = σ1·. . .·σk−1·ρ��1 ·ρ·ρ��2 ·σk+1·. . .·σn �L R

follows by E2.
E2
� : ρ1 ·S2 ·ρ2 = σ1 ·T2 ·. . .·Tn, σ1 �L R1, (Ti �0

L Ri)ni=2 and R1 ·. . .·Rn � R ∈ L.
If S2 occurs in σ1, then this is analogous to the case of E2. Otherwise, let k

be such that σ1 · T2 · . . . · Tk−1 = ρ1, Tk = S2 and Tk+1 · . . . · Tn = ρ2. By (7)
S1 �0

L Rk. By (19) applied to ρ � S1 ∈ R, S1 �0
L Rk and R1 · . . . ·Rn �L R

we obtain R1 · . . . · Rk−1 · ρ · Rk+1 · . . . · Rn �L R, from which ρ1 · ρ · ρ2 =
σ1 · T2 · . . . · Tk−1 · ρ · Tk+1 · . . . · Tn �L R follows by Lemma 3.

Having proved (20), condition (17) now follows by taking S1 = S2 = S in
(20) and using rule E0 to derive S �0

L S. Therefore L is left-admissible for R. ��

Condition (19) in Theorem 2 can be checked in polynomial time in the size
of R. Indeed, there are only polynomially many possible instances of the precon-
dition in (19). For every such precondition, the property ρ1 · ρ · ρ2 �L R can be
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checked in polynomial time by, e.g., applying Lemma 1: ρ1 · ρ · ρ2 �L R holds iff
C0 �L ∃R.Cn is derivable from (Ci−1 �0

L ∃Ri.Ci)ni=1, where R1·. . .·Rn = ρ1·ρ·ρ2.
Theorem 2 can help checking if a given set L is left-admissible, but does not

explain how to find such a set without exhaustively checking al possible subsets
of R. The following sufficient condition will help us quickly find a suitable left-
admissible set of RIAs in practice:

Theorem 3. For a set of RIAs R let L(R) be the set of exactly those complex
RIAs σ � R ∈ R that satisfy the following condition for all ρ, ρ1, ρ2, S1, S2:

if ρ � S1 ∈ R, S1 �0
R S2 and ρ1 · S2 · ρ2 = σ, then ρ1 · ρ · ρ2 �R R. (21)

Then L(R) is left-admissible for R.

Proof. Note that the relations �L are anti-monotonic in L, that is for L1 ⊆ L2

we have �L1 ⊇ �L2 . Let L = L(R). Since L ⊆ R, we have �L ⊇ �R, and, since
�0

L does not depend on L, we have �0
L = �0

R. Now it is easy to show that L
satisfies (19): Suppose ρ � S1 ∈ R, S1 �0

L S2 and ρ1 · S2 · ρ2 � R ∈ L. Then
�0

L = �0
R implies S1 �0

R S2, so ρ1 · ρ · ρ2 �R R by (21). Then �L ⊇ �R implies
ρ1 · ρ · ρ2 �L R, so (19) holds. Therefore L = L(R) is left-admissible for R by
Theorem 2. ��

6 Experimental Evaluation

In this section we present the results of an experimental comparison of applying
the calculi in Sections 2 and 3 to several commonly considered EL ontologies that
contain complex RIAs, and discuss whether and to which extent our optimized
treatment of RIAs can improve the performance of reasoning in practice.

To evaluate the proposed algorithms, we have implemented the calculi de-
scribed in Sections 2 and 3 in a prototype Java-based reasoner ELK.1 All exper-
iments were conducted using Java 1.6 on a 2.5 GHz quad core CPU with 4GB
RAM running Fedora 13 Linux.

Our test ontology suite includes GO,2 FMA-lite,3 and an OWL EL version
of GALEN.4 These ontologies contain only (left-admissible) RIAs of the form
R � S and R · R � R. In order to test which proportion of complex RIAs in
realistic ontologies is left-admissible, we additionally considered the two latest
versions of GALEN,5 namely GALEN7 and GALEN8, which contain RIAs of
the form R � S, R ·S � R, and S ·R � R. We reduced these ontologies to ELR
by removing all axioms for role functionalities and role inverses and replacing
all datatypes by fresh atomic concepts. It is worth noting that the RIAs in
GALEN7 and GALEN8 do not satisfy the regularity restrictions of OWL 2 [7]
1 http://code.google.com/p/elk-reasoner/
2 obtained from http://lat.inf.tu-dresden.de/~meng/toyont.html
3 obtained from http://www.bioontology.org/wiki/index.php/FMAInOwl
4 obtained from http://condor-reasoner.googlecode.com/
5 obtained from http://www.opengalen.org/sources/sources.html
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Table 4. Ontology metrics and experimental results

GO FMA-lite OWL GALEN GALEN7 GALEN8
Number of normalized input axioms

A � B 28,896 121,708 71,366 92,749 588,806�n
i=1 Ai � B,n ≥ 2 0 0 11,561 12,097 122,527

A � ∃R.B 1,796 12,355 14,115 15,105 106,065
∃R.A � B 0 0 7,549 7,973 93,241
R � S 0 3 958 972 996
R1 ·R2 � R3 ∈ R 1 1 58 385 385
R1 ·R2 � R3 ∈ L 1 1 58 183 183
Number of derived axioms

A � B 206,205 1,035,527 1,119,636 1,770,895 11,462,383
A � ∃R.B 33,985 867,209 2,282,471 3,299,376 24,998,147
Number of rule applications

C0/L0 19,468 78,977 25,963 30,534 202,664
C1/L1 241,834 958,754 1,396,379 2,917,625 15,900,712
C2/L2 0 0 259,654 372,780 2,639,688
C3/L3 21,994 114,724 339,880 446,980 3,780,076
C4/L4 0 0 949,148 1,316,768 17,217,292
C5/L5+L5

� 0 96,891 2,023,828 2,903,821 21,988,137
C6 34,753 5,807,992 275,248 1,264,208 11,867,857
L6+L6

� 19,756 1,186,733 216,982 1,087,328 8,728,711

and, for this reason, no OWL reasoner can handle them in the unreduced form.
We have excluded SNOMED CT from our experiments for the reason that the
only complex RIA it contains is redundant for classification in the sense that
rule C6 is never applied on this ontology.

In our experiments, we first normalized all test ontologies using structural
transformation, and applied Theorem 3 to identify left-admissible sets of RIAs.
Table 4 presents statistics on the number of axioms of each type and the num-
ber of left-admissible RIAs for each of the tested ontologies. For GALEN7 and
GALEN8, which contain identical complex RIAs, we found a left-admissible sub-
set containing 183 out of the total 385 complex RIAs. In this case, we additionally
checked that adding any one of the remaining complex RIAs to the previously
found 183 violates the conditions of Theorem 2, showing that the left-admissible
subset of RIAs we found is maximal. For the remaining ontologies, the full set
of RIAs is left-admissible since transitivity axioms are the only kind of complex
RIA. In general, the computation of left-admissible RIAs had no relevant impact
on overall performance, running in less than 0.5 seconds in all cases.

For each of the tested ontologies, we computed the saturation under the infer-
ence rules of Table 1 and Table 2. Table 4 presents the total number of different
conclusions of each type, and the total number of inferences for each rule. In
accordance with Theorem 1, both approaches produce the same conclusions. For
this reason, the number of applications of each rule C0–C5 coincides with the
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corresponding number for rules L0–L5
� . Differences between the two approaches

are found in the number of applications of C6 on the one hand, and the com-
bined number of applications of L6 and L6

� on the other hand. As can be seen
from the results, the effect of our optimization strongly depends on the input
ontology, with the largest relative reductions obtained for FMA-lite and GO,
and less significant reductions for all versions of GALEN.

Although the reduction in the number of rule application is significant for
FMA-lite and GO, this, surprisingly, did not translate to a significant reduction
in the running time for our prototype implementation. For FMA-lite, for exam-
ple, the running time is reduced just from 7.2 to 6.1 seconds (15.3%), which is
less than expected for more than 65% reduction in the number of inferences. For
other ontologies the reduction in the running time was even less measurable.

One possible explanation for this effect is that a rule application producing
a new consequence costs more than a rule application producing a previously
derived consequence because the first requires a (relatively expensive) memory
allocation. Since our optimized procedure derives exactly the same conclusions,
it reduces only the number of inferences of the second kind. Nevertheless, our
optimization can give improvement in some cases and should not be difficult to
implement (at least for transitivity) in any reasoner based on the original EL
calculus [1], such as in CEL/jCEL [2] or Snorocket [5].
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Abstract. Evolution of Knowledge Bases expressed in Description Logics (DLs)
proved its importance. Most studies on evolution in DLs have focused on model-
based approaches to evolution semantics and in particular on Winslett’s semantics
(WS). It was understood that evolution under WS even in tractable DLs, such
as DL-Lite, suffers from inexpressibility, i.e., the result of evolution cannot be
expressed in the same logics. In this work we show which combination of DL-

Lite logical constructs is responsible for the inexpressibility and explain reasons
for such a behaviour. We present novel techniques, based on what we called
prototypes, to capture Winslett’s evolution in FO[2] for DL-LiteR. We also discuss
which fragments of DL-LiteR are closed under evolution.

1 Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured
knowledge by means of Knowledge Bases (KBs) K that are composed of two compo-
nents: TBox (describes intensional or general knowledge about an application domain)
and ABox (describes facts about individual objects). DLs constitute the foundations for
various dialects of OWL, the Semantic Web ontology language.

Traditionally DLs have been used for modeling static and structural aspects of
application domains [1]. Recently, the scope of KBs has broadened, and they are now
used also for providing support in the maintenance and evolution phase of information
systems. This makes it necessary to study evolution of Knowledge Bases [2], where
the goal is to incorporate a new knowledge N into an existing KB K so as to take
into account changes that occur in the underlying application domain. In general, N
is represented by a set of formulas denoting those properties that should be true after
K has evolved, and the result of evolution, denoted K � N , is also intended to be a
set of formulas. In the case where N interacts with K in an undesirable way, e.g., by
causing the KB or relevant parts of it to become unsatisfiable, N cannot simply be
added to the KB. Instead, suitable changes need to be made in K so as to avoid this
undesirable interaction, e.g., by deleting parts of K conflicting with N . Different choices
for changes are possible, corresponding to different approaches to semantics for KB
evolution [3,4,5].

One approach to evolution semantics that proved its importance is Winslett’s seman-

tics (WS) [6], which is an update semantics in terms of Katsumo and Mendelzon [4],
and was originally proposed for propositional theories. Under this semantics the result of
evolution K � N is a set of models of N that are minimally distanced from models of K,
where the distance is based on symmetric difference between models (see Section 3 for
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details). Since the result of evolution K�N is a set of models, while K and N are logical
theories, it is desirable to represent K � N as a logical theory using the same language
as for K and N . Thus, looking for representations of K � N is the main challenge in a
study of evolution under WS. When K and N are propositional theories, representing
K � N is well understood [5], while it becomes dramatically more complicated as soon
as K and N are first-order, e.g., DL KBs [7].

In this work we study how WS can be applied to evolution of KBs under the following
two assumptions. First, we assume that both K and N are written in a language of the
DL-Lite family [8]. The focus on DL-Lite is not surprising since DL-Lite is tightly
connected with conceptual data models and it is the basis of OWL 2 QL, a tractable
OWL 2 profile.Second, we assume that N is a new ABox and the TBox of K should
remain the same after the evolution. That is, we study a so-called ABox evolution. ABox
evolution is important for areas, e.g., bioinformatics, where the structural knowledge
TBox is well crafted and stable, while ABox facts about specific individuals may get
changed, or/and new facts can be inserted in the ABox. These ABox changes should be
reflected in KBs in a way that the TBox is not affected.

There are several works on WS for both DL-Lite and more expressive DLs. Liu,
Lutz, Milicic, and Wolter studied Winslett’s evolution in expressive DLs [7], for KBs
with empty TBoxes. Most of DLs they considered are not closed under WS and in order
to close these logics they used “@” operator. Poggi, Lembo, De Giacomo, Lenzerini,
and Rosati applied WS to DL-Lite [9] and proposed an algorithm to compute the result
of evolution. It turned out that their algorithm is wrong, i.e. it is neither sound, nor
complete [10]. Actually, such an algorithm cannot exist since Calvanese, Kharlamov,
Nutt, and Zheleznyakov showed that, e.g., DL-LiteFR is not closed under WS of evolu-
tion [11], that is, there are K and N such that K � N is not axiomatizable in this family.
Recently [12] we introduced prototypes, which are in a way generalization of the notion
of canonical model, and proposed a way to capture some fragments of DL-Lite in FO[2],
a fragment of first-order logic that uses two variables only.

Current work extends the preliminary results of [12]. Our goals here are
(i) to clarify our prototype-based techniques which was only sketched in [12],

(ii) to extend the techniques to wider DL-Lite fragments,
(iii) to gain a better understanding on which fragments of DL-Lite are closed under WS

and how to approximate evolution results in DL-Lite.
We would also like to promote prototypes since we believe they are an useful tool to
study evolution of ontologies and might be not only of DL-Lite ones.

In Sections 2 and 3 we define DL-LiteR and ABox evolution under WS. In Section 4
we give an intuition of our approach to capture WS of evolution for DL-LiteR KBs using
prototypes and FO[2] theories. In Sections 5 and 6 we formalize the approach. Finally,
we discuss properties and approximation of these theories.

2 DL-LiteR

We introduce some basic notions of DLs (see [1] for more details). We consider a logic
DL-LiteR of DL-Lite family of DLs [8,13]. DL-LiteR has the following constructs for
(complex) concepts and roles: (i) B ::= A | ∃R, (ii) C ::= B | ¬B, (iii) R ::= P | P−,
where A and P stand for an atomic concept and role, respectively, which are just
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names. A DL knowledge base (KB) K = (T ,A) is compound of two sets of assertions:
TBox T , and ABox A. DL-LiteR TBox assertions are concept inclusion assertions of
the form B � C and role inclusion assertions R1 � R2, while ABox assertions are
membership assertions of the form A(a), ¬A(a), and R(a, b). The active domain of K,
denoted adom(K), is the set of all constants occurring in K. The DL-Lite family has nice
computational properties, for example, KB satisfiability has polynomial-time complexity
in the size of the TBox and logarithmic-space in the size of the ABox [14,15].

The semantics of DL-Lite KBs is given in the standard way: using first order inter-

pretations I, all over the same countable domain ∆. We assume that ∆ contains the
constants and cI = c, i.e., we adopt standard names. Alternatively, we view interpreta-
tions as sets of atoms: A(a) ∈ I iff a ∈ AI and P (a, b) ∈ I iff (a, b) ∈ P I .

Definitions of I being a model of an ABox or a TBox assertion F , denoted I |= F ,
and a KB K, denoted I |= K, are standard, as well as the notion of satisfiability. We use
Mod(K) to denote the set of all models of K. We use entailment on KBs K |= K� in the
standard sense. An ABox A T -entails an ABox A�, denoted A |=T A�, if T ∪ A |= A�,
and A is T -equivalent to A�, denoted A ≡T A�, if A |=T A� and A� |=T A.

The deductive closure of a TBox T , denoted cl(T ), is the set of all TBox assertions F
such that T |= F . For satisfiable KBs K = (T ,A), a full closure of A (wrt T ), fclT (A),
is the set of all membership assertions f (both positive and negative) over adom(K)
such that A |=T f . Clearly, in DL-LiteR both cl(T ) and clT (A) are computable in time
quadratic in, respectively, |T |, i.e., the number of assertions of T , and |T ∪ A|. For the
ease of exhibition and wlg we assume that all TBoxes and ABoxes are closed.

A homomorphism h from a model I to a model J is a structure-preserving mapping
from ∆ to ∆ satisfying: (i) h(a) = a for every constant a; (ii) if α ∈ AI (resp.,
(α,β ) ∈ P I), then h(α) ∈ AJ (resp., (h(α), h(β)) ∈ PJ ) for every A (resp., P ). We
write I �→ J if there is a homomorphism from I to J . A canonical model I of K,
denoted as Ican

K or just Ican when K is clear from the context, is a model of K which
can be homomorphically embedded in every model of K [8].

3 Winslett’s Semantics for Evolution of Knowledge Bases

We start with ABox evolution of single models under Winslett’s semantics. Let K =
(T ,A) be a DL-LiteR KB, I a model of K, and N a new ABox satisfiable with T .
Evolution of a model I of K is based on the symmetric difference �: S1 � S2 =
(S1 \ S2) ∪ (S2 \ S1), and defined as follows. The (result of) evolution of I with N
under Winslett’s semantics (WS) [9], denoted I � N, is the set of models J such that:

(i) J ∈ Mod(T ∪ N), and
(ii) there is no model J � ∈ Mod(T ∪ N) satisfying I � J � � I � J

Note that in Case (i) we have Mod of both T and N , which means that the evolution
preserves both the old TBox and the new knowledge. Case (ii) guarantees the principle
of minimal change [5]. We extend the definition to KBs:

The result of evolution of K with N under WS, denoted K � N , is the following set
of models:

K � N = ∪I∈Mod(K)I � N.

In terms of [10], WS corresponds to La
⊆ semantics, i.e., local model-based semantics

based on atoms and set inclusion.
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The input for evolution is two finite syntactic objects: a KB K = (T ,A) and a new
information N , while the output K � N is a set of models, which is an infinite object for
DL-LiteR. Indeed, K � N is in general infinite. One can easily come up with examples
where K � N has an infinite number of infinite models. These observations imply that
storing K � N is infeasible and in practice one would like to represent the evolution as
a KB K�. Moreover, one would like to stay within the same formalism and express K�
in DL-LiteR. Formally, we say that a logic L is closed under Winslett’s evolution if for
every K and N in L, the result of evolution K � N is expressible in L, that is, there is a
KB K� = (T ,A�) in L such that Mod(K�) = K � N .

Example 1. Consider the following DL-Lite KB K1 = (T1,A1) and N1 = {C(b)}:

T1 = {A � ∃R,∃R− � ¬C}; A1 = {A(a), C(e), C(d), R(a, b)}.
Consider the following model I of K1:

I: AI = {a, x}, CI = {d, e}, RI = {(a, b), (x, b)},
where x ∈ ∆ \ adom. The following models belong to I � N1:

J0: AI = ∅, CI = {d, e, b}, RI = ∅,
J1: AI = {x}, CI = {e, b}, RI = {(x, d)},
J2: AI = {x}, CI = {d, b}, RI = {(x, e)}.

Indeed, all the models satisfy N1 and T1. To see that they are in I � N1 observe that
every model J (I) ∈ (I � N1) can be obtained from I by making modifications that
guarantee that J (I) |= (N1 ∪ T1) and that the distance between I and J (I) is minimal.
What are these modifications? Since in every J (I) the new assertion C(b) holds and
(C � ¬ ∃R−) ∈ T1, there should be no R-atoms with b-fillers at the second coordinate
in J (I). Hence, the necessary modifications of I are either to drop (some of) the R-
atoms R(a, b) and R(x, b), or to modify (some of) them, by substituting the b-fillers
with another ones, while keeping the elements a and x on the first position. The model
J0 corresponds to the case when both R-atoms are dropped, while in J1 and J2 only
R(a, b) is dropped and R(x, b) is modified to R(x, d) and R(x, e), respectively. Note
that the modification in R(x, b) leads to a further change in the interpretation of C in
both J1 and J2, namely, C(d) and C(e) should be dropped, respectively.

4 Prototypes for Winslett’s Semantics

We first present a general discussion on issues with capturing WS in DL-Lite, then give
an intuition of our approach for capturing it in FO[2], and finally give an example of how
the approach works. In the next section we formalize the approach.

ABox Evolution of a DL-Lite KB K with an ABox N is the set of models K � N
that may not have a canonical one [12]. This immediately yields that K � N cannot be
described (aka axiomatized) in any language of the DL-Lite family.

Example 2. We now illustrate the lack of canonical models in K1 � N1 from Example 1.
One can verify that any model Jcan that can be homomorphically embedded into J0, J1,
and J2 is such that AJcan = RJcan = ∅, and e, d /∈ CJcan . It is easy to check that such a
model does not belong to K1 � N1. Hence, there is no canonical model in K � N and it
is inexpressible in DL-Lite.
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K �N S0 S1 S3S2

J0
J1 J2

J3

Mod(K(J0)) Mod(K(J1)) Mod(K(J2))

Mod(K(J3))

Fig. 1. Graphical representation of our approach to capture the result of evolution under WS.

A closer look at sets K � N for different K and N gave a surprising outcome: all of
them satisfy the following property.
Theorem 3. K � N can be divided (but in general not partitioned) into finitely many

subsets S0, . . . ,Sn of models, where each Si has a canonical model Ji. Each of these

canonical models is a minimal element in K � N wrt homomorphisms.

We called these Jis prototypes [12]. Thus, capturing K � N in some logics boils
down to (i) capturing each Si with some theory KSi and (ii) taking the disjunction across
all KSi . This will give the desired theory K� = KS1 ∨ · · · ∨ KSn that captures K � N .
Unfortunately, some of KSi are not DL-Lite theories (while they are FO[2] theories, see
Section 5 for details).

We construct K� in two steps. First, we construct DL-LiteR KBs K(Ji) for each Ji

such that K(Ji) is a sound approximations of Sis, that is, Si ⊆ Mod(K(Ji)). Second,
based on K and N , we construct an FO[2] formula Ψ , which cancels out all the models
in Mod(K(Ji)) \ Si, that is, KS0 ∨ · · · ∨ KSn = Ψ ∧ (K(J0) ∨ · · · ∨ K(Jn)).

To get a better intuition on our approach, consider Figure 1, where the result of
evolution K � N is depicted as the figure with solid-line borders (each point within the
figure is a model in K�N ). Assume that K�N can be divided in four subsets S0, . . . ,S3.
To emphasize this fact, K � N looks similar to a hand with four fingers, where each
finger represents an Si. Consider the left part of Figure 1. Each of Sis has a canonical
model depicted as a star. Using DL-LiteR , we can provide KBs K(J0), . . . ,K(J3) that
are sound approximation of corresponding Sis. We depict the models Mod(K(Ji)) as
ovals with dashed-line boarders. Consider the right part of Figure 1. In this figure we
depict in grey the models Mod(K(Ji)) \ Si that are cut off by Ψ .

Before proceeding to the next section where we formalize our approach, we introduce
prototypes formally.

Definition 4. Let K be a DL-LiteR KB and N be an ABox. A prototypal set for K � N
is a minimal subset J = {J0, . . . ,Jn} of K � N satisfying the property:

for every J ∈ K � N there is Ji ∈ J such that Ji �→ J .

We call every Ji ∈ J a prototype for K � N . Note that prototypes generalize canonical
models in the sense that every set of models with a canonical one, say Mod(K) for a
DL-LiteR KB K, has a prototype, which is exactly the canonical model.

5 Computing Winslett’s Semantics When No Roles Interact

We first discuss some of the reasons of WS inexpressibility in our examples and DL-LiteR.
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BZP (K,N )

1. J0 := Align(Ican,N ) ∪N , where Ican is the canonical model of K.
2. For each R(a, b) ∈ AA(K,N ), do J0 := J0 \ {R(a, b)},

if there is no R(a,β ) ∈ A \AA(K,N ) do J0 := J0 \ root
at
T (∃R(a)).

3. Return J0.

Fig. 2. The procedure of building zero-prototype

Dual-Affection of Roles. As we discussed in the previous section and illustrated in
Example 1, sets of models K � N that result from Winslett’s evolution do not have
canonical models. We now give an intuition why in K �N canonical models are missing.
Observe that in Example 1 the role R is affected by the old TBox T1 as follows:

(i) T1 places (i.e., enforces the existence of) R-atoms in the evolution result, and on
one of coordinates of these R-atoms, there are constants from specific sets, e.g.,
A � ∃R of T1 enforces R-atoms with constants from A on the first coordinate, and

(ii) T1 forbids R-atoms in K1 � N1 with specific constants on the other coordinate,
e.g., ∃R− � ¬C forbids R-atoms with C-constants on the second coordinate.

Due to this dual-affection (both positive and negative) of the role R in T1, we were
able to provide an ABox A1 and N1, which together triggered the case analyses of
modifications on the model I, that is, A1 and N1 were triggers for R. Existence of
such an affected R and triggers A1 and N1 made K1 � N1 inexpressible in DL-LiteR.
Therefore, we now learn how to detect dually-affected roles in TBoxes and how to
understand whether these roles are triggered by an ABox and a new (ABox) information.

Formally, let T be a TBox, a role R is dually-affected in T if for some concepts A
and B it holds that T |= A � ∃R and T |= ∃R− � ¬B. Let N be an ABox satisfiable
with T , then a dually-affected role R is triggered by N if there is a concept B such that
T |= ∃R− � ¬B and N |=T B(b) for some constant b. The set TR(T ,N ) (or simply
TR) is the set of all roles (dually-affected in T ) that are triggered by N .
Description Logics DL-Lite

I

R. We now show a restriction of DL-LiteR for which we
later present an algorithm to capture WS using prototypal set. DL-Lite

I

R (where I stands
for (mutual) independence of roles) is a restriction of DL-LiteR in which TBoxes T
satisfy: for any two roles R and R�, T�| = ∃R � ∃R� and T�| = ∃R � ¬ ∃R�. That is, we
forbid direct role interaction (subsumption and disjointness) between role projections.
Some interaction is still possible: role projections may contain the same concept. This
restriction allows us to analyze evolution affecting roles independently for every role.
Components for Computation. We now introduce several notions and notations that
we further use in the description of our algorithm. An alignment of a model I with N ,
denoted Align(I,N ), is the interpretation:

Align(I,N ) = {f | f ∈ I and f is satisfiable with N}.

An auxiliary set of atoms AA (Auxiliary Atoms) that, due to evolution, should be deleted
from the original KB and have some extra condition on the first coordinate is:

AA(T ,A,N ) = {R(a, b) ∈ fclT (A) | T |= A � ∃R,A |=T A(a),N |=T ¬∃R−(b)}.

For the set TR we define the set of forbidden atoms FA[T ,A,N ](Ri) of the original
ABox as:

{D(c) ∈ fclT (A) | ∃R−
i (c) ∧D(c) |=T ⊥,N�| =T D(c), and N�| =T ¬D(c)}.
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BP (K,N ,J0)

1. J := {J0}.
2. For each subset D = {D1(c1), . . . , Dk(ck)} ⊆ FA do

for each R = (Ri1 , . . . , Rik ) such that Dj(cj) ∈ FA(Rij ) for j = 1, . . . , k do
for each B = (Ai1 , . . . , Aik ) such that Aj ∈ SC(Rj) do
J [D,R,B] :=

h
J0 \

Sk
i=1 rootT (Di(ci))

i
∪

Sk
i=1

h
fclT (R�

i(xi, ci)) ∪ {AR�
i
(xi)}

i
,

where all xi’s are different constants from ∆ \ adom(K), fresh for Ican.
J := J ∪ {J [D,R,B]}.

3. Return J.

Fig. 3. The procedure of building prototypes in DL-Lite
I

R based on the zero prototype J0

Consequently, the set of forbidden atoms for the entire KB (T ,A) and N is

FA(T ,A,N ) = ∪Ri∈TRFA(T ,A,N )(Ri).

In the following we omit the arguments (T ,A,N ) whenever they are clear from the
context. For a role R, the set SC(R), where SC stands for sub-concepts, is a set of those
concepts which are immediately under ∃R in the concept hierarchy generated by T :

SC(R) = {A | T |= A � ∃R and there is no A� s.t. T |= A � A� and T |= A� � ∃R}.

If f is an ABox assertion, then root
at
T (f) is a set of all the atoms that T -entail f . For

example, A(x) ∈ root
at
T (∃R(x)) if T |= A � ∃R.

We are ready to proceed to construction of prototypes.

Constructing Zero-Prototype. The procedure BZP (K,N ) (Build Zero Prototype) in
Figure 2 constructs the main prototype J0 for K and N from DL-Lite

I

R, which we call
zero-prototype. Based on J0 we will construct all the other prototypes. To build J0 one
has to align the canonical model of K with N , and then delete from the resulting set of
atoms all the auxiliary atoms R(a, b) (from AA(K,N )). In the case when no R(a,β ) for
some constant β such that R(a,β ) ∈ AA(K,N ) is in the canonical model, we also delete
atoms root

at
T (∃R(a)), since their presence in the model and the absence of R-atoms with

a at the first coordinate would contradict the TBox.

Constructing Other Prototypes. The procedure BP (K,N ,J0) (Build Prototypes) of
constructing J for the case of DL-Lite

I

R, takes J0 and manipulates with it by first
dropping atoms from FA and then adding atoms in order to compensate the dropped
ones so that the result is an evolved model under WS. It can be found in Figure 3

We conclude the discussion on the algorithms with a theorem:

Theorem 5. Let K = (T ,A) be a DL-Lite
I

R KB, and N a DL-LiteR ABox consistent

with T . Then the set BP (K,N , BZP (K,N )) is a prototypal set for K � N .

Continuing with Example 1, it is easy to check that the prototypal set for K1 and N1

is {J0,J1,J2,J3}, where J0, J1, and J2 are described in the example and

J3: AI = {x, y}, CI = {b}, RI = {(x, d), (y, e)}.

We proceed to correctness of BP in capturing evolution in DL-Lite
I

R, where we use
the following set FC[T ,A,N ](Ri) = {c | D(c) ∈ FA[T ,A,N ](Ri)}, that collects all
the constants that participate in the forbidden atoms.
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8 Evgeny Kharlamov, and Dmitriy Zheleznyakov

Theorem 6. LetK = (T ,A) be a DL-Lite
I

R KB,N a DL-LiteR ABox consistent with T ,

and BP (K,N , BZP (K,N )) = {J0, . . . ,Jn} is a prototypal set for K � N . Then

K � N = Mod(T ) ∩Mod(A0 ∨ . . . ∨ An) ∩Mod(Φ ∧ Ψ),

where Ai is a DL-LiteR ABox such that Ji is a canonical model for (T ,Ai), and

Φ =
^

Ri∈TR

^

cj∈FC[Ri]

∀x.
ˆ`

Ri(x, cj) → (root
at
T (∃Ri(x)) �= ∅)

´
∧

∀y. (Ri(x, cj) ∧Ri(x, y) → y = cj)] ,

Ψ =
^

R(a,b)∈Sat

∃R(a) → root
at
T (∃R(a)) ∩ fclT (A).

The Ai mentioned in Theorem 6, can be constructed in the similar way that the
corresponding prototypes Ji, taking the original ABox A instead of Ican. Note that an
ABox may include a negative literals, like ¬B(c). Those should be treated in the same
way that the positive literal (atoms) are. We will denote such an ABox as A[Ji].

Theorem 7. A prototype Ji is a canonical model of the KB (T ,A[Ji]).
Continuing with Example 1, the ABoxes A[J0] and A[J1] are as follows:

A[J0] = {C(d), C(e), C(b)}; A[J1] = {A(x), C(e), C(b), R(x, d)}.

A[J2] and A[J3] can be built in the similar way. Note that only A[J0] is in DL-LiteR,
while writing A[J1], . . . ,A[J3] requires variables in ABoxes. Variables, also known
as soft constants, are not allowed in DL-LiteR ABoxes, while present in DL-LiteRS
ABoxes. Soft constants x are constants not constrained by the Unique Name Assumption:
it is not necessary that xI = x. Since DL-LiteRS is tractable and FO rewritable [13],
expressing A[J1] in DL-LiteRS instead of DL-LiteR does not affect tractability.

6 Computing Winslett’s Semantics with Roles Interaction

The algorithm BP for constructing prototypal set works only when roles do not interact.
The following example illustrates that it does not work in a general case.

Example 8. Consider a KB K2 = (T2,A2) and a new ABox N2 = {C(b)}:
TBox T2: ∃R− � ¬ ∃P−, ∃R− � ¬C, A � ∃R, B � ∃P ;
ABox A2: R(a, b), A(a), R(f, g), A(f), P (c, d), B(c), C(e).

One can check that the following model J � is in K2 � N2:

AJ
�
= {y}, BJ �

= {z}, CJ �
= {b, e}, RJ �

= {(y, d)}, PJ �
= {(z, g)}.

At the same time, BP over K2 and N2 returns the following four prototypes only:
AJi BJi CJi RJi PJi

i = 0 {f} {c} {b, e} {(f, g)} {(c, d)}
i = 1 {f, x} {c} {b} {(f, g), (x, e)} {(c, d)}
i = 2 {f, y} ∅ { b, e} {(f, g), (y, d)} ∅
i = 3 {f, x, y} ∅ { b} {(f, g), (x, e), (y, d)} ∅

where x and y are fresh constants. It is easy to see that none of Jis is homomorphically
embeddable in J �. Thus, BP does not capture J � and it is incomplete.
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BPrec(K,N )

1. Compute J := BP (K,N , BZP (K,N )).
2. Repeat

J� := J;
for each J ∈ J� do J := J ∪BP (K,N ∪ S,J ),

where S = {f ∈ J | a fresh constant from ∆ \ adom(K) appears in f};
until J = J�.

3. Return J.

Fig. 4. The procedure of building prototypes in DL-LiteR

6.1 Recursive BP Algorithm.

For general DL-LiteR KBs, BP algorithm does return prototypes but not all of them.
The reason is: when, while constructing prototypes with BP, we delete a forbidden
atom (an atom from FA), it may trigger another dually-affected role and such triggering
may require further modifications, which are not accounted by BP. In order to compute
all prototypes we should run BP recursively: considering the prototypes obtained at
the previous step as zero ones. We present a recursive algorithm BPrec for building
prototypes for general DL-LiteR KBs in Figure 4. The following theorem shows the
correctness of the algorithm.

Theorem 9. Let K = (T ,A) be a DL-LiteR KB and N a DL-LiteR ABox consistent

with T . Then the algorithm BPrec(K,N ) terminates and returns the finite set which is a

prototypal set for K � N .

We illustrate BPrec on the following example.

Example 10. Consider KB K2 = (T2,A2) and a new ABox N2 from Example 8. Let us
compute BPrec(K2,N2). First we run BP (K,N ,J0) and it returns four prototypes: J0,
J1, J2, and J3 (see Example 8). Now we apply the BP procedure to J1, J2, and J3.
It is easy to see that BP (K,N ∪ {A(x), R(x, e)},J1) = ∅, since no role atom except
for R(a, b) was affected. Consider BP (K,N ∪ {A(y), R(y, d)},J2): it consists of the
only prototype J4:

AJ4 = {y}, BJ4 = {z}, CJ4 = {b, e}, RJ4 = {(y, d)}, PJ4 = {(z, g)}.

The uniqueness of the prototype follows from the fact that the role atom that was
affected in J2 is P (c, d) and FA[T ,A,N ∪ {A(y), R(y, d)}](P ) = {∃R−(g)}. Finally,
running BP (T ,N ∪ {A(y), R(y, d), B(z), P (z, g)},J4) we obtain a prototype J5:

AJ5 = {y, v}, BJ5 = {z}, CJ5 = {b}, RJ5 = {(y, d), (v, e)}, PJ5 = {(z, g)}.

Note that BP (T ,N∪{A(y), R(y, d), B(z), P (z, g), A(v), R(v, e)},J5) = ∅. Anal-
ogously,J6 can be obtained by running BP (K,N∪{A(x), A(y), R(x, e), R(y, d)},J3):

AJ6 = {x, y}, BJ6 = {z}, CJ6 = {b}, RJ6 = {(x, e), (y, d)}, PJ6 = {(z, g)}.

Thus, the prototypal set J for K � N is {Ji}6
i=0.

We conclude with the theorem that BPrec gives a sound approximation for WS.
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Theorem 11. Let K = (T ,A) be a DL-LiteR KB, N a DL-LiteR ABox consistent with

T , and BPrec(K,N ) = {J0, . . . ,Jn} is a prototypal set for K � N . Then

K � N ⊆ Mod(T ) ∩Mod(A0 ∨ . . . ∨ An) ∩Mod(Φ ∧ Ψ),

where Ai is a DL-LiteR ABox such that Ji is a canonical model for (T ,Ai) and Φ and

Ψ are as they defined in Theorem 6.

6.2 Closure Under Evolution and Approximation

Next theorem allows us to approximate results of evolution under WS, since FO[2] is
decidable.

Theorem 12. K � N under WS for KBs in DL-LiteR can be captured in FO[2].

As a future work we are going to study ways to approximate the resulted FO[2]
theories in DL-Lite.

Finally, we discuss cases when the result of Winslett’s evolution is expressible
in DL-LiteR. The following formulas appearing in Theorem 6 are not expressible in
DL-LiteR: (i) the disjunction of the ABoxes A0 ∨ . . . ∨ An and (ii) formula Φ ∧ Ψ .
The disjunction of ABoxes becomes expressible when it is of the length one, i.e., there
is the only prototype: J0. The last statement yields that FC = ∅ and therefore Φ is
always true. The formula Ψ becomes trivially true when AA = ∅, i.e., for every atom
R(a, b) ∈ fclT (A) either N�| =T ¬∃R−(b) or root

at
T (∃Ri(ai)) ∩ fclT (A) = ∅. As one

can see, the condition of expressibility of the result in DL-LiteR (emptiness of FA and
AA), depends on a TBox, an ABox, and a new information. Hence, if we do a chain
of evolution, at some step the result may be not expressible in DL-LiteR. Since TBox
stays unchangeable, to guarantee the expressibility we need to find TBoxes T such that
(T ,A) � N is expressible in DL-LiteR for every A and N . A condition that guarantees
the emptiness of FA and AA is: for every role R ∈ Σ(K∪N ) at least one of the following
items holds: (1) there is no concept C such that T |= ∃R− � ¬C, or (2) there is no
concept A such that T |= A � ∃R. The former conditions gives that TR = ∅ since
N�| =T ¬∃R−(b), which leads to FA = AA = ∅. The latter one yields that SC(R) = ∅,
therefore TR again is empty.

As a practical summary of this section, given a KB K and a new ABox N , one can
check (in polynomial time) whether any dually-affected role is “triggered” by N . If it
is not the case, one can compute (in polynomial time) an evolved KB K� that exactly
captures K � N . Otherwise, it is the case that K � N is inexpressible in DL-LiteR.
Thus, one can compute an FO[2] theory that captures K � N and then approximate it in
DL-LiteR, by, for example, dropping all the not DL-LiteR formulas. We will not focus
on approximation in this paper.

7 Conclusion

We studied how to capture ABox evolution for DL-LiteR under WS. In general the
result of evolution requires constructs that are not present in DL-LiteR, and even not
in DL-Lite, such as disjunction. Moreover, in general the result of evolution, which is
a set of models, does not even have a canonical model, which should always exist for
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any DL-Lite theory. It turned out that the inexpressibility is caused by a condition on the
TBox level, which we called dual-interaction: by pairs of assertions of the form A � ∃R
and ∃R− � ¬B. In order to capture evolution results in the presence of dual-interactions,
we introduced prototypes. Our approach is based on the observation that evolution results
can be divided into a finite number of subsets and each of them has a canonical model,
i.e., a prototype. These subsets can be captured by theories guided by prototypes and the
disjunction of these theories, compensated with two formulas, captures evolution results
and is in FO[2]. We proved that this technique works for DL-LiteR. We are currently
working on efficient approximation of the obtained FO[2] theory in DL-Lite and on
extending results to capture evolution for other DL-Lite languages.
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Abstract. We show that, although conjunctive queries over OWL2QL

ontologies are reducible to database queries, no algorithm can construct
such a reduction in polynomial time without changing the data. On the
other hand, we give a polynomial reduction for OWL2QL ontologies
without role inclusions.

1 Introduction

Ontology-based data access (OBDA) [9, 13, 21] has recently emerged as a promis-
ing application area for description logic (DL) with a potential impact on the
new generation of information systems. One of the profiles of the Web Ontology
Language OWL2, called OWL2QL, was tailored specifically aiming at OBDA.
In DL terms, OBDA involves the following reasoning problem:

CQA(A, T , q): given an ABox (data) A,1 a TBox (ontology describing the back-
ground knowledge) T , a conjunctive query (CQ) q(x), and a tuple a of ABox
elements, decide whether a is a certain answer to q(x) over (T ,A).

In other words, the task is to check whether I |= q(a) for every model I of (T ,A).
It is to be noted that reasoning problems of this kind are well known in logic
and computer science (cf. Prolog or Datalog). A distinctive feature of OWL2QL

is that ‘in OWL2QL, conjunctive query answering can be implemented using
conventional relational database systems. Using a suitable reasoning technique,
sound and complete conjunctive query answering can be performed in LogSpace

with respect to the size of the data’ (www.w3.org/TR/owl2-profiles).
There exists a number of reductions of OBDA with OWL2QL to answer-

ing queries in relational database management systems, which transform (or
rewrite) the problem CQA(A, T , q) to the database query evaluation problem
QE(A, q�), where the first-order (FO) query q� does not depend on A. They have
been implemented in the systems QuOnto [1], REQUIEM [20], Presto [23] and
Nyaya [11]. In all of these approaches, the size of the query q�, posed to the
database system, can be O((|T | · |q|)|q|) in the worst case.

The aim of this paper is to try and understand whether the exponential blow-
up in the size of the rewritten query is inevitable and whether polynomial rewrit-
ings are possible, at least for fragments of OWL2QL. In Section 3, we show that

1 Here we ignore the problem of data representation in database systems; see Section 5.
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the problem CQA({A(a)}, T , q) for singleton ABoxes and OWL2QL TBoxes is
NP-complete for combined complexity. As the problem QE({A(a)}, q�) is solved
in linear time (LogSpace) in |q�|, it follows that no algorithm can construct FO
rewritings q� (over {A(a)}) in polynomial time, unless P = NP. For OWL2QL

without role inclusions and the logic ELH, the problem CQA({A(a)}, T , q) is
polynomial for combined complexity, while for ELI it is ExpTime-complete. We
observe that the parameterised complexity of the problem CQA({A(a)}, T , q),
where |q| is regarded as a parameter, is fixed-parameter tractable. In Section 4,
we present a polynomial FO rewriting of conjunctive queries over OWL2QL on-
tologies without role inclusions. This result improves on the polynomial rewriting
from [14], which reduces CQA(A, T , q) to QE(A+ Aux , q�), where Aux is a set
of fresh constants encoding the canonical model of (T ,A). Note also the recent
polynomial reduction [12] of CQA(A, T , q) to QE(A + {0, 1}, q��), which uses
two fresh constants 0, 1 and works for the extension Datalog± of OWL2QL

(see Remark 1). We discuss the implications of the obtained results for OBDA
in Section 5.

2 OWL2QL and DL-Lite
H

core

The description logic underlying OWL2QL was introduced under the name
DL-LiteR [6, 7] and called DL-Lite

H

core in the more general classification of [2]
(for simplicity, we disregard some constructs such as reflexivity constraints).
The language of DL-Lite

H

core contains individual names ai, concept names Ai,
and role names Pi, i ≥ 1. Roles R and concepts B are defined by:

R ::= Pi | P−

i , B ::= ⊥ | � | Ai | ∃R.

A DL-Lite
H

core TBox, T , is a finite set of concept and role inclusions of the form
B1 � B2, B1 � B2 � ⊥ and R1 � R2, R1 � R2 � ⊥, respectively. An ABox, A,
is a finite set of assertions of the form B(ai) and R(ai, aj). T and A together
constitute the knowledge base (KB) K = (T ,A). The semantics of DL-Lite

H

core

is defined as usual in DL [4]. The presented results do not depend on the UNA.
DL-Litecore is DL-Lite

H

core without role inclusions of the form R1 � R2. Note also
that OWL2QL contains concept inclusions of the form B� � ∃R.B, which here
will be regarded as abbreviations for DL-Lite

H

core inclusions B
� � ∃RB , ∃R−

B � B
and RB � R, where RB is a fresh role name.

A conjunctive query (CQ) q(x) is a first-order formula ∃y ϕ(x,y), where ϕ
is constructed, using only ∧, from atoms of the form A(t1) and P (t1, t2), with
A being a concept name, P a role name and ti a term (an individual name or
variable from x or y). Given an ABox A, we use Ind(A) to denote the set of
individual names in A. A tuple a ⊆ Ind(A) is a certain answer to q(x) over
K = (T ,A) if I |= q[a] for all models I of K; in this case we write K |= q[a].
To simplify notation, we will often identify q with the set of its atoms and use
P−(t, t�) ∈ q as a synonym of P (t�, t) ∈ q; term(q) is the set of terms in q.

Query answering over OWL2QL KBs is based on the fact that, for any
consistent KB K = (T ,A), there is an interpretation UK such that, for all CQs
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q(x) and a ⊆ Ind(A), we have K |= q[a] i ffUK |= q[a]. The interpretation UK,
called the canonical interpretation of K, is constructed as follows. Let �∗

T
be

the reflexive and transitive closure of the role inclusion relation given by T ,
[R] = {S | R �∗

T
S and S �∗

T
R}, and let [R] ≤T [S] i ffR �∗

T
S. For each [R],

we introduce a fresh symbol c[R], the witness for [R], and define a generating
relation ❀K on the set of these witnesses together with Ind(A) by taking:

– a ❀K c[R] if a ∈ Ind(A) and [R] is ≤T -minimal such that K |= ∃R(a) and
K�|= R(a, b) for every b ∈ Ind(A);

– c[S] ❀K c[R] if [R] is ≤T -minimal with T |= ∃S− � ∃R and [S−] �= [R].

A generating path for K is a finite sequence ac[R1] · · · c[Rn], n ≥ 0, such that
a ∈ Ind(A), a ❀K c[R1] and c[Ri] ❀K c[Ri+1], for i < n. Denote by path(K) the
set of all generating paths for K and by tail(σ) the last element in σ ∈ path(K).
Now, UK is defined by taking:

∆UK = path(K), aUK = a, for all a ∈ Ind(A),

AUK = {a ∈ Ind(A) | K |= A(a)} ∪ {σ · c[R] | T |= ∃R− � A},
PUK = {(a, b) ∈ Ind(A)× Ind(A) | K |= P (a, b)} ∪

{(σ,σ · c[R]) | tail(σ) ❀K c[R], [R] ≤T [P ]} ∪
{(σ · c[R], σ) | tail(σ) ❀K c[R], [R] ≤T [P−]}.

We shall also need a compact representation of (in general infinite) UK in the
form of the generating interpretation GK = (∆GK , ·GK) defined as follows. Its
domain ∆GK consists of Ind(A) and all c[Rn] for which there are generating paths
ac[R1] · · · c[Rn] ∈ path(K); and we set aGK = aUK , AGK = {tail(σ) | σ ∈ AUK}
and PGK = {(tail(σ), tail(σ�)) | (σ,σ �) ∈ PUK}. It is readily seen that GK can be
constructed in polynomial time in K.

The problem CQA(A, T , q), for DL-Lite
H

core TBoxes T , is reducible to the
database query evaluation problem QE(A, q�), with q� being independent of
A [7, 2]. However, in all known reductions, the size of q� is exponential in the
size of q: for instance, |q�| = O((|T | · |q|)|q|) for both QuOnto [1] and RE-
QUIEM [20]; Presto [23] uses sophisticated optimisation techniques and pro-
duces a non-recursive Datalog program q�, which is still exponential in the worst
case. The size of q� is irrelevant for data complexity, but heavily influences the
performance of database systems; see Section 5 for a discussion.

In the next section, we show that no algorithm can produce FO rewritings
q� of CQs q and DL-Lite

H

core TBoxes T in polynomial time (unless P = NP).

3 Intractability of Query Rewriting for OWL2QL

To see that query rewriting for DL-Lite
H

core is not tractable, we separate the
contributions ofA and T to the complexity of the problem CQA(A, T , q). Indeed,
NP-completeness of CQA(A, T , q) for combined complexity does not give any
information on the size of rewritings because the lower bound follows from NP-
hardness of database query evaluation. To remove the influence of A, one can
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analyse the combined complexity of CQ answering over singleton ABoxes of the
form A = {A(a)}, i.e., the problem CQA({A(a)}, T , q). We call this measure
the primitive combined complexity (PCC). The reason behind this notion is that
any FO query q over such an ABox alone can be answered in linear time in |q|.
Thus, if CQ answering is NP-hard for PCC, then no algorithm can construct
FO rewritings QE(A, q�) of CQA(A, T , q) in polynomial time, unless P = NP.

Theorem 1. CQ answering in DL-Lite
H

core is NP-complete for PCC.

Proof. The lower bound is proved by reduction of Boolean satisfiability. Given
a CNF ϕ =

�m
j=1 Dj over variables p1, . . . , pn, where Dj is a clause, we consider

the TBox T containing the following axioms, for 1 ≤ i ≤ n, 1 ≤ j ≤ m, k = 0, 1:

Ai−1 � ∃P−.Xk
i , Xk

i � Ai,

X0
i � ∃P.Cj if ¬pi ∈ Dj , X1

i � ∃P.Cj if pi ∈ Dj , Cj � ∃P.Cj .

The canonical interpretation UK of K = (T , {A0(a)}) is obtained by ‘unravelling’
the generating interpretation GK shown below. Consider the CQ q(y0):

q(y0) = ∃yz1 . . . zm
�
A0(y0) ∧

�n
i=1 P (yi, yi−1) ∧An(yn) ∧

�m
j=1

�
P (yn, z

j
0) ∧

�n
i=1 P (zji−1, z

j
i ) ∧ Cj(zjn)

��
.

(Note n atoms P connecting yn to y0 and n + 1 atoms P connecting yn to zjn,
which means that any match of q in UK must map zjn onto a point in the infinite
chain containing Cj .) One can show that ϕ is satisfiable iff K |= q(a).

GK

a

A0

X1
1 , A1

X0
1 , A1

X1
2 , A2

X0
2 , A2

X1
3 , A3

X0
3 , A3

X1
4 , A4

X0
4 , A4

C1 C2

q(y0) y0
A0

y1 y2 y3 y4
A4

z10

z20

z11

z21

z12

z22

z13

z23

z14

z24

C1C2

Theorem 2. Unless P = NP, no polynomial-time algorithm can reduce the
problem CQA(A, T , q), for DL-Lite

H

core TBoxes T and CQs q, to the problem
QE(A, q�), where q� is a first-order query independent of A.

Note that it is still open whether, for any A, T and q, there exists a polyno-
mial FO query q� giving the same answers over A as q over (T ,A).

Remark 1. If we extend the ABox with fresh constants 0 and 1 then q(y0) in the
proof above can be rewritten as A0(y0) ∧ ∃p1 . . . ∃pn(

�n
i=1(pi �= y0) ∧

�m
j=1 D

�
j),
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where D�
j is obtained from Dj by replacing every literal pi with pi = 1 and every

¬pi with pi = 0. Moreover, using ∀pi, one can polynomially encode the PSpace-
complete validity problem for QBFs. A polynomial reduction of CQA(A, T , q)
to QE(A + {0, 1}, q�) is given in [12] for the extension Datalog± of OWL2QL,
where |T |+ |q| steps of the chase are simulated using 0 and 1.

Theorem 1 means that there are two sources of non-determinism in OBDA
with OWL2QL: finding a match in the ABox and finding a match in the re-
maining tree part of the canonical interpretation. It turns out that, from the
complexity-theoretic point of view, these two sources have different status. Re-
call from [19] that query evaluation QE(A, q) is not fixed-parameter tractable if
|q| is regarded as a parameter.

Our next result shows, on the contrary, that the problem CQA({A(a)}, T , q)
is fixed-parameter tractable for DL-Lite

H

core TBoxes T . This means that there
exist a deterministic algorithm A, a computable function f and a polynomial p
such that, for any TBox T and CQ q, A can check whether (T , {A(a)}) |= q in
time bounded by f(|q|) · p(|T |). In a nutshell, the idea of the proof is as follows.
First, given a CQ q, we construct all tree-shaped homomorphic images of q, the
number of which is bounded by a function exponential in |q| and independent
of T . Then we show that (T , {A(a)}) |= q iff at least one of those tree-shaped
homomorphic images can be ‘embedded’ in UK, and that the existence of such
an embedding can be established by a dynamic programming (elimination) al-
gorithm in time polynomial in |T | and |q|.
Theorem 3. The problem CQA({A(a)}, T , q) with |q| a parameter is fixed-
parameter tractable for DL-Lite

H

core TBoxes T .

Proof. A CQ q is tree-shaped if its primal graph (term(q), {(t, t�) | R(t, t�) ∈ q})
is a tree. By a tree reduct of q we mean a pair (q�, r), where q� is a set of atoms
and r ∈ term(q�) is such that the following conditions are satisfied (cf. [10]):

(tree) the query q� is tree-shaped and all of its predicate names occur in q;
(root) if a ∈ term(q�) then r = a;
(hom) there exists a surjection h : term(q) → term(q�) such that h(a) = a for

a ∈ term(q), A(h(t)) ∈ q� for A(t) ∈ q, and P (h(t), h(t�)) ∈ q� for P (t, t�) ∈ q.

By (hom), for every I and every tree reduct (q�, r) of q, if I |= q� then I |= q.
Let (q�, r) be a tree reduct of q and let K = (T , {A(a)}). An embedding of

(q�, r) in UK is an injective map a : term(q�) → ∆UK such that UK |=a q� and

(e-root) a(t) = a(r) · σ, for all t ∈ term(q�), i.e., a(r) is located in UK nearer to
its root than any other a(t).

Let UK |= q. Then there is a homomorphism a of q in UK. As UK is a tree
with root aUK , we can construct a tree reduct (q�, r) of q by taking q� to be the
quotient of q under equivalence {(t, t�) | a(t) = a(t�)} and r the equivalence class
of t such that a(t) is nearest to the root aUK . It follows that (q�, r) is embeddable
in UK. Checking whether a tree reduct (q�, r) of q is embeddable in UK can be
done in time polynomial in |T | and |q| using the interpretation GK (constructed
in polynomial time in |T |) and a standard dynamic programming algorithm [8].
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Theorem 1 reflects the interaction between role inclusions and inverse roles.
The observations below supplement this theorem by giving a somewhat broader
picture (we remind the reader that DL-Litehorn extends DL-Litecore with con-
cept inclusions of the form B1 � · · · � Bn � B, EL allows qualified existential
restrictions and conjunctions in both sides of concept inclusions, H allows role
inclusions and I inverse roles; for details see [3]):

Theorem 4. With respect to primitive combined complexity, CQ answering is
(i) P-complete for DL-Litehorn and ELH, and (ii) ExpTime-complete for ELI.

Proof. The polynomial-time upper bound for DL-Litehorn and ELH can be ob-
tained using the fact that, for each CQ q and each r ∈ term(q), one can construct
a unique tree reduct of q with root r (by eliminating ‘forks’) [16] and then check
whether it is embeddable in the generating interpretation as in the proof of The-
orem 3 (see also Section 4). ExpTime-completeness for ELI follows from [3].

Although ALC and ALCH have no canonical interpretations (they are not
Horn), a unique tree reduct for a CQ with a root exists [10], and CQ answering
is ExpTime-complete for PCC; in ALCI, we again have to consider multiple
tree reducts, which makes CQ answering 2ExpTime-complete for PCC [16].

That CQ answering is in P for PCC does not mean yet that there is a
polynomial rewriting q� for any CQ q and ontology T . For instance, as CQ
answering for ELH is P-complete for data complexity, we cannot have any first-
order rewriting at all. The reason is that if we put an ABox element a to a
concept A, then a TBox axiom of the form ∃R.A � B requires adding every
ABox element b with R(b, a) to B, and so on. In this case, a pre-processing of
the ABox, constructing the generating interpretation, is required; see [18].

4 Polynomial Rewriting for DL-Litecore

The combined approach to CQ answering [18, 14] first constructs the generating
interpretation GK for K = (T ,A), and then rewrites the given CQ q (indepen-
dently of A) to an FO query q� to be answered over GK. An important achieve-
ment of this approach is that (i) |q�| = O(|q|2 + |q| · |T |), even for DL-Litehorn,
and (ii) q� is obtained by expanding q by simple conjuncts with = and without
any extra variables and quantifiers. The two-step construction of GK and q� can
be encoded in a polynomial non-recursive Datalog program for DL-Litehorn, and
a polynomial FO query for DL-Litecore, which require auxiliary constants in the
database domain. Here we give a polynomial FO rewriting for DL-Litecore, which
is based on the ideas of [14] but does not involve any constants.

Let T be a DL-Litecore TBox. As we do not have role inclusions, instead of
c[R] we write cR. Let RT = {cR | R a role in T } and R∗

T
be the set of all finite

words over RT (including the empty word ε). We use tail(σ) to denote the last
element of σ ∈ R∗

T
\ {ε}; by definition, tail(ε) = ε.

Consider a CQ q(x). Without loss of generality we assume that (the primal
graph of) q is connected. Let R be a role and t a term in q. A partial function
f from term(q) to (RT )∗ is called a tree witness for (R, t) in q if
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– the domain of f is minimal with respect to set-theoretic inclusion,
– f(t) = ε,
– for all atoms S(s, s�) ∈ q with f(s) defined, we have

f(s�) =






cR, if f(s) = ε and S = R,

σ, if f(s) = σ · cS− ,

f(s) · cS , if f(s) �= ε and tail(f(s)) �= cS− .

By definition, if a tree witness for (R, t) exists then it is unique; in this case
we denote it by fR,t and use dom fR,t for the domain of fR,t. Note that even
if q contains no atom of the form R(t, t�), the tree witness for (R, t) exists and
fR,t(t) = ε. Denote by q|R,t the set of atoms of q whose terms are in dom fR,t.
When we consider q|R,t as a query, we assume that all of its variables are free.

Informally, a tree witness fR,t has root t and direction R, and describes the
situation where t is mapped to an ABox element a of some canonical interpreta-
tion without R-successors in the ABox. In this case, the only choice for mapping
any t� in R(t, t�) ∈ q is acR = a · fR,t(t�). Further, any t�� in S(t�, t��) ∈ q has
to be mapped to acRcS = a · fR,t(t��), if S �= R−; however, if S = R− then
t�� can only be mapped onto a, which reflects the fact that acR has a single
R−-successor a in the canonical interpretation. To illustrate, consider the CQ
q = {T (y0, y1), S(y1, y0), R(y1, y2), S(y2, y3), S(y4, y3)}. The tree witnesses
for (R, y1) and (S, y4) in q exist and are as depicted below:

fR,y1

y0

undef.

y1

ε

T

S

y2

cR
R

y3

cRcSS

y4

cR
S fS,y4

y0

undef.

y1

undef.

T

S

y2

ε
R

y3

cSS

y4

ε
S

For (S, y1), (T−, y1) and (R−, y2), tree witnesses do not exist.

Proposition 1. Suppose a tree witness for (R, t) exists and s ∈ dom fR,t. If
fR,t(s) �= ε then a tree witness exists for every (S, s) with tail(fR,t(s)) �= cS− .
If fR,t(s) = ε then a tree witness exists for (S, s) with S = R. In either case,
dom fS,s ⊆ dom fR,t and fR,t(s�) = fR,t(s) · fS,s(s�), for all s� ∈ dom fS,s.

Even if a tree witness for (R, t) exists, q|R,t is not necessarily a tree-shaped
query. Define a relation ≡R as the set of all pairs (t, s) such that a tree witness
for (R, t) exists and fR,t(s) = ε. By Proposition 1, ≡R is an equivalence relation
(on its domain). By taking the quotient of q|R,t under ≡R, we obtain a tree
reduct of q|R,t (cf. [17]). We call q a quasi-tree with root t ∈ term(q) if a tree
witness for (R, t) exists for all directions R and

�
R dom fR,t = term(q).

Proposition 2. Suppose q is not a quasi-tree and tree witnesses exist for (R1, t1)
and (R2, t2). If fR1,t1(t2) is defined, fR1,t1(t2) �= ε then dom fR2,t2 � dom fR1,t1

and fR1,t1(s) = fR1,t1(t2) · fR2,t2(s), for all s ∈ dom fR2,t2 .

We are now in a position to introduce the ingredients of our polynomial
rewriting. Let K = (T ,A) and q(x) = ∃y ϕ(x,y). Consider an atom B(t) for a
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concept B. Then

extB(x) =
�

concept B� s.t. T |=B�
�B

B�(x) ∨
�

role R s.t. T |=∃R�B

∃wR(x,w)

gives the answers to B(t) over ABox A: for every a ∈ Ind(A), we have UK |= B(a)
iff A |= extB(a). Note that, for all other elements σ in the domain ∆UK of UK,
we have UK |= B(σ) i ffT |= ∃T− � B, where tail(σ) = cT .

t

a1

a2

A
a1cR a2cR1 a2cR1 · · · cRn

s
R

R1
Rn

S1

S2

q|R,t quasi-tree q�

Consider now an atom R(t, t�) ∈ q and the ways its terms can be mapped in UK.
1. If both t and t� are mapped to ABox elements a, a� then UK |= R(a, a�) i ff
R(a, a�) ∈ A because UK inherits the binary relations from A.

2. If t is mapped to an ABox element a and t� to an ‘anonymous’ element in
∆UK \ Ind(A), then R(t, t�) can only be true if (i) a ❀K cR, (ii) a tree witness for
(R, t) exists, and (iii) q|R,t can be embedded into the sub-tree of UK beginning
with the edge (a, acR); see the left-hand side of the picture above. Condition (i)
can be defined by the formula

wtR(x) = ext∃R(x) ∧ ¬ ∃wR(x,w).

For all R and a ∈ Ind(A), we have A |= wtR(a) i ffa ❀K cR (i.e., acR ∈ ∆UK).
For condition (iii), consider the conjunction treeAq

R,t(x) of the formulas:

(t0) extA(x), for all A(s) ∈ q|R,t with fR,t(s) = ε;
(t1) � if T |= ∃T− � A and ⊥ otherwise, for all A(s) ∈ q|R,t, tail(fR,t(s)) = cT ;
(t2) � if T |= ∃T− � ∃S and ⊥ otherwise, for S(s, s�) ∈ q|R,t, tail(fR,t(s)) = cT .

One can show that A |= wtR(a) ∧ treeAq
R,t(a) i ffUK |=a q|R,t for an assignment

a such that a(s) = a · fR,t(s), for all s ∈ dom fR,t.

3. If both t, t� are mapped to anonymous elements in ∆UK \ Ind(A), then two
more cases need consideration.
3.1. Suppose first that there is a tree witness for some (S, s) such that s is
mapped to an ABox element a with a ❀K cS , (iv) both t and t� are in dom fS,s,
and (v) all the terms s� ∈ dom fS,s with fS,s(s�) �= ε are existentially quantified
variables in q (only existential variables can be mapped to anonymous elements).
In this case, as we observed above, R(t, t�) is true in UK if the formula

wtS(s) ∧ treeAq
S,s(s) ∧

�
s≡Ss�(s = s�)

is true in A under an assignment a such that a(s�) = a·fS,s(s�), for s� ∈ dom fS,s.
The disjunction of all such formulas for (S, s) satisfying (iv)–(v) depends only
on the choice of terms t, t� and will be denoted by attached-treet,t�(x,y). (This
case is a generalisation of Case 2.)
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3.2. Thus, it remains to consider the case (shown in the right-hand side of the
picture) where the whole query is mapped to the anonymous part of UK. Then
q a quasi-tree and all terms in q are existentially quantified variables that are
mapped to the sub-tree of UK generated by some ABox element a. More precisely,
a ∈ Ind(A) generates a sequence of the form a ❀K cR1 ❀K · · · ❀K cRn , q has a
root s (i.e., term(q) =

�
S dom fS,s), s is mapped to σ = acR1 · · · cRn , while all

other terms s� are mapped to σ ·fS,s(s�). The latter condition can be captured by
a formula similar to the one in the previous case. The difference is that now we
begin with σ, tail(σ) = cRn (rather than a). To cope with this, consider the union
q� of q and {Rn(v, s)}, for a fresh variable v, and let treeTq

cRn ,s be treeAq�

Rn,v
,

where the tree witnesses are computed in query q�. Note that treeTq
cRn ,s is a

sentence because q� has no atoms for item (t0). We denote by detached-tree the
disjunction of sentences of the form

∃wwtR1(w) ∧ treeTq
cRn ,s

for all roots s of q and all pairs of roles R1, Rn such that there are R2, . . . , Rn−1

with T |= ∃R−

i � ∃Ri+1 and Ri+1 �= R−

i , for 1 ≤ i < n; if q is not a quasi-tree
containing only existentially quantified variables, we set detached-tree = ⊥.

Denote by q∗ the result of replacing each A(t) and P (t, t�) in q with

A∗(t) = extA(t) ∨ attached-treet,t(x,y) ∨ detached-tree,

P ∗(t, t�) = P (t, t�) ∨ attached-treet,t�(x,y) ∨ detached-tree,

respectively. Note that these formulas depend not only on the predicate name
but also on the terms in the atom. The length of q∗ is O(|q|2 · |T |3) and can be
made O(|q|2 · |T |) if the sentence detached-tree is computed separately (in fact,
for the majority of queries, e.g., queries with answer variables, it is simply ⊥).

Theorem 5. UK |=a q(x) iff A |=a q∗(x), whenever a(x) ∈ Ind(A) for all x ∈ x.

The rewriting above can also be adapted to DL-Litehorn and even DL-Lite
N

horn

under the UNA. In this case, however, we need non-recursive Datalog programs
to define the predicates extB(x); for details, see [14]. The non-recursive Datalog
queries can be transformed to unions of CQs, but at the expense of exponential
blowup. The problem whether a polynomial-size FO rewriting (without addi-
tional constants as in [12]) exists for DL-Litehorn is still open (and equivalent to
the complexity problem ‘LogSpace = P?’).

5 Discussion

FO reducibility (or AC
0 data complexity) does not seem to provide enough in-

formation to judge whether a DL is suitable for OBDA. When measuring the
complexity of query evaluation in database systems, it is usually assumed that
queries are negligibly small compared to data. Thus, it makes sense to consider
data complexity [24], which takes account of the data but ignores the query. A
more subtle analysis [19] shows, however, that the obvious time |q|·|A||q| required
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to check A |= q cannot be reduced to f(|q|) ·p(|A|), for any computable function
f and polynomial p: QE(A, q) is W [1]-complete for parameterised complexity,
|q| being a parameter. The success of database systems—despite fixed-parameter
intractability—seems to imply that optimisation techniques are indispensable,
that the ‘real-world’ queries are small and of ‘special’ form. In OBDA, the latter
does not hold as the rewritten queries can be large and complex. However, data
complexity does not differentiate among, e.g., DL-Litecore, OWL2QL and the
language of sticky sets of TGDs [5], all of which are in AC

0 for data complex-
ity, while the primitive combined complexity, reflecting the size of the rewrit-
ing, ranges from P to NP and further to ExpTime. Another explanation of
the database efficiency is that we only use queries with a bounded number of
variables, in which case query evaluation is P-complete for combined complex-
ity [25]. However, query rewritings may substantially increase the number of
variables (for example, a CQ q is rewritten in [12] into a query with O(N · logN)
auxiliary binary variables, where N = |T |+ |q|).

The W3C recommendation (www.w3.org/TR/owl2-profiles) for OBDA is
to reduce it to query evaluation in database systems. Two drawbacks of this
recommendation are that it (i) disregards the complexity of possible reductions,
and (ii) excludes some useful DLs from consideration. As we saw above, rewrit-
ings of CQs in OWL2QL cannot be done in polynomial time without adding
extra constants, variables and quantifiers as in [12]. One might argue that, in
the real-world ontologies, role inclusions do not interact with inverse roles in as
sophisticated way as in Theorem 1, but then more research is needed to support

this argument. A number of ‘lightweight’ DLs such as ELH or DL-Lite
(HF)
horn [2] are

deemed not suitable for OBDA because they are P-complete for data complexity.
Recall that both of these logics are P-complete for primitive combined complex-
ity (vs. NP in the case of OWL2QL). The combined approach to OBDA [18,
14, 15] resolves this issue by expanding the data at a pre-processing step and
then rewriting and answering CQs. The expansion is linear in |A| and can be
done by the database system itself; the size of the rewritten query for EL and
DL-Lite

F

horn is only quadratic (for OWL2QL, it is still exponential).
In this paper, we do not touch on the problem of representing ABoxes in

database systems, where usually GLAV mappings are used to connect data
sources to ontologies. Such mappings introduce some problems as tuples in the
same relation can come from different data sources. Also, they provide certain
information on the completeness of concepts and roles, which can (and should)
be exploited in order to minimise the rewritings [22]. Finally, with so many lan-
guages and rewritings for OBDA suggested, it looks like the time is ripe for
comprehensive experiments that could clarify the future of OBDA with DLs.
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Abstract. We introduce an extension of Description Logics (DLs) for
representing and reasoning about contextualized knowledge. Our formal-
ism is inspired by McCarthy’s theory of formalizing contexts and based
on two-dimensional semantics, with one dimension representing a usual
object domain and the other a domain of contexts. Additionally, it is
equipped with a second DL language for describing the context domain.
As a result, we obtain a family of two-sorted, two-dimensional combina-
tions of pairs of DLs.

1 Introduction

Description Logics (DLs) provide a clear and broadly accepted paradigm for rea-
soning about terminological knowledge. Under the standard Kripkean semantics,
a DL ontology forces a unique, global view on the represented world, in which
the ontology axioms are interpreted as universally true. This philosophy is well-
suited as long as everyone can share the same conceptual perspective on the
domain or there is no need for considering alternative viewpoints. Alas, this is
hardly ever the case since a domain can be modeled differently depending on the
intended use of an ontology. Consequently, effective representation and reasoning
about knowledge pertaining to such multiple, heterogenous viewpoints becomes
the primary objective for many practical applications [1,2].

The challenges above resemble clearly those problems that originally inspired
J. McCarthy to introduce a theory of formalizing contexts in knowledge repre-
sentation systems, as a way of granting them more generality [3,4]. The gist of
his proposal is to replace logical formulas ϕ, as the basic knowledge carriers, with
assertions ist(c, ϕ) stating that ϕ is true in c, where c denotes an abstract first-
order entity called a context, which on its own can be described in a first-order
language. For instance:

ist(c,Heart(a)) ∧HumanAnatomy(c)

states that the object a is a heart in some context described asHumanAnatomy .
Based on this foundation, the theory advocates complex models of knowledge
which are able to properly account for the local, context-specific scope of the
represented knowledge, while at the same time provide an expressive apparatus
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for modeling semantic interoperability of contexts, i.e. generic rules guiding the
information flow between different contexts.

The importance of contextualized knowledge in DLs has been generally ac-
knowledged, nevertheless the framework is still not supported with a dedicated
theory of handling context-dependent information. In this direction, the most
commonly considered perspectives are restricted to global integration of local
ontologies [5,6] or modeling levels of abstraction as subsets of models of a DL
ontology [7,8]. The purpose of this paper is to introduce a novel extension of DLs
for reasoning with contextualized knowledge. Our proposal is systematically de-
rived from two formal roots. On the one hand, by resorting to McCarthy’s theory
we ground our approach in a longstanding tradition of formalizing contexts in
AI. On the other, we build on top of two-dimensional DLs [9], which provide us
with well-understood formal foundations. In particular, we extend the standard
DL semantics with a second modal dimension, representing a possibly infinite
domain of contexts. Additionally, our logics are equipped with a second DL
language for describing the context domain. This way we obtain a family of
two-sorted, two-dimensional combinations of pairs of DLs for reasoning about
contextualized knowledge.

This paper is the workshop version of [10] and [11]. It extends the work
presented there by discussing thoroughly the motivation underlying the formal
design of the introduced DLs of contexts. We also review a number of expres-
sive fragments of these logics and report the corresponding complexity results
obtained and proven in the two papers.

2 Overview and formal motivation

Since its introduction, McCarthy’s theory of formalizing contexts has inspired a
significant body of work in AI studying implementations of the approach in a
variety of formalisms and applications [12,13,14,4,1,15]. The great appeal of this
theory stems from the simplicity of the three major postulates it is based on:

1. Contexts are formal objects. More precisely, a context is anything that
can be denoted by a first-order term and used meaningfully in a statement of
the form ist(c, ϕ), saying that formula ϕ is true (ist) in context c [3,4,12].

2. Contexts have properties and can be described. As first-order objects,
contexts can be in a natural way described in a first-order language [14,4].
This allows for addressing them generically through quantified formulas such
as ∀x(C (x) → ist(x,ϕ )), expressing that ϕ is true in every context of type C .

3. Contexts are organized in relational structures. In the commonsense
reasoning, contextual assumptions are dynamically and directionally altered
[15,12], thus contexts are often accessed from other contexts. Formally, this can
be captured by allowing nestings of the form ist(c, ist(d , ϕ)).

The logics proposed in this paper originate as an attempt of adopting these
principles in the framework of DLs. In the following paragraphs we discuss the
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central design choices we made and the motivation behind them. We start from
the basic semantic considerations on contexts and further trace their impact on
the selection of specific logical languages.

The key to importing McCarthy’s theory into a knowledge representation
framework is a faithful interpretation of his three postulates on the model-
theoretic grounds of the framework. By doing so within the DL paradigm, we
effectively commit ourselves to a specific sort of semantic structures that must
be taken into account in order to express and interpret contextualized knowledge
adequately. Figure 1 illustrates one such structure — a formal model of some ap-
plication domain supporting multiple contexts of representation. As an intuitive
example, consider here a formal description of a society of interconnected agents,
each one sustaining his own viewpoint and focus on the represented world.
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Fig. 1. A formal model of an application domain complying to McCarthy’s principles.

The model has two apparent levels. The context-level consists of context
entities (postulate 1), which are possibly interlinked with accessibility relations
(postulate 3) and described in a language containing individual names, concepts
and relation names (postulate 2). For instance, context c is of type D and
is related to d through the relation t . Intuitively, each context in the model
can be seen as a box carrying a piece of the object-level representation. Clearly,
instead of a unique global model of the object domain, we associate a single local
model with every context. Naturally, these models might obviously differ from
each other as each of them reflects a specific viewpoint on the object domain.
Moreover, they might not necessarily cover the same fragment and aspects of
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the application domain and not necessarily use the same fragment of the object
language for describing it. For instance, objects a and b occur at the same time
in contexts c,d , e , but in each of them they are described differently and remain
in different relations to other objects.

The central insight emerging from this short analysis is that the semantic
structures comprising the model theory of a reasonably expressive DL of con-
text are inherently two-dimensional, with one dimension consisting of (domain)
objects and the second — contexts.
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Fig. 2. Combining models of two DLs.

Once we have identified the main characteristics of the intended semantic
structures, the next step is to find convenient languages for speaking about
them, and constraining their possible properties. By the assumption taken in this
work, DLs are suitable formalisms for representing the object-level knowledge.
The key challenge is then to extend them with additional syntactic means that
would facilitate accommodating the context-level information. A first crucial
observation in this direction is that contexts and their relations, as pictured
above, correspond to Kripke frames, with possible worlds interpreted as context
entities. It is commonly known that such frames can be combined in a product-
like fashion with the standard DL interpretations, giving rise to two-dimensional
semantics for DLs with additional modal operators [16]. These operators are
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typically intended for modeling the evolution of the object knowledge across the
states of the second dimension, for instance time points, as in temporal DLs
[17]. Although this approach seems in general very encouraging, the caveat is
that it does not offer a direct methodology for describing the elements of the
second dimension. More precisely, we can easily augment a DL language with
modal ‘contextualization’ operators ✸,✷ for traversing the context dimension of
the models and quantifying over implicit context objects, but it is not clear how
to explicitly assert properties of the accessed contexts — an essential point for
obtaining a fine-grained contextualization machinery.

As a solution, we employ a second DL language for describing the context
dimension. Thus, we obtain a two-sorted language with each sort interpreted
over the respective dimension. The two languages are suitably integrated on the
syntactic and semantic level, so that their models can be eventually combined as
presented in Figure 2. The style of combination remains fully compatible with
that underlying two-dimensional DLs described above. In fact, we are able to
show that, depending on the choice of the integration mechanism, our logics are
proper extensions of the well-known (Kn)L or S5L [16].

In the following sections, we first recap the basic DL nomenclature, next we
formally define the syntax and semantics of the proposed DLs of context and
give an overview of their expressiveness–complexity characterization. Finally, we
consider intended application scenarios for the framework.

3 Description Logics of Context

A DL language L is specified by a vocabulary Σ = (NC , NR, NI), where NC is a
set of concept names, NR a set of role names and NI a set of individual names,
and a number of constructors for composing complex expressions. In this paper,
we focus on the well-known DLs EL,ALC and ALCO [18,19] and assume the
reader is familiar with those formalism and the basic notions concerning DLs.

A Description Logic of Context CLC

LO
consists of a DL context language LC ,

supporting context descriptions, and an object language LO equipped with con-
text operators for representing object knowledge relative to contexts. We in-
troduce two families of such DLs, characterized by different types of context
operators.

Definition 1 (CLC

LO
-context language). The context language of CLC

LO
is a DL

language LC over the vocabulary Γ = (MC ,MR,MI), with a designated subset
M�

I
⊆ MI .

The set M�

I
contains context names. Following some common-sense intu-

itions, we consider contexts only as a subset of the domain of the context lan-
guage. Indeed, certain elements of this domain might carry no object knowledge
at all, and instead, serve only as individuals referred to in context descriptions
(cf. Figure 1). This is often the case in applications concerned with provenance
of knowledge [2]. For instance, a context c, associated with a single knowledge
source, might be there described with an axiom hasAuthor(c,henry), where
henry is an individual related to c, but obviously not a context per se.

239



Definition 2 (CLC

LO
-object language). Let LO be a DL language over the vo-

cabulary Σ = (NC , NR, NI). The object language of CLC

LO
is the smallest language

containing LO and closed under the constructors of LO and one of the two types
— F1 resp. F2 — of concept-forming operators:

�r.C�D | [r.C]D (F1)

�C�D | [C]D (F2)

where C and r are a concept and a role of the context language and D is a
concept of the object language.

Intuitively, the concept �r .C �D denotes all objects which are D in some
context of type C accessible from the current one through r . Similarly, [r .C ]D
denotes all objects which areD in every such context. In the case of the operators
in F2, the concept �C �D denotes all objects which are D in some context of
type C , whereas [C ]D — all objects which are D in every such context. For
example, �neighbor .Country�Citizen, refers to the concept Citizen in some
context of type Country accessible through the neighbor relation from the
current context. Analogically, �HumanAnatomy�Heart refers to the concept
Heart in some context of HumanAnatomy .

Definition 3 (CLC

LO
-knowledge base). A CLC

LO
-knowledge base (CKB) is a pair

K = (C,O), where C is a set of axioms of the context language in any of the forms
(†), and O is a set of formulas of the form:

c : ϕ | C : ϕ

where ϕ is an axiom of the object language (a GCI or a concept/role assertion),
c ∈ M�

I
and C is a concept of the context language.

A formula c : ϕ states that the axiom ϕ holds in the context denoted by the
name c. Note that this corresponds directly to McCarthy’s ist(c, ϕ). Axioms of
the form C : ϕ assert the truth of ϕ in all contexts of type C . For example, the
formula Country : �neighbor .Country�Citizen � NoVisaRequirement states
that in every country, the citizens of its neighbor countries do not require visas.

The semantics is given through CLC

LO
-interpretations and CLC

LO
-models, which

combine the interpretations of LC with those of LO. We assume the semantics
of EL,ALC and ALCO to be defined in the standard way[18,19]. As explained
before, the (possibly infinite) domain of contexts C is subsumed by the entire in-
terpretation domain of the context language Θ. For technical reasons, we assume
a constant object domain ∆ for all contexts. This assumption, though often im-
practical, grants greater generality to the complexity results and can be easily
relaxed to the varying domain case.

Definition 4 (CLC

LO
-interpretations). A CLC

LO
-interpretation is a tuple M =

(Θ,C, ·J , ∆ ,{·I(i)}i∈C), where:

1. (Θ, ·J ) is an interpretation of the context language, where Θ is a non-empty
domain of individuals and ·J an interpretation function, where:
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– C ⊆ Θ is a non-empty domain of contexts,
– c

J ∈ C, for every c ∈ M�

I
,

2. (∆, ·I(i)), for every i ∈ C, is an interpretation of the object language, where
∆ is a non-empty object domain and ·I(i) an interpretation function of LO,
such that:

(F1) for every �r.C�D and [r.C]D:
• (�r.C �D)I(i) = {x | ∃j ∈ C : (i, j) ∈ r

J ∧ j ∈ C
J
∧ x ∈ DI(j)},

• ([r.C ]D)I(i) = {x | ∀j ∈ C : (i, j) ∈ r
J ∧ j ∈ C

J
→ x ∈ DI(j)}.

(F2) for every �C�D and [C]D:
• (�C �D)I(i) = {x | ∃j ∈ C : j ∈ C

J
∧ x ∈ DI(j)},

• ([C ]D)I(i) = {x | ∀j ∈ C : j ∈ C
J

→ x ∈ DI(j)}.

Clearly, the difference between the context operators of type F1 and F2 lies
in the choice of the relational structures involved in quantifying over the context
domain. F1-operators bind contexts only along the roles of the context language
(similarly to K-modalities), while F2-operators ignore these relationships and
rest upon the universal relation over C (similarly to S5-modalities). This is re-
flected in the scope and the character of the distribution of the object knowledge
over contexts in CLC

LO
-models. For instance, in Figure 1, the concept �t .F �B is

satisfied by object a only in context c, while �F �B is satisfied by a in all contexts
in the model. From the perspective of McCarthy’s theory, employing operators
F2, rather than F1, is equivalent to scarifying postulate (3). This means that
every two contexts in the model become in principle accessible to each other.

Definition 5 (CLC

LO
-models). A CLC

LO
-interpretation M = (Θ,C, ·J , ∆ ,

{·I(i)}i∈C) is a model of a CKB K = (C,O) i ff:

– for every ϕ ∈ C, (Θ, ·J ) satisfies ϕ,

– for every c : ϕ ∈ O, (∆, ·I(c
J )) satisfies ϕ,

– for every C : ϕ ∈ O and i ∈ C, if i ∈ C
J then (∆, ·I(i)) satisfies ϕ.

As hinted before, there is a close connection between our DLs of context and
the modal DLs (Kn)L and S5L. In particular, the former are proper extensions
of (Kn)L resp. S5L. This relationship is formally established in Theorem 1.

Theorem 1. If MI = MC = ∅ then CLC

LO
with context operators (only) of type

F1 resp. F2 is a notational variant of (Kn)LO
resp. S5LO

with global axioms.

Proof sketch. Observe that all formulas are of the form � : ϕ. First, replace
every �r .�� with ✸r and [r .�] with ✷r , resp. every ��� with ✸ and [�] with
✷. Next, replace every � : ϕ ∈ O with ϕ. It is easy to see that the semantics of
CLC

LO
coincides with that of (Kn)LO

resp. S5LO
. Note that an axiom is global iff

it is satisfied in all possible Kn-worlds resp. S5-worlds. ❑

As our main technical contributions in [10] and [11], we obtained a wide
panorama of complexity results for reasoning in DLs of context using particular
combinations of DLs for LC and LO, and different types of context operators.
We summarize these results in Table 1, and shortly elaborate on them below.
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context operators
❍❍❍❍❍LO

LC
EL ALC,ALCO

type F1 ALC,ALCO 2ExpTime-complete 2ExpTime-complete
EL PTime ExpTime-hard

type F2 ALC ExpTime-complete NExpTime-complete
ALCO NExpTime-complete NExpTime-complete

Table 1. Complexity of reasoning in CLC

LO
.

The results reveal that the computational properties of the proposed logics are
predominantly affected by the choice of the context operators. More precisely,
reasoning in CLC

LO
with F1-operators is harder than with F2-operators. This be-

havior can be explained by the fact that such difference in the complexity is
essentially present already between the underlying logics (Kn)L and S5L [10,20].

In the case of DLs of context with F1-operators, we first established the
2ExpTime lower bound for the satisfiability problem for (Kn)ALC w.r.t. to global
TBoxes and only local roles. The proof is a reduction of the word problem for
an exponentially bounded, alternating Turing machine. This result turned out
to be quite surprising since it could be expected that without rigid roles the
satisfiability problem can be straightforwardly reduced to satisfiability in fusion
models. This in turn would have to yield an ExpTime upper bound by means
of the standard techniques. However, as the following example for (Kn)ALC

demonstrates, this strategy fails.

(†) ✸iC � ∃r.✷i⊥ (‡) ∃succi.C � ∃r.∀succi.⊥

Although (†) clearly does not have a model, its reduction (‡) to a fusion lan-
guage, where modal operators are translated to restrictions on fresh ALC roles,
is satisfiable. The reason is that while in the former case the information about
the structure of the K-frame is global for all individuals, in the latter it becomes
local. The r-successor in (‡) is simply not ‘aware’ that it should actually have a
succi-successor. The matching 2ExpTime upper bound is proven by using the
quasistate elimination technique, similar to the proofs for certain products of
modal logics [9].

Regarding DLs of context with F2-operators, for LO ∈ {ALC,ALCO} and
LC ∈ {ALC,ALCO}, we encounter a jump from ExpTime to NExpTime-
completeness. The non-determinism involved can be interpreted by the need of
guessing the interpretation of the context language first, before finding the model
of the object component of the combination. In particular, the lower bound is
obtained by an encoding of the 2n × 2n tiling problem, known to be NExp-
Time-complete [9]. In the case of LO = ALCO and LC = EL this jump can be
explained by the interaction of nominals and the context operators, in fact this
enables to encode the 2n × 2n tiling problem, as in the previous cases. For the
upper bounds for LO ∈ {ALC,ALCO} we devise a variant of a type elimination
algorithm, whereas for LO = EL a completion algorithm in the style of [21].
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4 Application scenarios

There are two natural application scenarios for the DLs of context. First, they
can be used as native representation languages dedicated to modeling and rea-
soning about knowledge of inherently contextualized nature. Alternatively, the
framework can be used to support an external ‘integration’ layer over standard
DL ontologies. Observe, that a collection of DL ontologies O1, . . . ,On in some
language LO can be seen as a set of formulas O = {ci : ϕ | ϕ ∈ Oi, i ∈ (1, n)} in
CLC

LO
, where every ontology corresponds to a unique context name. Consequently,

the extra expressive power of CLC

LO
can be utilized for imposing interoperability

constraints over those ontologies. Arguably, the first type of use might be of
interest for knowledge-intensive/expert applications, while the second one seems
appealing from the perspective of integrating information on the Semantic Web.
We support the two cases with small examples, based on different types of con-
text operators, and explain some possible inferences.

Contextualized knowledge base. Consider a simple representation of knowl-
edge about the legal status of people, contextualized with respect to geographic
locations. We define a CKB K = (C,O), consisting of the context (geographic)
ontology C and the object (people) ontology O, as follows:

C : Country(germany) (1)
neighbor(france , germany) (2)

O : germany : ∃hasParent .Citizen(john) (3)
Country : ∃hasParent .Citizen � Citizen (4)
france : �neighbor .Country�Citizen � NoVisaRequirement (5)

Visibly, france and germany play here the role of contexts, described in the
context language by axioms (1) and (2). In the context of germany , it is known
that john has a parent who is a citizen (3). Since in every Country context
— thus including germany — the concept ∃hasParent .Citizen is subsumed by
Citizen (4), therefore it must be true that john is an instance of Citizen in
germany . Finally, since germany is related to france via the role neighbor ,
it follows that john (assuming rigid interpretation of this name across contexts)
has to be an instance of NoVisaRequirement in the context of france (5). A
sample CLC

LO
-model of K is depicted in Figure 3.
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Fig. 3. A CLC

LO
-model of the CKB K.
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Interoperability constraints over DL ontologies. Consider an architecture
such as the NCBO BioPortal project3, which gathers numerous published bio-
health ontologies, and categorizes them via thematic tags, e.g.: Cell , Health ,
Anatomy , etc., organized in a meta-ontology. The intention of the project is to
facilitate the reuse of the collected resources in new applications. Note, that the
division between the context and the object language is already present in the
architecture of the BioPortal, which can be immediately utilized to state, e.g.:

C : HumanAnatomy � Anatomy (1)
O : � : �HumanAnatomy�Heart � [Anatomy ]HumanHeart (2)

Anatomy : Heart � Organ (3)

where (2) maps the concept Heart from any HumanAnatomy ontology to
the concept HumanHeart in every Anatomy ontology; (3) imposes the axiom
Heart � Organ of an upper anatomy ontology over all Anatomy ontologies,
which due to axiom (1) carries over to all HumanAnatomy ontologies.

In general, CLC

LO
provides logic-based explications of some interesting notions,

relevant to the problem of semantic interoperability of ontologies, such as:

concept alignment: � : �A�C � [B ]D
every instance of C in any ontology of type A is D in every ontology of type B

semantic importing: c : �A�C � D
every instance of C in any ontology of type A is D in ontology c

upper ontology axiom: A : C � D
axiom C � D holds in every ontology of type A

5 Conclusions

The problems of 1) representing inherently contextualized knowledge within the
paradigm of DLs and 2) reasoning with multiple heterogenous, but semantically
interoperating DL ontologies, are both interesting and important issues, moti-
vated by numerous practical application scenarios. It is our belief that these two
challenges are in fact two sides of the same coin and, consequently, they should
be approached within the same, unifying formal framework. In this paper, we
have proposed two novel families of two-dimensional DLs of context. Arguably,
these logics achieve the objective declared above to a great extent, by providing
sufficient syntactic and semantic means to support both functionalities, seam-
lessly integrated within one formalism.

As our results show, such two-dimensional extension of the DL framework
does not necessarily entail an increase in the computational complexity of reason-
ing, as for e.g. CEL

EL
and CEL

ALC
with F2-operators, nor does it affect the generally

adopted knowledge representation methodology of DLs. We therefore consider
the approach a worthwhile subject to further research. In particular, it is es-
sential to investigate how certain notions and problems central to the practical
use and maintenance of multi-context knowledge systems (e.g. handling local
inconsistencies) can be meaningfully restated within the presented framework.

3 See http://bioportal.bioontology.org/.
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Abstract. W3C currently extends the SPARQL query language with so-called
entailment regimes, which define how queries are evaluated using logical en-
tailment relations. We describe a sound and complete algorithm for the OWL
Direct Semantics entailment regime. Since OWL’s Direct Semantics is based on
Description Logics (DLs), this results in an expressive query language for DL
knowledge bases. The query language differs from the commonly studied con-
junctive queries in that it only has distinguished variables. Furthermore, variables
can occur within complex concepts and can also bind to concept or role names.
We provide a prototypical implementation and propose several novel optimiza-
tion strategies. We evaluate the efficiency of the proposed optimizations and find
that for ABox queries our system performs comparably to already deployed sys-
tems. For complex queries an improvement of up to three orders of magnitude
can be observed.

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides
a mechanism via which users and applications can interact with ontologies and data.
Although SPARQL [12] was standardized in 2008 by the World Wide Web Consortium
for querying Semantic Web data, only the simple semantics of RDF is supported by
SPARQL 1.0, which does not allow for any reasoning.

There is not yet a standardized query language for OWL knowledge bases (KBs).
Several of the widely deployed systems support, however, some query language. Pellet
supports SPARQL-DL [13], which is a subset of SPARQL, adapted to work with OWL’s
Direct Semantics. Similarly, KAON2 supports [9] SPARQL, but restricted to ABox
queries. Racer Pro [3] has a proprietary query language, called nRQL [4], which allows
for queries that go beyond ABox queries, e.g., one can retrieve sub- or super-concepts
of a given concept. TrOWL is another system that supports ABox SPARQL queries,
but the reasoning in TrOWL is approximate, i.e., an OWL DL ontology is rewritten
into an ontology that uses a less expressive language before reasoning is applied [14].
Furthermore, there are systems such as QuOnto3 or Requiem,4 which support profiles of
OWL 2, and which support conjunctive queries, e.g., written in SPARQL syntax. Of the
systems that support all of OWL 2 DL, only Pellet supports non-distinguished variables
as long as they are not used in cycles, which is a measure to ensure decidability.

3 http://www.dis.uniroma1.it/~quonto/
4 http://www.comlab.ox.ac.uk/projects/requiem/home.html
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The SPARQL W3C working group is currently devising version 1.1 of SPARQL,
which also includes several entailment regimes. These entailment regimes redefine the
semantics of SPARQL queries based on standard semantic web entailment relations
such as RDFS or OWL Direct Semantics entailment. This allows for using SPARQL
also as a query language over OWL ontologies with query answers also including solu-
tions that are implicit consequences of the queried ontology or knowledge base.

In this paper, we present an implementation and optimization techniques for the
SPARQL OWL 2 Direct Semantics entailment regime, which we call SPARQL-OWL
for brevity. SPARQL-OWL only allows for distinguished variables (for compatibility
with SPARQL 1.0), but it poses significant challenges for implementations, e.g., by
allowing variables that bind to concepts or roles and which can even occur within com-
plex concepts. Our implementation supports ontologies (knowledge bases) in OWL 2
DL and is based on the HermiT reasoner.5 Most of the devised optimization techniques
are also applicable when using another OWL reasoner. In our algorithm, we extend the
techniques used for conjunctive query answering to deal with arbitrary SPARQL-OWL
queries and propose a range of novel optimizations in particular for SPARQL-OWL
queries that go beyond SPARQL-DL.

Our prototypical system is the first to fully support SPARQL-OWL, and we have
performed a preliminary evaluation in order to investigate the feasibility of our algo-
rithm and the effectiveness of the proposed optimizations. This evaluation suggests
that, in the case of standard conjunctive queries, our system performs comparably to
existing ones. It also shows that a naive implementation of our algorithm behaves badly
for some non-standard queries, but that the proposed optimizations can dramatically
improve performance, in some cases by as much as three orders of magnitude.

An extended version of this paper is accepted at ESWC’11 [10].

2 Preliminaries

In this section we give a brief introduction to the SPARQL-OWL entailment regime
and in the next section we describe an algorithm that finds answers to queries under this
regime.

2.1 The Relationship between RDF, SPARQL, and OWL

SPARQL is originally an RDF query language and the WHERE clause of a SPARQL
query consists of an RDF graph, where some nodes or edges are replaced by variables.
There is, however, a close relationship between OWL and RDF since OWL ontologies
can be represented as RDF graphs. Furthermore, OWL’s RDF-Based Semantics is a
direct extension of the RDF and RDFS semantics. We focus here, however, on OWL’s
Direct Semantics, which is based on the DL SROIQ [8] and which is only defined for
certain well-formed RDF graphs. Well-formedness guarantees that the RDF graph can
be mapped into an OWL 2 DL ontology [11], which can be seen as a SROIQ KB.

5 http://www.hermit-reasoner.com
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An example of a SPARQL query is
SELECT ?i FROM <ontologyIRI>WHERE { ?i rdf:type C }

where the triple in the WHERE clause is called a basic graph pattern (BGP) and is
written in Turtle [1]. Since the Direct Semantics of OWL is defined in terms of OWL
structural objects, such a BGP is mapped into structural objects, which can have vari-
ables in place of class, object property, data property, or individual names or literals. For
example, the above BGP is mapped to ClassAssertion(C ?i) in functional-style syntax
or C(?i) in DL syntax.

OWL DL is a typed language and to map RDF triples into OWL structural ob-
jects, one often has to know the type of a term. For example, in order to map the
triple p rdfs:subpropertyOf p� into an OWL structural object, we have to know whether
p is an abstract or a concrete role (an object or a data property), in the former case,
the mapping results in SubObjectPropertyOf(p p�), whereas in the latter case, we get
SubDataPropertyOf(p p�). In DL notation, we get p � p�, but p and p� would either be
abstract or concrete roles. In many cases, the typing information from the queried KB
can be used to disambiguate the mapping process. For variables that map to concepts or
roles, however, typing information is usually required and has to be added to the BGP.
For example,
a rdf:type [ rdf:type owl:Restricion ; owl:onProperty ?x ; owl:someValuesFrom ?y ]

could be mapped to either (1) or (2).
ClassAsserion(ObjectSomeVauesFrom(?x ?y) a) (1)

ClassAsserion(DataSomeVauesFrom(?x ?y) a) (2)
In such a case, a triple such as ?x rdf:type owl:ObjectProperty can be added to disam-
biguate the mapping process. Although the SPARQL specification uses Turtle, other
query syntaxes can also be defined. Pellet accepts, for example, queries where the BGP
is written in Manchester Syntax [7].

For further details, we refer interested readers to the W3C specification that defines
the mapping between OWL structural objects and RDF graphs [11] and to the SPARQL-
OWL entailment regime6 that defines the extension of this mapping between BGPs and
OWL objects with variables.

2.2 SPARQL-OWL Queries

In the following, we directly write BGPs in DL notation extended to allow for variables
in place of concept, role and individual names in axioms. For simplicity, we do not
consider concrete roles (data properties) here.

Anonymous individuals in the query are treated as variables whose bindings do not
appear in the query’s result sequence. This is motivated by the way SPARQL handles
anonymous individuals (known as blank nodes in RDF terminology). This is in con-
trast to conjunctive queries where they are treated as existential variables. Furthermore,
anonymous individuals in the queried KB are treated as (Skolem) constants and can be
returned in a query answer. For brevity, we assume here that neither the query nor the
queried KB contains anonymous individuals.

6 http://www.w3.org/TR/sparql11-entailment/
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Definition 1. Let NC, NR, NI, VC, VR, and VI be countable, infinite, and pairwise dis-
joint sets of concept names, role names, individual names, concept variables, role vari-
ables, and individual variables, respectively. We call S = (NC,NR,NI ,VC,VR,VI) a sig-
nature. A SPARQL-OWL query w.r.t. S consists of axiom templates, which are SROIQ
axioms where in place of concept names, one can use names from NC ∪ VC, in place
of role names, one can use names from NR ∪ VR, and in place of individual names, one
can use names form NI ∪ VI. A SROIQ knowledge base uses only terms from NC,NR,
and NI. The restriction of S to terms that occur in a knowledge base K (a query q) is
denoted as SK (Sq); we write V(q) to denote the set of all variables in q.

Given a knowledge base K with SK = (NKC ,N
K
R ,N

K
I , ∅, ∅, ∅) and a query q over

(NKC ,N
K
R ,N

K
I ,VC,VR,VI), a solution mapping µ for q over K is a partial function

µ : VC ∪ VR ∪ VI → NKC ∪ NKR ∪ NKI such that dom(µ) = V(q), µ(v) ∈ NKC for each
v ∈ VC ∩ dom(µ), µ(v) ∈ NKR for each v ∈ VR ∩ dom(µ), and µ(v) ∈ NKI for each
v ∈ VI ∩ dom(µ), where dom(µ) denotes the domain of µ; we write µ(q) to denote the
result of replacing each variable v in q with µ(v).

The evaluation of q over K yields a set of solution mappings µ with
{ µ | K ∪ µ(q) is a SROIQ knowledge base and K |= µ(q)}

More complex WHERE clauses, which use operators such as UNION for alternative
selection criteria or OPTIONAL to query for optional bindings [12, 5], can be evaluated
simply by combining solution mappings obtained by the BGP/query evaluation. There-
fore, we focus here on BGP evaluation only.

In the remainder, we use K to denote the SROIQ KB obtained from a queried
RDF graph, and q for the query obtained from mapping a BGP into axiom templates.
We further assume that the signature of K is SK = (NKC ,N

K
R ,N

K
I , ∅, ∅, ∅) and a query

uses symbols from (NKC ,N
K
R ,N

K
I ,VC,VR,VI).

3 Evaluation of SPARQL-OWL Queries

A straightforward algorithm to realize the entailment regime simply tests, for each pos-
sible solution mapping µ, whether K |= µ(q). Since only terms that are used in K can
occur in the range of solution mappings, there are finitely many mappings to test. In the
worst case, however, the number of mappings that have to be tested is still exponential
in the number of variables in the query. Such an algorithm is sound and complete if the
reasoner used to decide entailment is sound and complete since we check all mappings
for variables that can constitute actual solution mappings.

3.1 General Query Evaluation Algorithm

Optimizations cannot easily be integrated in the above sketched algorithm since it uses
the reasoner to check for the entailment of the instantiated query as a whole and, hence,
does not take advantage of relations that may exist between axiom templates. For a
more optimized evaluation, we evaluate the query axiom template by axiom template.
Initially, our solution set contains only the identity mapping, which does not map any
variable to a value. We then pick our first axiom template, extend the identity mapping
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to cover the variables of the chosen axiom template and use the reasoner to check which
of the mappings instantiate the axiom template into an entailed axiom. We then pick the
next axiom template and again extend the mappings from the previous round to cover
all variables and check which of those mappings lead to an entailed axiom. Thus, axiom
templates which are very selective and are only satisfied by very few solutions reduce
the number of intermediate solutions. Choosing a good execution order, therefore, can
significantly affect the performance.

For example, let q = {C(?x), r(?x ?y)} with r ∈ NR,C ∈ NC, ?x, ?y ∈ VI . The query
belongs to the class of conjunctive queries. We assume that the queried KB contains 100
individuals, only 1 of which belongs to the concept C. This C instance has 1 r-successor,
while we have overall 200 pairs of individuals related with the role r. If we first evaluate
C(?x), we test 100 mappings (since ?x is an individual variable), of which only 1 map-
ping satisfies the axiom template. We then evaluate r(?x ?y) by extending the mapping
with all 100 possible mappings for ?y. Again only 1 mapping yields a solution. For the
reverse axiom template order, the first axiom template requires the test of 100 ∗ 100
mappings. Out of those, 200 remain to be checked for the second axiom template and
we perform 10, 200 tests instead of just 200.

The importance of the execution order is well known in relational databases and cost
based optimization techniques are used to find good execution orders. Ordering strate-
gies as implemented in databases or triple stores are, however, not directly applicable
in our setting. In the presence of expressive schema level axioms, we cannot rely on
counting the number of occurrences of triples. We also cannot, in general, precompute
all relevant inferences to base our statistics on materialized inferences. Furthermore,
we should not only aim at decreasing the number of intermediate results, but also take
into account the cost of checking or computing the solutions. This cost can be very
significant with OWL reasoning.

For several kinds of axiom templates we can, instead of checking entailment, di-
rectly retrieve the solutions from the reasoner. For example, for C(?x), reasoners typi-
cally have a method to retrieve concept instances. Although this might internally trigger
several tests, most methods of reasoners are highly optimized and avoid as many tests
as possible. Furthermore, reasoners typically cache several results such as the computed
concept hierarchy and retrieving sub-concepts can then be realized with a cache lookup.
Thus, the actual execution cost might vary significantly. Notably, we do not have a
straight correlation between the number of results for an axiom template and the actual
cost of retrieving the solutions as is typically the case in triple stores or databases. This
requires cost models that take into account the cost of the specific reasoning operations
(depending on the state of the reasoner) as well as the number of results.

As motivated above, we distinguish between simple and complex axiom templates,
where simple axiom templates are those that correspond to dedicated reasoning tasks.
Complex axiom templates are, in contrast, evaluated by iterating over the compatible
mappings and by checking entailment for each instantiated axiom template. An example
of a complex axiom template is (∃r.?x)(?y).

Algorithm 1 shows how we evaluate queries. We first explain the general outline of
the algorithm and leave the details of the used submethods for the following section.
We first simplify axiom templates where possible (rewrite, line 1). Next, the method
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Algorithm 1 Query Evaluation Procedure
Input: K : the queried knowledge base, which is a SROIQ knowledge base

q: a SROIQ query
Output: a set of solutions for evaluating q over K
1: Axt := rewrite(Kq) {create a list Axt of simplified axiom templates from q}
2: Axt1, . . . ,Axtm:=connectedComponents(Axt)
3: for j=1, . . . , m do

4: Rj := {µ0 | dom(µ0) = ∅}
5: axt1, . . . , axtn := reorder(Axtj)
6: for i = 1, . . . , n do

7: Rnew := ∅
8: for µ ∈ Rj do

9: if isSimple(axti) and V(axti) \ dom(µ) � ∅ then

10: Rnew := Rnew ∪ {(µ ∪ µ�) | µ� ∈ callReasoner(µ(axti))}
11: else

12: B := {µ� | µ� extends µ, µ� is a solution mapping for axti and K}
13: B := prune(B, axti,K)
14: while B � ∅ do

15: µ� := removeNext(B)
16: if K |= µ�(axti) then Rnew := Rnew ∪ {µ�}
17: else B := prune(B, axti, µ�)
18: end while

19: end if

20: end for

21: Rj := Rnew

22: end for

23: end for

24: R := {µ1 ∪ . . . ∪ µm | µ j ∈ Rj, 1 ≤ j ≤ m}
25: return R

connectedComponents (line 2) partitions the axiom templates into sets of connected
components, i.e., within a component the templates share common variables, whereas
between components there are no shared variables. Unconnected components unneces-
sarily increase the amount of intermediate results and, instead, we can simply combine
the results for the components in the end (line 24). For each component, we proceed as
described below: we first determine an order (method reorder in line 5). For a simple
axiom template, which contains so far unbound variables, we then call a specialized
reasoner method to retrieve entailed results (callReasoner in line 10). Otherwise, we
check which compatible solutions yield an entailed axiom (lines 11 to 19). The method
prune (lines 13 and 17) excludes mappings that cannot lead to entailed axioms.

3.2 Optimized Query Evaluation

Axiom Template Reordering We now explain how we order the axiom templates in
the method reorder (line 5). Since complex axiom templates can only be evaluated
with costly entailment checks, our aim is to reduce the number of bindings before we
check the complex templates. The simple axiom templates are ordered by their cost,
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Table 1. Axiom templates and their equivalent simpler ones, where C(i) are complex concepts
(possibly containing variables), a is an individual or variable

C1 � . . . � Cn(a) ≡ {Ci(a) | 1 ≤ i ≤ n}
C � C1 � . . . � Cn ≡ {C � Ci | 1 ≤ i ≤ n}
C1 � . . . � Cn � C ≡ {Ci � C | 1 ≤ i ≤ n}

which is computed as the weighted sum of the estimated number of required consistency
checks and the estimated result size. These estimates are based on statistics provided
by the reasoner and this is the only part where our algorithm depends on the specific
reasoner that is used. In case the reasoner cannot give estimates, one can still work
with statistics computed from explicitly stated information. We do this for some simple
templates, e.g., queries for domains and ranges of properties, for which the reasoner
does not provide result size estimations. Since the result sizes for complex templates
are difficult to estimate using either the reasoner or the explicitly stated information in
K , we order complex templates based only on the number of bindings that have to be
tested. It is obvious that the reordering of axiom templates does not affect soundness
and completeness of Algorithm 1.

Axiom Template Rewriting Some costly to evaluate axiom templates can be rewrit-
ten into axiom templates that can be evaluated more efficiently and yield an equiva-
lent result. Such axiom templates are shown on the left-hand side of Table 1 and their
equivalent simplified form is shown on the right-hand side. To understand the intu-
ition behind such transformation, we consider a query with only the axiom template:
?x � ∃r.?y � C. Its evaluation requires a quadratic number of consistency checks in
the number of concepts (since ?x and ?y are concept variables). The rewriting yields:
?x � C and ?x � ∃r.?y. The first axiom template is now evaluated with a cheap cache
lookup (assuming that the concept hierarchy has been precomputed). For the second
one, we only have to check the usually few resulting bindings for ?x combined with
all other concept names for ?y. We apply the rewriting in the method rewrite in line 1
of our algorithm. Soundness and completeness is preserved since instantiated rewritten
templates are semantically equivalent to the corresponding instantiated complex ones.

Concept and Role Hierarchy Exploitation The number of consistency checks required
to evaluate a query can be further reduced by taking the concept and role hierarchies
into account. Once the concepts and roles are classified (this can ideally be done be-
fore a system accepts queries), the hierarchies are stored in the reasoner’s internal
structures. We further use the hierarchies to prune the search space of solutions in
the evaluation of certain axiom templates. We illustrate the intuition with an exam-
ple: Infection � ∃hasCausalLinkTo.?x If C is not a solution and B � C holds, then B is
also not a solution. Thus, when searching for solutions for ?x, the method removeNext
(line 15) chooses the next binding to test by traversing the concept hierarchy topdown.
When we find a non-solution C, the subtree rooted in C of the concept hierarchy can
safely be pruned, which we do in the method prune in line 17. Queries over knowledge
bases with a large number of concepts and a deep concept hierarchy can, therefore,
gain the maximum advantage from this optimization. We employ similar optimizations
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using the role hierarchies. It is obvious that we only prune mappings that cannot con-
stitute actual solution and instance mappings, hence, soundness and completeness of
Algorithm 1 is preserved.

Exploiting the Domain and Range Restrictions The implicit domains and ranges of the
roles in K (in case the reasoner precomputes and stores them) and/or the explicit ones
can be exploited to reduce the number of entailment checks that need to be performed
in order to evaluate a query.

Let us assume that K contains � � ∀takesCourse.Course, expressing a range re-
striction, and q contains GraduateStudent � ∃takesCourse.?x. In case at least one so-
lution mapping exists for ?x, the concept Course and its super-concepts can immedi-
ately be considered solution mappings for ?x. Moreover, if the reasoner precomputes
the disjoint concepts, this information can be used to prune the possible concepts for ?x
that are disjoint from the concept Course. This is done in the method prune (line 13),
which again preserves soundness and completeness.

4 System Evaluation

Since SPARQL’s entailment regimes only change the evaluation of BGPs, standard
SPARQL algebra processors can be used to combine the intermediate results, e.g.,
in unions or joins. Furthermore, standard OWL reasoners such as HermiT, Pellet, or
FaCT++ can be used to perform the required reasoning tasks.

4.1 The System Architecture

In our system, the queried KB is loaded into an OWL reasoner and the reasoner per-
forms initial tasks such as concept classification before the system accepts queries. We
use the ARQ library7 of the Jena Semantic Web Toolkit for parsing the SPARQL queries
and for the SPARQL algebra operations apart from the BGP evaluation. The BGPs are
mapped to queries (as in Def. 1) and represented in a custom extension of the OWL API
[6]. The query is then passed to a query optimizer, which applies the axiom template
rewriting and then searches for a good query execution plan based on statistics provided
by the reasoner. We use the HermiT reasoner for OWL reasoning, but only the module
that generates statistics and provides cost estimations is HermiT specific.

4.2 Experimental Results

We tested our system with the Lehigh University Benchmark (LUBM) [2] and a range
of custom queries that test complex axiom template evaluation over the more expressive
GALEN ontology. All experiments were performed on a Windows Vista machine with
a double core 2.2 GHz Intel x86 32 bit processor and Java 1.6 allowing 1GB of Java
heap space. We measure the time for one-off tasks such as classification separately
since such tasks are usually performed before the system accepts queries. Whether more

7 http://jena.sourceforge.net/ARQ/
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Table 2. Query answering times in milliseconds for LUBM(1,0) and in seconds for the queries
of Table 3 with and without optimizations

LUBM(1, 0) GALEN queries from Table 3
Query Time Query Reordering Hierarchy Rewriting Time

Exploitation
1 20 1 2.1
2 46 1 x 0.1
3 19 2 780.6
4 19 2 x 4.4
5 32 3 >30 min
6 58 3 x 119.6
7 42 3 x 204.7
8 353 3 x x 4.9
9 4,475 4 x x >30 min

10 23 4 x x 361.9
11 19 4 x x >30 min
12 28 4 x x x 68.2
13 16 5 x >30 min
14 45 5 x >30 min

5 x x 5.6

costly operations such as the realization of the ABox, which computes the types for all
individuals, are done in the beginning, depends on the setting and the reasoner. Since
realization is relatively quick in HermiT for LUBM (GALEN has no individuals), we
also performed this task upfront. The given results are averages from executing each
query three times. The ontologies and all code required to perform the experiments are
available online.8

We first evaluate the 14 LUBM queries. These queries are simple ones and have
variables only in place of individuals and literals. The LUBM ontology contains 43
concepts, 25 abstract roles, and 7 concrete roles. We tested the queries on LUBM(1,0),
which contains data for one university starting from index 0, and which contains 16,283
individuals and 8,839 literals. The ontology took 3.8 s to load and 22.7 s for classifi-
cation and realization. Table 2 shows the execution time for each of the queries. The
reordering optimization has the biggest impact on queries 2, 7, 8, and 9. These queries
require much more time or are not answered at all within the time limit of 30 min
without this optimization (758.9 s, 14.7 s, >30 min, >30 min, respectively).

Conjunctive queries are supported by a range of OWL reasoners. SPARQL-OWL
allows, however, the creation of very powerful queries, which are not currently sup-
ported by any other system. In the absence of suitable standard benchmarks, we created
a custom set of queries as shown in Table 3. Since the complex queries are mostly based
on complex schema queries, we switched from the very simple LUBM ontology to the
GALEN ontology. GALEN consists of 2,748 concepts and 413 abstract roles. The on-
tology took 1.6 s to load and 4.8 s to classify (concepts and roles). The execution time
for these queries is shown on the right-hand side of Table 2. For each query, we tested

8 http://www.hermit-reasoner.com/2010/sparqlowl/sparqlowl.zip
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Table 3. Sample complex queries for the GALEN ontology

1 Infection � ∃hasCausalLinkTo.?x
2 Infection � ∃?y.?x
3 ?x � Infection � ∃hasCausalAgent.?y
4 NAMEDLigament � NAMEDInternalBodyPart � ?x

?x � ∃hasShapeAnalagousTo?y � ∃?z.linear
5 ?x � NonNormalCondition

?z � ModifierAttribute
Bacterium � ∃?z.?w
?y � StatusAttribute
?w � AbstractStatus
?x � ∃?y.Status

the execution once without optimizations and once for each combination of applicable
optimizations from Section 3.

As expected, an increase in the number of variables within an axiom template leads
to a significant increase in the query execution time because the number of mappings
that have to be checked grows exponentially in the number of variables. This can, in
particular, be observed from the difference in execution time between Query 1 and 2.
From Queries 1, 2, and 3 it is evident that the use of the hierarchy exploitation opti-
mization leads to a decrease in execution time of up to two orders of magnitude and, in
combination with the query rewriting optimization, we can get an improvement of up
to three orders of magnitude as seen in Query 3. Query 4 can only be completed in the
given time limit if at least reordering and hierarchy exploitation is enabled. Rewriting
splits the first axiom template into the following two simple axiom templates, which are
evaluated much more efficiently:

NAMEDLigament � NAMEDInternalBodyPart and NAMEDLigament � ?x
After the rewriting, the reordering optimization has an even more pronounced effect
since both rewritten axiom templates can be evaluated with a simple cache lookup.
Without reordering, the complex axiom template could be executed before the simple
ones, which leads to the inability to answer the query within the time limit of 30 min.
Without a good ordering, Query 5 can also not be answered, but the additional use of
the class and property hierarchy further improves the execution time by three orders of
magnitude.

Although our optimizations can significantly improve the query execution time, the
required time can still be quite high. In practice, it is, therefore, advisable to add as many
restrictive axiom templates for query variables as possible. For example, the addition of
?y � Shape to Query 4 reduces the runtime from 68.2 s to 1.6 s.

5 Discussion

We have presented a sound and complete query answering algorithm and novel op-
timizations for SPARQL’s OWL Direct Semantics entailment regime. Our prototypi-
cal query answering system combines existing tools such as ARQ, the OWL API, and
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the HermiT OWL reasoner. Apart from the query reordering optimization—which uses
(reasoner dependent) statistics provided by HermiT—the system is independent of the
reasoner used, and could employ any reasoner that supports the OWL API.

We evaluated the algorithm and the proposed optimizations on the LUBM bench-
mark and on a custom benchmark that contains queries that make use of the very expres-
sive features of the entailment regime. We showed that the optimizations can improve
query execution time by up to three orders of magnitude.
Acknowledgements This work was supported by EPSRC in the project HermiT: Rea-
soning with Large Ontologies. The work has also been supported by the EC Indicate
project.
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Abstract. We show that deciding conjunctive query inseparability for
OWL2QL ontologies is PSpace-hard and in ExpTime. We give polyno-
mial-time (incomplete) algorithms and demonstrate by experiments that
they can be used for practical module extraction.

1 Introduction

Ontology-based data access (OBDA) has recently emerged as one of the most
interesting and challenging applications of description logic. The key idea is to
use ontologies for enriching data with background knowledge, and thereby en-
able query answering over incomplete and semistructured data via a high-level
conceptual interface. The W3C recognised the importance of OBDA by includ-
ing in the OWL2 Web Ontology Language the profile OWL2QL, which was
designed for OBDA with relational database systems. OWL2QL is based on a
description logic that was originally introduced under the name DL-LiteR [5, 6]
and called DL-Lite

H

core in the more general classification [1]. It can be described
as an optimal sub-language of SROIQ, underlying OWL2, which includes most
of the features of conceptual models, and for which query answering can be done
in AC0 for data complexity. Thus, DL-Lite

H

core is becoming a major language
for developing ontologies, and a target language for translation and approxima-
tion of existing ontologies formulated in more expressive DLs [11, 4]. One of
the consequences of this development is that DL-Lite

H

core ontologies turn out to
be larger and more complex than originally envisaged. As a result, reasoning
support for ontology engineering tasks such as composing, re-using, comparing,
and extracting ontologies—which so far has been only analysed for expressive
DLs [7, 12], EL [10] and DL-Lite dialects without role inclusions [9]—is becoming
increasingly important for DL-Lite

H

core as well.
In the context of OBDA, the basic notion underlying many ontology engi-

neering tasks is Σ-query inseparability : for a signature (a set of concept and role
names) Σ, two ontologies are deemed to be inseparable if they give the same
answers to any conjunctive query over any data formulated in Σ. Thus, in ap-
plications using Σ-queries and data, one can safely replace any ontology by a
Σ-query inseparable one. Note that the relativisation to Σ is very important
here. For example, one cannot expect modules of an ontology to be query insep-
arable from the whole ontology for arbitrary queries and data sets, whereas this
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should be the case if we restrict the query and data language to the module’s
signature or a specified subset thereof. Similarly, when comparing two versions
of one ontology, the subtle and potentially problematic differences are those that
concern queries over their common symbols, rather than all symbols occurring in
these versions. In applications where ontologies are built using imported parts, a
stronger notion of inseparability is required: two ontologies are strongly Σ-query
inseparable if they give the same answers to Σ-queries and data when imported
to an arbitrary context ontology formulated in Σ.

The aim of this paper is to (i) investigate the computational complexity of
deciding (strong) Σ-query inseparability for DL-Lite

H

core ontologies, (ii) develop
efficient (though incomplete) algorithms for practical inseparability checking,
and (iii) analyse the performance of the algorithms for the challenging task of
minimal module extraction.

One of our surprising discoveries is that the analysis of Σ-query insepara-
bility for DL-Lite

H

core ontologies requires drastically different logical tools com-
pared with the previously considered DLs. It turns out that the new syntactic
ingredient—the interaction of role inclusions and inverse roles—makes deciding
(strong) query inseparability PSpace-hard, as opposed to the known coNP and
Πp

2 -completeness results for DL-Lite dialects without role inclusions [9]. On the
other hand, the obtained ExpTime upper bound is actually the first known
decidability result for strong inseparability, which goes beyond the ‘essentially’
Boolean logic and might additionally indicate a way of solving the open problem
of strong Σ-query inseparability for EL [10]. For DL-Litecore ontologies (without
role inclusions), strong Σ-query inseparability is shown to be only NLogSpace-
complete. We give (incomplete) polynomial-time algorithms checking (strong)
Σ-inseparability and demonstrate, by a set of minimal module extraction exper-
iments, that they are (i) complete for many existing DL-Lite

H

core ontologies and
signatures, and (ii) sufficiently fast to be used in module extraction algorithms
that require thousands of Σ-query inseparability checks. All omitted proofs can
be found at www.dcs.bbk.ac.uk/~roman/owl2ql-modules.

2 Σ-Query Entailment and Inseparability

We begin by formally defining DL-Lite
H

core, underlying OWL2QL, and the no-
tions of Σ-query inseparability and entailment. The language of DL-Lite

H

core

contains countably infinite sets of individual names ai, concept names Ai, and
role names Pi. Roles R and concepts B of this language are defined by:

R ::= Pi | P−

i , B ::= ⊥ | � | Ai | ∃R.

A DL-Lite
H

core TBox, T , is a finite set of inclusions

B1 � B2, R1 � R2, B1 �B2 � ⊥, R1 �R2 � ⊥,

where B1, B2 are concepts and R1, R2 roles. An ABox, A, is a finite set of asser-
tions of the form B(ai), R(ai, aj) and ai �= aj , where ai and aj are individual
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names, B a concept and R a role. Ind(A) will stand for the set of individual names
occurring in A. Taken together, T and A constitute the DL-Lite

H

core knowledge
base (KB, for short) K = (T ,A). The sub-language of DL-Lite

H

core without role
inclusions R1 � R2 is denoted by DL-Litecore [6]. The semantics of DL-Lite

H

core

is defined as usual in DL [2]. We only note that, in interpretations I = (∆I , ·I),
we do not have to comply with the UNA, that is, we can have aIi = aIj for
i �= j. We write I |= α to say that an inclusion or assertion α is true in I. The
interpretation I is a model of a KB K = (T ,A) if I |= α for all α ∈ T ∪ A. K is
consistent if it has a model. A concept B is said to be T -consistent if (T , {B(a)})
has a model. K |= α means that I |= α for all models I of K.

A conjunctive query (CQ) q(x1, . . . , xn) is a first-order formula

∃y1 . . . ∃ym ϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧, from atoms of the form B(t) and R(t1, t2),
with B being a concept, R a role, and ti being an individual name or a variable
from the list x1, . . . , xn, y1, . . . , ym. The variables in �x = x1, . . . , xn are called
answer variables of q. We say that an n-tuple �a ⊆ Ind(A) is an answer to q in
an interpretation I if I |= q[�a] (here we regard I to be a first-order structure);
�a is a certain answer to q over a KB K = (T ,A) if I |= q[�a] for all models I of
K; in this case we write K |= q[�a].

To define the main notions of this paper, consider two KBs K1 = (T1,A) and
K2 = (T2,A). For example, the Ti are different versions of some ontology, or one
of them is a refinement of the other by means of new axioms. The question we
are interested in is whether they give the same answers to queries formulated in
a certain signature, say, in the common vocabulary of the Ti or in a vocabulary
relevant to an application. To be precise, by a signature, Σ, we understand
any finite set of concept and role names. A concept (inclusion, TBox, etc.) all
concept and role names of which are in Σ is called a Σ-concept (inclusion, etc.).
We say that K1 Σ-query entails K2 if, for all Σ-queries q(�x) and all �a ⊆ Ind(A),
K2 |= q[�a] implies K1 |= q[�a]. In other words: any certain answer to a Σ-query
given by K2 is also given by K1. As the ABox is typically not fixed or known at
the ontology design stage, we may have to compare the TBoxes over arbitrary
Σ-ABoxes rather than a fixed one, which gives our central definition:

Definition 1. Let T1 and T2 be TBoxes and Σ a signature. T1 Σ-query entails
T2 if (T1,A) Σ-query entails (T2,A) for any Σ-ABox A. T1 and T2 are Σ-query
inseparable if they Σ-query entail each other, in which case we write T1 ≡Σ T2.

In many applications, Σ-query inseparability is enough to ensure that T1 can be
safely replaced by T2. However, if they are developed as part of a larger ontology
or are meant to be imported in other ontologies, a stronger notion is required:

Definition 2. T1 strongly Σ-query entails T2 if T1 ∪ T Σ-query entails T2 ∪ T ,
for all Σ-TBoxes T . T1 and T2 are strongly Σ-query inseparable if they strongly
Σ-query entail each other, in which case we write T1 ≡s

Σ T2.

The following example illustrates the difference between Σ-query and strong
Σ-query inseparability. For further discussion and examples, consult [7, 9].
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Example 3. Let T1 = ∅, T2 = {� � ∃R, ∃R− � B,B � A � ⊥ }and Σ = {A}.
T1 and T2 are Σ-query inseparable. However, they are not strongly Σ-query
inseparable. Indeed, for the Σ-TBox T = {� � A}, T1 ∪ T is consistent, while
T2∪T is inconsistent, and so T1∪T does not Σ-query entail T2∪T , as witnessed
by the query q = ⊥.

3 Σ-Query Entailment and Σ-Homomorphisms

In this section, we characterise Σ-query entailment between DL-Lite
H

core TBoxes
semantically in terms of (partial) Σ-homomorphisms between certain canonical
models. Then, in the next section, we use this characterisation to investigate the
complexity of deciding Σ-query entailment.

The canonical model, MK, of a consistent KB K = (T ,A) gives correct
answers to all CQs. In general, MK is infinite; however, it can be folded up into
a small generating model GK = (IK,�K) consisting of a finite interpretation
IK and a generating relation �K that defines the unfolding. Let �∗

T
be the

reflexive and transitive closure of the role inclusion relation given by T , and let
[R] = {S | R �∗

T
S and S �∗

T
R}. We write [R] ≤T [S] if R �∗

T
S; thus, ≤T

is a partial order on the set {[R] | R a role in T }. For each [R], we introduce a
witness w[R] and define a generating relation �K on the set of these witnesses
together with Ind(A) by taking:

– a �K w[R] if a ∈ Ind(A) and [R] is ≤T -minimal such that K |= ∃R(a) and
K�|= R(a, b) for all b ∈ Ind(A);

– w[S] �K w[R] if [R] is ≤T -minimal with T |= ∃S− � ∃R and [S−] �= [R].

A role R is generating in K if there are a ∈ Ind(A) and R1, . . . , Rn = R such
that a �K w[R1] �K · · · �K w[Rn]. The interpretation IK is defined as follows:

∆IK = Ind(A) ∪ {w[R] | R is generating in K},

aIK = a, for all a ∈ Ind(A),

AIK = {a ∈ Ind(A) | K |= A(a)} ∪ {w[R] | T |= ∃R−
� A},

P IK = {(a, b) ∈ Ind(A)× Ind(A) | there is R(a, b) ∈ A s.t. [R] ≤T [P ]} ∪

{(x,w[R]) | x �K w[R] and [R] ≤T [P ]} ∪

{(w[R], x) | x �K w[R] and [R] ≤T [P−]}.

GK can be constructed in polynomial time in |K|, and it is not hard to see that
IK |= K. To construct the canonical model MK giving the correct answers to
all CQs, we unfold the generating model GK = (IK,�K) along �K. A path in
GK is a finite sequence aw[R1] · · ·w[Rn], n ≥ 0, such that a ∈ Ind(A), a �K w[R1]

and w[Ri] �K w[Ri+1], for i < n. Denote by path(GK) the set of all paths in GK

and by tail(σ) the last element in σ ∈ path(GK). MK is defined by taking:

∆MK = path(GK),

aMK = a, for all a ∈ Ind(A),

AMK = {σ | tail(σ) ∈ AIK},
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PMK = {(a, b) ∈ Ind(A)× Ind(A) | (a, b) ∈ P IK} ∪

{(σ,σ · w[R]) | tail(σ) �K w[R], [R] ≤T [P ]} ∪

{(σ · w[R], σ) | tail(σ) �K w[R], [R] ≤T [P−]}.

Example 4. For T1 = {A � ∃S, ∃S− � ∃T, ∃T− � ∃T, T � R} and
K1 = (T1, {A(a)}), the models GK1 and MK1 look as follows (�K1 in GK1 is
shown as ):

GK1

A

a wS

S

wT

R, T
R, T

MK1

A

a awS

S

awSwT

R, T

awSwTwT

R, T
. . .

Theorem 5. For all consistent DL-Lite
H

core KBs K = (T ,A), CQs q(�x) and
�a ⊆ Ind(A), we have K |= q[�a] iff MK |= q[�a].

Thus, to decide Σ-query entailment between KBs K1 and K2, it suffices to check
whether MK2 |= q[�a] implies MK1 |= q[�a] for all Σ-queries q(�x) and tuples �a.
This relationship between MK2 and MK1 can be characterised semantically in
terms of finite Σ-homomorphisms. For an interpretation I and a signature Σ,
the Σ-types tIΣ(x) and rIΣ(x, y), for x, y ∈ ∆I , are given by:

tIΣ(x) = {Σ-concept B | x ∈ BI
}, rIΣ(x, y) = {Σ-role R | (x, y) ∈ RI

}.

A Σ-homomorphism from an I to I � is a function h : ∆I → ∆I
�
such that

h(aI) = aI
�
, for all individual names a interpreted in I, tIΣ(x) ⊆ tI

�

Σ (h(x)) and
rIΣ(x, y) ⊆ rI

�

Σ (h(x), h(y)), for all x, y ∈ ∆I .
It is well-known that answers to conjunctive Σ-queries are preserved under

Σ-homomorphisms. Thus, if there is a Σ-homomorphism from MK2 to MK1 ,
then K1 Σ-query entails K2. However, the converse does not hold in general.

Example 6. Take T1 from Example 4, and let T2 result from replacing R in T1

with R−. Let Σ = {A,R} and Ki = (Ti, {A(a)}). Then the Σ-reduct of MK1

does not contain a Σ-homomorphic image of the Σ-reduct of MK2 , depicted be-
low. On the other hand, it is easily seen that T1 and T2 are Σ-query inseparable.

MK2

A
a

R− R−
. . .

Note that the Σ-reduct of MK2 contains points that are not reachable from
the ABox by Σ-roles. In fact, using König’s Lemma, one can show that if every
point in MK2 is reachable from the ABox by a path of Σ-roles, then K1 Σ-query
entails K2 iff there exists a Σ-homomorphism from MK2 to MK1 .

We say that I is finitely Σ-homomorphically embeddable into I � if, for every
finite sub-interpretation I1 of I, there exists a Σ-homomorphism from I1 to I �.

Theorem 7. Let K1 and K2 be consistent DL-Lite
H

core KBs. Then K1 Σ-query
entails K2 iff MK2 is finitely Σ-homomorphically embeddable into MK1 .
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Theorem 7 does not yet give a satisfactory semantic characterisation of Σ-
query entailment between TBoxes, as one still has to consider infinitely many
Σ-ABoxes. However, using the fact that inclusions in DL-Lite

H

core, different from
disjointness axioms, involve only one concept or role in the left-hand side and
making sure that the TBoxes entail the same Σ-inclusions, one can show that it
is enough to consider singleton Σ-ABoxes of the form {B(a)}. Denote the mod-
els G(T ,{B(a)}) and M(T ,{B(a)}) by GB

T
and MB

T
, respectively. We thus obtain

the following characterisation of Σ-entailment between DL-Lite
H

core TBoxes:

Theorem 8. T1 Σ-query entails T2 iff

(p) T2 |= α implies T1 |= α, for all Σ-inclusions α;
(h) MB

T2
is finitely Σ-homomorphically embeddable into MB

T1
, for all T1-con-

sistent Σ-concepts B.

By applying condition (p) to B � ⊥, we obtain that every T1-consistent Σ-
concept B is also T2-consistent.

4 Complexity of Σ-Query Entailment

We use Theorem 8 to show that deciding Σ-query entailment for DL-Lite
H

core

TBoxes isPSpace-hard and inExpTime. Recall that subsumption inDL-Lite
H

core

is NLogSpace-complete [6, 1]; so condition (p) of Theorem 8 can be checked in
polynomial time. And, since there are at most 2 · |Σ| singleton Σ-ABoxes, we can
concentrate on the complexity of checking finite Σ-homomorphic embeddability
of canonical models for singleton ABoxes.

We begin by considering DL-Litecore, where the existence of Σ-homomorph-
isms between canonical models can be expressed in terms of the types of their
points; cf. [9]. Let T1 and T2 be DL-Litecore TBoxes and Σ a signature.

Theorem 9. T1 Σ-query entails T2 iff (p) holds and, for every T1-consistent

Σ-concept B and every x ∈ ∆I
B
T2 , there is x� ∈ ∆I

B
T1 with t

I
B
T2

Σ (x) ⊆ t
I
B
T1

Σ (x�).

The criterion of Theorem 9 can be checked in polynomial time, in NLog-
Space, to be more precise. Thus:

Theorem 10. Checking Σ-query entailment for TBoxes in DL-Litecore is com-
plete for NLogSpace.

However, if role inclusions become available, the picture changes dramatically:
not only do we have to compare the Σ-types of points in the canonical models,
but also theΣ-paths to these points. To illustrate, consider the generating models
G1, G2 in Fig. 1, where the arrows represent the generating relations, and the
concept names A, X0

i , X
1
i and the role names R and Tj are all symbols in Σ.

The model G2 contains 4 R-paths from a to w, which are further extended by
the infinite Tj-paths. The paths π from a to w can be homomorphically mapped
to distinct R-paths h(π) in G1 starting from a. But the extension of such a π
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with the infinite Tj-chain can only be mapped first to a suffix of h(π) (backward,
along T−

j )—because we have to map paths in the unfolding M2 of G2 to paths
in M1—and then to a Tj-loop in G1. But to check whether this can be done, we
may have to ‘remember’ the whole path π.

G1

A
a

X1
1

R,T
−
j

X0
1

R,T −
j

X1
2R,T−

j

R,
T
−
j

X0
2

R,T −
j

R,T−
j

X1
3R,T−

j

R,
T
−
j

X0
3

R,T −
j

R,T−
j

X1
4R,T−

j

R,
T
−
j

X0
4

R,T −
j

R,T−
j

T1
T1

T1

T2

T2

G2

A
a

A

X1
1

R

X0
1

R

R

R

X1
3

R

X0
3

R

w
R

R

T1

T1

T2

T2

Fig. 1. Σ-reducts of generating models G2 and G1.

To see that G1 and G2 can be given by DL-Lite
H

core TBoxes, fix a QBF
Q1X1 . . .QnXn

�m
j=1 Cj , where Qi ∈{∀ , ∃} and C1, . . . , Cm are clauses over the

variables X1, . . . , Xn. Let Σ = {A,X0
i , X

1
i , R, Tj | i ≤ n, j ≤ m}, T1 contain the

inclusions

A � ∃S−

0 , ∃S−

i−1 � ∃Qk
i ,

∃(Qk
i )

−
� Xk

i , Qk
i � Si, Si � R,

Xk
i � ∃Rj if k = 0,¬Xi ∈ Cj or k = 1, Xi ∈ Cj ,

∃R−

j � ∃Rj , Rj � Tj , Si � T−

j ,

and let T2 contain the inclusions

A � ∃S−

0 , ∃S−

i−1 �

�
∃Qk

i , if Qi = ∀,

∃Si, if Qi = ∃,

∃(Qk
i )

−
� Xk

i , Qk
i � Si, Si � R,

∃S−

n � ∃Pj , ∃P−

j � ∃Pj , Pj � Tj ,

for all i ≤ n, j ≤ m, k = 1, 2. The generating models GA
T1

and GA
T2
, restricted

to Σ, look like G1 and G2 in Fig. 1, respectively. Moreover, one can show that
MA

T2
is (finitely) Σ-homomorphically embeddable into MA

T1
iff the QBF above

is satisfiable. As satisfiability of QBFs is PSpace-complete, we obtain:
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Theorem 11. Σ-query entailment for DL-Lite
H

core TBoxes is PSpace-hard.

On the other hand, the problem whether MK2 is finitely Σ-homomorphically
embeddable into MK1 can be reduced to the emptiness problem for alternating
two-way automata, which belongs to ExpTime [13]. In a way similar to [13,
8], where these automata were employed to prove ExpTime-decidability of the
modal µ-calculus with converse and the guarded fixed point logic of finite width,
one can use their ability to ‘remember’ paths (in the sense illustrated in the
example above) to obtain the ExpTime upper bound:

Theorem 12. Σ-query entailment for DL-Lite
H

core TBoxes is in ExpTime.

The precise complexity of Σ-query entailment for DL-Lite
H

core TBoxes is still
unknown. Recall that deciding Σ-query entailment for DL-Lite

N

horn is coNP-
complete [9]. Compared to DL-Lite

H

core, DL-Lite
N

horn allows (unqualified) number
restrictions and conjunctions in the left-hand side of concept inclusions, but does
not have role inclusions: DL-Lite

N

horn∩DL-Lite
H

core = DL-Litecore. CQ answering
is in AC0 for data complexity in all three languages under the UNA. However,
the computational properties of these logics become different as far as Σ-query
entailment is concerned: NLogSpace-complete for DL-Litecore, coNP-complete
for DL-Lite

N

horn, and between PSpace and ExpTime for DL-Lite
H

core. It may be
of interest to note thatΣ-query entailment for DL-Lite

N

bool, allowing full Booleans
as concept constructs, is Πp

2 -complete.

Let us consider strong Σ-query entailment. It is easy to construct an expo-
nential-time algorithm checking strong Σ-query entailment between DL-Lite

H

core

TBoxes T1 and T2: enumerate all Σ-TBoxes T and check whether T1∪T Σ-query
entails T2∪T . As there are quadratically many Σ-inclusions, this algorithm calls
the Σ-query entailment checker ≤ 2|Σ|

2
times. We now show that one can do

much better than that. First, it turns out that instead of expensive Σ-query
entailment checks for the TBoxes Ti ∪ T , it is enough to check consistency (in
polynomial time). More precisely, suppose T1 Σ-query entails T2. One can show
then that T1 does not strongly Σ-query entail T2 iff there exist a Σ-TBox T

and a Σ-concept B such that (T1∪T , {B(a)}) is consistent but (T2∪T , {B(a)})
is not (cf. Example 3). Moreover, checking consistency for all Σ-TBoxes T can
further be reduced—using the primitive form of DL-Lite

H

core axioms—to checking
consistency for all singleton Σ-TBoxes T . Thus, we obtain the following:

Theorem 13. Suppose that T1 Σ-query entails T2. Then T1 does not strongly Σ-
query entail T2 iff there is a Σ-concept B and a Σ-TBox T with a single inclusion
of the form B1 � B2 or R1 � R2 such that (T1 ∪ T , {B(a)}) is consistent but
(T2 ∪ T , {B(a)}) is inconsistent.

So, if we already know that T1 Σ-query entails T2, then checking whether this
entailment is actually strong can be done in polynomial time (and NLogSpace).

5 Incomplete Algorithm for Σ-Query Entailment

The interplay between role inclusions and inverse roles, required in the proof of
PSpace-hardness, appears to be too artificial compared to how roles are used
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in ‘real-world’ ontologies. Thus, in conceptual modelling, the number of roles is
comparable with the number of concepts, but the number of role inclusions is
much smaller. For this reason, instead of a complete (exponential) Σ-query en-
tailment checker, we have implemented a polynomial-time correct but incomplete
algorithm, which is based on testing simulations between transition systems.

Let T1 and T2 be DL-Lite
H

core TBoxes, Σ a signature, B a Σ-concept. Denote
Ki = (Ti, {B(a)}) and Ii = IKi , i = 1, 2. A relation ρ ⊆ ∆I2 ×∆I1 is called a
Σ-simulation of GK2 in GK1 if the following conditions hold:

(s1) the domain of ρ is ∆I2 and (aI2 , aI1) ∈ ρ;
(s2) tI2

Σ (x) ⊆ tI1
Σ (x�), for all (x, x�) ∈ ρ;

(s3) if x �K2 w[R] and (x, x�) ∈ ρ, then there is y� ∈ ∆I1 such that (w[R], y
�) ∈ ρ

and S ∈ rI1
Σ (x�, y�) for every Σ-role S with [R] ≤T2 [S].

We call ρ a forward Σ-simulation if it satisfies (s1), (s2) and the condition
(s3�), which strengthens (s3) with the extra requirement: y� = w[T ], for some
role T , with x� �K1w[T ] and [T ] ≤T1 [S] for every Σ-role S with [R] ≤T2 [S].

Example 14. In Example 6, there is a Σ-simulation of GK2 in GK1 , but no forward
Σ-simulation. The same applies to G2 and G1 in the proof of the PSpace bound.

In contrast to finiteΣ-homomorphic embeddability ofMK2 inMK1 , the problem
of checking the existence of (forward) Σ-simulations of GK2 in GK1 is tractable
and well understood from the literature on program verification [3]. Consider
now the following conditions, which can be checked in polynomial time:

(y) condition (p) holds and there is a forward Σ-simulation of GB
T2

in GB
T1
, for

every T1-consistent Σ-concept B;
(n) condition (p) does not hold or there is no Σ-simulation of GB

T2
in GB

T1
, for

any T1-consistent Σ-concept B.

Theorem 15. Let T1, T2 be DL-Lite
H

core TBoxes and Σ a signature. If (y) holds,
then T1 Σ-query entails T2. If (n) holds, then T1 does not Σ-query entail T2.

Thus, an algorithm checking conditions (y) and (n) can be used as a correct
but incomplete Σ-query entailment checker. It cannot be complete since neither
(y) nor (n) holds in Example 14. On the other hand, condition (n) proves to be
a criterion of Σ-query entailment in two important cases:

Theorem 16. Let (a) T1, T2 be DL-Litecore TBoxes, or (b) T1 = ∅ and T2 a
DL-Lite

H

core TBox. Then condition (n) holds iff T1 does not Σ-query entail T2.

6 Experiments

Checking (strong) Σ-query entailment has multiple applications in ontology ver-
sioning, re-use, and extraction. We have used the algorithms, suggested by The-
orems 15 and 13, for minimal module extraction to see how efficient they are
in practice and whether the incompleteness of the (y)–(n) conditions is prob-
lematic. Extracting minimal modules from medium-sized real-world ontologies
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requires thousands of calls of the (strong) Σ-query entailment checker, and thus
provides a tough test for our approach.

For a TBox T and a signature Σ, a subset M ⊆ T is

– a Σ-query module of T if M ≡Σ T ;
– a strong Σ-query module of T if M ≡s

Σ T ;
– a depleting Σ-query module of T if ∅ ≡s

Σ∪sig(M) T \M, where sig(M) is the
signature of M.

We are concerned with computing aminimal (w.r.t. ⊆) Σ-query (MQM), amini-
mal strong Σ-query (MSQM), and the (uniquely determined) minimal depleting
Σ-query (MDQM) module of T . The general extraction algorithms, which call
Σ-query entailment checkers, are taken from [9]. For MQMs and MSQMs, the
number of calls to the checker coincides with the number of inclusions in T . For
MDQMs (where one of the TBoxes given to the checker is empty, and so the
checker is complete, by Theorem 16), the number of checker calls is quadratic in
the number of inclusions in T .

We extracted modules from OWL2QL approximations of 3 commercial soft-
ware applications called Core, Umbrella and Mimosa (the original ontologies use
a few axioms that are not expressible OWL2QL). Mimosa is a specialisation
of the MIMOSA OSA-EAI specification4 for container shipping. Core is based
on a supply-chain management system used by the bookstore chain Ottakar’s
(now merged with Waterstone’s), and Umbrella on a research data validation
and processing system used by the Intensive Care National Audit and Research
Centre.5 The original Core and Umbrella were used for the experiments in [9].

ontology Mimosa Core Umbrella IMDB LUBM
concept inclusions 710 1214 1506 45 136
role inclusions 53 19 13 21 9
concept names 106 82 79 14 43
role names 145 76 64 30 31

For comparison, we extracted modules from OWL2QL approximations of the
well-known IMDB and LUBM ontologies. For each of these ontologies, we ran-
domly generated 20 signatures Σ of 5 concept and 5 roles names. We extracted
Σ-MQMs, MSQMs, MDQMs as well as the �⊥-module [7] from the whole Mi-
mosa, IMBD and LUBM ontologies. For the larger Umbrella and Core on-
tologies, we first computed the �⊥-modules, and then employed them to fur-
ther extract MQMs, MSQMs, MDQMs, which are all contained in the �⊥-
modules. The average size of the resulting modules and its standard devia-
tion is shown below. Details of the experiments and ontologies are available
at www.dcs.bbk.ac.uk/~roman/owl2ql-modules. Here we briefly comment on
efficiency and incompleteness. Checking Σ-query inseparability turned out to be
very fast: a single call of the checker never took more than 1s for our ontologies.
For strong Σ-query inseparability, the maximal time was less than 1 min. For

4 htpp://www.mimosa.org/?q=resources/specs/osa-eai-v321
5 http://www.icnarc.org
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comparisons with the empty TBox, the maximal time for strong Σ-query insep-
arability tests was less than 10s. In the hardest case, Mimosa, the average total
extraction times were 2.5 mins for MQMs, 140 mins for MSQMs, and 317 mins
for MDQMs. Finally, only in 9 out of about 75,000 calls, the Σ-query entail-
ment checker was not able to give a certain answer due to incompleteness of the
(y)–(n) condition, in which case the inclusions in question were added to the
module.

LUBM (145)

31

M
Q

M

32

M
S
Q

M

34

M
D

Q
M

34

�
⊥

M

IMDB (66)

20

M
Q

M

20

M
S
Q

M

25

M
D

Q
M

30

�
⊥

M

Umbrella (1519)

98

M
Q

M

101

M
S
Q

M

315

M
D

Q
M

391

�
⊥

M

Mimosa (763)

47

M
Q

M

56

M
S
Q

M
90

M
D

Q
M

105

�
⊥

M

Core (1233)

83

M
Q

M

87

M
S
Q

M

375

M
D

Q
M

375

�
⊥

M

References

[1] Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite fam-
ily and relations. Journal of Artificial Intelligence Research 36, 1–69 (2009)

[2] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press (2003)

[3] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2007)
[4] Botoeva, E., Calvanese, D., Rodriguez-Muro, M.: Expressive approximations in

DL-Lite ontologies. In: Proc. of AIMSA. pp. 21–31. Springer (2010).
[5] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-

plexity of query answering in description logics. In: Proc. of KR. pp. 260–270
(2006)

[6] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

[7] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. Journal of Artificial Intelligence Research 31, 273–318
(2008)
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Abstract. We propose an extension of SROIQ with nominal schemas
which can be used like “variable nominal concepts” within axioms. This
feature allows us to express arbitrary DL-safe rules in description logic
syntax. We show that adding nominal schemas to SROIQ does not
increase its worst-case reasoning complexity, and we identify a family
of tractable DLs SROELVn that allow for restricted use of nominal
schemas.

1 Introduction

A significant body of work has developed investigating the integration of descrip-
tion logics (DLs) and rule languages (typically Datalog). Conceptually, one can
distinguish two approaches. On the one hand, description logics have been ex-
tended with additional “description-logic-style” expressive features which make
it possible to express certain types of rules. For instance, SROIQ role inclusion
axioms (RIAs) can be viewed as a type of rule. By combining RIAs with local
reflexivity (Self) and the universal role U , many rules with a tree-shaped body
can be expressed indirectly [10]. The restriction to tree-shaped rules ensures de-
cidability, but it also excludes many rules. An example is the following rule that
defines a concept C of children whose parents are married:

hasParent(x,y) ∧ hasParent(x,z) ∧ married(y,z) → C(x). (1)

On the other hand, there are approaches of a hybrid nature, in the sense
that both DL axioms and rules are syntactically allowed, and a combined formal
semantics defines how the hybrid language is to be understood. Unfortunately,
such a combination often leads to undecidability. This is the case for the Se-
mantic Web Rule Language SWRL [5,6], which is the most straightforward rule
extension of OWL, and for the combination of OWL DL ontologies and the Rule
Interchange Format RIF (even when restricted to RIF Core) [1,2]. A prominently
discussed idea for retaining decidability is to restrict the applicability of rules
to named individuals, i.e., to logical constants that are explicitly mentioned in
the ontology. Rules that are understood in this sense are called DL-safe, and the
combination of OWL DL and DL-safe rules is indeed decidable [5,14].
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A generalization of DL-safe rules, based on DL-safe variables, has been intro-
duced [11] as part of the definition of the tractable rule language ELP. Rather
than restricting all variables in a (DL-safe) rule to binding only to known indi-
viduals, DL-safe variables allow the ontology engineer to explicitly specify the
variables to be treated this way. This approach was subsequently generalized to
obtain DL+safe Rules as a class of expressive rule languages for which reasoning
is still decidable [9].

In this paper, we expand on the above idea and improve it in several ways.
The key technical innovation is the introduction of nominal schemas as new
elements of DL syntax. While the semantic intuition behind nominal schemas
is the same as that behind DL-safe variables, the difference lies in the fact that
DL-safe variables are tied to rule languages, while nominal schemas integrate
seamlessly with DL syntax. As a consequence, the language which we propose
encompasses DL-safe variable SWRL while staying within the DL/OWL language
paradigm. It thus achieves within the DL framework what has hitherto only been
achieved by hybrid approaches.

To give an initial example, consider again the rule (1) extended by the axioms

hasParent(mary, john) (2)
(∃hasParent.∃married.{john})(mary) (3)

Axiom (2) asserts that John is a parent of Mary, while axiom (3) states that
Mary belongs to the class of individuals with some (unnamed) parent who is
married to John. Using a first-order logic semantics as in SWRL, rule (1) would
thus entail that Mary belongs to the class C. Interpreting rule (1) as DL-safe,
however, does not allow this conclusion, since John’s spouse is not named by
any constant in the ontology. To retain the conclusion, one can weaken this
restriction to require only z to be DL-safe, while x and y can still take arbitrary
values. This is possible in the rule-based approach of DL+safe Rules, but cannot
be captured in an axiom of existing description logics.

In contrast, using nominal schemas, rule (1) can be expressed as

∃hasParent.{z} � ∃hasParent.∃married.{z} � C. (4)

The desired conclusion again follows. The expression {z} is a nominal schema,
which is to be read as a variable nominal that can only represent nominals (i.e.,
z binds to known individuals), where the binding is the same for all occurrences
of the nominal schema in an axiom.

The main contributions of this paper are as follows:

1. We introduce nominal schemas as a new general constructor for descrip-
tion logics, denoted by the letter V in the DL nomenclature, and define the
expressive DL SROIQV as an extension of SROIQ.

2. We establish the worst-case complexity of reasoning in SROIQV to be
N2ExpTime-complete, and thus not harder than for SROIQ.
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3. We define SROELVn (n ≥ 0) as a new family of DLs with nominal schemas
for which reasoning is possible in polynomial time.

The expressivity of nominal schemas is also witnessed by the fact that it
allows DLs to incorporate arbitrary DL-safe rules, given that concept intersec-
tions, existential role restrictions, and the universal (top) role are available. Since
such rules preclude polytime reasoning, our tractable DLs SROELVn employ
restrictions on the number of certain occurrences of nominal schemas in each
axiom.

The close relationship to nominals suggests simple ways of introducing nom-
inal schemas into concrete syntactic forms of OWL 2, e.g. by using the existing
syntax for nominal classes with special individual names that represent variables
(using some suitable naming convention). This opens a path for introducing this
feature into practical applications. While the above worst-case complexity result
for SROIQV may seem encouraging, we believe that the tractable ontology
languages SROELVn are the most promising candidates for implementations.

This paper is a condensed presentation of the main results of [13] where we
develop all results for the slightly more general case of DLs with Boolean role
constructors and concept products [18]. Moreover, [13] also explains how DL-safe
rules (and hence DLs with nominal schemas) can be used to express OWL RL
ontologies, and provides an extended discussion of related approaches which
include description graphs, existential rules and tuple-generating dependencies
(TGDs) in Datalog, and DL Rules.

In this paper, we introduce the syntax and semantics of nominal schemas for
SROIQV, and establish the worst-case complexity of reasoning in Section 2. The
DLs SROELVn are introduced in Section 3, and their tractability is established
in Section 4. In Section 5 we show how DL-safe rules can be expressed with
nominal schemas, and Section 6 concludes.

2 Nominal Schemas in SROIQ

We start by introducing nominal schemas as an extension of existing description
logics. We first generally introduce the feature for SROIQ to obtain the very
expressive DL SROIQV.

A signature of SROIQV is a tuple Σ = �NI , NC , NR, NV � of mutually dis-
joint sets of individual names, concept names, role names, and variables. Vari-
ables can be used like individuals in nominal expressions, and concept expressions
of SROIQV are thus defined as follows:

C ::= � | ⊥ | NC | {NI} | {NV } | ¬C | C �C | C �C |

∃R.C | ∀R.C | ∃S.Self | �k S.C | �k S.C

where k is a natural number, and R (S) is a (simple) SROIQ role as usual.
We use U to denote the universal role. The common axiom types are defined as
usual, but with the extended set of concept expressions. Herein, we restrict our
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attention to SROIQV knowledge bases with regular RBoxes, which are defined
as in SROIQ.

Axiom (4) above is an example of a SROIQV TBox axiom, where {z} is
a nominal schema. Intuitively, each nominal schema appearing in an axiom is
universally quantified, but ranges only over elements that are referred to by an
individual name. We note that it would also be straightforward to introduce
nominal schemas into the normative RDF syntax for OWL 2 [16]. One way to
do this would be to provide URIs for variables in the OWL namespace, used
instead of individuals in owl:oneOf statements (which are used for the RDF
syntax for nominals in OWL 2). Attaching the semantics of nominal schemas to
“reserved” variable URIs would allow the reuse of existing tools for representa-
tion, manipulation, parsing, and serialization.

The semantics of SROIQV is defined by interpreting variables as placehold-
ers for named individuals, i.e. elements of the interpretation domain that are
represented by individual names in NI . This can be accomplished by using a
suitably restricted form of variable assignment. Equivalently, one can eliminate
nominal schemas by replacing them with the (finitely many) nominals that they
can represent, and apply the standard SROIQ semantics to the result [13].

Definition 1. The grounding ground(α) of a SROIQV axiom α is the set of
all axioms that can be obtained by uniformly replacing nominal schemas in α
with nominals of the given signature. Given a SROIQV knowledge base KB, we
define ground(KB) :=

�
α∈KB ground(α).

A DL interpretation I is a model of a SROIQV axiom α, written I |= α,
if and only if I is a model of the knowledge base ground(α). Satisfaction and
entailment of SROIQV axioms and knowledge bases is defined as usual.

Note that grounding does not affect the structural restrictions of simplic-
ity and regularity. Definition 1 provides a direct approach for reasoning with
SROIQV, though not necessarily a very practical one given that each SROIQV

axiom represents an exponential number of SROIQ axioms obtained by ground-
ing. However, this observation already yields an upper bound for the complexity
of reasoning with SROIQV that is exponentially larger than that of SROIQ,
i.e. N3ExpTime. In the remainder of this section, we prove that this result can
be refined to obtain an N2ExpTime upper complexity bound, showing that
this reasoning problem must be N2ExpTime-complete. To accomplish this, we
extend the original proof for the worst-case complexity of SROIQ [8].

We first recall the complexity proof of [8] which is based on an exponential
reduction of DL knowledge bases to theories of C2, the two-variable fragment of
first-order logic with counting quantifiers, for which satisfiability can be checked
in NExpTime [17]. The reduction proceeds in three steps: (1) axioms are trans-
formed into a simplified normal form, (2) complex RIAs are eliminated, and (3)
the resulting axioms are expressed as formulae of C2.

Step (1) yields an equisatisfiable knowledge base that contains only axioms
of the following forms:
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A � ∀R.B
A � �nS.B
A � �nS.B

�
Ai �

�
Bj

A ≡ {a}
A ≡ ∃S.Self

S1 � S2

R1 � R−

R1 ◦ · · · ◦Rn � R

where R(i), S1, S2 ∈ NR with S1, S2 simple, and C ≡ D is short for {C �

D,D � C}. This normalization can be done in linear time; see [8] for details.
The only axioms that are not readily expressed in C2 are complex RIAs. They
are eliminated next, with exponential effort.

Step (2) applies a technique from [3] using nondeterministic finite automata
(NFA) to represent RIAs that entail non-simple roles. Suitable NFA for SROIQ

were defined in [4,7]. We do not repeat the details of this construction here, and
merely quote the essential results. Proofs for the following facts can be found in
[4] and the accompanying technical report.

Fact 1 Consider a SROIQ knowledge base KB. For each (possibly inverse)
non-simple role R ∈ R, there is an NFA AR over the alphabet NR such that for
every model I of KB, and for every word S1 . . . Sn accepted by AR:

If �δi, δi+1� ∈ SI
i

for all i = 1, . . . , n, then �δ1, δn+1� ∈ RI .
Moreover, let ≺ denote a strict linear order that witnesses regularity of KB as
required in [4]. For each non-simple R ∈ NR, the number of states of AR is
bounded exponentially in the depth of KB that is defined as:

max{n | there are S1 ≺ . . . ≺ Sn such that
Ti1 ◦ . . . ◦ Si ◦ . . . ◦ Timi � Si+1 ∈ KB}

It suffices to construct the respective NFA for non-simple roles. Now step (2)
proceeds by replacing every axiom of the form A � ∀R.B by the following set
of axioms, where AR is the NFA as introduced above, and Xq are fresh concept
names for each state q of AR:

A � Xq q is the initial state of AR

Xq � ∀S.Xq� AR has a transition q
S
→ q�

Xq � B q is a final state of AR

Moreover, all complex RIAs of the form R1 ◦ . . .◦Rn � R with n ≥ 2 are deleted.
The number of new axioms (and fresh concept names) that are introduced for
each axiom of the form A � ∀R.B is bounded by the sum of the number of
states and transitions in AR, and the number of transitions in turn is linear
in the number of role names and states. According to Fact 1, the number of
axioms introduced for each axiom A � ∀R.B is exponentially bounded in the
depth of the knowledge base. The overall size of the knowledge base after step
(2) therefore is bounded by a function that is linear in the size of the knowledge
base and exponential in the depth of the knowledge base.

Step (3), finally, is a simple rewriting to C2 that does not increase the size
of the knowledge base. To obtain the main result of this section, it suffices to
observe that grounding does not increase the depth of the knowledge base:

Theorem 1. The problem of deciding the satisfiability of SROIQV knowledge
bases is N2ExpTime-complete.
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Proof. The depth of KB is only affected by RBox axioms. RBox axioms are not
affected by grounding, hence the depth of ground(KB) is equal to the depth of
KB.

Since ground(KB) is in SROIQ, one can apply the transformation steps
(1)–(3). This yields a C2 theory T that is equisatisfiable to ground(KB) [8] and
thus to KB. The size of T is linear in the size of ground(KB) and exponential
in the depth of KB. Both measures are exponential in the size of KB, and so
is T . Deciding satisfiability of T can be done in NExpTime [17], thus deciding
satisfiability of KB in N2ExpTime.

Hardness follows since SROIQV includes SROIQ, for which deciding sat-
isfiability is N2ExpTime-hard [8]. ��

3 A Tractable Fragment

The result that reasoning in SROIQV has the same worst-case complexity as
SROIQ is encouraging, yet we are far from a practical reasoning procedure for
this DL. In particular, Theorem 1 is based on a procedure that still takes expo-
nentially longer than the original approach for SROIQ, without this affecting
the worst-case complexity. In this section, we therefore focus on identifying cases
where inferencing is possible in polynomial time. This still leads to a rather ex-
pressive tractable DL. In [13], we also further discuss the relationship to the
tractable profiles of OWL 2.

Concretely, we define DLs SROELVn for each integer n ≥ 0, n restricting
the number of “problematic” occurrences of nominal schemas detailed below. The
DLs are based on the tractable DL SROEL(×), introduced as an extension of
OWL EL [12]. In essence, SROEL(×) is an extension of EL with �, ⊥, nominals,
complex role inclusions, Self, and concept products [18]. Here, we only need the
special concept product � × �, denoted as the universal role U . In particular,
we also omit range restrictions R � � × C since they do not contribute to our
treatment.

To preserve tractability when adding nominal schemas, we must avoid the
increase in the number of axioms during grounding, which is exponential in
the number of nominal schemas per axiom. Unfortunately, one cannot reduce
the number of nominal schemas by normal form transformations in general,
since they represent complex dependencies that cannot be simplified. But there
are special cases where nominal schemas on the left-hand side of TBox axioms
can be eliminated, or separated using independent axioms. One such case was
identified in [11] for the rule language ELP: if the dependencies expressed in a
rule body are tree-shaped then the rule can always be reduced to a small set
of normalized rules with a limited number of variables in each. For example, a
rule body that consists of a conjunction A(x)∧R(x, z)∧S(x, y)∧B(y)∧T (y, z)

is not tree-shaped since there are parallel paths x
R
→ z and x

S
→ y

T
→ z in

the corresponding dependency structure. In our case, binary predicates are role
names, unary predicates are concept names, and constant symbols correspond
to nominals. Variables can either be “hidden” in the structure of the DL concept

273



expression, or occur explicitly as nominal schemas (the latter are called DL-
safe variables in ELP). For example, the above rule body can be expressed as a
concept A � ∃R.{z} � ∃S.(B � ∃T.{z}).

Here, we do not introduce tree-shaped dependency structures as a general
mechanism for ensuring that normal form transformations are possible, and
merely identify sufficient conditions for which this is the case. An obvious con-
dition that implies tree-shaped dependencies is that a nominal schema occurs
only once, and only on the left-hand side of a TBox axiom. As in [11], the tree-
shape only refers to variables (DL-safe or not), not to constants, in rule bodies.
This means that nominals (our syntax for constants) disconnect a concept’s de-
pendency structure. For instance, if B in the above rule body is replaced by a
nominal {a}, then the concept would be tree-shaped. In such a case, we say that
the nominal {z} occurs in a safe environment, as defined next.

Definition 2. An occurrence of a nominal schema {x} in a concept C is safe
if C has a sub-concept of the form {a} � ∃R.D for some a ∈ NI , such that D
contains the occurrence of {x} but no other occurrence of any nominal schema.
In this case, {a}�∃R.D is a safe environment for this occurrence of {x}. S(a, x)
will sometimes be used to denote an expression of the form {a} � ∃R.D within
which {x} occurs safely.

A nominal schema {x} is safe for a SROIQV TBox axiom C � D if {x}
does not occur in D, and at most one occurrence of {x} in C is not safe.

Definition 3. Let n ≥ 0. A SROELVn concept is a SROIQV concept that
may contain �, ⊥, �, ∃, Self, the universal role, nominals and nominal schemas,
but which does not contain �, ¬, ∀, �k , �k , or inverse roles.

A SROELVn TBox axiom is a SROIQV TBox axiom α that uses SROELVn

concepts only, and where at most n nominal schemas are not safe for α. An RBox
axiom of SROELVn is an RBox axiom of SROIQV that does not contain in-
verse roles. A SROELVn knowledge base is a SROIQV knowledge base that
contains only SROELVn axioms.

Restricting to at most n non-safe nominal schemas per axiom ensures that at
most |NI |

n axioms are introduced during grounding. We will fix n at a constant
small value, so this increase is polynomial. When viewing nominal schemas as a
way of augmenting DL expressivity in existing applications, it seems plausible
that this number remains small. Axiom (4) is an example of a SROELV1 axiom.

4 Reasoning with SROELVn

If n is constant, the problem of checking satisfiability in SROELVn is possible in
polynomial time w.r.t. the size of the knowledge base. To show this, we provide
a polynomial transformation to the DL SROEL(×) [12].

Let KB be a SROELVn knowledge base. We define a SROEL(×) knowledge
base ground+(KB) as follows. The RBox and ABox of ground+(KB) are the same
as the RBox and ABox of KB. For each TBox axiom α = C � D ∈ KB, the
following axioms are added to ground+(KB):
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1. For each nominal schema {x} safe for α, with safe occurrences in environ-
ments Si(ai, x) for i = 1, . . . , l, introduce a fresh concept name Ox,α. For
every individual b ∈ NI in KB, ground+(KB) contains an axiom

l�

i=1

∃U.Si(ai, b) � ∃U.({b} �Ox,α),

where Si(ai, b) denotes Si(ai, x) with {x} replaced by {b}, and the empty
conjunction (l = 0) denotes �.

2. A concept C � is obtained from C as follows. Initialize C � := C. For each
nominal schema {x} that is safe for α: (a) replace all safe occurrences S(a, x)
in C � by {a}; (b) replace the non-safe occurrence (if any) of {x} in C � by
Ox,α; (c) set C � := C ��∃U.Ox,α. After these steps, C � contains only nominal
schemas that are not safe for α, and neither for C � � D.
Now add axioms ground(C � � D) to ground+(KB).

Theorem 2. Given a SROELVn knowledge base KB, the size of ground+(KB)
is exponential in n and polynomial in the size of KB.

Proof. The size of the RBox and ABox of ground+(KB) is linear in the size of
KB and does not depend on n. If m is the number of individual names in KB,
then step 1 above introduces at most mk axioms for each axiom α with k nom-
inal schemas. This is polynomial in the size of KB. The second step introduces
|ground(C � � D)| many axioms, and hence at most mn axioms for each α. ��

As shown in [13], a SROELVn knowledge base KB is satisfiable if and only
if ground+(KB) is satisfiable. A knowledge base is unsatisfiable if and only if
it entails {a} � ⊥ for arbitrary a ∈ NI . This reduces satisfiability testing to
instance retrieval (checking if a is an instance of ⊥). Using the polynomial time
instance retrieval method for SROEL(×) from [12], we thus obtain the following
result. Hardness for P follows from the hardness of SROEL(×).

Theorem 3. If KB is a SROELVn knowledge base of size s, satisfiability of
KB can be reduced to instance retrieval w.r.t. a set of Datalog rules of size
proportional to sn and at most 4 variables per rule. If n is constant, the problem
is P-complete.

5 DL-Safe Rules

An interesting feature of nominal schemas is that they can be used to express
arbitrary DL-safe rules [14]. These are Datalog rules with unary and binary
predicates that are restricted – just like nominal schemas – to apply to domain
elements that are represented by individual names. Identifying unary predicates
with concept names, binary predicates with role names, constants with individual
names, and (DL-safe) variables with the variables in nominal schemas, the syntax
of DL-safe rules can be based on a DL signature. As before, we assume the
signature Σ = �NI , NC , NR, NV � to be fixed and omit explicit references to it.
The set of terms T of Σ is NI ∪NV .
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Definition 4. A concept atom is an expression of the form A(t) with t ∈ T and
A ∈ NC ∪{� ,⊥}. A role atom is an expression of the form R(s, t) with s, t ∈ T
and R ∈ NR. An atom is a concept or role atom.

If B is a finite and non-empty conjunction of atoms and H is an atom, then
B → H is a DL-safe rule. B is called the body, and H is called the head. A
DL-safe rule that contains at most n distinct variables is called an n-variable
rule. A 0-variable rule is a ground rule. The grounding ground(B → H) of a
DL-safe rule B → H is the set of all rules that can be obtained by uniformly
replacing variables in B → H with individual names of the signature.

An interpretation I satisfies a ground DL-safe rule B → H, written I |=
B → H, if either I |= H or I�|= B. An interpretation I satisfies a DL-safe rule
B → H if it satisfies all rules in ground(B → H). A set of rules is satisfied if all
of its elements are. Models, satisfiability, and entailment are defined as usual.

Since DL-safe rules use the same models as SROIQV, it is easy to combine
DL-safe rules and DL knowledge bases. The entailment relation is immediate: a
DL-safe rule or DL axiom ϕ is entailed by a DL knowledge base KB extended
with a set of rules RB if ϕ is satisfied by all interpretations that satisfy both KB
and RB.

Definition 5. A syntactic transformation dl from atoms and DL-safe rules to
SROIQV concepts and TBox axioms is defined as follows. For a unary atom
A(t) and binary atom R(s, t), we set

dl(A(t)) := ∃U.({t} �A) and dl(R(s, t)) := ∃U.({s} � ∃R.{t}).

Given a DL-safe rule B → H, we set dl(B → H) :=
�

F∈B
dl(F ) � dl(H), and

for a set of DL-safe rules RB we define dl(RB) :=
�

B→H∈RB dl(B → H).

The function dl transforms rules into SROELVn TBox axioms, where n is
the number of variables in the rule. This ensures that none of the restrictions on
simple and non-simple roles or regularity are violated. In consequence, dl(RB)
is a SROELVn knowledge base if RB is a set of n-variable rules. The following
result of [13] is not hard to show:

Theorem 4. The models of a set RB of DL-safe rules are the same as the
models of dl(RB), i.e. RB and dl(RB) are semantically equivalent.

Importantly, this result confirms that nominal schemas are powerful enough
to express arbitrary DL-safe rules. The use of nominal schemas, however, in
SROIQV is more general than the extension of SROIQ with DL-safe rules,
since the latter correspond to a special form of SROIQV axioms only. Combin-
ing Theorem 3 with the observation that dl(RB) is linear in the size of RB, we
can state the following:

Theorem 5. The problem of deciding whether a knowledge base RB ∪ KB is
satisfiable, where RB is a set of n-variable rules with n constant, and KB is a
SROELVn knowledge base, is P-complete.
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6 Conclusions and Future Work

We have introduced nominal schemas as an extension to description logics, giving
DLs sufficient expressivity to incorporate rule-based modeling. In particular,
the use of nominal schemas supports the integration of DL-safe rules into DL
knowledge bases. An important next step is to realize these ideas for the concrete
serialization formats of these languages, and to make the corresponding modeling
features available in practice.

The latter task especially includes the implementation of inference algorithms
to handle nominal schemas more efficiently. We have shown that our extension
does not increase the worst-case complexity of reasoning in SROIQ, and that
versatile tractable sublanguages exist. Whether and how these theoretical re-
sults can be put into efficient reasoning algorithms is an open research question.
Two different approaches to addressing this problem appear viable. On the one
hand, nominal schemas could be implemented by modifying/extending exist-
ing SROIQ implementations that have good support for nominals, such as the
OWL 2 reasoner HermiT [15]. This can be accomplished by treating nominal
schemas like nominals in the deduction procedure, instantiating them with con-
crete individuals only when this enables relevant deduction steps. This can be
viewed as a method of deferred grounding.

On the other hand, our light-weight description logics could be implemented
using rule-based procedures as proposed for SROEL [12]. In this setting, nomi-
nal schemas can be treated like DL-safe variables. Thus, the rule-based deduction
remains similar with the only modification that some variables can only be in-
stantiated with certain constants. Specifically, the approach in [12] introduces
new constant symbols for eliminating existentials, and DL-safe variables must
not be allowed to represent these auxiliary symbols.

In conclusion, the close relationship to nominals is not merely of syntactic
convenience but prepares a path for the further practical adoption of this fea-
ture. Instead of a paradigm shift from ontologies to rules, existing applications
could be augmented with bits of rule-based modeling to overcome restrictions
of classical DLs. Nominal schemas thus may provide an opportunity for enhanc-
ing the expressive power of ontologies without giving up on established tools,
formats, or methodologies.
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Abstract. We consider the problem of characterising relational con-
straints under which TBox reasoning in EL is tractable. We obtain P
vs. coNP-hardness dichotomies for tabular constraints and constraints
imposed on a single reflexive role.

1 Introduction

In recent years, the problem of describing role boxes (aka relational constraints)
under which reasoning is within a given complexity class has become an impor-
tant research topic in description logic (DL). For example, the development of
SROIQ from SHIQ has mainly been driven by the desire to allow for more ex-
pressive relational constraints for which reasoning is still decidable and tableau
decision procedures can be developed. As a result, in SROIQ one can express,
among others, role inclusions of the form r ◦ s � r and s ◦ r � r, reflexivity,
transitivity and symmetry of roles [6, 7].

For EL, underlying the OWL2EL profile of the OWL2 Web Ontology Lan-
guage, the complexity of reasoning under relational constraints was investigated
in [1, 2, 9]. For example, the subsumption problem for general TBoxes in EL is
tractable for any finite set of constraints of the form

r1(x1, x2) ∧ · · · ∧ rn(xn, xn+1) → rn+1(x1, xn+1) (1)

(the order of the variables is essential). On the other hand, subsumption becomes
ExpTime-complete in the presence of symmetry or functionality constraints [2].

The aim of this paper is to take a fresh look at how relational constraints
influence the complexity of DL reasoning: rather than putting forward a new
class of role boxes for which reasoning is decidable or within a certain complexity
class, we attempt to classify relational constraints according to whether they lead
to decidable or undecidable reasoning problems, or to reasoning within a given
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complexity bound. The ultimate aim of this approach is to obtain a complete
map of how relational constraints determine the complexity of reasoning for most
important DLs. Apart from its theoretical interest, such a map can also be used
for the selection of role boxes with acceptable computational properties in future
standardisation efforts.

In this paper, which extends [8], we take first steps in this program by starting
to map out the border between tractability and intractability of TBox reasoning
in EL under arbitrary relational constraints. One of the fundamental questions
(left unanswered in this paper) is the following

Dichotomy Question: Is it the case that for any relational constraint, TBox
reasoning in EL is either in P or coNP-hard?

By Ladner’s Theorem, unless P = coNP, there exist problems that are coNP-
intermediate (neither in P nor coNP-hard). The existence of relational con-
straints for which TBox reasoning in EL is coNP-intermediate would indicate
that a general and complete map of the boundary between tractable and in-
tractable is extremely hard to obtain. In contrast, a positive answer would prob-
ably come with an informative description of the tractable constraints.

Our initial findings indicate that informative dichotomy results on P versus
coNP-hardness can indeed be obtained. For example, we show that

(d1) there are only four universal constraints on a single reflexive role r under
which EL TBox reasoning is in P: (1) r is arbitrary, (2) the domain of r
is a singleton, (3) r is transitive, (4) r is an equivalence relation. All other
universal constraints are either invisible to EL TBox reasoning or lead to
coNP-hard EL subsumption.

Here, by ‘invisibility’ we understand the following. It is well known that many
relational constraints do not influence—or are invisible to—TBox reasoning:
for example, for EL (and even ALC), TBox reasoning over irreflexive relations
coincides with TBox reasoning over arbitrary relations, and similarly for the class
of finite and tree-like relational structures. In fact, one can use dichotomy (d1)
to show that there are uncountably many ‘visible’ universal relational constraints
on a single reflexive role for which EL subsumption is coNP-hard, but only four
‘visible’ universal constraints for which EL subsumption is in P.

Another dichotomy we prove in this paper is as follows:

(d2) Consider an arbitrary relational constraint (over a finite number of roles)
such that the size of the domain of all interpretations satisfying this con-
straint is bounded by some natural number n > 0. Then EL subsumption
over the interpretations satisfying the constraint is in P if all roles in those in-
terpretations are functional. Otherwise EL subsumption is coNP-complete.

Currently, not much is known about dichotomies for more expressive languages.
We note, however, recent work on an NP vs. PSpace dichotomy for satisfiability
of classical modal formulas over frame classes definable by Horn sentences [5].
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The paper is structured as follows. In Section 2, we define the extension
EL⊥ of EL with the concept ⊥ and all the model-theoretic notions we need.
We prove our results for EL⊥ rather than EL and show, by a straightforward
reduction in Section 6, that they hold for EL as well. In Section 3, we consider
the relation between tractability and convexity (the disjunction property) and
prove two general sufficient conditions for non-tractability. Then, in Sections 4
and 5, we prove the dichotomies (d1) and (d2) mentioned above.

2 Preliminaries

Fix two disjoint countably infinite sets NC of concept names and NR of role
names. We use arbitrary concept names in NC for constructing concepts, but
may restrict the set of available role names to some R ⊆ NR. Throughout this
paper, we work with EL extended with the concept ⊥, denoting the empty set.
Thus, for R ⊆ NR, the EL⊥-concepts C over R are defined inductively as follows:

C ::= � | ⊥ | A | C1 � C2 | ∃r.C,

where A ∈ NC, r ∈ R and C,C1, C2 range over EL⊥-concepts over R. An R-
TBox is a finite set of concept inclusions (CIs) C � D, where C and D are
EL⊥-concepts over R. An R-interpretation is of the form I = (∆I , ·I), where
∆I �= ∅ and ·I is an interpretation function for concept names and role names
in R. Complex concepts over R are interpreted in I as usual. If CI ⊆ DI , we
say that I satisfies C � D and write I |= C � D. I is a model of an R-TBox
T , I |= T in symbols, if it satisfies all the CIs in T .

We now define what we understand by relational constraints on interpre-
tations. An R-frame is a structure F = (∆F, ·F) where ∆F �= ∅ and ·F is a
map associating with each r ∈ R a relation rF ⊆ ∆F ×∆F. We say that an R-
interpretation I is based on an R-frame F if ∆I = ∆F and rI = rF for all r ∈ R.
An R-constraint is any class K of R-frames closed under isomorphic copies. For
example, a constraint for R = {r1, r2, r3} can consist of all R-frames F = (∆F, ·F)
with arbitrary rF1 , transitive rF2 and functional rF3 . An interpretation I satisfies
an R-constraint K if I is based on some F ∈ K.

The subsumption problem for an R-constraint K is to decide, given an R-
TBox T and two concepts C, D over R, whether I |= C � D for every model
I of T based on an R-frame in K, in which case we write T |=K C � D. For
singleton K = {F}, we sometimes write T |=F C � D.

Example 1. In the extension EL+
⊥ of EL⊥ [1], along with a TBox one can define

an RBox containing inclusions of the form r1◦· · ·◦rn � rn+1, where r1, . . . , rn+1

are role names. Reasoning with RBoxes R is clearly captured by the frame
condition KR containing all NR-frames F such that

F |= ∀x1 . . . ∀xn+1

�
r1(x1, x2) ∧ · · · ∧ rn(xn, xn+1) → rn+1(x1, xn+1)

�

for all r1 ◦ · · · ◦ rn � rn+1 in R. According to [1, 9], the subsumption problem
for any such KR is decidable in P. On the other hand, the subsumption problem
for the class of symmetric frames is ExpTime-complete [2].
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We say that R-constraints K1 and K2 are TBox-equivalent (in EL⊥) if we have
T |=K1 C � D iff T |=K2 C � D, for all R-TBoxes T and EL⊥-concepts C, D
over R. For example, as is well-known, the class of all frames is TBox equivalent
to the class of all irreflexive frames, and to the class of all finite frames. For an
R-constraint K, we denote by FrThK the union of all those R-constraints that
are TBox equivalent in EL⊥ to K. FrThK and K are TBox equivalent in EL⊥,
and FrThK is the largest class that is TBox equivalent in EL⊥ to K.

An R-constraint K is TBox-definable (in EL⊥) if there exists a set Γ of pairs
(T , C � D), where T is an R-TBox and C,D are EL⊥-concepts over R, such that
K = {F | T |=F C � D, for all (T , C � D) ∈ Γ}. Thus, K is TBox-definable iff
K = FrThK, and any class of TBox-equivalent constraints contains exactly one
TBox-definable class. In a similar way we can define TBox-definable classes of
R-constraints for EL and more expressive DLs, say ALC.

A universal R-constraint is a class of R-frames definable by universal first-
order sentences in the signature R. Equivalently, by [10], a universal constraint
is a first-order definable class of frames closed under taking subframes. The vast
majority of frame constraints considered in modal and description logics are
universal: transitivity, reflexivity, symmetry, weak linearity, just to mention a
few. Typical examples of non-universal (first-order) constraints are the Church-
Rosser property and density. As far as universal R-constraints are concerned,
EL⊥ defines the same R-constraints as ALC (the proof is given in [8]):

Theorem 1. Let K be a universal class of R-frames, for some R ⊆ NR. Then
K is TBox-definable in EL⊥ iff it is TBox-definable in ALC.
We conjecture that Theorem 1 can be generalised to arbitrary (not necessarily
first-order definable) classes of R-frames closed under subframes. Note that, with-
out the subframe condition, there are classes of frames that are TBox-definable
in ALC but not in EL⊥. One example is the Church-Rosser property

∀x, y1, y2
�
r(x, y1) ∧ r(x, y2) → ∃z(r(y1, z) ∧ r(y2, z))

�
.

3 Tractability and Convexity

In this section, we investigate the relationship between convexity (sometimes also
called the disjunction property) and tractability. To this end, we need (formally
not allowed in EL⊥) concepts of the form C � D, where C and D are EL⊥-
concepts, which are interpreted in the obvious way by the union of the extensions
of the disjuncts C and D. An R-constraint K is said to be convex if, for any R-
TBox T and EL⊥-concepts F , C, D over R,

(conv) if T |=K F � C �D then T |=K F � C or T |=K F � D.

Although convexity is closely related to tractability, they do not imply each
other. It is readily checked that every relational constraint K defined by Horn
sentences is convex. Thus, symmetry and functionality are examples of relational
constraints that are convex but non-tractable [2]. The following example shows
that tractability of EL⊥ subsumption over K does not imply that K is convex:
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Example 2. Consider the smallest class K of R-frames, for R = {s, r, r�}, which
is closed under subframes and contains all two-element irreflexive s-chains such
that if s(x, y) then either r(x, y) or r�(x, y). Thus, K is a universal constraint
and ∅ |=K ∃s.� � ∃r.�� ∃r�.�. As, ∅ �|=K ∃s.� � ∃r.� and ∅ �|=K ∃s.� � ∃r�.�,
K is not convex. On the other hand, as will be shown in the next section (see
Theorem 4), EL⊥ subsumption over K is in P.

We now prove two general conditions, based on non-convexity, that imply non-
tractability. The proofs of coNP-hardness are by reduction of the following set
splitting problem, which is known to be NP-complete [4]:

– given a family I of subsets of a finite set S, decide whether there exists a
splitting of (S, I), i.e., a partition S1, S2 of S such that each set G ∈ I is split
by S1 and S2 in the sense that it is not the case that G ⊆ Si for i ∈ {1, 2}.

We say that a class K of R-frames is concept non-convex if, for some R-TBox
T and concepts F , C, D over R, we have T |=K F � C � D, and there exist
an R-frame F ∈ FrThK, a point x ∈ ∆F and two models I1 and I2 of T based
on F such that x ∈ F I1 \ DI1 and x ∈ F I2 \ CI2 . Our main tool for proving
non-tractability results is the following:

Theorem 2. If a class K of R-frames is concept non-convex, then EL⊥ sub-
sumption over K is coNP-hard.

Proof. Consider T , F , C and D over R for which T |=K F � C �D, and there
exist an R-frame F ∈ K with x ∈ ∆F and two models I1 and I2 of T based on F

such that x ∈ F I1 \DI1 and x ∈ F I2 \CI2 . Suppose (S, I) is an instance of the
set splitting problem. Denote by Ti, Fi, Ci and Di, for i ∈ S, the copies of T ,
F , C and D obtained by replacing every concept name A in them with Ai. Let

TS,I =
�

i∈S

Ti ∪ {
�

i∈G

(B � Ci) � ⊥ | G ∈ I} ∪ {
�

i∈G

(B �Di) � ⊥ | G ∈ I},

where B is a fresh concept name. We show now that there exists a splitting
of (S, I) i ffTS,I �|=K

�
i∈S(B � Fi) � ⊥. (⇒) Let S1, S2 be a splitting of (S, I).

Define an interpretation I on F by taking AI
i = AI1 if i ∈ S1, AI

i = AI2 if i ∈ S2,
for all concept names A different from B, and BI = {x}. One can readily check
that I |= TS,I and I�|=

�
i∈S(B�Fi) � ⊥. (⇐) Suppose that I |= TS,I and there

is y ∈
�

i∈S(B
I ∩F I

i ). We then set S1 = {i ∈ S | y ∈ CI
i } and S2 = S \ S1. It is

readily checked that S1, S2 is a splitting of (S, I).

An R-constraint K is closed under disjoint unions if, for any F1,F2 ∈ K
with ∆F1 ∩∆F2 = ∅, we have F1 ∪F2 ∈ FrThK, where ∆F1∪F2 = ∆F1 ∪∆F2 and
rF1∪F2 = rF1 ∪rF2 . We also say that K has a free role r if, for any F ∈ K and any
x, y ∈ ∆F, the frame obtained by extending rF in F with the pair (x, y) belongs
to FrThK. Note that all RBoxes, currently used in DL, correspond to constraints
that are closed under disjoint unions and have infinitely many free roles (since
typically DLs admit infinitely many role names and have finite RBoxes). The
following condition is proved similarly to Theorem 2:
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Theorem 3. Suppose that an R-constraint K is closed under disjoint unions
and has infinitely many free roles. If K is not convex then EL⊥ subsumption
over K is coNP-hard.

4 P/coNP Dichotomy for Tabular Constraints

A class K of R-frames is called tabular if there is n > 0 such that |∆F| ≤ n for all
F ∈ K. The aim of this section is to characterise the tabular constraints K over
which EL⊥ subsumption is tractable, that is, there is an algorithm which, given
a TBox T and concepts C, D over R, can decide, in polynomial time, whether
T |=K C � D. Clearly, EL⊥ subsumption over any tabular K belongs to coNP.

The characterisation of tabular constraints we are about to prove dichotomises
them into functional and non-functional. A class K of R-frames is R-functional
if, for any F ∈ K, r ∈ R and w ∈ ∆F, we have |{v ∈ ∆F | (w, v) ∈ rF}|≤ 1. For
R-interpretations I1 and I2 based on a functional frame F, we write I1 ≤ I2 if
AI1 ⊆ AI2 for all A ∈ NC. Clearly, ≤ is a partial order.

Lemma 1. Suppose that I is an interpretation based on a finite R-functional
frame F and w ∈ ∆I . Given any R-concept C, one can decide in polynomial time
in |C| whether there exists an R-interpretation J such that I ≤ J and w ∈ CJ .
If such an interpretation exists, then there is a unique minimal (with respect
to ≤) R-interpretation I(w,C) ≥ I with w ∈ CI(w,C); moreover, this minimal
interpretation can be constructed in polynomial time in |C|.

We are now in a position to prove the main result of this section.

Theorem 4. Let K be a tabular class of R-frames for a finite R ⊆ NR. If K is
functional then EL⊥ subsumption over K is in P. Otherwise, EL⊥ subsumption
over K is coNP-complete.

Proof. Assume first that K is functional and we are given a TBox T and a CI
C � � D� over R. Our polynomial time algorithm checking whether T |=K C � � D�

runs as follows. Let F1, . . . ,Fn be a list of all frames in K (up to isomorphism).
For each Fi and each w ∈ Fi, we do the following:

1. Let I be the R-interpretation based on Fi with AI = ∅ for all A ∈ NC.
2. Compute I := I(w,C �) if it exists (cf. Lemma 1). If it does not exist, return

‘yes’ and stop.
3. Apply the following rule exhaustively: for C � D ∈ T and v ∈ ∆I , if v ∈ CI

and I(v,D) does not exist, return ‘yes’ and stop; otherwise, if I(v,D) �= I,
set I = I(v,D).

4. If w ∈ (D�)I , return ‘yes.’ Otherwise, return ‘no.’

It is easy to see that T |=K C � � D� iff the output is ‘yes’ for all Fi and w ∈ ∆Fi .
Suppose K is not R-functional. Then there exists F ∈ K with w ∈ ∆F such

that |{v | (w, v) ∈ rF}|≥ 2. Let m be the maximal number for which there exist
r ∈ R, F ∈ K and w ∈ ∆F with |{v | (w, v) ∈ rF}| = m. Fix such r, F and w. We
prove coNP-hardness of EL⊥ subsumption over K using Theorem 2. To show
that K is concept non-convex, consider the {r}-TBox T with the following CIs:
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– A � ∃r.Bi, for 1 ≤ i ≤ m;
– Bi �Bj � ⊥, for 1 ≤ i < j ≤ m;
– A � ∃r.B
– Bi � E, for 2 ≤ i ≤ m.

Clearly, T |=K A � ∃r.(B �B1) � ∃r.(B �E). Consider next the interpretations
I1 and I2 over F where w1, . . . , wm are the rF-successors of w in F and

– AIi = {w} and BIi = {wi}, for i = 1, 2;
– BIi

i = {wj}, for i = 1, 2 and 1 ≤ j ≤ m;
– EIi = {w2, . . . , wm}, for i = 1, 2.

Then we have Ii |= T , w ∈ AI1 \(∃r.(B�E))I1 and w ∈ AI2 \(∃r.(B�B1))I2 . By
Theorem 2, EL⊥ subsumption over K is coNP-hard. And as we have mentioned
above, EL⊥ subsumption for tabular constraints is in coNP.

The above proof of coNP-hardness goes through for many other constraints:

Theorem 5. Let K be a class of R-frames such that there are r ∈ R and n ≥ 2
for which (i) no point in frames from K has > n r-successors, and (ii) at least
one point in a frame from K has ≥ 2 r-successors. Then EL⊥ subsumption over
K is coNP-hard.

5 P/coNP-hardness Dichotomy for Universal Reflexive

Constraints

In this section, we assume that R = {r} and consider universal classes of R-
frames F with reflexive rF.

Theorem 6. Let K be a universal constraint for a single reflexive relation. If K
is not TBox equivalent to any of the following classes:

(sin) the class of all singleton frames,
(tra) the class of all transitive frames,
(equ) the class of all equivalence relations,
(all) the class of all frames,
(sym) the class of all symmetric frames,

then K is concept non-convex, and so EL⊥ subsumption over K is coNP-hard.
EL⊥ subsumption over K is also coNP-hard if K is TBox equivalent to (sym).
However, if K is TBox equivalent to one of (sin), (tra), (equ) or (all), then
EL⊥ subsumption over K is in P.

Note that there are uncountably many distinct universal TBox definable classes
of frames with a single reflexive relation (see [8], where this is proved for quasi-
orders). Thus, only four out of uncountably many possible constraints lead to
tractable TBox reasoning; for all the rest, EL⊥ subsumption is coNP-hard.

Here we only give a brief sketch of the proof of Theorem 6. Note first that the
polynomial upper bound follows from [1, 8]; non-tractability for (sym) is shown
similarly to Theorem 7 below. To prove the remaining claim, we require
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Lemma 2. Let K be a universal class of reflexive frames.

– If K is not TBox equivalent to (all), then there exists a finite reflexive tree
F such that F �∈ FrThK.

– If K consists of symmetric frames and is not TBox equivalent to (sym), then
there exists a finite reflexive and symmetric tree F such that F �∈ FrThK.

– If K consists of transitive frames and is not TBox equivalent to (tra), then
there exists a finite reflexive and transitive tree F such that F �∈ FrThK.

Proof sketch. We prove the first claim; the remaining ones are treated similarly.
As K is not TBox equivalent to (all), there are T , C, D such that T |=K C � D
and T�| =K� C � D, where K� is the class of all frames. By applying standard
unravelling to a witness interpretation for T�| =K� C � D, we obtain a (possibly
infinite) reflexive tree F �∈ FrThK. If F is finite, we are done. Otherwise, using
the fact that K is universal and employing Tarski’s finite embedding property
[10], we can show that there is a finite subtree F� of F such that F� /∈ FrThTK.

Having Lemma 2 at hand, we can now proceed with a case distinction. Sup-
pose K is a non-empty universal class of reflexive frames that is not TBox equiv-
alent to any of the classes mentioned in Theorem 6. Then, by Lemma 2, there
exists a reflexive tree F such that F �∈ FrThK, F� ∈ FrThK, for any proper
subframe F� of F, and one of the following conditions holds:

1. F is the singleton frame;
2. F is the two-element r-chain;
3. F contains a point w with least two r-successors, and all r-successors of w

are leaves in F;
4. F contains distinct points w,w1, w2 such that (w,w1) ∈ rF, (w1, w2) ∈ rF

and w2 is a leaf, which is the only r-successor of w1.

Case 1. This case is actually impossible because it implies that K is empty
(remember that K is universal, and so closed under subframes).

Case 2. In this case, K is a class of symmetric frames. Since we assume that K
is not TBox equivalent to (sym), one can apply the second claim of Lemma 2
to obtain a finite reflexive and symmetric tree F such that F /∈ FrThK. A case
distinction (similar to the one we are currently doing) shows that, since K is not
TBox equivalent to (sin), K is concept non-convex.

Case 3. Let us remove a proper r-successor of w from F and denote by H the
resulting frame, which belongs to FrThK. Let w1 be one of the remaining suc-
cessors of w in H. Denote by H� the frame obtained from H by adding a fresh
r-successor w2 to w1, and by w0 the root of H�. Two cases are possible now.

Case 3.1: either H� ∈ FrThK or the expansion of H� by adding (w,w2) to rH
�
is

in FrThK. Take additional concept names A and Ā. To show that K is concept
non-convex, we will use C1 = ∃r2.(A��∃r2.Ā�) and C2 = ∃r2.(Ā��∃r2.A�), where
A� = Aw1 � A, Ā� = Aw1 � Ā and ∃rm.C is an abbreviation defined inductively
by taking ∃r0.C = C and ∃rm+1.C = ∃r.∃rm.C.

In addition, we require a generic way of describing frames using TBoxes.
Given an R-frame R, let Au be a fresh concept name for every u ∈ ∆R. Let
TS(R) be the (possibly infinite) TBox with the following CIs:
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– Au � ∃r.Av, for (u, v) ∈ rR;
– Au �Av � ⊥, for u �= v;
– Au � ∃r.Av � ⊥, for (u, v) /∈ rR.

One can show that, for any R-frame R with root w (from which all other points
are reachable via roles) and any R-frame F, we have TS(R) �|=F Aw � ⊥ iff R is
a p-morphic image of a subframe of F.

Returning to Case 3.1., define T to be the TBox with the following CIs:

TS(H), Aw � ∃r2.A�, Aw � ∃r2.Ā�.

Then T |=K Aw0 � ∃rm.(Aw � C1) � ∃rm.(Aw � C2), where m is the distance
between w0, w, but T�| =K Aw0 � ∃rm.(Aw �C1), T�| =K Aw0 � ∃rm.(Aw �C2).

Case 3.2: suppose that Case 3.1 does not hold. Denote by w0 the root of H. Take
a fresh concept name A and consider the TBox T with the following CIs:

– TS(H),
– A � ∃r.Av � ⊥, for all v with (w, v) �∈ rH,
– Av � ∃r.A � ⊥, for all v with both (v, w) �∈ rH and (v, w1) �∈ rH,
– A � ∃r.Aw� � ∃r.Aw, for (w,w�) ∈ rH, w� �= w1,
– Aw � ∃r.(A � ∃r.Aw1),
– if w has an r-predecessor wp, then Awp � ∃r.A � ∃r.(Aw � ∃r.(A � ∃r.Aw)).

Then T |=K Aw0 � ∃rm.(Aw � ∃r.(A � ∃r.Aw)) � ∃rm.(Aw � ∃r.(Aw1 � ∃r.A)),
but T�| =K Aw0 � B for either of the disjuncts B in the right-hand side.

Case 4. A case distinction similar to, but much more tedious than the previous
ones shows that K is concept non-convex if the constraint K is not transitive.
The case where K is a class of transitive frames has been considered in [8], and
one can easily modify the proofs given there to show that all universal classes of
transitive and reflexive frames, which are not TBox equivalent to (sin), (equ)
or the class of all transitive and reflexive frames, are concept non-convex.

Typically, in DL applications one role is not enough. Therefore, the question
is whether the four universal constraints guaranteeing tractability for a single
reflexive relation still ensure tractability if more than one role is considered. This
is well known to be the case for transitivity and reflexivity, and this is trivially
the case for the singleton frame. Equivalence relations behave not so well:

Theorem 7. If K is a constraint consisting of two (or more) equivalence rela-
tions, then EL⊥ subsumption over K is NP-hard. In particular, tractability of
EL⊥ subsumption is not preserved under fusions in the sense of [3].

Proof sketch.4 The proof is by reduction of SAT. Let ϕ be a formula in NNF with
the variables p1, . . . , p2n, and let r1, r2 be equivalence relations. We use Tk, Fk

for the truth-values of the variable pk, and Lj as a marker for the level j in a
‘tree.’ We generate a full binary tree of depth 2n+ 1, using the CIs

L2i � ∃r1.(T2i+1 � L2i+1) � ∃r1.(F2i+1 � L2i+1), (2)

L2i+1 � ∃r2.(T2i+2 � L2i+2) � ∃r2.(F2i+2 � L2i+2), (3)

4 Based on an idea suggested by Carsten Lutz.
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for i < n. Then we propagate the truth-values Tk and Fk to the leaves using

L2j � ∃r2.(L2j−1 �Qk) � Qk, for 1 ≤ j ≤ n, 1 ≤ k ≤ 2j − 1, (4)

L2j+1 � ∃r1.(L2j �Qk) � Qk, for 1 ≤ j < n, 1 ≤ k ≤ 2j, (5)

for Qk = Tk, Fk. Take a fresh Xψ, for every subformula ψ of ϕ, and the CIs

Xpk ≡ Tk, X¬pk ≡ Fk, Xψ1∧ψ2 ≡ Xψ1 �Xψ2 , (6)

Xψ1 � Xψ1∨ψ2 , Xψ2 � Xψ1∨ψ2 . (7)

Let T be the TBox containing all the CIs (2)–(7), and L2n �Xϕ � ⊥. One can
show that T |=K L0 � ⊥ iff ϕ is satisfiable.

6 EL and EL⊥

So far, we have considered EL⊥ rather than EL. The main reason is that ⊥
makes proofs more transparent. We now show that Theorems 4–7 above hold for
EL.

An R-frame F� is called a generated subframe of an R-frame F if it is a
subframe of F and, for all u, v ∈ ∆F and r ∈ R, if (u, v) ∈ rF and u ∈ ∆F

�

then v ∈ ∆F
�
. Given v ∈ ∆F, the subframe of F generated by v is the smallest

generated subframe of F containing v.

Theorem 8. Let K be an R-constraint closed under generated subframes, for
a finite R. Then EL⊥ subsumption over K is polynomially reducible to EL sub-
sumption over K, and, for any R-constraint K� closed under generated subframes,
K� is TBox-equivalent to K in EL⊥ iff K� is TBox-equivalent to K in EL.

Proof. Let T and C � D in EL⊥ be given. We may assume that ⊥ occurs
in them only in the form E � ⊥, with E being an EL-concept. Let B be a
fresh concept name, and let T � and D� result from T and D, respectively, by
replacing all ⊥ with B. Set T �� = T � ∪{∃ r.B � B | r ∈ R} ∪ {B � D�}. We
claim that T |=K C � D iff T �� |=K C � D�. Clearly, if T�| =K C � D, then
T �� �|=K C � D�: for if we have a witness model for T�| =K C � D, then we
can interpret B by the empty set to obtain a model of T �� refuting C � D�.
Conversely, if T �� �|=K C � D�, take an interpretation I based on a frame in
K and v ∈ ∆I such that I |= T �� but v ∈ CI \ (D�)I . Let F be the subframe
generated by v in the underlying frame of I. Then F ∈ K and BI ∩ ∆F = ∅.
Hence T�| =F C � D, as required.

It follows from Theorem 8 that Theorems 6 and 7 hold for EL in place of
EL⊥. Theorem 4 can be proved for EL as follows. Let K be a non-functional
tabular constraint. Then the class K� of subframes of frames from K is still
a non-functional tabular constraint and |=K� is polynomially reducible to |=K,
both for EL and EL⊥ (using relativisation). Thus, by Theorem 4 for EL⊥ and
Theorem 8, the EL subsumption problem for K� is coNP-hard. Hence it is
coNP-hard for K. Theorem 5 can be proved similarly.
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7 Open Problems and Conjectures

The main open problem in the area is the dichotomy question formulated in
the introduction. If the answer to this question is positive, then the proof will
probably require some new techniques and a great number of case distinctions.

We conjecture that a transparent dichotomy, possibly more involved than
Theorem 6, can be obtained for arbitrary relational constraints on a single re-
flexive relation. Of course, an additional problem in this case is how to deal
with non first-order constraints. A possible approach can be illustrated by the
following result from [8]. Call a constraint subframe if it is closed under the
formation of subframes. A Noetherian partial order is a reflexive and transitive
relation without infinite ascending chains. Let N be the (non-elementary) class
of all Noetherian partial orders. It is proved in [8] that EL⊥ subsumption over
a subframe constraint K ⊆ N is tractable iff K is TBox equivalent either to the
single element frame or to N .

When moving beyond the ‘bounded’ constraints of Theorems 4 and 5, it
seems to be much harder to obtain general results for relations that can be non-
reflexive than for the reflexive ones. For example, in contrast to the reflexive
case, EL⊥ subsumption is now also in P for the constraints Kn consisting of
(irreflexive) trees of depth ≤ n. Thus, there are infinitely many transitive classes
with a single relation for which EL⊥ subsumption is tractable.
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Abstract. Recent papers address the issue of updating the instance
level of knowledge bases expressed in Description Logic following a model-
based approach. One of the outcomes of these papers is that the result of
updating a knowledge base K is generally not expressible in the Descrip-
tion Logic used to express K. In this paper we introduce a formula-based
approach to this problem, by revisiting some research work on formula-
based updates developed in the ’80s, in particular the WIDTIO (When
In Doubt, Throw It Out) approach. We show that our operator enjoys
desirable properties, including that both insertions and deletions accord-
ing to such operator can be expressed in the DL used for the original
KB. Also, we present polynomial time algorithms for the evolution of
the instance level knowledge bases expressed in DL-LiteA,id, which the
most expressive Description Logics of the DL-Lite family.

1 Introduction

Description Logics (DLs) are logics for expressing knowledge bases (KBs) con-
stituted by two components, namely, the TBox, asserting general properties of
concepts and roles (binary relations), and the ABox, which is a set of assertions
about individuals that are instances of concepts and roles. It is widely accepted
that such logics are well-suited for expressing ontologies, with the TBox cap-
turing the intensional knowledge about the domain of interest, and the ABox
expressing the knowledge about the instance level of the predicates defined in
the TBox. Following this idea, several Knowledge Representation Systems, called
DL systems, have been recently built, providing methods and tools for managing
ontologies expressed in DLs 1. Notice that numerous DLs have been studied in
the last decades, with the goal of analyzing the impact of the expressive power of
the DL language to the complexity of reasoning. Consequently, each DL system
is tailored towards managing KB expressed in a specific DL.

By referring to the so-called functional view of knowledge representation [11],
DL systems should be able to perform two kinds of operations, called ASK and
TELL. ASK operations, such as subsumption checking, or query answering, are

1 http://www.cs.man.ac.uk/ sattler/reasoners.html
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used to extract information from the KB, whereas TELL operations aim at chang-
ing the KB according to new knowledge acquired over the domain. In other
words, TELL operations should be able to cope with the evolution of the KB.

There are two types of evolution operators, corresponding to inserting, and
deleting chunks of knowledge, respectively. In the case of insertion, the aim is to
incorporate new knowledge into the KB, and the corresponding operator should
be defined in such a way to compute a consistent KB that supports the new
knowledge. In the case of deletion, the aim is to come up with a consistent KB
where the retracted knowledge is not valid. In both cases, the crucial aspect
to take into account is that evolving a consistent knowledge base should not
introduce inconsistencies.

While ASK operations have been investigated in detail by the DL community,
existing DL reasoners do not provide explicit services for KB evolution. Never-
theless, many recent papers demonstrate that the interest towards a well-defined
approach to KB evolution is growing significantly [9, 12, 7, 13, 6]. Following the
tradition of the work on knowledge revision and update [10], all the above pa-
pers advocate some minimality criterion in the changes of the KB that must
be undertaken to realize the evolution operations. In other words, the need is
commonly perceived of keeping the distance between the original KB and the
KB resulting from the application of an evolution operator minimal. There are
two main approaches to define such a distance, called model-based and formula-

based, respectively. In the model-based approaches, the result of an evolution
operation applied to the KB K is defined in terms of a set of models, with the
idea that such a set should be as close as possible to the models of K. One basic
problem with this approach is to characterize the language needed to express
the KB that exactly captures the resulting set of models. Conversely, in the
formula-based approaches, the result is explicitly defined in terms of a formula,
by resorting to some minimality criterion with respect to the formula express-
ing K. Here, the basic problem is that the formula constituting the result of an
evolution operation is not unique in general.

In this paper, we study the problem of DL KB evolution, by focusing our
attention to scenarios characterized by the following elements:

(1) We consider the case where the evolution affects only the instance level
of the KB, i.e., the ABox. In other words, we enforce the condition that the KB
resulting from the application of the evolution operators has the same TBox as
the original KB (similarly to [12, 7]).

(2) We aim at a situation where the KB resulting from the evolution can be
expressed in the same DL as the original KB. This is coherent with our goal of
providing the foundations for equipping DL systems with evolution operators:
indeed, if a DL system S is able to manage KBs expressed in a DL L, the result
of evolving such KBs should be expressible in L.

(3) The KBs resulting from the application of an evolution operator on two
logically equivalent KBs should be mutually equivalent. In other words, we want
the result to be independent of the syntactic form of the original KB.
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Assumption (1), although limiting the generality of our approach, captures
several interesting scenarios, including ontology-based data management, where
the DL KB is used as a logic-based interface to existing data sources.

As for item (2), we note that virtually all model-based approaches suffer
from the expressibility problem. This has been reported in many recent papers,
including [12, 7, 6], for various DLs. For this reason, we adopt a formula-based
approach, inspired in particular by the work developed in [8] for updating logical
theories. As in [8], we consider both insertions and deletions. However, we differ
from [8] for an important aspect. We already noted that the formula constituting
the result of an evolution operation is not unique in general. While [8] essentially
proposes to keep the whole set of such formulas, we take a radical approach, and
consider their intersection as the result of the evolution. In other words, we follow
the When In Doubt Throw It Out (WIDTIO) [14] principle.

Finally, to deal with item (3), we sanction that the notion of distance between
KBs refers to the closure of the ABox of a KB, rather than to the ABox itself.
The closure of an ABox A with respect to an TBox T is defined as the set of all
ABox assertions that logically follows from T and A. By basing the definition
of distance on the closure of ABoxes, we achieve the goal of making the result
of our operators independent of the form of the original KB.

After a brief introduction to DLs (Section 2), we provide the definition of
our evolution operators in Section 3. The remaining sections are devoted to
illustrating algorithms for deletion (Section 4), and insertion (Section 5) for
KBs expressed in the DL DL-LiteA,id, which is the most expressive logic in the
DL-Lite family [4]. The DL-Lite family2 has been specifically designed to keep
all reasoning tasks polynomially tractable, and we show that this property still
holds for the evolution operators proposed in this paper.

2 Preliminaries

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If L is a
DL, then an L-KB K over S is a pair �T ,A�, where T , called TBox, is a finite
set of intensional assertions over S expressed in L, and A, called ABox, is a finite
set of instance assertions, i.e, assertions on individuals, over S expressed in L.
Different DLs allow for different kinds of concept, attribute, and role expressions,
and different kinds of TBox and ABox assertions over such expressions. In this
paper we assume that ABox assertions are always atomic, i.e., they correspond
to ground atoms, and therefore we omit to refer to L when we talk about ABox
assertions.

The semantics of a DL KB is given in terms of interpretations. An interpre-
tation is a model of a KB K = �T ,A� if it satisfies all assertions in T ∪ A, where
the notion of satisfaction depends on the constructs allowed by the specific DL
in which K is expressed. We denote the set of models of K with Mod(K).
2 Not to be confused with the set of DLs studied in [2], which form the DL-Litebool

family.
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Let T be a TBox in L, and let A be an ABox. We say that A is T -consistent

if �T ,A� is satisfiable, i.e. if Mod(�T ,A�) �= ∅, T -inconsistent otherwise. The
T -closure of A with respect to T , denoted clT (A), is the set of all atomic ABox
assertion that are formed with individuals in A, and are logically implied by
�T ,A�. Note that if �T ,A� is an L-KB, then �T , clT (A)� is an L-KB as well,
and is logically equivalent to �T ,A�, i.e., Mod(�T ,A�) = Mod(�T , clT (A)�). A is
said to be T -closed if clT (A) = A. Finally, for an ABox assertion γ1, we denote
by Subsumee�T ,A�(γ1) the set of atoms γ2 ∈ clT (A) such that �T ,A�|= γ2 ⊃ γ1.

The DL-Lite family [4] is a family of low complexity DLs particularly suited
for dealing with KBs with very large ABoxes, and forms the basis of OWL 2 QL,
one of the profile of OWL 2, the official ontology specification language of the
World-Wide-Web Consortium (W3C)3.

We now present the DL DL-LiteA,id, which is the most expressive logic in the
family. Expressions in DL-LiteA,id are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U) C −→ B | ¬B

Q −→ P | P
−

V −→ U | ¬U R −→ Q | ¬Q

T −→ �D | T1 | · · · | Tn

where A, P , and U are symbols in S denoting respectively an atomic concept
name, an atomic role name and an attribute name, T1, . . . , Tn are all the value-
domains allowed in the logic (those corresponding to the data types adopted by
Resource Description Framework (RDF)4), �D denotes the union of all domain
values, P− denotes the inverse of P , ∃Q denotes the objects related to by the
role Q, ¬ denotes negation, δ(U) denotes the domain of U , i.e., the set of objects
that U relates to values, and ρ(U) denotes the range of U , i.e., the set of values
related to objects by U .

A DL-LiteA,id TBox T contains intensional assertions of three types, namely
inclusion assertions, functionality assertions, and identification assertions [5]
(IDs). More precisely, DL-LiteA,id assertions are of the form:

B � C (concept inclusion) E � T (value-domain inclusion)
Q � R (role inclusion) (funct U) (attribute functionality)

(id Bπ 1, ..., πn) (identification)

In the identification assertions, π denotes a path, which is an expression built
according to the following syntax rule:

π −→ S | B? | π1 ◦ π2

where S denotes an atomic role, the inverse of an atomic role, or an atomic
attribute, π1 ◦π2 denotes the composition of the paths π1 and π2, and B?, called
test relation, represents the identity relation on instances of the concept B. In
our logic, identification assertions are local, i.e., at least one πi ∈ {π1, ..., πn} has
length 1, i.e., it is an atomic role, the inverse of an atomic role, or an atomic
attribute. In what follows, we only refer to IDs which are local.
3 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/
4 http://www.w3.org/RDF/
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The set of positive (resp., negative) inclusions in T will be denoted by T +

(resp., T −), and the set of identification assertions in T will be denoted by Tid.
A concept inclusion assertion expresses that a (basic) concept B is subsumed

by a (general) concept C. Analogously for the other types of inclusion asser-
tions. Inclusion assertions that do not contain (resp. contain) the symbols ’¬’
in the right-hand side are called positive inclusions (resp. negative inclusions).
Attribute functionality assertions are used to impose that attributes are actually
functions from objects to domain values. An ID (id Bπ 1, ..., πn) asserts that for
any two different instances a,b of B, there is at least one πi such that a and b dif-
fer in the set of their πi-fillers. Note that IDs can be used to assert functionality
of roles. Specifically, the assertion (id ∃Q− Q−) imposes that Q is functional.

Finally, a TBox DL-LiteA,id T satisfies the following condition: every role or
attribute that occurs (in either direct or inverse direction) in a path of an ID
α ∈ Tid or in a functional assertion, is not specialized in T �, i.e., it does not
appear in the right-hand side of assertions of the form Q � Q� or U � U �.

A DL-LiteA,id ABox A is a finite set of assertions of the form A(a), P (a, b),
and U(a, v), where A, P , and U are as above, a and b are object constants in S,
and v is a value constant in S.
Example 1. We consider a portion of the Formula One domain. We know that
official drivers (OD) and test drivers (TD) are both team members (TM), and
official drivers are not test drivers. Every team member is a member of (mf) a
exactly one team (FT ), and every team has at most one official driver. Finally,
no race director (RD) is a member of a team. We also know that s is the official
driver of team t1, that b is a test driver, and that p is a team member. The
corresponding DL-LiteA,id-KB K is:
T : OD � TM TD � TM OD � ¬TD RD � ¬TM TM � ∃mf

TM � ¬FT ∃mf � TM ∃mf
− � FT (id OD mf) (id FT mf

−)
A: OD(s) mf(s, t1) TD(b) TM(p)

We conclude this section with a brief discussione on the complexity of reason-
ing about a DL-LiteA,id-KB �T ,A�. Satisfiability can be checked in polynomial
time with respect to |T \Tid| and |A|, and in NP with respect to |Tid|. Moreover,
if �T ,A� is satisfiable, then answering a query q posed to �T ,A� can be done
in polynomial time with respect to |T | and |A|, and in NP with respect to |q|.
Finally, clT (A) can be computed in quadratic time with respect to |T | and |A|.

3 WIDTIO approach to KB evolution in DLs

In this section we first present our semantics for the evolution of DL knowl-
edge bases at the instance level, and then we provide a comparison between our
operator and other work in the literature.

In the rest of this section, L is a DL, and K = �T ,A� is a satisfiable L-KB. In
other words, we do not consider the evolution of unsatisfiable KBs. In addition,
F is a finite set of atomic ABox assertions in L.

The following definition specifies when a set of ABox assertions “realizes”
the insertion or deletion of a set of ABox assertions with respect to K.
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Definition 1. Let A� be an ABox. Then, A� accomplishes the insertion of F into

�T ,A� if A� is T -consistent, and �T ,A�� |= F (i.e., F ⊆ clT (A�)). Similarly, A�

accomplishes the deletion of F from �T ,A� if A� is T -consistent, and �T ,A�� �|=
F (i.e., F �⊆ clT (A�)).

Obviously, we are interested in KBs which accomplish the evolution of a KB
with a minimal change. In order to formalize the notion of minimal change, we
first need to provide some definitions.

Let A1 and A2 be two ABoxes. Then, we say that A1 has fewer deletions
than A2 with respect to �T ,A� if clT (A)\clT (A1) ⊂ clT (A)\clT (A2). Similarly,
we say that A1 and A2 have the same deletions with respect to �T ,A� if clT (A)\
clT (A1) = clT (A) \ clT (A2). Finally, we say that A1 has fewer insertions than
A2 with respect to �T ,A� if clT (A1) \ clT (A) ⊂ clT (A2) \ clT (A).

Definition 2. Let A1 and A2 be two ABoxes. Then, A1 has fewer changes
than A2 with respect to �T ,A� if A1 has fewer deletions than A2 with respect

to �T ,A�, or A1 and A2 have the same deletions with respect to �T ,A�, and A!

has fewer insertions than A2 with respect to �T ,A�.

Now that we have defined the relation of fewer changes between two KBs
w.r.t. another one, we can define the notion of a KB which accomplishes the
insertion (resp. deletion) of a set of facts into (resp. from) another KB minimally.

Definition 3. Let A� be an ABox. Then A� accomplishes the insertion (deletion)

of F into (from) �T ,A� minimally if A� accomplishes the insertion (deletion)

of F into (from) �T ,A�, and there is no A�� that accomplishes the insertion

(deletion) of F into (from) �T ,A�, and has fewer changes than A� with respect

to �T ,A�.

With these notions in place, we can now define our evolution operator.

Definition 4. Let U = {A1, . . . ,An} be the set of all ABoxes accomplishing the

insertion (deletion) of F into (from) �T ,A� minimally, and let A� be an ABox.

Then, �T ,A�� is the result of changing �T ,A� with the insertion (deletion) of F

if (1) U is empty, and �T , clT (A�)� = �T , clT (A)�, or (2) U is nonempty, and

�T , clT (A�)� = �T ,
�

1≤i≤n clT (Ai)�.

It is immediate to verify that, up to logical equivalence, the result of changing
�T ,A� with the insertion or the deletion of F is unique. In the rest of this
paper, the result of changing K = �T ,A� with the insertion (resp. deletion)
of F according to our semantics will be denoted by K ⊕T∩ F (resp. K �T∩ F ).
Notice that, by definition of our operator, in the case where F is T -inconsistent,
the result of changing �T ,A� with both the insertion and the deletion of F is
logically equivalent to �T ,A� itself.

Example 2. Consider the DL-LiteA,id KB K of the Example 1, and suppose
that p becomes now a race director, and b becomes the new official driver of
the team t1. To reflect this new information, we change K with the insertion
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of F1 = {RD(p), OD(b), mf(b, t1)}. Since the TBox implies that a race director
cannot be a team member, RD(p) contradicts TM(p). Also, since every team has
at most one official driver, OD(b) and mf(b, t1) contradict mf(s, t). According
to Definition 3, the KBs accomplishing the insertion of F1 into K minimally are:

K1 = �T , {RD(p),OD(b),mf(b, t1),TM(s),mf(s, t1)}�
K2 = �T , {RD(p),OD(b),mf(b, t1),TM(s),OD(s)}�

Thus, K ⊕T∩ F1 is:

K3 = �T , {RD(p),OD(b),mf(b, t1),TM(s)}�.

Now, suppose that we do not know anymore whether b is a member of t1, and,
even more, whether b is a team member at all. Then, we change K3 with the
deletion of F2 = {TM(b), mf(b, t1)}, thus obtaining

K3 ⊕T∩ F2 = �T , {RD(p),TM(s),OD(b)}�.

The following theorem is an adaptation to our setting of two results reported
in [8], and will be used in the next two sections.

Theorem 1. Let A� be an ABox. Then

1. A� accomplishes the deletion of F from �T ,A� minimally if and only if

clT (A�) is a maximal T -closed subset of clT (A) such that F �⊆ clT (A�).
2. A� accomplishes the insertion of F from �T ,A� minimally if and only if

clT (A�) = A�� ∪ clT (F ), where A�� is a maximal T -closed subset of clT (A)
such that A�� ∪ F is T -consistent.

We end this section with a brief discussion on related work. We mentioned
in the introduction several model-based approaches to DL KB evolution, and
noticed that they all suffer from the expressibility problem. This problem is also
shared by [13], that uses features instead of models, and proposes the notion of
approximation to cope with the expressibility problem, similarly to [7].

Related to our proposal are several formula-based approaches presented in
the literature. Perhaps, the closest approach to the one proposed in this paper
is that reported in [6], where formula-based evolution (actually, insertion) of
DL-Lite KBs is studied. The main difference with our work is that we base our
semantics on the WIDTIO principles, and therefore we compute the intersection
of all KBs accomplishing the change minimally. Conversely, in the bold semantics
discussed in [6], the result of the change is chosen non-deterministically among
the KBs accomplishing the change minimally. Another difference is that while
[6] addresses the issue of evolution of both the TBox and the ABox, we only deal
with the case of fixed TBox (in the terminology of [6], this corresponds to keep
the TBox protected). It is interesting to observe that the specific DL considered
in [6] is DL-LiteFR, and for this logic, exactly one KB accomplishes the insertion
of a set of ABox assertions minimally. It follows that for instance-level insertion,
their bold semantics coincides with ours. On the other hand, the presence of
identification assertions in DL-LiteA,id changes the picture considerably, since
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with such assertions in the TBox, many KBs may exist accomplishing the inser-
tion minimally. In this case, the two approaches are indeed different. Finally, [6]
proposes a variant of the bold semantics, called careful semantics, for instance-
level insertion in DL-LiteFR. Intuitively, such a semantics aims at disregarding
knowledge that is entailed neither by the original KB, nor by the set of newly
asserted facts. Although such principle is interesting, we believe that the careful
semantics is too drastic, as it tends to eliminate too much information from the
original KB.

Finally, we point out that, to our knowledge, the evolution operator presented
in this work is the first tractable evolution operator based on the WIDTIO
principle.

4 Deletion in DL-LiteA,id

We study deletion under the assumption that the DL language L is DL-LiteA,id.
Thus, in this section, we implicitly refer to a DL-LiteA,id-KB K = �T ,A�, and
we address the problem of changing K with the deletion of a finite set F of ABox
assertions. We assume that both �T ,A� and �T , F � are satisfiable.

We first consider the case where the set F is constituted by just one assertion
f . By exploiting Theorem 1, it is easy to conclude that there is exactly one KB
accomplishing the deletion of {f} from a given KB.

Theorem 2. Let f be an ABox assertion. Up to logical equivalence, there is

exactly one KB of the form �T ,A�� that accomplishes the deletion of {f} from

�T ,A� minimally, and such KB can be computed in polynomial time with respect

to |T | and |A|.

Let us now consider the case of arbitrary F , i.e., the case where F =
{f1, . . . , fm}, for m ≥ 0. Suppose that, for every 1 ≤ i ≤ m, Ai accomplishes
the deletion of {fi} from �T ,A� minimally. One might wonder whether the set
Γ1 = {�T ,Aj� | Aj accomplishes the deletion of F minimally from �T ,A�} co-
incides (modulo logical equivalence) with Γ2 = {�T ,A1�, . . . �T ,Am�}. The next
theorem tells us that one direction is indeed valid: for each KB K1 ∈ Γ1 there
exists a KB K2 ∈ Γ2 such that Mod(K1) = Mod(K2).

Theorem 3. If �T ,A�� accomplishes the deletion of {f1, . . . , fm} from �T ,A�
minimally, then there exists i ∈ {1..m} such that �T ,A�� accomplishes the dele-

tion of {fi} from �T ,A� minimally.

However, the following example shows that the other direction does not hold:
there may exist a K2 ∈ Γ2 that is not logically equivalent to any K1 ∈ Γ1.

Example 3. Let T = {B � C, C � D,E � D}, A = {B(a), E(a)}, and
F = {C(a), D(a)}. It is easy to see that the deletion of D(a) from �T ,A�
is accomplished minimally by �T , ∅�, while the deletion of C(a) from �T ,A�
is accomplished minimally by �T , {E(a)}�. Therefore, in this case, we have
Γ2 = {�T , ∅�, �T , {E(a)}�}. Also, one can verify that �T , {E(a)}� is the only
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(up to logical equivalence) KB accomplishing the deletion of F minimally, i.e.,
Γ1 = {�T , {E(a)}�}. Thus, there is a KB in Γ2, namely �T , ∅�, that is not logi-
cally equivalent to any KB in Γ1.

The next theorem characterizes when a given �T ,Ai� ∈ Γ2 accomplishes the
deletion of F minimally.

Theorem 4. Let F = {f1, . . . , fm}, and, for every 1 ≤ i ≤ m, let �T ,Ai�
accomplish the deletion of {fi} from �T ,A� minimally. Then, �T ,Aj�, where

j ∈ {1..m}, accomplishes the deletion of F from �T ,A� minimally if and only if

there is no h ∈ {1..m} such that h �= j, and �T , {fh}�|= fj.

By exploiting Theorems 2, 3, and 4, we can directly prove that K �T∩ F can
be computed by the algorithm ComputeDeletion below. It is easy to see that the
time complexity of the algorithm is O(|T |2 × |F |2 + |A|2).

Input: a satisfiable DL-LiteA,id KB K = �T ,A�, a finite set of ABox assertions
F such that �T , F � is satisfiable

Output: a DL-LiteA,id KB
begin

F
� ← F ;

foreach fi ∈ F
� and fj ∈ F such that i �= j do

if �T , {fj}�|= fi then F
� ← F

� \ {fi};
return �T , clT (A) \ {α ∈ SubsumeeK(f) | f ∈ F

�}�;
end

Algorithm 1: ComputeDeletion(�T ,A�, F )

Theorem 5. ComputeDeletion(�T ,A�, F ) terminates, and computes �T ,A��T∩
F in polynomial time with respect to |T |, |A| and |F |.

5 Insertion in DL-LiteA,id

In this section, we refer to a DL-LiteA,id-KB K = �T ,A�, and address the prob-
lem of changing K with the insertion of a finite set F of ABox assertions. As in
the previous section, we assume that both �T ,A� and �T , F � are satisfiable.

Theorem 1 tells us that, in principle, we can compute the KB resulting from
the insertion of F into �T ,A� by building all maximal subsets of A which are
T -consistent with F , and then computing their intersection. The main problem
to be faced with this method is that, depending on the DL used, there can
be an exponential number of maximal subsets A� of clT (A) such that A� ∪
{f} is T -consistent5.In particular, in DL-LiteA,id, building all maximal subsets
of A which are T -consistent with F , and then computing their intersection is
computationally costly. Fortunately, we show in the following that K ⊕T∩ F can
be computed without computing all maximal consistent subsets of A with F .
5 Note that this cannot happen in those DLs of the DL-Lite family which do not admit

the use of identification assertions (such as the DL studied in [6]).
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To describe our method, we need some preliminary notions. A set V of ABox
assertions is called a T -violation set for t ∈ T \T + if �T +∪{t}, V � is unsatisfiable,
while for every proper subset V � of V , �T + ∪ {t}, V �� is satisfiable. Any set V

of ABox assertions that is a T -violation set for a t ∈ T \ T + is simply called a
T -violation set.

We know from Theorem 1 that the ABox A� accomplishes the insertion of
F from �T ,A� minimally if and only if clT (A�) = A�� ∪ clT (F ), where A�� is a
maximal T -closed subset of clT (A) such that A�� ∪ F is T -consistent. Since we
must compute the intersection of all such ABoxes A�, it is sufficient to compute
those assertions in clT (A) that are not in the intersection, and remove them from
clT (A)∪ clT (F). All the assertions in clT (F ) are obviously in the intersection of
the ABoxes A�. As for the ABox assertions in clT (A) \ clT (F ), it is easy to see
that one such assertion α is not in the intersection of the ABoxes A� if and only
if there exists a maximal subset Σ of clT (A) such that Σ ∪ F is T -consistent,
and Σ does not contain α.

Taking into account the above observation, the next theorem is the key to
our solution.

Theorem 6. Let α be an assertion in clT (A) \ clT (F ). There exists a maximal

subset Σ of clT (A) such that Σ ∪ F is T -consistent, and Σ does not contain α

if and only if there is a T -violation set V in clT (A) ∪ clT (F ) such that α ∈ V ,

and F ∪ (V \ {α}) is T -consistent.

Theorem 6 suggests immediately the algorithm ComputeInsertion below for
computing K ⊕T∩ F .

Input: a satisfiable DL-LiteA,id KB K = �T ,A�, a finite set of ABox assertions
F such that �T , F � is satisfiable

Output: a DL-LiteA,id KB.
begin

F
� = ∅;

foreach α ∈ clT (A) \ clT (F ) do

if ∃ a T -violation set V in clT (A) ∪ clT (F ) s.t. α ∈ V and
�T , F ∪ (V \ {α})� is satisfiable

then F
� ← F

� ∪ {α};
return �T , F ∪ clT (A) \ F

��;
end

Algorithm 2: ComputeInsertion(�T ,A�,F)

Algorithm ComputeInsertion requires to compute all T -violation sets in clT (A)
∪ clT (F ). It can be shown that this can be done by computing the results of
suitable conjunctive queries posed to clT (A)∪ clT (F ). Such queries are built out
of the negative inclusion assertions and the identification assertions Tid in T ,
and essentially look for tuples that satisfy the negation of such assertions. From
this observation, one can derive the following theorem.

Theorem 7. ComputeInsertion(�T ,A�,F) terminates, and computes �T ,A�⊕T∩
F in polynomial time with respect to |T \ Tid|, |A|, and |F |, and in NP with

respect to |Tid|.

299



6 Conclusions

We plan to continue our work along several directions. First, we aim at extending
our approach to the problem of evolution of the whole KB, as opposed to the
ABox only. Also, we will add the notion of protected part to our approach, to
model situations where one wants to prevent changes on specific parts of the
KB when applying insertions or deletions. Finally, we aim at studying the case
where the KB contains other kinds of constraints, so as to capture the scenario
where updates are expressed on a conceptual model used as a global schema in
a data integration system [3]. In this context, one of the major challenges is to
deal with the problem of pushing the updates to the data sources.
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1 Introduction

In recent years, the use of ontologies to access instance data has become increasingly
popular. The general idea is that an ontology provides a vocabulary or conceptual model
for the application domain, which can then be used as an interface for querying instance
data and to derive additional facts. In this emerging area, called ontology-based data
access (OBDA), it is a central research goal to identify ontology languages for which
query answering scales to large amounts of instance data. Since the size of the data is
typically very large compared to the size of the ontology and the size of the query, the
central measure for such scalability is provided by data complexity—the complexity of
query answering where only the data is considered to be an input, but both the query
and the ontology are fixed.

In description logic (DL), ontologies take the form of a TBox, instance data is stored
in an ABox, and the most important class of queries are conjunctive queries (CQs).
A fundamental observation regarding this setup is that, for expressive DLs such as
ALC and SHIQ, the complexity of query answering is coNP-complete [12] and thus
intractable (when speaking of complexity, we always mean data complexity). The most
popular strategy to avoid this problem is to replace ALC and SHIQ with less expres-
sive DLs that are Horn in the sense that they can be embedded into the Horn fragment
of first-order (FO) logic and have minimal models that can be exploited for PTIME
query answering. Horn DLs in this sense include, for example, logics from the EL and
DL-Lite families as well as Horn-SHIQ, a large fragment of SHIQ for which CQ-
answering is still in PTIME [12]. While CQ-answering in Horn-SHIQ and the EL

family of DLs is also hard for PTIME, the problem has even lower complexity in DL-
Lite. In fact, the design goal of DL-Lite was to achieve FO-rewritability, i.e., that any
CQ q and TBox T can be rewritten into an FO query q

� such that the answers to q

w.r.t. T coincide with the answers that a standard database system produces for q� [6].
Achieving this goal requires CQ-answering to be in AC0.

It thus seems that the data complexity of query answering in a DL context is well-
understood. However, all results discussed above are on the level of logics, i.e., each
result concerns a class of TBoxes that is defined syntactically through expressibility in a
certain logic, but no attempt is made to identify more structure inside these classes. The
aim of this paper is to advocate a fresh look on the subject, by taking a novel approach.
Specifically, we advocate a non-uniform study of the complexity of query answering
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by considering data complexity on the level of individual TBoxes. For a TBox T , we
say that CQ-answering w.r.t. T is in PTIME if for every CQ q, there is a PTIME algo-
rithm that, given an ABox A, computes the answers to q in A w.r.t. T . In a similar way,
we can define coNP-hardness and FO-rewritability on the TBox level. The non-uniform
perspective allows us to investigate more fine-grained questions regarding the data com-
plexity of query answering such as: given an expressive DL L such as ALC or SHIQ,
how can one characterize those L-TBoxes T for which CQ-answering is in PTIME?
How can we do the same for FO-rewritability? Is there a dichotomy for the complexity
of query answering w.r.t. TBoxes formulated in L, such as: for any L-TBox T , CQ-
answering w.r.t. T is either in PTIME or coNP-hard?

In this paper, we consider TBoxes formulated in the expressive DL ALCFI, answer
some of the above questions, and take some steps towards others. Our main results are:

1. there is a dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALC-TBoxes if, and only if, Feder and Vardi’s dichotomy conjecture that “con-
straint satisfaction problems (CSPs) with finite template are in PTIME or NP-
complete” [10] is true; the same holds for ALCI-TBoxes;

2. there is no dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALCF-TBoxes, unless PTIME = NP; moreover, PTIME-complexity of CQ an-
swering and many related problems are undecidable for ALCF .

3. there is a dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALCFI-TBoxes of depth one, i.e., TBoxes where concepts have role depth ≤ 1;

4. FO-rewritability is decidable for Horn-ALCFI-TBoxes of depth two and all Horn-
ALCF-TBoxes;

It should be noted that there has been steady progress regarding the dichotomy con-
jecture of Feder and Vardi over the last fifteen years and though the problem is still
open, a solution does not seem completely out of reach [4, 5]. Our proof of Point 1 is
based on a novel connection between CSPs and query answering w.r.t. ALCI-TBoxes
that can be exploited to transfer numerous results from the CSP world to query answer-
ing w.r.t. ALCI-TBoxes and related problems. For example, together with [16, 5] we
obtain the following results on ‘FO-rewritability of ABox consistency’:

5. Given an ALCI-TBox T , it can be decided in NEXPTIME whether there is an FO-
sentence ϕT such that for all ABoxes A, A is consistent w.r.t. T iff A viewed as an
FO-structure satisfies ϕT . Moreover, such a sentence ϕT exists iff ABox consis-
tency w.r.t. T can be decided in non-uniform AC0. Finally, if no such sentence ϕT
exists, then ABox consistency w.r.t. T is LOGSPACE-hard (under FO-reductions).

To prove our results, we introduce some new notions that are relevant for studying
the questions raised and prove some additional results of general interest. A central
such notion is materializability of a TBox T , which formalizes the existence of mini-
mal models as known from Horn-DLs. We show that, in the case of TBoxes of depth
one, materializability characterizes PTIME CQ-answering, which allows us to establish
Point 2 above. For TBoxes of unrestricted depth, non-materializability still provides a
sufficient condition for coNP-hardness of CQ-answering. We also develop the notion
of unraveling tolerance of a TBox T , which provides a sufficient condition for query
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answering to be in PTIME. The resulting upper bound strictly generalizes the known
result that CQ-answering in Horn-ALCFI is in PTIME. Our framework also allows
to formally establish some common intuitions and beliefs held in the context of CQ-
answering in description logics. For example, we show that for any ALCFI-TBox T ,
CQ-answering is in PTIME iff answering positive existential queries is in PTIME iff
answering ELI-instance queries is in PTIME and likewise for FO-rewritability. An-
other observation in this spirit is that an ALCFI-TBox is materializable (has minimal
models) iff it is convex (a notion related to the entailment of disjunctions).

Most proofs in this paper are deferred to the (appendix of the) long version, which
is available at http://www.csc.liv.ac.uk/∼frank/publ/publ.html.

2 Preliminaries

We use standard notation for the syntax and semantics of ALCFI and other well-
known DLs. Our TBoxes are finite sets of concept inclusions C � D, where C and D

are potentially compound concepts, and functionality assertions func(r), where r is a
potentially inverse role. ABoxes are finite sets of assertions A(a) and r(a, b) with A a
concept name and r a role name. We use Ind(A) to denote the set of individual names
used in the ABox A and sometimes write r

−(a, b) ∈ A instead of r(b, a) ∈ A. For the
interpretation of individual names, we make the unique name assumption.

A first-order query (FOQ) q(x) is a first-order formula with free variables x con-
structed from atoms A(t), r(t, t�), and t = t

� (where t, t
� range over individual names

and variables) using negation, conjunction, disjunction, and existential quantification.
The variables in x are the answer variables of q. A FOQ without answer variables is
Boolean. We say that a tuple a ⊆ Ind(A) is an answer to q(x) in an interpretation I if
I |= q[a], where q[a] results from replacing the answer variables x in q(x) with a. A
tuple a ⊆ Ind(A) is a certain answer to q(x) in A given T , in symbols T ,A |= q(a),
if I |= q[a] for all models I of A and T . Set certT (q,A) = {a | T ,A |= q(a)}.
A positive existential query (PEQ) q(x) is a FOQ without negation and equality and
a conjunctive query (CQ) is a positive existential query without disjunction. If C is
an ELI-concept and a ∈ NI, then C(a) is an ELI-query (ELIQ). EL-queries (ELQs)
are defined analogously. Note that ELI-queries and EL-queries are always Boolean. In
what follows, we sometimes slightly abuse notation and use FOQ to denote the set of
all first-order queries, and likewise for CQ, PEQ, ELIQ, and ELQ.

Definition 1. Let T be an ALCFI-TBox. Let Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then
– Q-answering w.r.t. T is in PTIME if for every q(x) ∈ Q, there is a polytime algo-

rithm that computes, given an ABox A, the answer certT (q,A);
– Q-answering w.r.t. T is coNP-hard if there is a Boolean q ∈ Q such that, given an

ABox A, it is coNP-hard to decide whether T ,A |= q;
– T is FO-rewritable for Q iff for every q(x) ∈ Q one can effectively construct an

FO-formula q
�(x) such that for every ABox A, certT (q,A) = {a | IA |= q

�(a)},
where IA denotes A viewed as an interpretation.

The above notions of complexity are rather robust under changing the query language:
as we show next, neither the PTIME bounds nor FO-rewritability depend on whether
we consider PEQs, CQs, or ELIQs.
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Theorem 1. For all ALCFI-TBoxes T , the following equivalences hold:

1. CQ-answering w.r.t. T is in PTIME iff PEQ-answering w.r.t. T is in PTIME iff
ELIQ-answering w.r.t. T is in PTIME;

2. T is FO-rewritable for CQ iff it is FO-rewritable for PEQ iff it is FO-rewritable
for ELIQ.

If T is an ALCF-TBox, then we can replace ELIQ in Points 1 and 2 with ELQ.

The proof is based on Theorems 2 and 3 below. Theorem 1 allows us to (sometimes)
speak of the ‘complexity of query answering’ without reference to a query language.

3 Materializability

An important tool we use for analyzing the complexity of query answering is the notion
of materializability of a TBox T , which means that computing the certain answers to
any query q and ABox A w.r.t. T reduces to evaluating q in a single model of A and T .

Definition 2. Let T be an ALCFI-TBox and Q ∈ {CQ,PEQ,ELIQ,ELQ}. T is Q-
materializable if for every ABox A that is consistent w.r.t. T , there exists a model I of
T and A such that I |= q[a] iff T ,A |= q(a) for all q(x) ∈ Q and a ⊆ Ind(A).

We show that PEQ, CQ, and ELIQ-materializability coincide (and for ALC-TBoxes, all
these also coincide with ELQ-materializability). Materializability is also equivalent to
the following disjunction property (sometimes also called convexity): a TBox T has the
ABox disjunction property if for all ABoxes A and ELIQs C1(a1), . . . , Cn(an), from
T ,A |= C1(a1) ∨ . . . ∨ Cn(an) it follows that T ,A |= Ci(ai), for some i ≤ n.

Theorem 2. Let T be an ALCFI-TBox. The following equivalences hold: T is PEQ-
materializable iff T is CQ-materializable iff T is ELIQ-materializable iff T has the
ABox disjunction property.

If T is an ALC-TBox, the above are equivalent to ELQ-materializability.

Because of Theorem 2, we sometimes use the term materializability without reference
to a query language. We call an interpretation I that satisfies the condition formulated
in Definition 2 for PEQs a minimal model of T and A. Note that in many cases, only an
infinite minimal models exists. For example, for T = {A � ∃r.A} and A = {A(a)}
every minimal model I of T and A comprises an infinite r-chain starting at aI . Every
TBox that is equivalent to an FO Horn sentence (in the general sense of [7]) is mate-
rializable: to construct a minimal model for such a TBox T and some ABox A, one
can take the direct product of all at most countable models of T and A (for additional
information on direct products in DLs, see [17]). Conversely, however, there are simple
materializable TBoxes that are not equivalent to FO Horn sentences.

Example 1. Let T = {∃r.(A � ¬B � ¬E) � ∃r.(¬A � ¬B � ¬E)}. One can easily
show that T is not preserved under direct products; thus, it is not equivalent to a Horn
sentence. However, one can construct a minimal model I for T and any ABox A by
taking the interpretation IA obtained by viewing A as an interpretation and then adding,
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for any a ∈ Ind(A) with a ∈ (∃r.(A�¬B �¬E))IA , a fresh da such that (a, da) ∈ r
I

and da is not in the extension of any concept name. PEQ-answering w.r.t. T is FO-
rewritable since for any PEQ q, certT (q,A) consists of precisely the answers to q in IA
(i.e., no query rewriting is necessary). Thus, PEQ-answering w.r.t. T is also in PTIME.

We show that materializability is a necessary condition for query answering being in
PTIME.

Theorem 3. If an ALCFI-TBox T (ALCF-TBox T ) is not materializable, then ELIQ-
answering (ELQ-answering) is coNP-hard w.r.t. T .

The proof uses the violation of the ABox disjunction property stated in Theorem 2 and
generalizes the reduction of 2+2-SAT used in [19] to prove that instance checking in a
variant of EL is coNP-hard.

Materializability is not a sufficient condition for query answering to be in PTIME. In
fact, we show that for any non-uniform constraint satisfaction problem, there is a mate-
rializable ALC-TBox for which Boolean CQ-answering has the same complexity, up to
complementation of the complexity class. For two finite relational FO-structures R and
R� over relation symbols Σ, we write Hom(R�

,R) if there is a homomorphism from
R� to R. The non-uniform constraint satisfaction problem for R, denoted by CSP(R),
is the problem to decide, for every finite R� over Σ, whether Hom(R�

,R). Numer-
ous algorithmic problems, among them many NP-complete ones such as k-SAT and
k-colourability of graphs, can be given in the form CSP(R). It is known that every
problem of the form CSP(R) is polynomially equivalent to some CSP(R�) with R� a
digraph [10]. Thus, in what follows we can restrict ourselves to considering CSPs of
the form CSP(I), where I is a DL interpretation. A signature Σ is a set of concept and
role names. The signature sig(T ) of a TBox T is the set of concept and role names that
occur in T . A Σ-TBox is a TBox that uses symbols from Σ only. Similar notation is
used for ABoxes, concepts, and interpretations. For an ABox A, we denote by AΣ the
subset of A containing symbols from Σ only. We will often not distinguish between
ABoxes and finite interpretations.

Theorem 4. For every non-uniform constraint satisfaction problem CSP(I), one can
compute in polytime a materializable ALC-TBox T such that for all ABoxes A,

1. Hom(AΣ
, I), with Σ = sig(I), iff A is consistent w.r.t. T ;

2. for any Boolean CQ q, answering q w.r.t. T is polynomially reducible to the com-
plement of CSP(I).

The proof Theorem 4 relies on the existence of ALC-concepts H whose value H
I in

interpretations I cannot be detected directly using CQs, but which can be used in a
TBox to influence the values A

I of concept names A and, therefore, have an indirect
effect on the answers to CQs. From the viewpoint of CQ query answering, they thus
behave similarly to second-order variables. More precisely, let, for a finite set V of
indices, Zv, rv, sv be concept and role names, respectively. Let

TV = {� � ∃rv.�,� � ∃sv.Zv | v ∈ V }, Hv = ∀rv.∃sv.¬Zv.

Lemma 1. For any ABox A and sets Iv ⊆ Ind(A), v ∈ V , one can construct a minimal
model I of (TV ,A) such that HI

v = Iv for all v ∈ V . TV is FO-rewritable for PEQ.
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To prove Theorem 4, one extends the TBox TV . Assume CSP(I) is given. Let V = ∆
I

and assume, for simplicity, that sig(I) = {r}. Define

T = TV ∪ {Hv � ∃r.Hw � ⊥ | v, w ∈ V, (v, w) �∈ r
I
} ∪

{Hv �Hw � ⊥ | v, w ∈ V, v �= w} ∪ {

�

v∈V

¬Hv � ⊥ }

Based on Lemma 1, it is possible to verify Points 1 and 2 of Theorem 4. For Point 2, it
can be seen that for all Boolean CQs q and ABoxes A, (T ,A) |= q iff (TV ,A) |= q or
not Hom(AΣ

, I); since TV is FO-rewritable, the former can be checked in PTIME.

4 (Towards) Dichotomies

We start with a reduction of Boolean CQ-answering w.r.t. ALCI-TBoxes to CSPs that
yields, together with Theorem 4, a proof of Point 1 in the introduction: the dichotomy
problem for CSPs is equivalent to the dichotomy problem for CQ answering w.r.t. ALC-
(and ALCI-) TBoxes.

Theorem 5. Let T be an ALCI-TBox and C(a) an ELIQ. Then one can construct, in
time exponential in |T |+ |C|,

1. a Σ-interpretation I, Σ = (sig(T )∪ sig(C))� {P}, with P a concept name, such
that for all ABoxes A,
(a) there is a polynomial reduction of answering C(a) w.r.t. T to the complement

of CSP(I);
(b) there is a polynomial reduction from the complement of CSP(I) to Boolean

CQ-answering w.r.t. T ;
2. a Σ-interpretation I, Σ = sig(T ), such that for every ABox A, A is consistent

w.r.t. T iff Hom(AΣ
, I).

For Point 1, I is in fact the interpretation that is obtained by the standard type elimi-
nation procedure for ALCI-TBoxes T and concepts C. More specifically, let S be the
closure under single negation of all subconcepts of T and C. A type t is a maximal
subset of S that is satisfiable w.r.t. T . Then ∆

I is the set of all types, t ∈ A
I iff A ∈ t,

and (t, t�) ∈ r
I iff ∀r.D ∈ t implies D ∈ t

� and ∀r−.D ∈ t
� implies D ∈ t. For the

special concept name P , set P I = {t | C /∈ t}. With the type elimination algorithm, I
can be constructed in exponential time. The mentioned reductions are then as follows:

(a) (T ,A) |= C(a) iff not Hom(AΣ
P (a), I), where AP (a) results from A by adding

P (a) to A and removing all other assertions using P from A;
(b) not Hom(AΣ

, I) iff (T ,A) |= ∃v.(P (v) ∧ C(v)).

Result 1 from the introduction can be derived as follows. Let CSP(I) be an NP-inter-
mediate CSP, i.e., a CSP that is neither in PTIME nor NP-hard. Take the TBox T

from Theorem 4. By Point 1 of that theorem and since consistency of ABoxes w.r.t. T
can trivially be reduced to the complement of answering Boolean CQs w.r.t. T , CQ-
answering w.r.t. T is not in PTIME. By Point 2, CQ-answering w.r.t. T is not coNP-
hard either. Conversely, let T be a TBox for which CQ-answering w.r.t. T is neither in
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PTIME nor coNP-hard. Then by Theorem 1 and since every ELIQ is a CQ, the same
holds for ELIQ-answering w.r.t. T . Thus, there is a concrete ELIQ C(a) such that an-
swering C(a) w.r.t. T is coNP-intermediate. Let I be the interpretation constructed
in Point 1 of Theorem 5 for T and C(a). By Point 1a, CSP(I) is not in PTIME; by
Point 1b, it is not NP-hard either.

Result 5 from the introduction can be derived as follows. It is proved in [16, 5] that
the problem to decide whether the class of structures {I � | Hom(I �

, I)} is FO-definable
is NP-complete. We obtain a NEXPTIME upper bound since the template I associated
with T can be constructed in exponential time. The claims for AC0 and LOGSPACE
follow in the same way from other results in [16, 5].

We now develop a condition on TBoxes, called unraveling tolerance, that is suf-
ficient for PTIME CQ-answering and strictly generalizes Horn-ALCFI, the ALCFI-
fragment of Horn-SHIQ. For the case of TBoxes of depth one, we obtain a PTIME/coNP
dichotomy result. The notion of unraveling tolerance is based on an unraveling oper-
ation on ABoxes, in the same spirit as the well-known unraveling of an interpretation
into a tree interpretation. This is inspired by (i) the observation that, in the proof of
Theorem 3, the non-tree-shape of ABoxes is essential; and (ii) by Theorem 5 together
with the known fact the non-uniform CSPs are tractable when restricted to tree-shaped
input structures. The unraveling Au of an ABox A is the following ABox:

– the individual names Ind(Au) of Au are sequences b0r0b1 · · · rn−1bn, b0, . . . , bn ∈

Ind(A) and r0, . . . , rn−1 (possibly inverse) roles such that for all i < n, we have
ri(bi, bi+1) ∈ A and bi+1 �= bi−1 (whenever i > 0);

– for each C(b) ∈ A and α = b0r0b1 · · · rn−1bn ∈ Ind(Au) with bn = b, we have
C(α) ∈ Au;

– for each b0r0b1 · · · rn−1bn ∈ Ind(Au), we have rn−1(bn−1, bn) ∈ Au.

For all β = b0r0 · · · rn−1bn ∈ Ind(Au), we write tail(β) to denote bn. Note that the
condition bi+1 �= bi−1 is needed to ensure that functional roles can still be interpreted
in a functional way after unraveling, despite the UNA.

Definition 3. A TBox T is unraveling tolerant if for all ABoxes A and ELIQs q, we
have that T ,A |= q implies T ,Au |= q.

It is not hard to prove that the converse direction ‘T ,Au |= q implies T ,A |= q’
is true for all ALCFI-TBoxes. We now show that the class of unraveling tolerant
ALCFI-TBoxes generalizes Horn-ALCFI. This is based on the original and most
general definition of Horn-SHIQ in [12] and thus also captures weaker variants as
used e.g. in [13, 9]. The TBox in Example 1, which is unraveling tolerant but not a
Horn-ALCFI-TBox, demonstrates that the generalization is strict.

Lemma 2. Every Horn-ALCFI-TBox is unraveling tolerant.

It is interesting to note that unraveling tolerance implies materializability. We shall see
that the converse is, in general, not true.

Lemma 3. Every unraveling-tolerant ALCFI-TBox is materializable.

307



We now show that unraveling tolerance yields a class of ALCFI-TBoxes for which
query answering is in PTIME. By Lemma 2 and since we actually exhibit a uniform
algorithm for query answering w.r.t. unraveling tolerant TBoxes, this also reproves the
known PTIME upper bound for CQ-answering in Horn-ALCFI [9]. This result is not
a consquence of Theorem 4 and known results for CSPs since we capture full ALCFI.

Theorem 6. If an ALCFI-TBox T is unraveling tolerant, then PEQ-answering w.r.t.
T is in PTIME.

To see that unraveling tolerance does not capture all ALCFI-TBoxes for which query
answering is in PTIME, we can invoke Theorem 4. For example, taking a CSP for
2-colorability, we obtain a TBox T for which CQ-answering is in PTIME and such
that an ABox A with sig(A) = {r} is consistent w.r.t. T iff A is 2-colorable. Thus,
A, T |= X(a), X a fresh concept name, iff A is not 2-colorable. It follows that T is not
unraveling tolerant. We conjecture that it is possible to generalize Theorem 6 to larger
classes of TBoxes by relaxing the operation of ABox unraveling such that it yields
ABoxes of bounded treewidth instead of tree-shaped ABoxes. Such a generalization
would still not capture 2-colorability.

We now turn to TBoxes of depth one. The central observation is that for this special
case, we can prove a converse of Lemma 3.

Lemma 4. Every materializable ALCFI-TBox of depth one is unraveling tolerant.

This brings us into the position where we can establish the announced dichotomy result
for ALCFI-TBoxes of depth one. If such a TBox T is materializable, then Lemma 4
and Theorem 6 yield that PEQ-answering w.r.t. T is in PTIME. Otherwise, ELIQ-
answering w.r.t. T is coNP-complete by Theorem 3. We thus obtain the following.

Theorem 7 (Dichotomy). For every ALCFI-TBox T of depth one, one of the follow-
ing is true:

– Q-answering w.r.t. T is in PTIME for any Q ∈ {PEQ,CQ,ELIQ};
– Q-answering w.r.t. T is coNP-complete for any Q ∈ {PEQ,CQ,ELIQ}.

5 Deciding FO-Rewritability

The results of this section are based on the observation that for materializable TBoxes of
depth one, FO-rewritability for CQ follows from FO-rewritability for atomic concepts,
i.e., concept names and ⊥. We say that an atomic concept A is FO-rewritable w.r.t. a
TBox T and a signature Σ if there exists an FO-formula ϕA such that for all Σ-ABoxes
A and a ∈ Ind(A): T ,A |= A(a) iff IA |= ϕA[a]. Clearly, if T is FO-rewritable
for CQ, then every atomic concept is FO-rewritable w.r.t. T and any signature. For
materializable TBoxes of depth one, the converse is also true.

Lemma 5. A materializable ALCFI-TBox of depth one is FO-rewritable for CQs iff
all atomic concepts are FO-rewritable w.r.t. T and sig(T ).

Based on Lemma 5, we can use Theorem 5 and results from [16] to obtain the following
result, in a similar (but slightly more involved) way as in the proof of Result 5 from the
introduction.
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Theorem 8. FO-rewritability for CQs is decidable in NEXPTIME, for any of the fol-
lowing classes of TBoxes: materializable ALCI-TBoxes of depth one, Horn-ALC-
TBoxes, and Horn-ALCI-TBoxes of depth two.

Theorem 5 does not apply to DLs with functional roles. To analyze FO-rewritability
in the presence of functional roles, we associate with every materializable TBox T of
depth one a monadic datalog program ΠT such that T and ΠT give the same answers
to queries A(a), A atomic. We then show that T is FO-rewritable if, and only if, ΠT is
equivalent to a non-recursive datalog program. The latter property is known as bound-
edness of a datalog program and has been studied extensively for fixpoint logics [3, 18]
and datalog programs [8]. Using existing decidability results for boundedness, we can
then establish a counterpart of Theorem 8 for the case of ALCFI.

For our purposes, a monadic datalog program Π consists of rules A(x) ← X ,
where A is a concept name and X is a finite set consisting of assertions of the form
B(x), r(x1, x2), and inequalities x1 �= x2, where B is a concept name, r a role, and
x, x1, x2 range over variables. Inequalities are required to model functional roles. We
also use a special unary predicate ⊥ and rules ⊥(x) ← X stating that X is inconsistent.
For an ABox A, we denote by Π

i(A) the set of all assertions A(a) that can be derived
using i applications of rules from Π to A. We set Π∞(A) =

�
i≥0 Π

i(A).

Definition 4 (Boundedness). Let Π be a datalog program and Σ a signature. An
atomic concept A is bounded in Π for Σ-ABoxes if there exists a k > 0 such that
for all Σ-ABoxes A and all a ∈ sig(A): A(a) ∈ Π

∞(A) iff A(a) ∈ Π
k(A).

Let T be a materializable TBox of depth one. A Σ-neighbourhood ABox (Σ-NH) con-
sists of a Σ-ABox A with a distinguished individual name f such that A consists of
assertions of the form r(f, a) with r a role and a �= f and A(b) such that

– for each b �= f with b ∈ Ind(A) there is exactly one r such that r(f, b) ∈ A;
– if r(f, b1) and r(f, b2) ∈ A and b1 �= b2, then there exists A(b1) ∈ A with A(b2) �∈
A or vice versa.

The ABox A in which each individual b is replaced by a variable xb is denoted by Ax.
Now define a monadic datalog program associated with T , where Σ = sig(T ):

ΠT = {A(xa) ← A
x
| A is a Σ-NH, a ∈ Ind(A), A ∈ Σ, (T ,A) |= A(a)} ∪

{⊥(x) ← A
x
| A is a Σ-NH that is not consistent w.r.t. T } ∪

{⊥(x) ← r(y, y1), r(y, y2), y1 �= y2 | func(r) ∈ T } ∪

{A(x) ← ⊥(x) | A ∈ Σ}.

The following lemma states that ΠT behaves as intended.

Lemma 6. For every materializable ALCFI-TBox T of depth one, every A ∈ sig(T ),
every ABox A, and every a ∈ Ind(A), (T ,A) |= A(a) iff A(a) ∈ Π

∞
T (A). Moreover,

⊥(a) ∈ Π
∞
T (A) iff A is not consistent w.r.t. T .

Using unfolding tolerance of materializable TBoxes of depth one, one can show the
following equivalence for FO-rewritability and boundedness.
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Lemma 7. For every materializable ALCFI-TBox T of depth one and signature Σ:
an atomic concept A is bounded in ΠT for Σ-ABoxes iff A is FO-rewritable w.r.t. T
and Σ.

Unfortunately, decidability results for boundedness of monadic datalog programs are
not directly applicable to ΠT since they assume programs without inequalities [8, 11].
However, using unfolding tolerance, one can employ instead recent decidability results
on boundedness of least fixed points over trees [18] to obtain the following theorem.

Theorem 9. FO-rewritability for CQs is decidable, for any of the following classes
of TBoxes: materializable ALCFI-TBoxes of depth one, Horn-ALCF-TBoxes, and
Horn-ALCFI-TBoxes of depth two.

6 Non-Dichotomy and Undecidability in ALCF
The aim of this section is to show that the addition of functional roles significantly com-
plicates the problems studied in the previous sections. More precisely, we show that
(i) for CQ-answering w.r.t. ALCF-TBoxes, there is no dichotomy between PTIME and
coNP unless PTIME = NP; and (ii) CQ-answering in PTIME is undecidable for ALCF-
TBoxes, and likewise for coNP-hardness, materializability and FO-rewritability. Point (i)
is a consequence of the following result.

Theorem 10. For every language L in coNP, there is an ALCF-TBox T and query
rej(a), rej a concept name, such that the following holds:

1. there exists a polynomial reduction of deciding v ∈ L to answering rej(a) w.r.t. T ;
2. for every ELIQ q, answering q w.r.t. T is polynomially reducible to deciding v ∈ L.

Ladners theorem [15] states that unless PTIME = NP, coNP intermediate problems
exist. Suppose to the contrary of Point (i) that for every ALCF-TBox T , CQ answering
w.r.t. T is in PTIME or coNP-hard. Take a coNP-intermediate language L and let T
be the TBox from Theorem 10. By Point 1 of the theorem, CQ-answering w.r.t. T is
not in PTIME. Thus it must be coNP-hard. By Theorem 1 and since a dichotomy for
CQ-answering w.r.t. T also implies a dichotomy for ELIQ-answering w.r.t. T , ELIQ-
answering w.r.t. T is also coNP-hard. By Point 2 of Theorem 10, this is impossible.

The proof of Theorem 10 combines the ‘hidden’ concepts Hv from the proof of
Theorem 4 with ideas from a proof in [1] which establishes undecidability of a certain
query emptiness problem in ALCF . Using a similar strategy, we establish the undecid-
ability results announced as Point (ii) above, summarized by the following theorem.

Theorem 11. For ALCF-TBoxes T , the following problems are undecidable (Points 1
and 2 are subject to the side condition that PTIME �= NP):

1. CQ-answering w.r.t. T is in PTIME;
2. CQ answering w.r.t. T is coNP-hard;
3. T is materializable.

In the appendix, we also prove that FO-rewritability for CQ is undecidable in ALCF ,
for a slightly modified definition of FO-rewritability that only considers consistent
ABoxes.
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7 Conclusions

We have have introduced non-uniform data complexity of query answering w.r.t. de-
scription logic TBoxes and proved that it enables a more fine-grained analysis than the
standard approach. Many questions remain. In particular, the newly established CSP-
connection should be exploited further. We believe that the techniques introduced in
this paper can be extended to richer DLs such as SHIQ.

Acknowledgments. C. Lutz was supported by the DFG SFB/TR 8 “Spatial Cognition”.
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1 Introduction

One of the most important current issues in Description Logic (DL) ontology man-
agement is dealing with inconsistency, that is, the presence of contradictory informa-
tion in the ontology [7]. It is well-known that the classical semantics of DLs is not
inconsistency-tolerant, i.e., it does not allow for using in a meaningful way any piece
of information in an inconsistent ontology. On the other hand, the size of ontologies
used by real applications is scaling up, and ontologies are increasingly merged and
integrated into larger ontologies: the probability of creating inconsistent ontologies is
consequently getting higher and higher.

In this paper we focus on ABox inconsistency, i.e., the case of inconsistent KBs
where the TBox is consistent while the ABox is inconsistent with the TBox, i.e., a
subset of the assertions in the ABox contradicts a TBox assertion (or a subset of the
TBox). In particular, we are interested in defining a form of automatic ABox cleaning,
i.e., given K = �T ,A�, we want to identify an ABox A� such that �T ,A�� is consistent
and A� is “as close as possible” to A.

The kind of ABox cleaning we adopt is formally based on inconsistency-tolerant se-
mantics, which overcome the limitations of the classical DL semantics in inconsistency
management. In particular, we consider inconsistency-tolerant semantics for general
DLs recently proposed in [4], called IAR semantics and ICAR semantics, for which
reasoning has been studied in the context of the Description Logics of the DL-Lite fam-
ily. The notion of ABox repair in the IAR semantics is very simple: the ABox repair of
a DL ontology is the intersection of all the maximal subsets of the ABox that are con-
sistent with the TBox. The notion of ABox repair in the ICAR semantics is a variant
of the IAR semantics that is based on a notion of “equivalence under consistency” of
ABoxes inconsistent with respect to a given TBox. In [4] it was proved that computing
the ABox repair of a DL-LiteA ontology is tractable both under IAR semantics and
ICAR semantics.

We argue that the results of [4] are very important from the practical viewpoint,
for the following reasons: (i) they provide (to the best of our knowledge) the first
formally grounded notion of ABox cleaning. In other words, IAR and ICAR are the
first inconsistency-tolerant semantics that allow for expressing ABox repairs in terms
of a single ABox; (ii) they identify (to the best of our knowledge) the first tractable
inconsistency-tolerant semantics in DLs. This paper starts from the above results, and
tries to provide an experimental validation that ABox cleaning based on the above se-
mantics is actually feasible. More precisely, we provide the following contributions:
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(1) We present effective techniques for ABox cleaning in DL-LiteA under IAR and
ICAR semantics. To this aim, we present the Quonto ABox Cleaner (QuAC), which
implements, within the Quonto system,1 techniques for the computation of the ABox
repair of a DL-LiteA knowledge base under the above semantics. QuAC constitutes
(to the best of our knowledge) the first implementation of a tractable ABox cleaning
algorithm for DL ontologies. Moreover, since Quonto delegates the management of
the ABox to a relational database system (DBMS), all modifications of the ABox are
delegated to the DBMS through SQL queries and updates. This potentially allows for
handling and cleaning very large ABoxes.
(2) We report on the experimental analysis that we are actually conducting usingQuAC.
Our first results are allowing us to understand the actual impact, w.r.t. the efficiency of
ABox cleaning, of the different aspects involved in the computation of the ABox repair,
and the limits and possibilities of the approach implemented in QuAC.

The paper that is closer to our work is [3], which also presents a technique for ABox
cleaning in DL ontologies. However, there are two main differences with our approach:
(i) [3] considers the very expressive DL SHIN , in which all the semantics considered
by our approach are intractable ([6]); (ii) the two approaches are based on different se-
mantics: in particular, the ABox cleaning algorithm of [3] computes a consistent subset
of the ABox which in general is uncomparable with the ABox repair defined by the
IAR semantics (and the ICAR semantics).

The rest of the paper is organized as follows. In Section 2, we give some prelimi-
naries, and in particular we introduce DL-LiteA and the definition of the IAR and the
ICAR semantics. In Section 3, we present detailed algorithms for ABox cleaning in
DL-LiteA. In Section 4 we present the QuAC system and report on the experiments we
are currently conducting with QuAC. Finally, in Section 5 we conclude the paper.

2 Preliminaries

2.1 The DL DL-LiteA

In this paper we consider DL ontologies (knowledge bases) specified in DL-LiteA, a
member of the DL-Lite family of tractable Description Logics [2, 1], which is at the
basis of OWL 2 QL, one of the profile of OWL 2, the official knowledge base speci-
fication language of the World-Wide-Web Consortium (W3C). DL-LiteA distinguishes
concepts from value-domains, which denote sets of (data) values, and roles from at-
tributes, which denote binary relations between objects and values. Concepts, roles,
attributes, and value-domains in this DL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→�D | T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules,A, P , and U respectively denote an atomic concept (i.e., a concept name),
an atomic role (i.e., a role name), and an attribute name, P− denotes the inverse of an
atomic role, whereas B and Q are called basic concept and basic role, respectively.
1 http://www.dis.uniroma.it/˜quonto
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Furthermore, δ(U) denotes the domain of U , i.e., the set of objects that U relates to
values; ρ(U) denotes the range of U , i.e., the set of values that U relates to objects;
�D is the universal value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-
domains.

A DL-LiteA knowledge base (KB) is a pair K = �T ,A�, where T is the TBox and
A the ABox. The TBox T is a finite set of assertions of the form

B � C Q � R E � F U � V (funct Q) (funct U)

From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact, in DL-LiteA TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). LetB1 andB2 be basic concepts, and
let Q1 and Q2 be basic roles. We call positive inclusions (PIs) assertions of the form
B1 � B2, and of the form Q1 � Q2, whereas we call negative inclusions (NIs) asser-
tions of the form B1 � ¬B2 and Q1 � ¬Q2.

A DL-LiteA ABox A is a finite set of membership assertions (ABox assertions) of
the forms A(a), P (a, b), and U(a, v), where A, P , and U are as above, a and b belong
to ΓO, the subset of ΓC containing object constants, and v belongs to ΓV , the subset of
ΓC containing value constants, where {ΓO, ΓV } is a partition of ΓC .

The semantics of a DL-LiteA knowledge base is given in terms of first-order logic
(FOL) interpretations in the usual way. An interpretation I satisfying a knowledge base
K a called a model for K. In the followingMod(�T ,A�) will indicate the set of models
of the KB K = �T ,A�. A knowledge base K is satisfiable if it has at least a model,
otherwise it is called unsatisfiable. Given an assertion α (which is either a TBox or
ABox assertion), we write K |= α if α is satisfied in every model for K.

Given a TBox T and an ABoxA�,A� is called aminimal conflict set for T if the KB
�T ,A�� is unsatisfiable and, for every ABox A�� such that A�� ⊂ A�, the KB �T ,A���
is satisfiable. A minimal conflict set for T is called unary if its cardinality (that is, the
number of assertions it contains) is 1 and is called binary if its cardinality is 2.

2.2 Inconsistency-tolerant semantics for DLs

In this section we recall the inconsistency-tolerant semantics for general DL knowledge
bases defined in [4].2 We assume that, for a knowledge base K = �T ,A�, T is sat-
isfiable, whereas A may be inconsistent with T , i.e., the set of models of K may be
empty.

AR-semantics The first notion of repair that we consider, called AR-repair, is a very
natural one: a repair is a maximal subset of the ABox that is consistent with the TBox.
Thus, an AR-repair is obtained by throwing away from A a minimal set of assertions
to make it consistent with T .

Definition 1. Let K = �T ,A� be a DL KB. An AR-repair of K is a set A� of member-
ship assertions such that: (i)A� ⊆ A; (ii) Mod(�T ,A��) �= ∅; (iii) there does not exist
2 Due to space limitations, we refer the reader to [4] for introductory examples illustrating these
semantics.
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A�� such that A� ⊂ A�� ⊆ A and Mod(�T ,A���) �= ∅. The set of AR-repairs for K is
denoted by AR-Rep(K). Moreover, we say that a first-order sentence φ is AR-entailed
by K, written K |=AR φ, if �T ,A�� |= φ for every A� ∈ AR-Rep(K).

CAR-semanticsWe start by formally introducing a notion of “equivalence under con-
sistency” for inconsistent KBs.

Given a KB K, let SK denote the signature of K, i.e., the set of concept, role,
and individual names occurring in K. Given a signature S, we denote with HB(S) the
Herbrand Base of S, i.e. the set of ABox assertions (ground atoms) that can be built
over the signature S. Then, given a KB K = �T ,A�, we define the consistent logical
consequences of K as the set clc(K) = {α | α ∈ HB(SK) and there exists A� ⊆
A such thatMod(�T ,A��) �= ∅ and �T ,A�� |= α}. Finally, we say that two KBs
�T ,A� and �T ,A�� are consistently equivalent (C-equivalent) if clc(�T ,A�) =
clc(�T ,A��).

We argue that the notion of C-equivalence is very reasonable in settings in which
the ABox (or at least a part of it) has been “closed” (in a complete or partial way) with
respect to the TBox, e.g., when (some or all) the ABox assertions that are entailed by
the ABox and the TBox have been added to the original ABox. This may happen, for
example, when the ABox is obtained by integrating different (and locally consistent)
sources, since some of these sources might have been locally closed with respect to
some TBox axioms: this is very likely, for instance, if a source is an RDF graph with
RDFS predicates, since many RDF systems materialize in the RDF graph the implicit
triples due to the RDFS predicates.

In settings where C-equivalence makes sense, the AR-semantics is not
suited to handle inconsistency. In fact, we would expect two C-equivalent
KBs to produce the same logical consequences under inconsistency-
tolerant semantics. Unfortunately, the AR-semantics does not have this
property. A simple example is the following: let T = {student �

young , student � ¬worker} and let A = {student(mary),worker(mary)},
A� = {student(mary),worker(mary), young(mary)}. It is immediate to verify
that if K� = �T ,A��, then clc(K) = clc(K�) = A�, thus K and K� are C-equivalent,
however K� |=AR young(mary) while K�|=AR young(mary).

To overcome the above problem, the CAR-semantics has been defined in [4],
through a modification of the AR-semantics.3

Definition 2. LetK = �T ,A� be a DL KB. A CAR-repair forK is a setA� of member-
ship assertions such that A� is an AR-repair of �T , clc(K)�. The set of CAR-repairs
for K is denoted by CAR-Rep(T ,A). Moreover, we say that a first-order sentence φ is
CAR-entailed by K, written K |=CAR φ, if �T ,A�� |= φ for every A� ∈ CAR-Rep(K).

Going back to the previous example, it is immediate to see that, since K and K�
are C-equivalent, the set of CAR-repairs (and hence the set of CAR-models) of K and
K� coincide. As the above example shows, there are sentences entailed by a KB under
CAR-semantics that are not entailed under AR-semantics. Conversely, it is shown in
3 The definition provided here of the CAR-semantics is a slight simplification of the one ap-
pearing in [4]: this modification, however, does not affect any of the computational results
presented in [4].
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[4] that the AR-semantics is a sound approximation of the CAR-semantics, i.e., for
every KB K and every FOL sentence φ, K |=AR φ implies K |=CAR φ.

IAR-semantics and ICAR-semantics We then recall the IAR-semantics and ICAR-
semantics, which are sound approximations of the AR-semantics and the CAR-
semantics, respectively [4].

Definition 3. Let K = �T ,A� be a DL KB. Then: (i) The IAR-repair for K, denoted
by IAR-Rep(K) is defined as IAR-Rep(K) =

�
A�∈AR-Rep(K)A

�. (ii) The ICAR-repair
for K, denoted by ICAR-Rep(K) is defined as ICAR-Rep(K) =

�
A�∈CAR-Rep(K)A

�. (iii)
We say that a first-order sentence φ is IAR-entailed (respectively, ICAR-entailed) by
K, and we write K |=IAR φ (respectively, K |=ICAR φ), if �T , IAR-Rep(K)� |= φ
(respectively, �T , ICAR-Rep(K)� |= φ).

Example 1. Let us consider the KB K = �T ,A� where the TBox T is the following:

T = {A � C,B � C,∃R � B,∃R−
� D, A � ¬B, (funct R)}

and the ABox A is A = {A(a), B(a), C(a), R(a, b)}. Such a KB is unsatisfiable, due
to the presence of the assertions A(a) andB(a) which violate the disjointness assertion
in T . The following are the standard AR-repairs of A:

AAR
1 = {B(a), C(a), R(a, b)}, AAR

2 = {A(a), C(a)}

Then, we have clc(A) = {A(a), B(a), C(a), R(a, b), D(a)}. Therefore, the CAR-
repair of A are as follows:

ACAR
1 = {B(a), C(a), R(a, b), D(b)}, ACAR

2 = {A(a), C(a), D(b)}

Consequently, the IAR-repair and ICAR-repair are the following:

AIAR = AAR
1
∩ AAR

2 = {C(a)}, AICAR = ACAR
1
∩ ACAR

2 = {C(a), D(a)}

Example 2. One might conjecture that the IAR semantics collapses into a simple ABox
cleaning technique which deletes from the ABox all the assertions that participate in
conflicts with the TBox. This is actually not the case, because, as explained in [4], the
IAR-repair actually deletes only the assertions that participate in minimal conflict sets.
Here is an example: given the KB K = �T ,A� with T = {A � ¬ ∃R, R � ¬R−},
A = {A(a), R(a, a)}, the IAR-repair of K is {A(a)}. That is, the assertion A(a)
belongs to the IAR-repair even if it participates in the conflict set {A(a), R(a, a)}
caused by the concept disjointness A �¬∃ R: the reason is that such a conflict set is
not minimal because of the unary conflict set {R(a, a)} caused by the role disjointness
R � ¬R−.

3 Algorithms for ABox cleaning

The technique for computing the ICAR-repair of a DL-LiteA ontology �T ,A� is based
on the idea of deleting from A all the membership assertions participating in minimal
conflict sets for T . As shown in [4], this task is relatively easy (in particular, tractable)
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in DL-LiteA because the following property holds: for every DL-LiteA TBox T , all the
minimal conflict sets for T are either unary conflict sets or binary conflict sets.

This property is actually crucial for tractability of reasoning under IAR and ICAR
semantics. As shown in [6] this property is not shared by other tractable DLs (e.g. EL⊥),
in which the size of minimal conflict sets is not bound by a constant but depends on the
size of the ABox.

We now present detailed algorithms for computing the IAR-repair and the ICAR-
repair of a DL-LiteA ontology. These algorithms exploits the techniques presented in
[4], whose aim was only to provide PTIME upper bounds for the problem of computing
such repairs. In particular, the present algorithms specify efficient ways of detecting
minimal conflict sets and computing consistent logical consequences. Instead, the pre-
vious techniques check all unary and binary subsets of the ABox for these purposes.

In the following, we call annotated ABox assertion an expression ξ of the form
�α,γ � where α is an ABox assertion and γ is a value in the set {cons, ucs, bcs}. Fur-
thermore, we call annotated ABox a set of annotated ABox assertions. The intuition
behind an annotated ABox assertion ξ is that its annotation γ expresses whether the
associated ABox expression α does not participate in any minimal conflict set (cons) or
participates in a unary conflict set (ucs) or to a binary conflict set (bcs).

The following algorithm QuAC-ICAR computes the ICAR-repair of a DL-LiteA
KB. For ease of exposition, the algorithm does not report details on the treatment of
attributes, which are actually handled in a way analogous to roles.

Algorithm QuAC-ICAR(K)
input: DL-LiteA KB K = �T ,A�, output: ICAR-repair of K
begin
// STEP 1: create annotated ABox Aann

Aann = ∅;
for each α ∈ A do Aann = Aann ∪ �α, cons�;

// STEP 2: detect unary conflict sets in Aann

for each concept name A s.t. T |= A � ¬A do
for each ξ = �A(a), cons� ∈ Aann do Aann = Aann − {ξ} ∪{�A(a), ucs�};

for each role name R s.t. T |= R � ¬R do
for each ξ = �R(a, b), cons� ∈ Aann do Aann = Aann − {ξ} ∪{�R(a, b), ucs�};

for each role name R s.t. T |= R � ¬R− or T |= ∃R �¬∃ R− do
for each ξ = �R(a, a), cons� ∈ Aann do Aann = Aann − {ξ} ∪{�R(a, a), ucs�};

// STEP 3: compute consistent logical consequences in Aann

for each inclusion A � B with A, B atomic concepts such that T |= A � B do
for each �A(a), γ� ∈ Aann such that γ �= ucs do Aann = Aann ∪{�B(a), cons�};

for each inclusion ∃R � A with A atomic concept such that T |= ∃R � A do
for each �R(a, b), γ� ∈ Aann such that γ �= ucs do Aann = Aann ∪{�A(a), cons�};

for each inclusion ∃R− � A with A atomic concept such that T |= ∃R− � A do
for each �R(a, b), γ� ∈ Aann and γ �= ucs do Aann = Aann ∪ { �A(b), cons�};

for each inclusion R � S with R, S atomic roles such that T |= R � S do
for each �R(a, b), γ� ∈ Aann and γ �= ucs do Aann = Aann ∪ { �S(a, b), cons�};

for each inclusion R− � S with R, S atomic roles such that T |= R− � S do
for each �R(b, a), γ� ∈ Aann and γ �= ucs do Aann = Aann ∪ { �S(a, b), cons�};

// STEP 4: detect binary conflict sets in Aann

for each disjointness A � ¬B with A, B atomic concepts
such that T |= A � ¬B do
for each pair ξ1 = �A(a), γ1�, ξ2 = �B(a), γ2� ∈ A�

ann
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such that γ1, γ2 �= ucs do
Aann = Aann − {ξ1, ξ2} ∪{�A(a), bcs�, �B(a), bcs�};

for each disjointness A �¬∃ R with A atomic concept
such that T |= A �¬∃ R do
for each pair ξ1 = �A(a), γ1�, ξ2 = �R(a, b), γ2� ∈ A�

ann

such that γ1, γ2 �= ucs do
Aann = Aann − {ξ1, ξ2} ∪{�A(a), bcs�, �R(a, b), bcs�};

for each disjointness A �¬∃ R− with A atomic concept
such that T |= A �¬∃ R do
for each pair ξ1 = �A(a), γ1�, ξ2 = �R(b, a), γ2� ∈ A�

ann

such that γ1, γ2 �= ucs do
Aann = Aann − {ξ1, ξ2} ∪{�A(a), bcs�, �R(b, a), bcs�};

for each disjointness R � ¬S with R, S atomic roles
such that T |= R � ¬S do
for each pair ξ1 = �R(a, b), γ1�, ξ2 = �S(a, b), γ2� ∈ A�

ann

such that γ1, γ2 �= ucs do
Aann = Aann − {ξ1, ξ2} ∪{�R(a, b), bcs�, �S(a, b), bcs�};

for each disjointness R � ¬S− with R, S atomic roles
such that T |= R � ¬S− do
for each pair ξ1 = �R(a, b), γ1�, ξ2 = �S(b, a), γ2� ∈ A�

ann

such that γ1, γ2 �= ucs
do Aann = Aann − {ξ1, ξ2} ∪{�R(a, b), bcs�, �S(b, a), bcs�};

for each functionality assertion (funct R) ∈ T with R atomic role do
for each pair ξ1 = �R(a, b), γ1�, ξ2 = �R(a, c), γ2� ∈ A�

ann

such that b �= c and γ1, γ2 �= ucs do
Aann = Aann − {ξ1, ξ2} ∪{�R(a, b), bcs�, �R(a, c), bcs�};

for each functionality assertion (funct R−) ∈ T with R atomic role do
for each pair ξ1 = �R(b, a), γ1�, ξ2 = �R(c, a), γ2� ∈ A�

ann

such that b �= c and γ1, γ2 �= ucs do
Aann = Aann − {ξ1, ξ2} ∪{�R(b, a), bcs�, �R(c, a), bcs�};

// STEP 5: extract the ICAR repair from Aann

A� = ∅;
for each �α, cons� ∈ Aann do A� = A� ∪ {α};
return A�

end

The algorithm QuAC-ICAR consists of five steps which can be informally described
as follows.

step 1 copy ofA into an annotated ABoxAann . In this step, the value of the annotation
is initialized to cons for all ABox assertions.

step 2 detection of the unary conflict sets in Aann . For every assertion of the form
ξ = �α, cons�, such that {α} is a unary conflict set for T , Aann = Aann − {ξ} ∪
{�α, ucs�}, i.e., the annotation relative to α is changed to ucs. Unary conflict sets
are actually detected through TBox reasoning, by looking at empty concepts and
roles in T , as well as asymmetric roles, i.e., roles disjoint with their inverse.

step 3 computation of the consistent logical consequences inAann . Here, the task is to
compute all ABox assertions that are entailed by T together with any T -consistent
subset of A. In DL-LiteA, this actually corresponds to computing the ABox asser-
tions that are entailed by T together with the ABox obtained fromA by deleting all

318



unary conflict sets for T . Hence, what the algorithms does is computing the ABox
assertions that are logical consequence of T and of the assertions of Aann which
have not been annotated as unary conflict sets in the previous step.

step 4 detection of the binary conflict sets in Aann . For every pair of assertions of the
form ξ1 = �α1, γ1�, ξ2 = �α2, γ2� such that γ1 �= ucs and γ2 �= ucs and {α,β } is a
binary conflict set for T , Aann = Aann − {ξ1, ξ2} ∪{� α, bcs�, �β, bcs�}, i.e., the
annotation relative to α and β is changed to bcs. As in the case of unary conflict
sets, to find binary conflict sets the algorithm looks for disjoint concepts and roles
in T , as well as functional roles.

step 5 extraction of the ICAR-repair from Aann . The ICAR-repair can be now simply
extracted from the annotated ABox Aann , by eliminating both unary conflict sets
and binary conflict sets. Therefore, for every assertion of the form �α, cons� in
Aann , α is copied into the (non-annotated) ABox A� which is finally returned by
the algorithm.

The algorithm QuAC-IAR is very similar to QuAC-ICAR: the only difference is that
it does not execute step 3, i.e., computation of consistent logical consequences. Cor-
rectness of the above algorithms can be proved starting from the results in [4].

Theorem 1. Let K be a DL-LiteA KB and let A� be the ABox returned by
QuAC-ICAR(K). Then, A� = ICAR-Rep(K). Moreover, let A�� be the ABox returned
by QuAC-IAR(K). Then, A�� = IAR-Rep(K).

4 Implementation and experiments

We have implemented the above algorithms QuAC-ICAR and QuAC-IAR within the
Quonto system, in a module called QuAC (the Quonto ABox Cleaner). Essentially,
QuAC is a Java implementation of the above algorithms where operations on the in-
volved ABoxes are delegated to a relational database system (DBMS). In fact, in the
Quonto architecture, the management of the ABox is delegated to a DBMS: therefore,
all the operations on ABox assertions of the algorithms for computing repairs are exe-
cuted in QuAC by the DBMS used by Quonto, through appropriate SQL scripts.

We are currently experimenting QuAC in order to answer several open questions,
among which:

– the computational cost of the various steps of the algorithm QuAC-IAR and
QuAC-ICAR;

– the scalability of such algorithms;
– measuring the difference in terms of computational costs of the IAR semantics and
the ICAR semantics;

– the impact of the “degree of inconsistency” of the ABox on the computational cost
of the algorithms.

The tables reported in Figure 1 and Figure 2 present some of the experimental results
that we have obtained so far. The TBox used in the experiments has 30 concept names,
20 role names, 10 attribute names, and about 200 TBox assertions. The various ABoxes
used have been automatically generated.
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The first table presents the experimental results for a version of Quonto that uses a
main memory database (H2) to handle the ABox, while the second table presents the
same results when Quonto uses a standard (disk-resident) database (PostgreSQL). The
results have been conducted on a Pentium i7 (2.67 GHz) CPU with 6GB RAM under
Windows 7 (64 bit) operating system. We have also executed the same tests using the
MySQL DBMS, with results analogous to those obtained with PostgreSQL.

In the tables, the first column reports the number of assertions in the ABox, while
the second column reports the percentage of ABox assertions that participate in minimal
conflict sets for the considered TBox. Moreover:

– ∆1 denotes the time to create the annotated ABox;
– ∆IAR

2 denotes the time to detect unary and binary conflict sets;
– ∆IAR

3 denotes the time to extract the IAR-repair from the annotated ABox;
– ∆ICAR

2 denotes the time to detect unary conflict sets, compute consistent logical
consequences and detect binary conflict sets;

– ∆ICAR
3 denotes the time to extract the ICAR-repair from the annotated ABox;

– ∆IAR is the total time to compute the IAR-repair, i.e.,∆1 + ∆IAR
2 + ∆IAR

3 ;
– ∆ICAR is the total time to compute the ICAR-repair, i.e.,∆1 + ∆ICAR

2 + ∆ICAR
3 ;

– all times are expressed in milliseconds.

ABox size % incons. ∆1 ∆IAR
2 ∆IAR

3 ∆IAR ∆ICAR
2 ∆ICAR

3 ∆ICAR

1, 000 1% 188 296 109 593 749 250 1,187
1, 000 5% 188 358 78 624 749 250 1,187
1, 000 10% 188 296 94 578 749 266 1,203
3, 000 1% 359 670 251 1,280 1,997 266 2,622
3, 000 5% 359 795 234 1,388 1,997 251 2,607
3, 000 10% 359 717 126 1,202 1,997 282 2,638
10, 000 1% 515 874 141 1,530 3,495 1,424 5,434
10, 000 5% 515 781 171 1,467 3,495 1,376 5,386
10, 000 10% 515 982 172 1,669 3,495 1,156 5,166
30, 000 1% 812 3,075 422 4,309 22,635 3,559 27,006
30, 000 5% 812 3,355 418 4,585 22,635 2,498 25,945
30, 000 10% 812 3,417 344 4,573 22,635 2,748 26,195

Fig. 1. Results for main memory database (H2)

The above experimental results show that:

(i) with both the main memory DB and the disk-resident DB, the computation of the
IAR-repair (∆IAR column) seems really scalable, while the computation of the
ICAR-repair suffers from the additional step of computing logical consequences,
which is computationally very expensive: its cost actually dominates the cost of all
the other steps;

(ii) the percentage of inconsistency, i.e., the fraction of ABox assertions that participate
in minimal conflict sets, does not have a significant impact on the execution time of
both algorithms;
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ABox size % incons. ∆1 ∆IAR
2 ∆IAR

3 ∆IAR ∆ICAR
2 ∆ICAR

3 ∆ICAR

1, 000 1% 718 516 5,117 6,351 1,358 6,314 7,672
1, 000 5% 718 515 5,258 6,491 1,358 6,070 7,428
1, 000 10% 718 531 4,680 5,929 1,358 5,929 7,287
3, 000 1% 1,840 688 5,444 7,972 4,011 8,747 12,758
3, 000 5% 1,840 750 5,366 7,956 4,011 7,317 11,328
3, 000 10% 1,840 797 5,304 7,941 4,011 8,284 12,295
10, 000 1% 5,850 1,171 10,235 17,256 16,990 19,115 36,105
10, 000 5% 5,850 1,499 10,297 17,646 16,990 19,424 36,414
10, 000 10% 5,850 1,561 9,923 17,334 16,990 17,926 34,916
30, 000 1% 16,255 3,823 20,702 40,780 134,286 65,959 200,245
30, 000 5% 16,255 4,790 20,999 42,044 134,286 61,170 195,456
30, 000 10% 16,255 5,539 20,281 42,075 134,286 63,736 198,022

Fig. 2. Results for PostgreSQL

(iii) using the main memory DB, most of the computation time for the IAR-repair is
devoted to the detection of minimal conflict sets (i.e.,∆IAR

2 ); conversely, using the
disk-resident DB, a very large percentage of the execution time (always more than
80%) is devoted to the generation of the annotated ABox and to the extraction of
the IAR-repair. This is of course due to the fact that such steps require to create
and write a large number of records on the disk. On the other hand, RAM size is
a bottleneck for the main memory DB (we were not able to process ABoxes with
100,000 assertions).

5 Ongoing and future work

As above observed, most of the execution time of the algorithmQuAC-IAR using a disk-
resident DB is due to the creation of the annotated ABox (step 1) and to the creation
of the IAR-repair (step 5). Thus, avoiding these steps would dramatically improve the
efficiency of this algorithm.

To this aim, we observe that both the above steps could be completely skipped if the
database schema used for representing the ABox would present an additional attribute
for storing annotations in every relation (the usual DB representation of an ABox uses a
unary relation for every concept and a binary relation for every role). This corresponds
to the idea of directly using an annotated ABox instead of a standard ABox in the
system. In this case, the computation of the IAR-repair could only consist of the steps
2, 3 and 4 of the algorithmQuAC-IAR. However, the choice of using an annotated ABox
instead of an ABox affects query answering, since the queries evaluated on an annotated
ABox should be able to filter out the assertions whose annotation is equal to cons.

We are currently experimenting whether this choice is actually feasible. Below we
present a table showing the evaluation time of four queries of increasing complexity
on the ABoxes considered in the previous section (in particular, the ABoxes with 5%
inconsistent assertions). We show the cost of both evaluating the query on the IAR-
repair (represented as a standard ABox) and directly on the annotated ABox (with the
further selection condition on the annotations).
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query ans. on query ans. on difference difference
ABox size query IAR-repair annotated ABox (msec) (%)

(nsec) (nsec)
1, 000 q1 123,577 105,868 -17 -17%
1, 000 q2 216,740 226,750 10 4%
1, 000 q3 1,179,561 295,275 -884 -299%
1, 000 q4 421,161 600,174 179 30%
3, 000 q1 138,591 229,060 90 39%
3, 000 q2 210,581 355,716 145 41%
3, 000 q3 1,348,179 490,842 -857 -175%
3, 000 q4 507,396 653,685 146 22%
10, 000 q1 164,384 339,932 175 52%
10, 000 q2 267,172 499,696 232 47%
10, 000 q3 1,347,024 592,475 -754 -127%
10, 000 q4 491,612 664,465 172 26%
30, 000 q1 199,417 724,521 525 72%
30, 000 q2 398,448 905,074 506 56%
30, 000 q3 1,519,493 944,726 -574 -61%
30, 000 q4 485,067 1,096,021 610 56%

These first experimental results show that, in Quonto, evaluating queries on the
annotated ABox often seems computationally not much harder (and sometimes even
easier) than evaluating them on the standard ABox. Therefore, a more detailed experi-
mental analysis is needed in order to understand the conditions under which it could be
convenient to only work with an annotated representation of the ABox.

Finally, it would be very interesting to compare the performance of QuAC with
a query rewriting approach. Indeed, techniques for the perfect rewriting of unions of
conjunctive queries over DL-LiteA KBs under both IAR and ICAR semantics have
been recently defined [5]. Such techniques are able to reduce query answering over a
KB K = �T ,A� to answering a FOL query over the ABox A. So, the ABox is not
repaired at all by this approach: rather, the ABox repair is virtually considered during
query answering through a suitable reformulation of the query. We plan to implement
such query rewriting techniques, with the aim of comparing such an approach with the
approach of QuAC.
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Abstract. In this paper, we present a reasoner capable of epistemic
inferences in SROIQ knowledge bases. We first identify some counter
intuitive effects of imposing the traditional semantics in epistemic exten-
sions of expressive description logics (DLs). Thus, we provide a revised
downward compatible semantics with a more intuitive behavior in such
cases. Based on the new semantics, we present a reduction method for
epistemic queries to standard DL reasoning. This enables us to deploy
state-of-the-art DL reasoners for such non-standard inferences. Addi-
tionally, we provide an implementation of our approach and present first
evaluation results.

1 Introduction

In the early 1980s, Hector J. Levesque questioned the adequateness of
the query language in knowledge formalisms [6]. He proposed the idea
of embedding the epistemic operator K into a query language, thereby
achieving the capabilities of knowledge base introspection. A similar line
of research was initiated by R. Reiter in the context of databases [9].
Due to the extended reasoning capabilities, epistemic extensions have also
been investigated (cf. e.g. [3, 2, 4]) in the context of Description Logics
(DLs, cf. [1]).

To see the usefulness of the K operator for epistemic querying, con-
sider the following example. Assume we want to query for “known white
wines that are not known to be produced in a French region” which can
be solved by performing instance retrieval w.r.t. the epistemic DL concept
KWhiteWine�¬∃KlocatedIn.{FrenchRegion}. This query will not only retrieve
the wines that are explicitly excluded from being French wines but also
those for which there is just no evidence that they are French (neither
directly nor indirectly via deduction). For a knowledge base containing
{WhiteWine(MountadamRiesling), locatedIn(MountadamRiesling,AustralianRegion)}
as a subset, the query would yield MountadamRiesling as a result, whereas
the same query without epistemic operators would produce an empty re-
sult. Moreover, by adding additional information such asMountadamRiesling
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being located in a French region, the answer to the epistemic query would
also become empty, which illustrates that introducing the epistemic op-
erator into a logic brings about non-monotonicity.

Another typical use case for epistemic querying is integrity constraint
checking: testing whether the axiom

KWine � ∃KhasSugar .{Dry} � ∃KhasSugar .{OffDry} � ∃KhasSugar .{Sweet}

is entailed allows to check whether for every named individual in the
knowledge base that is known to be a wine it is also known (i.e. it can
be logically derived from the ontology) what degree of sugar it has. Note
that this cannot be taken for granted even if Wine � ∃hasSugar.{Dry} �

∃hasSugar.{OffDry}� ∃hasSugar.{Sweet} is stated in (or can be derived from)
the ontology.

These examples illustrate an obvious added value of epistemic ex-
tensions of description logics in practical applications. However former
research – focused on extending tableaux algorithms for less expressive
languages – has not paced up with the development of reasoners for very
expressive DLs. In fact, as we will discuss in the course of this paper,
some expressive features like nominal concepts require special care when
combined with the idea of introspection by epistemic operators.

This paper investigates the epistemic extension of the very expres-
sive DL SROIQ [5]. When applying a semantics along the lines of [4] to
SROIQ we observe effects that clearly contradict natural requirements
for epistemic reasoning (that we call backward compatibility). This di-
rectly leads to the question for an altered semantics that “behaves well”
also for SROIQ. We introduce such a semantics and show that it com-
plies with the proposed requirements. With the more adequate semantics
at hand, we then turn to the question of efficient algorithms for the specific
problem of answering queries to classical (i.e., K-free) SROIQ ontolo-
gies. We solve this problem by providing a sound and complete reduction
from epistemic querying to standard DL reasoning; our approach reduces
occurrences of the K operator to intermediate calls to a standard DL rea-
soner. Employing this technique, existing reasoners for non-epistemic DLs
can be reused in a black-box fashion for the task of answering epistemic
queries. Based on this algorithm, we implemented a reasoner capable of
answering epistemic queries to SROIQ knowledge bases. For the com-
plete proofs and technical details, we refer the interested reader to the
accompanying technical report [7].
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2 Epistemic DLs and the Classical Semantics

We consider SROIQ as the underlying DL (for details see [5] ). The ex-
tension of SROIQ with the epistemic operator K, denoted by SROIQK,
allows K to appear in front of concept or role expressions. We call a
SROIQK-role an epistemic role if K occurs in it. An epistemic role is
simple if it is of the form KS where S is a simple SROIQ-role.

Following the way epistemic semantics for DLs have been hitherto
defined (see, e.g., [4] ), the classical semantics of SROIQK is given as
possible world semantics in terms of epistemic interpretations. Thereby
the following two central assumptions are made. (1) Common Domain
Assumption: all interpretations are defined over a fixed countably infinite
domain ∆. (2) Rigid Term Assumption: for all interpretations, the map-
ping from individuals to domains elements is fixed (it is just the identity
function). Due to these assumptions, we can w.l.o.g. stipulate∆ := NI∪N.
Essentially, these assumptions are imposed in order to ensure that (sets
of) domain elements can be referred to and dealt with uniformly in a
cross-domain manner.
Next, we provide the definition of epistemic interpretations. The main
difference to the non-epistemic case, is that we provide a “context” of rel-
evant models which are inspected whenever the extension of an epistemic
concept or role is to be determined.

Definition 1. An epistemic interpretation for SROIQK is a pair (I,W)
where I is a SROIQ-interpretation and W is a set of SROIQ-interpre-
tations, where I and all of W have the same infinite domain ∆ with
NI ⊂ ∆. The interpretation function ·I,W is then defined as follows:

aI,W = a for a ∈ NI

XI,W = XI for X ∈ NC ∪NR ∪{� ,⊥}

{a1,..., an}I,W = {a1,..., an}
(KC)I,W =

�
J∈W(C

J,W) (KR)I,W =
�

J∈W(R
J,W)

(C �D)I,W = CI,W∩DI,W (C �D)I,W = CI,W∪DI,W

(¬C)I,W = ∆ \ CI,W

(∃R.Self)I,W = {x | (x, x) ∈ RI,W}

(∃R.C)I,W = {x | ∃y.(x, y) ∈ RI,W ∧ y ∈ CI,W}

(∀R.C)I,W = {x | ∀y.(x, y) ∈ RI,W → y ∈ CI,W}

(�nR.C)I,W = {x | #{y ∈ CI,W | (x, y) ∈ RI,W} ≤ n}
(�nR.C)I,W = {x | #{y ∈ CI,W | (x, y) ∈ RI,W} ≥ n}

where C and D are SROIQK-concepts and R is a SROIQK-role. ♦
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From the above, one can see thatKC is interpreted as the set of objects
that are in the extension of C under every interpretation in W. This also
makes clear why the common domain and rigid term assumption have
to be imposed; otherwise the respective extension intersections would be
empty. Note that the rigid term assumption implies the unique name
assumption (UNA), i.e., for any epistemic interpretation I ∈ W and for
any two distinct individual names a and b, we have that aI �= bI .

The notions of knowledge base, TBox, RBox and Abox, their respec-
tive axioms, and their interpretations can be extended from SROIQ to
SROIQK in the obvious way.

An epistemic model for a SROIQK-knowledge base Σ is a maximal
non-empty set W of SROIQ-interpretations such that (I,W) satisfies Σ
for each I ∈ W. A SROIQK-knowledge base Σ is said to be satisfiable if
it has an epistemic model. The knowledge base Σ (epistemically) entails
an axiom α (written Σ ||= α), if for every epistemic model W of Σ, we
have that for each I ∈ W, the epistemic interpretation (I,W) satisfies α.
By definition, every SROIQ-knowledge base is a SROIQK-knowledge
base. Note that a given SROIQ-knowledge baseΣ has up to isomorphism
only one unique epistemic model which is the set of all models of Σ having
infinite domain and satisfying the unique name assumption. We denote
this model by M(Σ).

3 Problems with the Classical Semantics

Following the intuition that led to the introduction of the K operator as
an extension of K-free standard DL reasoning, a rather intuitive basic
requirement to an epistemic DL semantics is arguably the following.

Definition 2. For a given DL L, an epistemic DL semantics represented
by an entailment relation |≈ is called L-backward-compatible if it coincides
with the (non-epistemic) standard semantics (represented by |=) on non-
epistemic axioms, i.e. for an L knowledge base Σ and an L axiom α both
of which not containing K, we have Σ |≈ α exactly if Σ |= α. Moreover, |≈
is called L-UNA-backward-compatible, if Σ |≈ α exactly if Σ |= α under
the unique name assumption. ♦

We can show that ||= is SRIQ\U -UNA-backward-compatible, where
SRIQ\U denotes the description logic SROIQ without nominal con-
cepts and the universal role. The main ingredient for this is the insight
that for any finite interpretation of a given SRIQ\U knowledge base, we
can come up with an infinite interpretation such that both interpretations
behave in exactly the same way in terms of satisfaction of axioms.
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Lemma 3. Let Σ be a SRIQ\U knowledge base. For any interpreta-
tion I there is an interpretation Iω with infinite domain such that I |=
Σ if and only if Iω |= Σ.

As a consequence, the restriction to infinite models imposed by the
common domain assumption turns out to be not essential in the case
of SRIQ\U . However, this situation changes drastically once nominals
or the universal role are involved. To see this, consider the axioms � �

{a, b, c} or � � �3U.�. Each of these axioms considered as a knowl-
edge base Σ has only models with at most three elements. Consequently,
in both cases we have that Σ is unsatisfiable w.r.t. the classical epis-
temic semantics and consequently by ex falso quodlibet we, e.g., obtain
Σ ||= � � ⊥ whereas we clearly have Σ �|= � � ⊥ even under the UNA.
So we conclude that ||= is not UNA-backward-compatible for any descrip-
tion logic that features nominals or simultaneously number restrictions
and the universal role; in particular, it is not SROIQ-UNA-backward-
compatible.

While the imposed UNA may be a deliberate decision, we believe that
non-SROIQ-UNA-backward-compatibility of classical epistemic entail-
ment is not intended but rather a side effect of a semantics crafted for
and probed against less expressive description logics; it contradicts the
intuition behind the K operator. This motivates our quest for a more
appropriate, “domain-flexible” epistemic semantics. In [8], another ap-
proach, based on first-order logic (FOL), has been presented which cir-
cumvents the described problem by treating the equality as a congruence
relation with minimized extension. However, the solution we present is
closer to the original DL setting as it extends the standard definition of
DL interpretations.

4 A Revisited Semantics

In order to allow for the necessary flexibility, we need to relinquish the
common domain assumption and the rigid term assumption in the epis-
temic semantics: The domains we consider in the possible worlds should
be allowed to have arbitrary (yet non-empty) size and be composed of
arbitrary elements. An individual name may refer to different elements in
different possible worlds. Also, individuals denoted by different individual
names may coincide in some worlds but not in others.

Still, due to the reasons discussed before, we have to find a substi-
tute for the common domain and rigid term assumptions as otherwise,
every epistemic role or concept would have the empty set as extension.

327



We solve the problem by introducing one abstraction layer that assigns
abstract individual names to domain elements. These abstract individual
names are elements from NI∪N and hence common to all interpretations,
thus they can serve as the “common ground” for different interpretations
with different domains. We require that every domain element is associ-
ated with at least one abstract name, however, we also allow for different
names denoting the same domain element (thus allowing for the possibil-
ity of finite domains). This intuition leads to the definition of extended
interpretations.

Thereby, an extended SROIQ-interpretation I is a tuple (∆I, ·I, ϕI)
such that

– (∆I, ·I) is a standard DL interpretation,
– ϕI : NI ∪N � ∆I is a surjective function from NI ∪N onto ∆I , such

that for all a ∈ NI we have that ϕI(a) = aI.

Note that the function ϕI returns the actual interpretation of an indi-
vidual, given its (abstract) name, under the interpretation I. We lift ϕI to
sets of names and let ϕI

−1 denote the corresponding inverse. Based on the
notion of extended interpretations, we define an extended epistemic inter-
pretation for SROIQK as a pair (I,W), where I is an extended SROIQ-
interpretation and W is a set of extended SROIQ-interpretations. Sim-
ilar to epistemic interpretations, we define an extended interpretation
function ·I,W as ·I,W in Definition 1 with the following modifications:

(KC)I,W = ϕI

��
J∈W ϕJ

−1
�
CJ,W

��

(KR)I,W = ϕI

��
J∈W ϕJ

−1
�
RJ,W

��

Again, we set [(KR)−]J,W := (KR−)J,W for an epistemic role (KR)−.
The semantics of TBox, RBox and ABox axioms follows exactly that

for the classical semantics. Here, instead of ||=, we use the symbol ||=e ,
where e indicates that the relation is w.r.t. the extended semantics.

Like in case of the traditional (epistemic) semantics, we can define
the notions of extended epistemic modelhood and the satisfiability of a
SROIQK-knowledge base by considering extended interpretations in-
stead of the standard DL interpretations. Similarly, the entailment (under
the new semantics) of an axiom from a knowledge base can be defined.

We now first note that the newly established semantics has the desired
compatibility property.

Theorem 4. ||=e is SROIQ-backward-compatible.
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Proof sketch: First note that every satisfiable K-free knowledge base Σ
has exactly one extended epistemic model

M(Σ) =
�
(∆I, ·

I, ϕI) | (∆I, ·
I) |= Σ,ϕ I = ·

I
|NI ∪ f, f :N�∆I

�
.

Hence we have Σ ||=e α exactly if every I ∈ Me(Σ) satisfies α, which
(presuming α being K-free) is the case exactly if Σ |= α. �

Consequently, this new semantics is more adequate for very expressive
DLs such as SROIQ. Yet, as will be shown later in the paper, it is also
generic in the sense that for SRIQ\U knowledge bases it behaves similar
to the (classical) epistemic interpretation introduced earlier. With this
new semantics, we avoid the aforementioned problems arising from nomi-
nals and the universal role in the language of a knowledge base. Arguably,
this makes the revisited semantics a more suitable and appropriate choice
for K-extensions of expressive description logics, like SROIQK.

5 Reducing Epistemic Querying to Standard DL

Reasoning

We next introduce a novel technique for answering epistemic queries to
SROIQ knowledge bases under the revised semantics. More precisely, we
provide a way of checking whether a given knowledge base entails concept
assertions, role assertions or concept subsumptions where the involved
concepts and roles may contain K. Our method reduces this problem to
a number of iterative entailment checks for K-free axioms. To justify the
translation, we establish two lemmata (c.f., Lemma 25 and Lemma 27
in the technical report) that characterize possible instances of epistemic
concepts and roles, respectively. The idea is that the extension of a con-
cept that is preceded by K can only contain named individuals unless it
comprises the whole domain. For roles we get a more intricate case dis-
tinction, however, it boils down to characterizing the set of “(inverse) role
neighbors” of a fixed individual as the whole domain or a set of named
individuals. As an “exceptional case” to this, we might get the diagonal
of ∆I ×∆I as additional instances of an epistemic role.

Based on these characteristics of epistemic concepts and roles, we
present a translation of epistemic concept expressions into equivalent K-
free ones. Note that the translation itself requires to check entailment of
(K-free) axioms, hence it is not strictly syntactical and it depends on the
underlying knowledge base.

Definition 5. (Translation Function [[·]]Σ)
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Let Σ be a SROIQ-knowledge base. For a SROIQ concept A and
a SROIQ role R, let trgA,R

Σ denote the nominal concept {a1, . . . , an}

containing all ai for which Σ |= A � ∃R.{ai} and let trgA,R
Σ = ⊥ if there

are no such ai. We recursively define the function [[·]]Σ mapping SROIQK

concept expressions to SROIQ concept expressions:

[[C]]Σ = C if C is from NI ∪ { �,⊥}, a nominal,
or a K-free self concept;

[[C1 � C2]]Σ = [[C1]]Σ � [[C2]]Σ

[[C1 � C2]]Σ = [[C1]]Σ � [[C2]]Σ

[[¬C]]Σ = ¬[[C]]Σ

[[ΞR.D]]Σ = ΞR.[[D]]Σ for Ξ ∈ { ∀, ∃,�n,�n}, R K-free

[[KD]]Σ =

�
� if Σ |= [[D]]Σ ≡ �

{a ∈ NI | Σ |= [[D]]Σ(a)} otherwise

[[∃KS.Self]]Σ = [[K∃S.Self]]Σ

[[ΞKR.D]]Σ = ΞR.[[D]]Σ for Ξ ∈ { ∀, ∃,�n,�n} and Σ |= R≡U

[[∀KP.D]]Σ = ¬[[∃KP.¬D]]Σ

[[∃KP.D]]Σ = ∃P.
�
trg�,P

Σ � [[D]]Σ
�
� (trg�,P−

Σ � ∃P.[[D]]Σ)

�
�

a∈NI
({a} � ∃P.(trg{a},PΣ � [[D]]Σ)) � [[D]]Σ� �� �

only if Σ|=��∃P.Self

[[�nKP.D]]Σ = ¬[[�(n+1)KP.D]]Σ

[[�nKP.D]]Σ = �nP.(trg�,P
Σ � [[D]]Σ) � (trg�,P−

Σ ��nP.[[D]]Σ)

�
�

a∈NI
({a} ��nP.(trg{a},PΣ � [[D]]Σ}))

� (¬{a | a∈NI} � [[D]]Σ ��(n−1)P.
�
trg�,P

Σ � [[D]]Σ
�
)

� �� �
only if Σ|=��∃P.Self ♦

Observe that by definition, the result of applying this function to an
epistemic concept indeed yields a concept not containing K. Moreover the
following lemma, which can be proved by structural induction over the
concept expression, ensures that the translation function preserves the
concept extension.

Lemma 6. Let Σ be a SROIQ-knowledge base and C be a SROIQK

concept. Then for any extended interpretation I ∈ M(Σ), we have that

CI,M(Σ) = [[C]]Σ
I,M(Σ).

Consequently this lemma can be employed to prove our main result
justifying our approach of deciding entailment of epistemic axioms based
on non-epistemic standard reasoning.

Theorem 7. For a SROIQ-knowledge base Σ, SROIQK concept C,
D, and an individual a, the following hold:
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1. Σ ||=e C(a) if and only if Σ |= [[C]]Σ(a).
2. Σ ||=e C � D if and only if Σ |= [[C]]Σ � [[D]]Σ.

Finally, we are also able to establish the correspondence that the classical
and the newly introduced semantics coincide, as far as epistemic querying
on SRIQ\U knowledge bases is concerned. This result further substan-
tiates our claim that our semantics is a natural extension of the original
intuition behind epistemic DLs.

Theorem 8. Let Σ be a SRIQ\U knowledge base, C and D SROIQK

concepts, and a an individual name. Then, the following hold:

1. Σ ||=e C(a) under the unique name assumption if and only if Σ ||=
C(a).

2. Σ ||=e C � D under the unique name assumption if and only if Σ ||=
C � D.

This can be proved by providing a transformation function similar to
[[·]]Σ for the classical semantics, proving its correctness and showing that
it coincides with [[·]]Σ on SRIQ\U knowledge bases.

6 A System

Based on the results established in the preceding section, we have imple-
mented a preliminary prototype. The system takes an epistemic concept
as input and translates it into an equivalent non-epistemic one according
to Definition 5. A detailed system description is provided in the techni-
cal report. A running system has been uploaded and shared on google-
code1. For the purpose of testing, we consider two versions of the wine
ontology2 with 483 and 1127 individuals. As a measure, we consider the
translation time of an epistemic concept to a non-epistemic equivalent
one and the instance retrieval time of the translated concept. We con-
sider different epistemic concepts. For each such concept C, we consider
a non-epistemic concept obtained from C by dropping the K-operators
from it (see Table 1). Given a concept C, t(C) and |Ci| represent the
time in seconds required to compute the instances and the number of
instances computed for Ci. Finally for an epistemic concept ECi, tT(ECi)

represents the time required to translate ECi to its non-epistemic equiv-
alent. Table 2 provides our evaluation results. From Table 2, the time

1 http://code.google.com/p/epistemicdl/
2 http://www.w3.org/TR/owl-guide/wine.rdf
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Table 1. Concepts used for instance retrieval experiments.

C1 ∃hasWineDescriptor.WineDescriptor

EC1 ∃KhasWineDescriptor.KWineDescriptor

C2 ∀hasWineDescriptor.WineDescriptor

EC2 ∀KhasWineDescriptor.KWineDescriptor

C3 ∃hasWineDescriptor.WineDescriptor � ∃madeFromFruit.WineGrape

EC3 ∃KhasWineDescriptor.KWineDescriptor � ∃KmadeFromFruit.KWineGrape

C4 WhiteWine � ¬ ∃locatedIn.{FrenchRegion}
EC4 KWhiteWine � ¬ ∃KlocatedIn.{FrenchRegion}
C5 Wine � ¬ ∃hasSugar .{Dry} � ¬ ∃hasSugar .{OffDry} � ¬ ∃hasSugar .{Sweet}
EC5 KWine � ¬ ∃KhasSugar .{Dry} � ¬ ∃KhasSugar .{OffDry} � ¬K∃hasSugar .{Sweet}

Table 2. Evaluation

Ontology Concept t(Ci) |Ci| Concept tT(ECi) t(ECi) |ECi|

Wine 1
C1 2.13 159 EC1 46.98 0.04 3
C2 0.01 483 EC2 0.18 0.00 0
C3 28.90 159 EC3 79.43 6.52 3
C4 0.13 0 EC4 95.60 107.82 72
C5 52.23 80 EC5 60.78 330.49 119

Wine 2
C1 8.51 371 EC1 351.78 0.13 308
C2 0.30 1127 EC2 0.127 0.00 0
C3 227.10 371 EC3 641.24 19.58 7
C4 0.34 0 EC4 865.04 840.97 168
C5 295.87 240 EC5 381.41 2417.65 331

required to compute the number of instances is feasible; it is roughly in
the same order of magnitude as for non-epistemic concepts. Note also that
the runtime comparison between epistemic concepts ECi and their non-
epistemic counterparts Ci should be taken with a grain of salt as they are
semantically different in general, as also indicated by the fact that there
are cases where retrieval for the epistemic concept takes less time than
for the non-epistemic version. As a general observation, we noticed that
instances retrieval for an epistemic concept where a K-operator occurs
within the scope of a negation, tends to require much time.

7 Conclusion and Outlook

We argued how the traditional semantics for epistemic DLs causes prob-
lems and thus suggested a revision to the semantics. We proved that
this revised semantics solves the aforementioned problem while coinciding
with the traditional semantics on less expressive DLs (up to SRIQ\U).
Focusing on the new semantics, we provided a way of answering epistemic
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queries to SROIQ knowledge bases via a reduction to a series of stan-
dard reasoning steps. Finally, we presented an implementation allowing
for epistemic querying in SROIQ.

Avenues for future research include the following: First, we will inves-
tigate to what extent the methods described here can be employed for
entailment checks on SROIQK knowledge bases, i.e., in cases where K
occurs inside the knowledge base. In that case, stronger non-monotonic
effects occur and the unique-epistemic-model property is generally lost.
On the more practical side, we aim at further developing our initial pro-
totype. We are confident that by applying appropriate optimizations such
as caching strategies and syntactic query preprocessing a significant im-
provement in terms of runtime can be achieved. In the long run, we aim
at demonstrating the added value of epistemic querying by providing an
appropriate user-front-end and performing user studies. Furthermore, we
will propose an extension of the current OWL standard by epistemic con-
structs in order to provide a common ground for future applications.
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Implementing completion-based inferences for
the EL-family

Julian Mendez and Andreas Ecke and Anni-Yasmin Turhan

TU Dresden, Institute for Theoretical Computer Science

Abstract. Completion algorithms for subsumption are investigated for
many extensions of the description logic EL. While for several of them
subsumption is tractable, this is no longer the case, if inverse roles are
admitted. In this paper we present an optimized version of the comple-
tion algorithm for ELHIfR+ [11], which is implemented in jCel. The
completion sets computed during classification are a good substrate for
implementing other reasoning services such as generalizations. We re-
port on an extension of jCel that computes role-depth bounded least
common subsumers and most specific concepts based on completion sets.

1 Introduction

The lightweight Description Logic (DL) EL and many of its extensions enjoy the
nice property that computing concept subsumption and classification of ontolo-
gies written in these Description Logics is tractable [1]. Prominent bio-medical
ontologies are expressed in extensions of EL for which reasoning can still be done
in polynomial time. The Gene ontology (GO) is an ELH ontology and SNOMED
is written in EL

+. However, the GALEN ontology uses the DL ELHIfR+—a DL
with inverse roles, which are known to make subsumption w.r.t. general ontolo-
gies ExpTime-complete [2]. While the polynomial time completion algorithms
work on graph structures that are static and have simple labellings, the algo-
rithm for ELI requires dynamic nodes sets and uses complex labels. In [11] a
completion algorithm for ELHIfR+ has been devised. Since the node set gen-
erated by this method can grow exponentially, it is important to use a good
completion strategy, that determines the next node label to which a completion
rules is applicable. We present in this paper an optimized version of the algo-
rithm for ELHIfR+ with such a completion strategy, which is implemented in
the reasoner jCel.

Recently, the completion sets computed during classification have been em-
ployed to compute (approximations for) generalization inferences such as the
least common subsumer (lcs) or most specific concept (msc). The lcs generalizes
a collection of concept descriptions into a single concept description that is the
least w.r.t. subsumption. The msc generalizes a description of an individual into
a concept description. Intuitively, the msc delivers the most specific concept de-
scription that the input individual belongs to. Both of these services are useful
for the building of knowledge bases. In the bio-medical field in particular the lcs
is employed to define similarity measures between concept descriptions. Since for
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Syntax Semantics
conjunction C � C CI

∩ DI

existential restr. ∃r.C {d ∈ ∆I
| ∃e ∈ ∆I : (d, e) ∈ rI

∧ e ∈ CI
}

role inclusion r � s rI
⊆ sI

functional role f(r) ∀d1 ∈ ∆I : | {d2 ∈ ∆I | (d1, d2) ∈ rI
} | ≤ 1

inverse role r−
{(d1, d2) ∈ ∆I

× ∆I
| (d2, d1) ∈ rI

}

transitive role r ◦ r � r {(d1, d2), (d2, d3)} ⊆ rI
→ (d1, d3) ⊆ rI

Table 1. ELHIfR+ -concept and role constructors.

general EL-TBoxes neither the lcs nor the msc need to exist, an algorithm for
role-depth bounded lcs and -msc was devised in [8]. These algorithms are now
implemented for ELH on top of jCel.

2 Preliminaries
Starting from two disjoint sets NC and NR of concept and role names, respec-
tively, ELHIfR+-concept descriptions are built using concept and role construc-
tors shown in Table 1 and the top-concept (�). The DL EL is the ELHIfR+ -
fragment that only allows for the concept constructors conjunction and existen-
tial restrictions. ELH extends EL by role inclusion statements.

The semantics of ELHIfR+ is defined by interpretations I = (∆I , ·I) con-
sisting of a non-empty domain ∆I and an interpretation function ·I that assigns
binary relations on ∆I to role names and subsets of ∆I to concepts. The in-
terpretation function is extended to complex concept descriptions and roles as
described in the last column of Table 1.

A TBox is a set of concept inclusion axioms of the form C � D, where
C, D are concept descriptions. An interpretation I satisfies the concept inclusion
C � D, denoted as I |= C � D iff CI ⊆ DI . I is a model of a TBox T if it
satisfies all axioms in T . A concept C is subsumed by a concept D w.r.t. T

(denoted C �T D) if, for every model I of T it holds that I |= C � D.
Let NI be a set of individual names. An EL-ABox is a set of assertions of the

form C(a), r(a, b), where C is an EL-concept description, r ∈ NR, and a, b ∈ NI.
A knowledge base K = (T , A) consists of a TBox T and an ABox A.

Finally, an individual a ∈ NI is an instance of a concept description C w.r.t.
K (written K |= C(a)) if I |= C(a) for all models I of K. ABox realization is to
compute for each individual a in A the set of named concepts from K that have
a as an instance.

3 Completion algorithm for ELHIfR+

Classification of TBoxes is the computation of all subsumption relations between
all named concepts of a TBox. For several extensions of EL classification can be
performed in polynomial time [1, 2]. These classification algorithms typically
proceed in three steps:
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NR-1 C ≡ D � C � D, D � C
NR-2 C1 � · · · � Ĉ � · · · � Cn � D � Ĉ � A, C1 � · · · � A � · · · � Cn � D
NR-3 ∃r�.Ĉ � D � Ĉ � A, ∃r�.A � D
NR-4 Ĉ � ∃r�.D � Ĉ � A, A � ∃r�.D
NR-5 B � ∃r�.Ĉ � B � ∃r�.A, A � Ĉ
NR-6 D � C1 � C2 � D � C1, D � C2
NR-7 C � ∃r−.D � C � ∃u.D, u � r−, r−

� u
NR-8 ∃r−.C � D � ∃u.C � D, u � r−, r−

� u
where r: role; r�: (inverse) role; C, Ci, D: concept descriptions;

Ĉ, D̂: complex concept descriptions; B: concept name;
A: fresh concept name; u: fresh role name.

Table 2. Normalization rules.

1. normalization of the TBox
2. apply completion rules to the completion graph
3. read off subsumptions relations from the saturated completion graph

The basic completion algorithm represents the completion graph by two kinds
of completion sets: S(C) and S(C, r) for each concept name C and role name
r from the TBox. The sets contain concept names from the TBox and � .
The sets S(C) represent the labelled nodes, while the sets S(C, r) represent the
edges of the completion graph. The idea of the classification algorithm is that
completion rules make implicit subsumption relationships explicit. In fact, the
following invariants hold:

– D ∈ S(C) implies that C �T D,
– D ∈ S(C, r) implies that C �T ∃r.D.

For extensions of EL that also offer inverse roles, testing subsumption is not
polynomial, but it is ExpTime-complete [2]. In [11] Vu has devised a completion
algorithm for ELHIfR+ (and some of its sublanguages). In contrast to the basic
completion algorithm, this one works on completion graphs with more complex
nodes. Moreover, the set of nodes grows dynamically during completion. We
describe now an optimized version of Vu’s algorithm given in [7].

Normalization. An ELHIfR+ -TBox T is in normal form if all concept inclu-
sions have one of the following forms, where A1, A2, B are concept names:

A1 � B, A1 � . . . � An � B, A1 � ∃r.A2 or ∃r.A1 � B.

Each ELHIfR+ -TBox can be transformed into this normal form by applying
the rules shown Table 2, where the axioms on the left-hand side are replaced by
the axiom(s) on the right-hand side. The implicit information on (functional)
roles is made explicit by applying the following saturation rules to the TBox:
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r � s � r− � s− r � s , s � t � r � t
r ◦ r � r � r− ◦ r− � r− r � s , f(s) � f(r)

In addition, auxiliary role names are added to NR to allow a mapping where each
role s has an inverse role r− such that s ≡ r−. In this way, the algorithm applies
the completion rules to role names and inverse roles.

Completion rules. Once the TBox is normalized and saturated, the com-
pletion sets are initialized and the completion rules are applied. Based on the
two sets Ξ := {∃r.A | r ∈ NR, A ∈ NC} and Ω := {(A,ψ ) | A ∈ NC, ψ ⊆ Ξ} the
completion sets are defined as

– V ⊆ Ω
– S ⊆ {(x, A) | x ∈ Ω, A ∈ NC}

– R ⊆ {(r, x, y) | r ∈ NR, x, y ∈ Ω}.
For the completion graph, the set V is the set of nodes, S is a node labeling and
Ω is the set of edges. The elements in S are called S-entries, the elements in R
are called R-entries, the elements in V are referred to as nodes. The completion
process satisfies the following invariants:

– if ((A,ϕ ), C) ∈ S, then (A �
�

E∈ϕ
E) �T C

– if (r, (A,ϕ ), (B,ψ )) ∈ R, then (A �
�

E∈ϕ
E) �T ∃r.(B �

�
E∈ψ

E)

where each E is of the form ∃r.X. Furthermore, after completion we have that
A �T B if and only if ((A, ∅), B) ∈ S. The algorithm initializes the sets as
follows:

– V := {(A, ∅) | A ∈ NC},
– S := {((A, ∅), A) | A ∈ NC} ∪ {((A, ∅), �) | A ∈ NC},
– R := ∅

and applies the completion rules. The optimized completion rules for ELHIfR+

are presented in Table 3. The underlined elements are membership checks for S
and R. These conditions are relevant for the strategy of completion.

As a consequence of the normal form presented here, CR-2 may have several
conjuncts on the left-hand side of a normalized GCI. This simple optimization
reduces the number of auxiliary symbols.

In [7] it was shown that the rules in Table 3 are equivalent to those in [11].

Completion strategy. The completion rules do not define any order of appli-
cation to the S- and R entries. In fact, finding the element of the completion sets
and axioms from the TBox to which a rule is applicable fast is crucial for the
performance of the reasoner. The idea of sets is that it collects newly generated
entries, which are not present in the set yet, to be tested for applicability of com-
pletion rules. This approach has already been employed in Cel, see [?]. In Cel

each node has an associated queue with entries to be tested. This idea is now
transferred to dynamic node sets and the set of completion rules for ELHIfR+ .

To prepare Q the initialization of the algorithm is slightly modified:
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CR-1 if A � B ∈ T , (x, A) ∈ S then S� := S ∪ {(x, B)}

CR-2 if A1 � . . . � Ai � . . . � An � B ∈ T ,
(x, A1) ∈ S, . . ., (x, Ai) ∈ S, . . ., (x, An) ∈ S

then S� := S ∪ {(x, B)}

CR-3 if A � ∃r.B ∈ T , (x, A) ∈ S
then if f(r)

then v := (�, {∃r−.A})
if v /∈ V then V := V ∪ {v}, S� := S ∪ {(v, B)} ∪ {(v, �)},

R� := R ∪ {(r, x, v)}
else y := (B, ∅)

R� := R ∪ {(r, x, y)}

CR-4 if ∃s.A � B ∈ T , (r, x, y) ∈ R, (y, A) ∈ S, r �T s
then S� := S ∪ {(x, B)}

CR-5 if s ◦ s � s ∈ T , (r1, x, y) ∈ R, (r2, y, z) ∈ R, r1 �T s, r2 �T s
then R� := R ∪ {(s, x, z)}

CR-6 if ∃s−.A � B ∈ T , r �T s, (r, x, y) ∈ R, (x, A) ∈ S, (y, B) /∈ S, y = (B�, ψ)
then v := (B�, ψ ∪ { ∃r−.A})

if v /∈ V then V := V ∪ {v}, S� := S ∪ {(v, k) | (y, k) ∈ S}

S� := S ∪ {(v, B)}, R� := R ∪ {(r, x, v)}

CR-7 if ∃s−.A � B ∈ T , (r2, x, y) ∈ R, x = (A�, ϕ), y = (B�, ψ),
r ◦ r � r ∈ T , r1 �T r, r2 �T r, ∃r−

1 .A ∈ ϕ, r �T s
then v := (B�, ψ ∪ { ∃r−.A})

if v /∈ V then V := V ∪ {v}, S� := S ∪ {(v, k) | (y, k) ∈ S}

S� := S ∪ {(v, B)}, R� := R ∪ {(r2, x, v)}

CR-8 if A � ∃r−
2 .B ∈ T , (r1, x, y) ∈ R, (y, A) ∈ S, r1 �T s, r2 �T s, f(s−)

then S� := S ∪ {(x, B)}

CR-9 if (r1, x, y) ∈ R, (r2, x, z) ∈ R, r1 �T s, r2 �T s,
y = (�, ψ), z = (�, ϕ), y �= z, f(s)

then v := (�, ψ ∪ ϕ)
if v /∈ V then V := V ∪ {v}

S� := S ∪ {(v, k) | (y, k) ∈ S} ∪ {(v, k) | (z, k) ∈ S}, R� := R ∪ {(r1, x, v)}

Table 3. Optimized completion rules for ELHIfR+ .

– S := ∅, R := ∅

– Q := {((A, ∅), A) | A ∈ NC} ∪ {((A, ∅), �) | A ∈ NC}

The sets S� and R� represent the next step of sets S and R, respectively. Their
new elements are added to Q� in the algorithm shown in Table 4.

We say a completion rule is sensitive to changes in a set, if the precondition
of that rule mentions that set. In Table 3 the relevant entries are underlined.
For example, CR-1 is sensitive to changes in S only, CR-7 is sensitive to changes
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1. S, R, Q := ∅

2. for each concept name A, add ((A, ∅), A) and ((A, ∅), �) to Q
3. while Q �= ∅

4. take one element e from Q and remove it from Q
5. if e is an S-entry
6. let Q� be the result of applying all the S-rules to e
7. else if e is an R-entry
8. let Q� be the result of applying all the R-rules to e
9. Q := Q ∪ ((Q�

\ S) \ R)
Table 4. General algorithm.

in R only, and CR-4 is sensitive to changes in S and R. According to the kind
of entry they are sensitive to, the completion rules are members of the chain of
rules the process S-entries or R-entries.

A conceptual scheme of the algorithm is presented in Table 4. The processor
takes entries from Q, changes sets S and R, and informs the corresponding chain
of rules of these changes. This procedure is repeated until Q is empty, i.e. no
rules are applicable.

3.1 Implementation in jCel

jCel1 is implemented in Java. The object-oriented design of the completion algo-
rithm brings a very low coupling, since each rule can be changed separately. Thus
jCel can easily be adapted to new sets of completion rules. For implementation-
dependant technical details (e.g. data structures) see [7].

Besides classification for ELHIfR+ -TBoxes, jCel also implements realiza-
tion of ELH-ABoxes.

3.2 Experiments with jCel

The experiments were run on a computer with two Intel(R) Core(TM)2 Duo
E8500 processors running at 3.16 GHz and 4 GB of main memory.

Experiments classifying ELHIfR+ ontologies. The full version of GALEN
is still one of the most challenging ontologies, since hardly any reasoner can clas-
sify it. Two GALEN ontologies were considered: the original version of GALEN
(GALEN-A), and the newer version of GALEN (GALEN-B), which were used
in [?] to test Cel. Table 6 lists their sizes in terms of concepts etc.

For GALEN-A, jCel took 1093 s and the reasoner CB less than 1 s. In case
of GALEN-B, the current version of jCel could not finish classification due to
lack of memory. CB classified this ontology in 5 s.
1 The reasoner jCel and its source code is available at http://jcel.sourceforge.net.
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ontology #axioms #norm. ax. #concepts #roles
GALEN-A 8140 12930 2748 413
GALEN-B 61787 95789 23143 950

Table 5. Ontologies using ELHIfR+ .

ontology logic #axioms #norm. ax. #concepts #roles
NCI EL 74662 47080 27652 70
GO ELR+ 49363 28900 20465 1
FMA ELR+ 150282 119570 75139 2
SNOMED CT ELH 962796 1127193 378569 61
NotGalen ELHR+ 7540 15089 2748 413
CELGalen ELHR+ 60637 102742 23141 950

Table 6. Ontologies using ELHR+ .

ontology entries jCel 0.13.0 Cel Plug-in 0.5.0 quotient
NCI 346887 8.9 s 10.2 s 0.87
GO 154489 4.4 s 3.5 s 1.26
FMA 9576858 149.0 s 2388.0 s 0.06
SNOMED CT 143039451 1108.0 s 705.0 s 1.57
NotGalen 224565 2.9 s 5.2 s 0.56
CELGalen 6836237 52.0 s 134.0 s 0.39
Table 7. Compared times of classification between jCel and Cel.

Experiments in ELHR+ . In Table 6 we compare the sizes of the different
test ontologies to be classified with the polynomial completion algorithm (with
static node set).

The execution times of jCel were compared with the Cel system. Cel is
one of the fastest reasoners for reasoning in the EL-family of DLs and is known
to deliver correct results [6, 4]. The inferred concept hierarchy was identical in
classifications of both reasoners. The measured run-times are shown in Table 7.

To sum up, jCel’s performance is comparable to state of the art reasoners
and, in case of Cel sometimes even better.

4 Completion based generalization

The classification and the realization algorithm of jCel can be employed to
compute generalizations. We define these inferences now.

Definition 1. Let K =(T , A) be a ELH-KB and C1, . . . , Cn ELH-concept de-
scriptions and k ∈ IN. Then the ELH-concept description C is the role-depth
bounded ELH-least common subsumer of C1, . . . , Cn w.r.t. T and role-depth k
(written k-lcs(C1, . . . , Cn)) i ff

1. role-depth(C) ≤ k,
2. Ci �T C for all 1 ≤ i ≤ n, and
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3. for each ELH-concept description D with role-depth(D) ≤ k it holds that,
Ci �T D for all 1 ≤ i ≤ n implies C �T D.

Let a be an individual in A and again k ∈ IN. The ELH-concept description C is
the role-depth bounded ELH-most specific concept of a w.r.t. K and role-depth
k (written k-msc(a)) i ff

1. role-depth(C) ≤ k,
2. K |= C(a), and
3. for each ELH-concept description D with role-depth(D) ≤ k holds: K |=

D(a) implies C �T D.

Completion-based subsumption algorithms classify ELH-TBoxes by explic-
itly deriving all subsumptions relationships between named concept and storing
them in completion sets. The latter can be used to compute the k-lcs of concept
descriptions. A completion-based realization algorithm can be used to compute
the k-msc of an individual from its completion sets.

The algorithm for computing k-lcs and k-msc from completion sets is given
in [8]. The idea for k-lcs algorithm is: the lcs for two EL-concept descriptions
(w.r.t. an empty TBox) can be computed as the product of their corresponding
description trees [3]. However, with respect to a general TBox, we can construct
the k-lcs of two ELH-concept descriptions as follows:

1. assign the input concept descriptions new names
2. classify the augmented TBox
3. for the subgraph of the completion graph reachable from the nodes repre-

senting the newly introduced names by paths of length ≤ k: do cross-product
construction w.r.t. the node labels and edges.

The proof of the correctness for the k-lcs-algorithm for relies on the invariants
discussed in Section 3.

If the completion sets for ABox realization are computed, one can compute
the k-msc of an individual a simply by traversing the subgraph of the completion
graph reachable from a by paths of length up to k and conjoining the node labels.

Since the completion sets are containing all subsumers of a named concept,
the concept descriptions resulting from traversing subgraphs of the completion
graph and collecting the node labels are very redundant. For a person editing
the resulting concept description this is clearly undesirable. We devise a simpli-
fication heuristic that is similar to the (equivalent) minimal rewritings proposed
in [3] for EL-concept descriptions. For general TBoxes the Algorithm 1 yields
equivalent and smaller, but not necessarily minimal concept descriptions.

Implementation of the generalization inferences in Gel. Our system Gel

implements in Java the methods presented here. Gel accesses jCel’s internal
data structures directly to compute the k-lcs or the k-msc. These two reasoning
methods and the above described simplification are implemented in Gel in a
straight-forward way.
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Algorithm 1 Simplification of the resulting concept description.
Procedure simplify (C, S)
Input: C: EL concept description; S: set of completion sets
Output: simplify(C): a simplified concept description equivalent to C

1: Let C be of the form A1 � . . . � An � ∃r1.D1 � . . . � ∃rm.Dm with Ai ∈ NC

2: Conj := {Ai | i ∈ {1, . . . , n}}

3: ExRes := {∃rj .Dj | j ∈ (1 . . . m)}
4: for all Ai, E with Ai ∈ Conj and E ∈ Conj ∪ ExRes do

5: if E �= Ai and E �T Ai then

6: R := Conj \ {Ai}

7: end if

8: end for

9: for all {E, D} ⊆ ExRes do

10: if E �= D and E �T D then

11: R := R ∪ (ExRes \ {D})
12: end if

13: end for

14: for all ∃rj .Dj ∈ R do

15: R := (R \ { ∃rj .Dj}) ∪ { ∃rj .simplify(Dj , S)}
16: end for

17: return
�

E∈R E

Our system Gel is available as a plug-in for the ontology editor Protégé

and an API for the role-depth bounded lcs and -msc is planned. The former
system sonic [10] implemented the lcs and msc as well, but allowed only for
acyclic, unfoldable TBoxes.

Evaluation. For the evaluation of the generalization algorithms, we used two
different ontologies. The earlier mentioned NotGalen described in Table 6 is
a version of the medical ontology Galen stripped-down to ELH. This ontology
does not contain individuals, but its deep concept hierarchy makes it a good test
ontology for the k-lcs. As test concepts for the k-lcs we selected sibling concepts
from the concept hierarchy with common ancestors other than � and with many
(comparable) existential restrictions. In total, we selected 20 such concept tuples
from NotGalen.

We also used the Sweet2 ontology, the Semantic Web for Earth and Envi-
ronmental Terminology by NASA. This ontology was converted to ELH by re-
placing all value restrictions with existential restrictions and dropping all axioms
not expressible in ELH. Sweet does contain individuals and a rich relational
structure and was used as a test ontology for the k-msc. It has 4276 concept
names and 2069 individuals. We selected those individuals from Sweet that
appear in many role assertions. In total, we selected 18 individuals from Sweet.

All tests were run on an Intel(R) Core(TM) i5-2400 under Oracle Java 6SE
64bit. For each computation of the k-lcs or k-msc we measured the concept size
2 http://sweet.jpl.nasa.gov/sweet/
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k = 1 k = 2 k = 3 k = 4 k = 5
construction time (ms) 19 572 3567 7604 289778
simplification time (ms) < 1 3 15 40 107
expanded concept size 185 3458 15478 33667 119296
simplified concept size 5 15 27 38 42

Table 8. Average concept size and run-time for the k-lcs of concepts from NotGalen.

k 2-ary lcs 3-ary lcs 4-ary lcs 5-ary lcs
1 1 7 37 114

construction 2 23 249 972 3752
time (ms) 3 284 1954 4465 24427

4 1801 5253 8355 45374
5 7008 12412 114452 2665440
1 178 214 199 217

expanded 2 3608 5974 2171 2313
concept 3 14198 26997 12859 15300
size 4 35656 34958 25793 31634

5 104768 133089 123924 178831
Table 9. Average concept size and run-time for the k-lcs of n concepts from Not-

Galen.

k = 1 k = 2 k = 3 k = 4 k = 5
construction time (ms) < 1 < 1 1 2 3
simplification time (ms) < 1 < 1 < 1 < 1 1
expanded concept size 100 275 498 918 2261
simplified concept size 8 9 10 10 11

Table 10. Average concept size and run-time for the k-msc of individuals from Sweet.

of the resulting concept description and after simplification and the run-time
(after classification / realization) for construction of the k-lcs or k-msc and of
its simplification. The Table 8 and 10 show the results for the k-msc and k-
lcs, respectively. The concept construction time and expanded concept size for
different numbers of input concepts to the k-lcs are shown in Table 9.

For the k-lcs the resulting run-times were quite high, whereas classification
of NotGalen took only around 670 ms. Computation of the k-msc was always
quite fast—especially compared to the realization time of 5.7 s for the Sweet

ontology.
For both k-lcs and k-msc we found the expanded concept size (and thus

the construction time) to grow exponentially with the role-depth bound k. The
concept size of the simplified concepts, however, is growing much slower.

Interestingly, for the k-msc the resulting concept was the exact most specific
concept for most individuals for a role-depth of only 2 or 3 — the resulting
concept did not change for higher k. Only 3 of the 18 individuals had a msc with
maximum role-depth of 5.
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Table 9 shows how the run-time of the k-lcs grows drastically with the num-
ber of input concepts, whereas the concept size stays more or less constant. This
is the case because the product construction in the k-lcs is more expensive for
higher n. Instead of directly computing the k-lcs for n concepts, one can also
apply the binary k-lcs to the first two concepts and then successively compute
the k-lcs of the result with the next concept. Surprisingly, the accumulated con-
struction time for this method to yield the 4-lcs of 5 concepts was in average
1043.8 ms—much faster than the direct computation time of around 45 s.

To sum up, the computation of the fully expanded concept description is
very time-consuming. This is especially true for the product construction of the
k-lcs. To apply some of the simplification steps already during the construction
of the result should help the generalization algorithms to scale better.
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Abstract. Recently, different forgetting approaches for knowledge bases expressed
in different logics were proposed. For EL terminologies containing each atomic
concept at most once on the left-hand side, an approach has been proposed based
on sufficient, but not necessary acyclicity conditions. In this paper, we propose
an approach for computing a uniform interpolant for general EL terminologies.
We first show that a uniform interpolant of any EL terminology w.r.t. any sig-
nature always exists in EL enriched with least and greatest fixpoint constructors
and show how it can be computed by reducing the problem to the computation of
Most General Subconcepts and Most Specific Superconcepts for atomic concepts.
Then, we give the exact conditions for the existence of a uniform interpolant in
EL and show how it can be obtained using our algorithms.

1 Introduction

The importance of non-standard reasoning services supporting knowledge engineers in
modelling a particular domain or in understanding existing models by visualizing im-
plicit dependencies between concepts and roles was pointed out by the research commu-
nity [3], [5]. An example of such reasoning services supporting knowledge engineers in
different activities is the uniform interpolation. In particular for the understanding and
the development of complex knowledge bases, e.g., those consisting of general concept
inclusions (GCIs), the appropriate tool support would be beneficial. However, the exist-
ing approach [7] to uniform interpolation in EL is restricted to terminologies containing
each atomic concept at most once on the left-hand side of concept inclusions and ad-
ditionally satisfying sufficient, but not necessary acyclicity conditions. Lutz et al.[10]
propose an approach to uniform interpolation in expressive description logics such as
ALC w.r.t. general terminologies by encodingALC TBoxes as concepts, which, how-
ever does not solve the problem of uniform interpolation in EL.

Clearly, the existence of the results for such reasoning problems is closely related
to the notion of fixpoint semantics. For instance, Baader [2] shows that the structurally
similar problems of computing Least Common Subsumer and Most Specific Concept
can always be solved in cyclic classical TBoxes w.r.t. to greatest fixpoint semantics.
Similar results were obtained for general EL TBoxes with descriptive semantics[9] ,
however extended with the greatest fixpoint constructor (ELν). In this paper, we extend
the above results by showing that uniform interpolants preserving all EL consequences
of general EL terminologies w.r.t. an arbitrary signature can always be expressed in an
extension of EL with least fixpoint and greatest fixpoint constructors µ,ν as well as the
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disjunction used only on the left-hand side of concept inclusions. We extend the previ-
ous approach [7] and propose the algorithms for computing such uniform interpolants
for general EL terminologies based on the notion of most general subconcepts and most
specific superconcepts.

In the usual application scenarios it is rather useful to obtain uniform interpolants
expressed in the DL of the original terminology instead of introducing additional lan-
guage constructs. Therefore, in addition to the above algorithms, we derive the existence
criteria for uniform interpolants in EL (i.e., expressed without the above extension) and
show how such a uniform interpolant can be obtained using our algorithms. Full proofs
are available in the extended version of this paper [11].

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept symbols and
role symbols. An EL concept C is defined as

C ::= A|�|C �C|∃r.C

where A and r range over NC and NR, respectively. In the following, we use symbols
A, B to denote atomic concepts and C,D to denote arbitrary concepts. A terminology
or TBox consists of concept inclusion axioms C � D and concept equivalence axioms
C ≡ D used as a shorthand for C � D and D � C. While knowledge bases in general
can also include a specification of individuals with the corresponding concept and role
assertions (ABox), in this paper we abstract from ABoxes and concentrate on TBoxes.
The signature of an EL concept C or an axiom α, denoted by sig(C) or sig(α), respec-
tively, is the set of concepts and role symbols occurring in it. The signature of a TBoxT ,
in symbols sig(T ), is analogously NC ∪NR. In what follows, we denote the set NC ∪{�}

as N+C .
Before introducing the fixpoint operators, we recall the semantics of the above in-

troduced DL constructs, which is defined by the means of interpretations. An interpre-
tation I is given by the domain ∆I and a function ·I assigning each concept A ∈ NC
a subset AI of ∆I and each role r ∈ NR a subset rI of ∆I × ∆I. The interpretation of
� is fixed to ∆I. The interpretation of an arbitrary EL concept is defined inductively,
i.e., (C � D)I = CI ∩ DI and (∃r.C)I = {x | (x, y) ∈ rI, y ∈ CI}. An interpretation I
satisfies an axiom C � D if CI ⊆ DI. I is a model of a TBox, if it satisfies all of its
axioms. We say that a TBox T entails an axiom α, if α is satisfied by all models of T .
In combination with fixpoint constructors, we will additionally use concept disjunction
C � D, the semantics of which is defined by (C � D)I = CI ∪ DI.

We now introduce the logics ELµ(�),ν, a fragment of monadic second order log-
ics that we use to compute uniform interpolants of general EL TBoxes. ELµ(�),ν is an
extension of EL by the two fixpoint constructors, νX.Cν [9] and µX.Cµ [4]. X is an ele-
ment of the countably infinite set of concept variables NV and Cν, Cµ are constructed as
follows:

Cν ::= X|A|�|νX.Cν|Cν �Cν|∃r.Cν

Cµ ::= X|A|�|µX.Cµ|Cµ �Cµ|Cµ �Cµ|∃r.Cµ
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where A ranges over atomic concepts and X ranges over NV . All ELν concepts and all
ELµ(�) concepts are closed Cν and Cµ expression, i.e., all concept variables are bound
by the corresponding fixpoint constructor. Note that we define ELν concepts and all
ELµ(�) concepts in such a way, that no concept can contain both fixpoint constructors,
i.e., we do not combine the two constructors within concepts. The semantics of the
fixpoint constructors is defined using a mapping ϑ of concept variables to subsets of
∆I. For an ELµ(�),ν concept C and W ⊆ ∆I, we denote a replacement of X by W as
CI,ϑ[X→W]. The semantics of ELµ(�),ν concepts is defined by

(νX.C)I,ϑ =
�
{W ⊆ ∆I|W ⊆ CI,ϑ[X→W]

}

(µX.C)I,ϑ =
�
{W ⊆ ∆I|CI,ϑ[X→W]

⊆ W}.

In order to allow for more succinct concept expressions, we use an extended ver-
sion of the fixpoint constructs allowing for mutual recursion [12], [9]. The extended
constructors have the form νiX1...Xn.Cν,1, ...,Cν,n and µiX1...Xn.Cµ,1, ...,Cµ,n with 1 ≤
i ≤ n. The semantics is defined as follows: (νiX1...Xn.C1, ...,Cn)I,ϑ =

�
{Wi} and

(µiX1...Xn.C1, ...,Cn)I,ϑ =
�
{Wi} such that there are W1, ...,Wi−1,Wi+1, ...,Wn with re-

spectively Wj ⊆ CI,ϑ[X1→W1,...,Xn→Wn]
j and CI,ϑ[X1→W1,...,Xn→Wn]

j ⊆ Wj for 1 ≤ j ≤ n.

3 TBox Inseparability and Uniform Interpolation

Intuitively, two TBoxes T1 and T2 are inseparable w.r.t. a signature Σ if they have the
same Σ consequences, i.e., consequences whose signature is a subset of Σ. Depending
on the particular application requirements, the expressivity of those Σ consequences
can vary from subsumption queries and instance queries to conjunctive queries. In this
paper, we investigate forgetting based on concept inseparability of general EL termi-
nologies defined analogously to previous work on inseparability, e.g., [8] or [7], as
follows:

Definition 1. Let T1 and T2 be two general EL TBoxes and Σ a signature. T1 and T2
are concept-inseparable w.r.t. Σ, in symbols T1 ≡

c
Σ T2, if for all EL concepts C,D with

sig(C) ∪ sig(D) ⊆ Σ holds T1 |= C � D, iff T2 |= C � D.

Given a signature Σ and a TBox T , the aim of uniform interpolation or forgetting is
to determine a TBox T � with sig(T �) ⊆ Σ such that T ≡c

Σ T
�. T � is also called a

Uniform Interpolant (UI) of T w.r.t. Σ. We call Σ = sig(T ) \ Σ the forgotten signature.
In practise, the uniform interpolants are required to be finite. Therefore, in this paper, we
investigate the existence of such uniform interpolants in EL, i.e., uniform interpolants
expressible by a finite set of finite axioms using only the language constructs of EL. As
demonstrated by the following example, in the presence of cyclic concept inclusions, a
finite UI in EL might not exist for a particular T and a particular Σ.

Example 1. Forgetting the concept A in the TBoxT = {A� � A, A � A��, A � ∃r.A,∃s.A �
A} results in an infinite chain of consequences A� � ∃r.∃r.∃r....A�� and ∃s.∃s.∃s....A� �
A�� containing nested existential quantifiers of unbounded maximal depth.
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Such infinite chain of consequences can be easily expressed in a finite way using the
greatest fixpoint constructor ν and the least fixpoint constructor µ, thereby resulting in
the inclusion axioms A� � νX.(A�� � ∃r.X) and µX.(A� � ∃s.X) � A��. In the following,
we show that for any EL TBox T and any signature Σ, a corresponding UI of T w.r.t.
Σ in ELµ(�),ν can always be computed. For this purpose, we reduce the problem of
computing UI to the problem of computing most general subconcepts MGS(Σ,T , A) and
most specific superconcepts MSS(Σ,T , A) for each concept A ∈ sig(T ).

Definition 2. Let T be an EL TBox and Σ a signature. Further, let A ∈ NC. A set of
EL concepts Ci for 1 ≤ i ≤ n is MSS(T , Σ ,A), if:

– sig(Ci) ⊆ Σ for all i,
– T |=

�
Ci � A and T�| = A �

�
Ci,

– for all EL concepts D with sig(D) ⊆ Σ holds:
T |= D � A, iff T |= D �

�

Ci.

A set of EL concepts Ci for 1 ≤ i ≤ n is MGS(T , Σ ,A) if the following conditions are
fulfilled:

– sig(Ci) ⊆ Σ for all i,
– T |= A �

�

Ci and T�| =
�

Ci � A
– for all EL concepts D with sig(D) ⊆ Σ holds:
T |= A � D, iff T |=

�

Ci � D.

We denote MSS(A) and MGS(A) expressed in logic L by MSSL(A) and MGSL(A). If MGS(T , Σ ,A)
consists of several incomparable disjuncts Ci, it cannot be expressed by an EL concept.
However, in the following, it will come into notice that this is not further problematic
for the computation of UI, since the disjunction appears only on the left-hand side and
can therefore be expressed by the means of several inclusion axioms. If the TBox T
and the signature Σ do not change, we omit them and simply write MSS(A) and MGS(A).
For the remainder of this paper, we fix T to be a general EL TBox and Σ a signature.

4 Normalization

In order to simplify the computation of MGS and MSS, we apply the following normal-
ization thereby restricting the syntactic form of T . Analogously to the normalization
employed in other approaches ([1], [6], [7]), we decompose complex axioms into syn-
tactically simple ones. The decomposition is realized recursively by replacing expres-
sions B1 � ... � Bn and ∃r.B with fresh concept symbols until each axiom in T is one
of {A � B, A ≡ B1 � ... � Bn, A ≡ ∃r.B}, where A, B, Bi ∈ NC ∪{�} and r ∈ NR. For
this purpose, we introduce a minimal required set of fresh concept symbols A� ∈ ND
and the corresponding definition axioms (A� ≡ C) for each of them. In what follows,
we assume that knowledge bases are normalized and refer to NC ∪ ND as NC . Since
concept symbols in ND are fresh, they do not appear in Σ and are therefore elements
of the forgotten signature Σ. Further, we assume that equivalent concept symbols have
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Algorithm 1 computing MGScore(A) for an EL TBox T and a signature Σ
1: M ←

�
MGScond(D, A),D ∈ NC such that T |= D � A, A � D

2: for all A ≡
�

1≤i≤n Bi ∈ T do
3: M ← M ∪ {

�

C∈REDUCEMSS({Ci |1≤i≤n}) C|(C1, ...,Cn) ∈ MGScond(B1, A) × ... × MGScond(Bn, A)}
4: end for
5: for all A ≡ ∃r.B ∈ T with r ∈ Σ do
6: M ← M ∪{∃ r.C|C ∈ MGScond(B, A)}
7: end for
8: return REDUCEMGS(M)

Algorithm 2 computing MSScore(A) for an EL TBox T and a signature Σ
1: M ←

�
MSScond(D, A),D ∈ N+C such that T |= A � D, A � D

2: for all A ≡
�

1≤i≤n Bi ∈ T do
3: M ← M ∪ {C|C ∈ MSScond(Bi, A)}
4: end for
5: for all A ≡ ∃r.B ∈ T with r ∈ Σ do
6: M ← M ∪{∃ r.

�

C∈MSScond(B,A) C}
7: end for
8: return REDUCEMSS(M)

been replaced by a single representative of the corresponding equivalence class.1 The
following lemma summarizes the properties of normalized TBoxes.

Lemma 1. Any T can be extended into a normalized TBox T � and each model of T
can be extended into a model of T �.

Proof Sketch. All introduced concepts in ND are defined in terms of concepts with
sig(C) ⊆ sig(T ), therefore each model of T can be extended into a model of T �. ��

5 Computing MGS and MSS for Acyclic TBoxes

Given an acyclic, normalized EL TBox T and a signature Σ, Algorithms 1 and 2
compute for each A ∈ NC the elements of MGS(A) and MSS(A), respectively. The algo-
rithms are derived from a Gentzen-style proof system and proceed along the definitions
for A in T as well as the inferred inclusions between atomic concepts involving A.
The computation is indirectly recursive and consists of the procedure MGScore (MSScore)
containing the core computation and procedure MGScond (MSScond) realizing the termi-
nation of the computation: if the first parameter of MGScond (MSScond) – a concept B –
is in Σ, it returns B itself, which is the basecase of the computation; otherwise, it calls
in turn MGScore(B) (MSScore(B)). Thereby, MGScond (MSScond) ensures that MGS and MSS
only contain Σ-concepts. To avoid confusion, we denote MGS(A) and MSS(A) obtained
using this simple definition of MGScond (MSScond) by MGSacyc(A) and MSSacyc(A).

1 The elimination of equivalent symbols does not affect the correctness or completeness of the
uniform interpolation, since the removed symbols can easily be included into the resulting
TBox.
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Definition 3. Let T an acyclic EL TBox and A ∈ NC. MGSacyc(A) = MGScore(A) and
MSSacyc(A) = MSScore(A).

While this separation of concerns between MGScore(A) (MSScore(A)) and MGScond(B, A)
(MSScond(B, A)) appears not necessary in the simple case of acyclic TBoxes, in the next
section we extend the computation to the general case of GCIs by adding further condi-
tions to MGScond(B, A) (MSScond(B, A)) without changing the core computation presented
in Algorithms 1 and 2. In particular, the role of second parameter of MGScond will be-
come clear.

The functions REDUCEMGS and REDUCEMSS eliminate redundancy within the computed
results, which is not just an optimization, but will also play an important role when
deciding the existence of a uniform interpolant in EL. The two functions are defined as
follows:

Definition 4. Let M = {Ci|0 ≤ i ≤ n} be a set of EL concepts and Te = {}.

REDUCEMSS(M) = {Ci ∈ M| there is no C j ∈ M such that Te |= C j � Ci}

REDUCEMGS(M) = {Ci ∈ M| the is no C j ∈ M such that Te |= Ci � C j}

Both, REDUCE and REDUCEC , can be easily realized using standard reasoning procedures
in ELµ(�),ν, which is known to be decidable in ExpTime [4]. It is easy to see that, in case
of an acyclic TBox T , both algorithms terminate, while, in case of cyclic terminologies,
the algorithms do not need to terminate. In the next section, we extend the computation
to be applicable to general TBoxes and ensure the termination also for this case.

6 MGS and MSS for General TBoxes

As already mentioned, the computation based on the simple version of MGScond(B, A)
and MSScond(B, A) does not always terminate in case of general TBoxes such as the
TBox in Example 1. In order to exactly specify the case, in which Algorithms 1 and 2
do not terminate, we use the following graph structures representing the possible flow
of computation of MGScore and MSScore for a particular TBox T (independent from a
particular signature):

Definition 5. The MSS- and MGS-graphsAMSS(T ) andAMGS(T ) are defined as

– AMSS(T ) = (ΓMSS,Q, EMSS) with the set of edge labels ΓMSS = NR ∪{�} , the set of
states Q = NC and the set of edges EMSS = {(A, r, B)|A ≡ ∃r.B ∈ T }∪ {(A,�, B)|T |=
A � B, A � B}, where A, B ∈ Q and r ∈ ΓMSS.

– AMGS(T ) = (ΓMGS,Q, EMGS) with the set of edge labels ΓMGS = NR ∪{� ,�}, the set of
states Q = NC and the set of edges EMGS = {(A, r, B)|A ≡ ∃r.B ∈ T }∪ {(A,�, B)|T |=
A � B, A � B}∪{(A,�, B)|A ≡ B�C ∈ T for any conjunction C of elements from Q},
where A, B ∈ Q and r ∈ ΓMGS.

The two graphs can be constructed in linear time after the classification of the
normalized TBox is finished. For X ∈ {MGS, MSS}, we denote the set of the paths in
AX(T , Σ) from A to B as LX(A, B) and the set of the intersection-free paths from node
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Fig. 1. MGS-graph (left) and MSS-graph (right) of T .

A to itself as L1
X(A, A) , i.e., such paths not contain any node except for A more than

once. As illustrated by the example below, cyclic paths inAMSS(T ) andAMGS(T ) do not
necessarily coincide.

Example 2. The corresponding MGS- and MSS-graphs of the TBoxT = {A1 ≡ ∃s.A2, A3 ≡

∃r.A2, A3 � A4, A5 ≡ A3 � A4, A5 � A2, A5 � A6} are shown in Fig. 1.

Given AMSS(T ) and AMGS(T ), we can easily determine for a particular signature Σ,
whether the computation of the UI by the means of Algorithms 1 and 2 with the simple
version of MGScond(B, A) and MSScond(B, A) terminates: if neitherAMSS(T ) norAMGS(T )
contain cyclic paths formed only by concepts from Σ. Note that other cycles do not
lead to a non-termination, since MGScond(B, A) = {B} for any B ∈ Σ and A ∈ NC ,
i.e., the computation terminates. We denote such cyclic intersection-free paths from A
containing only concepts from Σ by L1,Σ

X (A, A) and the sets of concepts involved in such
cycles by ΣC,MGS = {A|A ∈ Σ, L1,Σ

MGS(A, A) � ∅} and ΣC,MSS = {A|A ∈ Σ, L1,Σ
MSS(A, A) � ∅}.

In order to be able to compute MSS and MGS also in case of ΣC,MSS ∪ ΣC,MGS � ∅, we
extend MGScond(A, B) and MSScond(A, B) by introducing a new condition for concepts
A ∈ ΣC,MSS ∪ ΣC,MGS. Here, we require the second parameter B to determine when the
quantification of the fixpoint expressions is necessary. If MGScond or MSScond is called
from outside of the corresponding cycles (ΣC,MGS for MGScond and ΣC,MSS for MSScond), we
return the complete fixpoint expression in its quantified form. Otherwise, we prefer to
return the simplest possible value necessary, which can then be used as a part of a more
complex, quantified concept expression. This second parameter is used by the caller –
MGScore or MSScore – to pass its own parameter to the called MGScond or MSScond and let it
then decide, whether to return a quantified fixpoint expression or a non-quantified one.

Definition 6. Let n,m be the cardinality of ΣC,MSS and ΣC,MGS, respectively. Further, let
Ai ∈ ΣC,MSS with 0 ≤ i ≤ n and Aj ∈ ΣC,MGS with 0 ≤ j ≤ m. Let {X(Ai)|Ai ∈ ΣC,MSS} and
{Y(Aj)|Aj ∈ ΣC,MGS} be two disjoint sets of concept variables. Then, we define for each
Ai ∈ ΣC,MSS and each Aj ∈ ΣC,MGS :

N(Ai) = νiX(A1), ..., X(An). �C∈MSScore(A1) C, ...,�C∈MSScore(An)C

M(Aj) = µ jY(A1), ...,Y(Am). �C∈MGScore(A1) C, ...,�C∈MGScore(Am)C.

MSScond(A, B) and MGScond(A, B) for any A, B ∈ NC is then given by:
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MSScond(A, B) =



{A} if A ∈ Σ
{X(A)} if A ∈ ΣC,MSS,

B ∈ ΣC,MSS

{N(A)} if A ∈ ΣC,MSS,
B � ΣC,MSS

MSScore(A) otherwise

MGScond(A, B) =



{A} if A ∈ Σ
{Y(A)} if A ∈ ΣC,MGS,

B ∈ ΣC,MGS

{M(A)} if A ∈ ΣC,MGS,
B � ΣC,MGS

MGScore(A) otherwise ,

and MGS(A) = MGScond(A,�) and MSS(A) = MSScond(A,�).

Note that, in case of an acyclic TBox, MGS(A) coincides with MGSacyc(A) described in
Section 5, and the same holds for MSS(A).

Theorem 1 (Termination). Let A ∈ NC. The computation of MSS(A) and MGS(A) al-
ways terminates in at most exponential time.

Proof Sketch. We first show by induction in case ΣC,MSS = ∅ that the computation of
MSS(A) for each A ∈ NC terminates. Then, we consider the case ΣC,MSS � ∅. MSScond en-
capsulates all concepts in ΣC,MSS into a single computational unit with direct or indirect
incoming dependencies from concepts referencing concepts in ΣC,MSS and direct or in-
direct outgoing dependencies to concepts referenced from any concept in ΣC,MSS. These
two sets of referencing and referenced concepts are disjoint by definition of cyclicity.
In the computation of N(A), either concept variables or results of acyclic computations
of MSS(B) for B not referencing ΣC,MSS are used, therefore each computation terminates.
Once N(A) is computed, references to A ∈ ΣC,MSS do not require further computation and
the remaining computation terminates as shown in case ΣC,MSS � ∅. Since the structure
of MGScond and MSScond is analogous and MGScore also only iterates through the finite in-
put directly, the argumentation for the termination of MGS is identical. The complexity
is due to the conjunction constructs introduced in line 3 of Algorithm 1. ��

Theorem 2 (Correctness MSS and MGS). Let A ∈ NC. The computed MSS(A) and
MGS(A) satisfy the conditions stated in Definition 2.

The proof of Theorem 2 is based on a Gentzen-style proof system for normalized
TBoxes.

7 Computing Uniform Interpolants

Given MGS(A) and MSS(A) for each A ∈ NC , we can compute the UI in ELµ(�),ν as
follows:

Definition 7. UI(T , Σ) = UIΣ,MSS(T , Σ) ∪ UIΣ,MGS(T , Σ) ∪ UIΣ(T , Σ) with

– UIΣ,MSS(T , Σ) = {A � D|A ∈ NC ∩ Σ,D ∈ MSS(A)},
– UIΣ,MGS(T , Σ) = {C � A|A ∈ NC ∩ Σ,C ∈ MGS(A)},
– UIΣ(T , Σ) = {C � D| there is A ∈ NC ∩ Σ, such that C ∈ MGS(A) and D ∈ MSS(A)}.

352



Now, we have to prove that UI(T , Σ) ≡c
Σ T , i.e., the TBox UI(T , Σ) is in fact a uniform

interpolant of T w.r.t. Σ.

Theorem 3 (UI). UI(T , Σ) always exists and it holds that UI(T , Σ) ≡c
Σ T .

The proof of Theorem 3 is also based on a Gentzen-style proof system for normalized
TBoxes.

Deciding the Existence of UI in EL

Clearly, if T does not contain pure Σ cycles, the UI(T , Σ) only contains EL constructs
and, therefore, a UI in EL exists. This would be a sufficient, but not necessary criterion
for the existence of a UI. From Definition 7, we can deduce a very general form of
criterion requiring the deductive closure of any UI2 to contain an (arbitrary) finite EL
justification for the set of all non-EL axioms in the UI(T , Σ). Interestingly, given the EL
TBox UIEL(T , Σ) obtained by extracting the EL part of each fixpoint concept within
the non-mutual representation of UI(T , Σ), this criterion can be easily checked, since
it is equivalent to a very simple criterion, which is an immediate consequence of the
following theorem:

Theorem 4 (Existence). Let UIEL(T , Σ) be the EL TBox obtained by extracting the
EL part of each fixpoint concept within the non-mutual representation of UI(T , Σ) and
let T � be an EL TBox with sig(T �) ⊆ Σ such that T � ≡c

Σ T . Then UIEL(T , Σ) ≡ T �.

The theorem claims that, if a finite EL justification for the set of all non-EL axioms in
UI(T , Σ) exists, it is already a contained in the non-mutual representation of UI(T , Σ).
Subsequently, a UI of T w.r.t. Σ in EL exists, iff UIEL(T , Σ) |= UI(T , Σ). The proof of
this theorem is based on the ideas stated in Lemmas 2 and 3, which show that there is a
close relation between the existence of a UI in EL and redundancy in UI(T , Σ).

Lemma 2. Let T � be an EL TBox with sig(T �) ⊆ Σ such that T � ≡c
Σ T . Further, let

A ∈ ΣC,MGS with C1 ∈ MGS(A) and C2 ∈ MSS(A). Then there is an EL concept C� such
that

– T�| = C� ≡ C1 and T�| = C� ≡ C2

– {} |= C1 � C�

– UI(T , Σ) |= C� � C2.

Let A ∈ ΣC,MSS with C1 ∈ MGS(A) and C2 ∈ MSS(A). Then there is an EL concept C�
such that

– T�| = C� ≡ C1 and T�| = C� ≡ C2

– {} |= C� � C2

– UI(T , Σ) |= C1 � C�.

2 The deductive closure is the same for any UI by definition.
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Proof Sketch. Consider C1 = µX.(A � ∃r.X), which is the simplest possible non-EL
concept in MGS. C1 is semantically equivalent to an infinite disjunction of more and
more specific EL concepts. The language constructs of EL do not allow us to specify
a concept, which captures exactly the subset of the interpretation domain CI1 in all
models. Let C2 be an arbitrary concept with UI(T , Σ) |= C1 � C2. If C1 � C2 is a
consequence of T �, then there must be an EL concept C�1, which subsumes CI1 in all
models. Since T � is a finite EL TBox, it must hold that T � |= C1 � C�1, i.e., the latter
inclusion axiom must be derived from the finite EL TBox itself (e.g., C�1 = B with
{∃r.B � B, A � B} ∈ T �). Moreover C�1 � C2 must have a justification in T � consisting
of finitely many EL axioms. The same argumentation applies to C2 as a concept with
greatest fixpoint constructs. ��

The above proof is the first step towards a connection between the redundancy in
UI(T , Σ) and the existence of a UI in EL. Since {C1 � C�,C� � C2} |= C1 � C2
and any minimal justification of {C1 � C�,C� � C2} in any T � does not contain
C1 � C2, it also holds that UI(T , Σ) ∪ UIEL(T , Σ) \ {C1 � C2} |= C1 � C2. There-
fore, if T � exists, each non-EL axiom is redundant, i.e., it could be removed from
UI(T , Σ) ∪ UIEL(T , Σ) without losing any consequences. To avoid confusion, we de-
note the non-mutual representation of MSS(A) and MGS(A) with the corresponding EL
parts explicitly appearing outside of all fixpoint quantifiers by MSS(A) ∪ EL(MSS(A))
and MGS(A) ∪ EL(MGS(A)). The functions REDUCEMSS and REDUCEMGS have to be applied
also when computing MSS(A)∪EL(MSS(A)) and MGS(A)∪EL(MGS(A)). Therefore, the re-
dundancy can only appear during the construction of UI(T , Σ) ∪ UIEL(T , Σ). From the
definition of MGS and MSS follows that the sets UIΣ,MSS(T , Σ) and UIΣ,MGS(T , Σ) in Defi-
nition 7 cannot be redundant if the sets MSS(A) ∪ EL(MSS(A)) and MGS(A) ∪ EL(MGS(A))
contain only incomparable elements. Therefore, it remains to consider the redundancy
introduced during the construction of UIΣ(T , Σ). We denote by PΣ = {(C1,C2)| there is
A ∈ Σ s.t. C1 ∈ MGS(A) ∪ EL(MGS(A)),C2 ∈ MSS(A) ∪ EL(MSS(A))} the set of all con-
cept pairs relevant for the construction of UIΣ(T , Σ) and the subset of PΣ containing
the “redundant” concept pairs by R = {(C1,C2) ∈ PΣ |(UI(T , Σ) ∪ UIEL(T , Σ)) \ {C1 �

C2} |= C1 � C2}. I.e., R is the set of concept pairs that are potentially nonessential
for the construction of a UI due to entailment of the corresponding inclusion axiom
by the remainder of a UI if the axiom itself is omitted. Due to possible dependen-
cies between the elements of R, there may be several different maximal subsets M
of R such that (UI(T , Σ) ∪ UIEL(T , Σ)) \ {C1 � C2|(C1,C2) ∈ M} |= UI(T , Σ). We
denote the set of all such maximal subsets of R as RMAX = {M|M ⊆ R, (UI(T , Σ) ∪
UIEL(T , Σ)) \ {C1 � C2|(C1,C2) ∈ M} |= UI(T , Σ), for all (C�1,C

�

2) ∈ PΣ \ M holds
(UI(T , Σ)∪UIEL(T , Σ)) \ ({C�1 � C�2}∪ {C1 � C2|(C1,C2) ∈ M}) �|= UI(T , Σ)}. The next
lemma states that if a concept pair with at least one non-EL concept is contained in one
set M ∈ RMAX, it is contained in all M ∈ RMAX.

Lemma 3. Let T � be an EL TBox with sig(T �) ⊆ Σ such that T � ≡c
Σ T . Further, let

A ∈ ΣC,MSS ∪ ΣC,MGS with C1 ∈ MGS(A) and C2 ∈ MSS(A). Let let M� ∈ RMAX such that
(C1,C2) ∈ M�. Then for each M ∈ RMAX holds (C1,C2) ∈ M.

Note that all concept pairs with at least one non-EL concept are contained in the inter-
section of RMAX, iff UIEL(T , Σ) ≡ T �. As a consequence of the above two lemmas and
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the fact that for any (C1,C2) ∈ R there exists at least one M ∈ RMAX, it is sufficient to
check whether all concept pairs with at least one non-EL concept are contained in R to
determine whether the T � in Theorem 4 exists.

8 Summary

In this paper, we provide an ExpTime algorithm for computing a uniform interpolant of
general EL terminologies preserving all EL concept inclusions for a particular signa-
ture based on the notion of most general subconcepts and most specific superconcepts.
The result of the computation is expressed in logic ELµ(�),ν—an extension of EL with
least fixpoint and greatest fixpoint constructors µ,ν as well as the disjunction used only
on the left-hand side of concept inclusions. We also state the exact existence criteria for
an EL interpolant and show how it can be obtained from the corresponding interpolant
expressed in ELµ(�),ν.
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Abstract. We propose a method for controlling the quality of (semi-)automatically
acquired axioms. We combine the manual inspection of axioms with automatic
evaluation decisions and propose decision spaces as a means to efficiently com-
pute which decisions can be automatized and which axiom evaluation order is
beneficial.

1 Introduction

Manual knowledge formalization for real-world knowledge-intensive applications is
highly time-consuming. An application of (semi-)automatic knowledge acquisition meth-
ods such as ontology learning or matching is, therefore, often considered a reasonable
way to reduce the cost of ontology development. Automatically acquired knowledge
usually has to be manually inspected; either partially, to estimate the overall quality, or
even fully, to maintain high quality standards.

So far, the knowledge representation community has been focusing on restoring the
consistency of ontologies enriched with new axioms as done in various belief revision
and repair approaches. Such approaches, however, are not directly suited in case a more
restrictive quality control is required. We support an exhaustive manual inspection of
newly acquired axioms before adding the selected ones into the ontology and call this
process interactive ontology revision. Once a decision (add or not, i.e., accept or de-
cline) has been made, we determine which other axioms can be evaluated automatically
by exploiting logical dependencies between axioms.

We illustrate the main challenges with an example in which we have already con-
firmed that the axioms

Metal � Chemical_Element (1)
Chemical_Element � Material (2)

belong to the desired consequences, while the following axioms are still to be evaluated:

Copper � Material (3)
Copper � Chemical_Element (4)
Copper � Metal (5)

If Axiom (3) is declined, we can immediately also decline Axioms (4) and (5) since
accepting the axioms would implicitly lead to the undesired consequence (3). Similarly,
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if Axiom (5) is approved, Axioms (3) and (4) are implicit consequences, which can be
approved automatically. If we start, however, with declining Axiom (5), no automatic
evaluation can be performed. It can be observed that

– a high grade of automation requires a good evaluation order, and
– approval and decline decisions have a different impact.

Which axioms have the highest impact on decline or approval and which axioms can
be automatically evaluated once a decision has been made can be determined with the
help of algorithms for automated reasoning. Even for not very expressive knowledge
representation formalisms, reasoning is an expensive task and in an interactive setting it
is crucial to minimize the number of reasoning tasks while maximizing the number of
automated decisions. We reduce the number of reasoning tasks by transferring ideas for
ontology classification [8] to our problem. For this, we introduce the notion of decision

spaces, which exploit the characteristics of the logical entailment relation between ax-
ioms to maximize the amount of information gained by reasoning. From the evaluation
of our prototypical system, it can be observed that a considerable proportion of axioms
can be evaluated automatically. Furthermore, decision spaces significantly reduce the
number of required reasoning operations, resulting in a considerable performance gain.

In the next sction we formalize the basic notions and ideas; in Section 3, we define
decision spaces, how they can be updated, and how they help to determine a beneficial
axiom order. Our evaluation is presented in Section 4. Finally, we discuss related ap-
proaches in Section 5 before we conclude in Section 6. Further details and proofs can
be found in a technical report [4]. The paper is an adaptation of our IJCAI’2011 paper
[5].

2 Revision of Knowledge Bases

The approach proposed here is not only applicable to Description Logics, but to any
logic where taking all consequences is a closure operation, i.e., extensive ({ϕ} |= ϕ),
monotone (Φ |= ϕ implies Φ ∪ Ψ |= ϕ), and idempotent (Φ |= ϕ and Φ ∪ {ϕ} |= ψ
imply Φ |= ψ). Moreover, we presume the existence of a decision procedure for logical
entailment.

The revision of a knowledge base K aims at a separation of its axioms (i.e., logical
statements) into two disjoint sets: the set of wanted consequences K|= and the set of
unwanted consequences K�|=. This motivates the following definitions.

Definition 1 (Revision State). A revision state is defined as a tuple (K ,K|=,K�|=) of

knowledge bases with K|= ⊆ K , ∅ � K�|= ⊆ K , and K|= ∩ K�|= = ∅. Given two revision

states (K ,K|=

1 ,K
�|=

1 ) and (K ,K|=

2 ,K
�|=

2 ), we call (K ,K|=

2 ,K
�|=

2 ) a refinement of (K ,K|=

1 ,K
�|=

1 ),
ifK

|=

1 ⊆ K
|=

2 andK
�|=

1 ⊆ K
�|=

2 . A revision state is complete, ifK = K|=∪K�|=
, and incomplete

otherwise. An incomplete revision state (K ,K|=,K�|=) can be refined by evaluating a

further axiom α ∈ K \ (K|= ∪ K�|=), obtaining (K ,K|= ∪ {α},K�|=) or (K ,K|=,K�|= ∪ {α}).
We call the resulting revision state an elementary refinement of (K ,K|=,K�|=).

Since we expect that the deductive closure of the wanted consequences in K|= must not
contain unwanted consequences, we introduce the notion of consistency for revision
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Algorithm 1 Interactive Knowledge Base Revision
Input: (K ,K|=0 ,K

�|=

0 ) a consistent revision state
Output: (K ,K|=,K�|=) a complete and consistent revision state
1: (K ,K|=,K�|=)← clos(K ,K|=0 ,K

�|=

0 )
2: while K|= ∪ K�|= � K do

3: choose α ∈ K \ (K|= ∪ K�|=)
4: if expert confirms α then

5: (K ,K|=,K�|=)← clos(K ,K|= ∪ {α},K�|=)
6: else

7: (K ,K|=,K�|=)← clos(K ,K|=,K�|= ∪ {α})
8: end if

9: end while

states. If we want to maintain consistency, a single evaluation decision can predeter-
mine the decision for several yet unevaluated axioms. These implicit consequences of
a refinement are captured in the revision closure.

Definition 2 (Revision State Consistency and Closure). A (complete or incomplete)

revision state (K ,K|=,K�|=) is consistent if there is no α ∈ K�|=
such that K|= |= α. The

revision closure clos(K ,K|=,K�|=) of (K ,K|=,K�|=) is (K ,K|=

c ,K
�|=

c ) with K
|=

c := {α ∈ K |
K|= |= α} and K

�|=

c := {α ∈ K | K|= ∪ {α} |= β for some β ∈ K�|=}.

We can show the following useful properties of the closure of consistent revision states:

Lemma 1. For (K ,K|=,K�|=) a consistent revision state,

1. clos(K ,K|=,K�|=) is consistent,

2. every elementary refinement of clos(K ,K|=,K�|=) is consistent,

3. every consistent complete refinement of (K ,K|=,K�|=) is a refinement of clos(K ,K|=,K�|=).

Algorithm 1 employs the above properties to implement a general methodology for
interactive knowledge base revision.

Instead of starting with empty sets for K|=

0 and K�|=

0 , we can initialize the latter sets
with approved and declined axioms from a previous revision or add axioms of the
knowledge base that is being developed toK|=

0 . We can further initializeK�|=

0 with axioms
that express inconsistency and unsatisfiability of predicates (i.e. of classes or relations)
in K , which we assume to be unwanted consequences.

In line 3, an axiom is chosen that is evaluated next. As motivated in the introduction,
a random decision can have a detrimental effect on the amount of manual decisions.
Ideally, we want to rank the axioms and choose one that allows for a high number of
consequential automatic decisions. For this purpose, we introduce the following notion
of axiom impact.

Definition 3 (Impact). Let (K ,K|=,K�|=) be a consistent revision state with α ∈ K and

let ?(K ,K|=,K�|=) := |K \ (K|= ∪ K�|=)|. For an axiom α,

– the approval impact is: impact
+(α) = ?(K ,K|=,K�|=) − ?(clos(K ,K|= ∪ {α},K�|=)),

– the decline impact is: impact
−(α) = ?(K ,K|=,K�|=) − ?(clos(K ,K|=,K�|= ∪ {α})),

– the guaranteed impact is: guaranteed(α) = min(impact
+(α), impact

−(α)).
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The approval (decline) impact of an axiom α is determined by the number of au-
tomatically evaluated axioms in case α is approved (declined), while the guaranteed
impact is the minimum of the two impact functions.

In the example from Section 1, Axioms (3), (4) and (5) have an approval impact
of 0, 1, and 2, a decline impact of 2, 1, and 0, and a guaranteed impact of 0, 1, and 0,
respectively. We show in the evaluation that the ratio of accepted axioms to all axioms
that are to be evaluated can be used to determine which impact function is best.

Since computing such an impact as well as computing the closure after each evalu-
ation (lines 1, 5, and 7) can be considered very expensive, we next introduce decision

spaces, auxiliary data structures which significantly reduce the cost of computing the
closure upon elementary revisions and provide an elegant way of determining high im-
pact axioms.

3 Decision Spaces

Intuitively, the purpose of decision spaces is to keep track of the dependencies between
the axioms in such a way, that we can read-off the consequences of revision state re-
finements upon an approval or a decline of an axiom, thereby reducing the required
reasoning operations. Furthermore, we will show how we can update these structures
after a refinement step avoiding many costly recomputations.

Definition 4 (Decision Space). Given a revision state (K ,K|=,K�|=) with K�|= � ∅, the

according decision space D(K ,K|=,K�|=) = (K ?, E,C) contains the set

K
? := K \ ({α | K |=

|= α} ∪ {α | K |=
∪ {α} |= β for some β ∈ K�|=

})
of unevaluated axioms together with two binary relations, E (entails) and C (conflicts)

on K ?
:

αEβ iff K|=
∪ {α} |= β αCβ iff K|=

∪ {α,β } |= γ for some γ ∈ K�|=

The requirement that K�|= � ∅ is without loss of generality since we can always add
an axiom that expresses a contradiction (an inconsistency), which is clearly undesired.
As a direct consequence of this definition, we have D(K ,K|=,K�|=) = Dclos(K ,K|=,K�|=). Also
the following properties are immediate from the above definition:

Lemma 2. Given D(K ,K|=,K�|=) = (K ?, E,C) for a revision state (K ,K|=,K�|=), K�|= � ∅,
P1 (K ?, E) is a quasi-order (i.e., reflexive and transitive),

P2 C is symmetric,

P3 αEβ and βCγ imply αCγ for all α,β ,γ ∈ K ?
, and

P4 if αEβ then αCβ does not hold.

On the other hand, the properties established in the above lemma are characteristic:1

Lemma 3. Let V be finite set and let E,C ⊆ V × V be relations for which (V, E) is

a quasi-order, C = C
−
, E ◦ C ⊆ C and E ∩ C = ∅. Then there is a decision space

D(K ,K|=,K�|=) isomorphic to (V, E,C).

1 As usual, we let R
− = {(y, x) | (x, y) ∈ R} as well as R ◦ S = {(x, z) | (x, y) ∈ R, (y, z) ∈

S for some y}.
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The following lemma shows how decision spaces can be used for calculating clo-
sures of updated revision states and impacts of axioms. As usual for (quasi)orders, we
define ↑α = {β | αEβ} and ↓α = {β | βEα}. Moreover, we let �α = {β | αCβ}.

Lemma 4. Given D(K ,K|=,K�|=) = (K ?, E,C) for a revision state (K ,K|=,K�|=) such that

(K ,K|=,K�|=) = clos(K ,K|=,K�|=) with K�|= � ∅ and α ∈ K ?
, then

1. clos(K ,K|= ∪ {α},K�|=) = (K ,K|= ∪ ↑α,K�|= ∪ �α) and

2. clos(K ,K|=,K�|= ∪ {α}) = (K ,K|=,K�|= ∪ ↓α).
3. impact

+(α) = |↑α| + |�α|
4. impact

−(α) = |↓α|

Hence, the computation of the revision closure (lines 5 and 7) and axiom impacts does
not require any entailment checks if the according decision space is available. For the
computation of decision spaces, we exploit the structural properties established in Lem-
mas 2 and 3 in order to reduce the number of required entailment checks in cases where
the relations E and C are partially known. For this purpose, we define the rules R0
to R9, which describe the connections between the relations E and C and their comple-
ments E and C. The rules can serve as production rules to derive new instances of these
relations thereby minimizing calls to costly reasoning procedures.

R0 → E(x, x) reflexivity of E

R1 E(x, y) ∧ E(y, z)→ E(x, z) transitivity of E

R2 E(x, y) ∧C(y, z)→ C(x, z) (P3)
R3 C(x, y)→ C(y, x) symmetry of C

R4 E(x, y)→ C(x, y) disjointness of E and C

R5 C(x, y)→ C(y, x) symmetry of C

R6 E(x, y) ∧C(x, z)→ C(y, z) (P3)
R7 C(x, y)→ E(x, y) disjointness of E and C

R8 C(x, y) ∧C(y, z)→ E(x, z) (P3)
R9 E(x, y) ∧ E(x, z)→ E(y, z) transitivity of E

An analysis of the dependencies between the rules R0 to R9 reveals an acyclic structure
(indicated by the order of the rules). Therefore E,C,C, and E can be saturated one after
another. Moreover, the exhaustive application of the rules R0 to R9 can be condensed
into the following operations:

E ← E
∗

C ← E ◦ (C ∪C
−) ◦ E

−

C ← E
− ◦ (C ∪ Id ∪C

−

) ◦ E

E ← E
− ◦ (C ◦C ∪ E) ◦ E

−

The correctness of the first operation (where (·)∗ denotes the reflexive and transitive
closure) is a direct consequence of R0 and R1. For the second operation, we exploit the
relationships

E◦C◦E
− R2
⊆ C◦E

− R3
⊆ C

−
◦E
− R2
⊆ C

− R3
⊆ C

E◦C
−
◦E
− R2
⊆ E◦C

− R3
⊆ E◦C

R2
⊆ C

that can be further composed into
E◦C◦E

−
∪ E◦C

−
◦E
− = E ◦ (C ∪C

−) ◦ E
−
⊆ C
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Conversely, iterated backward chaining for C w.r.t. R2 and R3 yields E ◦ (C ∪C
−) ◦ E

−

as a fixpoint, under the assumption E = E
∗. The correctness of the last two operations

can be shown accordingly.

Algorithm 2 Decision Space Completion
Input: (K ,K|=,K�|=) a consistent revision

state; E, E,C,C subsets of the entail-
ment and conflict relations and their
complements

Output: (K ?, E,C) the corresponding deci-
sion space

1: E ← E
∗

2: C ← E ◦C ◦ E
−

3: C ← C ∪C
−

4: C ← E
− ◦C ∪ IdK? ◦ E

5: C ← C ∪C
−

6: E ← (C ◦C) ∪ E

7: E ← E
− ◦ E ◦ E

−

8: while E ∪ E � K ? × K ?
do

9: pick one (α,β ) ∈ K ? × K ? \ (E ∪ E)
10: if K|= ∪ {α} |= β then

11: E
� ← transupdatediff(E, (α,β ))

12: E ← E ∪ E
�

13: C
� ← (E� ◦C) \C

14: C
� ← C

� ∪ (C� ◦ E
�−) \C

15: C ← C ∪C
�

16: C
�

← (E�− ◦C) \C

17: C
�

← C
�

∪ (C
�

◦ E
�) \C

18: C ← C ∪C
�

19: E
�

← ((C
�

◦C) ∪ (C ◦C
�)) \ E

20: E ← E ∪ E
�

21: E
�

← ((E�− ◦ E) ∪ (E− ◦ E
�

)) \ E

22: E ← E ∪ E
�

∪ (E
�

◦ E
−) ∪ (E ◦ E

�−)
23: else

24: E ← E ∪ (E− ◦ {(α,β )} ◦ E
−)

25: end if

26: end while

27: while C ∪C � K ? × K ?
do

28: pick one (α,β ) ∈ K ? × K ? \ (C ∪C)
29: if K|= ∪ {α,β } |= γ for some γ ∈ K�|=

then

30: C
� ← E ◦ {(α,β ), (β,α )} ◦ E

−

31: C ← C ∪C
�

32: E ← E ∪ (E− ◦C ◦C
� ◦ E

−)
33: else

34: C
�

← (E− ◦ {(α,β ), (β,α )} ◦ E) \C

35: C ← C ∪C
�

36: E ← E ∪ (E− ◦C
�

◦C ◦ E
−)

37: end if

38: end while

Algorithm 3 Decision Space Update on
Declining α
Input: D(K ,K|= ,K�|=) a decision space, α ∈ K ? an

axiom
Output: D(K ,K|= ,K�|=∪{α}) the updated decision

space
1: K ? ← K ? \ ↓α,
2: E ← E ∩ (K ? × K ?)
3: E ← E ∩ (K ? × K ?)
4: C ← C ∩ (K ? × K ?)
5: C ← E

− ◦ E

6: while C ∪C � K ? × K ?
do

7: pick one (β,γ ) ∈ K ? × K ? \ (C ∪C)
8: if K|= ∪ {β,γ } |= α then

9: C ← C ∪ (E ◦ {(β,γ ), (γ,β )} ◦ E
−)

10: else

11: C ← C ∪ (E− ◦ {(β,γ ), (γ,β )} ◦ E)
12: end if

13: end while

Algorithm 4 Decision Space Update on
Approving α
Input: D(K ,K|= ,K�|=) a decision space, α ∈ K ? an

axiom
Output: D(K ,K|=∪{α},K�|=) the updated decision

space
1: K ? ← K ? \ (↑α ∪ �α)
2: E ← E ∩ (K ? × K ?)
3: C ← C ∩ (K ? × K ?)
4: C ← E

− ◦ E

5: E ← E
− ◦C ◦C ◦ E

−

6: execute lines 8–38 from Alg. 2
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Algorithm 2 realizes the cost-saving identification of the complete entailment and
conflict relations of a decision space. Maintaining sets of known entailments (E), non-
entailments (E), conflicts (C) and non-conflicts (C), the algorithm always closes these
sets under the above operations before it cautiously executes expensive deduction checks
to clarify missing cases. First, the initially known (non-)entailments and (non-)conflicts
are closed in the aforementioned way (lines 1–7). There and in the subsequent lines,
we split computations into several ones where appropriate in order to minimize the size
of sets subject to the join operation ( ◦ ). Lines 8–26 describe the successive clarifica-
tion of the entailment relation (for cases where neither entailment nor non-entailment
is known yet) via deduction checks. After each such clarification step, the sets E, E,C,
and C are closed. Thereby, we exploit known properties of intermediate results such as
already being transitive or symmetric to avoid redoing the according closure operations
unnecessarily (transupdatediff computes, for a relation R and a pair of elements
(α,β ), the difference between the reflexive transitive closure of R extended with (α,β )
and R

∗, i.e., (R ∪ {(α,β )})∗ \ R
∗)). Likewise, we also avoid redundant computations and

reduce the size of the input sets for the join operations by explicitly bookkeeping sets
E
�,C�,C

�

, and E
�

containing only the instances newly added in the current step. Lines
27–38 proceed in the analog way for stepwise clarification of the conflicts relation.

3.1 Updating Decision Spaces

We proceed by formally describing the change of the decision space as a consequence of
approving or declining one axiom with the objective of again minimizing the required
number of entailment checks. We first consider the case that an expert approves an
axiom α ∈ K ?, and hence α is added to the set K|= of wanted consequences.

Lemma 5. Let D(K ,K|=,K�|=) = (K ?, E,C), α ∈ K ?
, D(K ,K|=∪{α},K�|=) = (K ?

new, E
�,C�). Then

– K ?
new = K

? \ (↑α ∪ �α),
– βEγ implies βE�γ for β,γ ∈ K ?

new, and

– βCγ implies βC�γ for β,γ ∈ K ?
new.

Essentially, the lemma states that all axioms entailed by α (as witnessed by E)
as well as all axioms conflicting with α (indicated by C) will be removed from the
decision space if α is approved. Moreover due to monotonicity, all positive information
about entailments and conflicts remains valid. Algorithm 4 takes advantage of these
correspondences when fully determining the updated decision space.

The next lemma considers changes to be made to the decision space on the denial
of an axiom α by characterizing it as unwanted consequence.

Lemma 6. Let D(K ,K|=,K�|=) = (K ?, E,C), α ∈ K ?
, D(K ,K|=,K�|=∪{α}) = (K ?

new, E
�,C�). Then

– K ?
new = K

? \ ↓α,

– βEγ exactly if βE�γ for β,γ ∈ K ?
new, and

– βCγ implies βC�γ for β,γ ∈ K ?
new.

The lemma shows that the updated decision space can be obtained by removing all
axioms that entail α. Furthermore entailments between remaining axioms remain unal-
tered whereas the set of conflicts may increase. Algorithm 3 implements the respective
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Table 1. Characteristics of the evaluated datasets

dataset size validity ratio dataset size validity ratio
S 1 54 94% S 4 35 48%
S 2 60 100% S 5 26 26%
S 3 40 45% S 6 72 12%

decision space update, additionally exploiting that new conflicts can only arise from
derivability of the newly declined axiom α.

Algorithms 4 and 3 have to be called in Alg. 1 after the accept (line 5) or decline
revision step (line 7), respectively.

For n the number of involved axioms, Algorithms 2, 4, and 3 run in time bounded by
O(n5) and space bounded by O(n2) if we treat entailment checking as a constant time
operation. Without the latter assumption, the complexity of reasoning usually domi-
nates. For example, if the axioms use all features of OWL 2 DL, entailment checking is
N2ExpTime-complete, which then also applies to our algorithm.

4 Evaluation

For a first evaluation of the developed methodology, we choose a scenario motivated
by ontology-supported literature search. The hand-crafted NanOn ontology models the
scientific domain of nano technology, including substances, structures, procedures used
in that domain. The ontology, denoted here with O, is specified in the Web Ontology
Language OWL DL [6] and comprises 2,289 logical axioms. The project associated
to NanOn aims at developing techniques to automatically analyze scientific documents
for the occurrence of NanOn concepts. When such concepts are found, the document
is automatically annotated with NanOn concepts to facilitate topic-specific information
retrieval on a fine-grained level. Since total accuracy of the automatically added an-
notations (which can be seen as logical axioms expressing factual knowledge) cannot
be guaranteed, they need to be inspected by human experts, which provides a natural
application scenario for our approach.

For our evaluation, we employed tools for automated textual analysis to produce a
set of document annotations, the validity of which was then manually evaluated. This
provided us with sets of valid and invalid annotation facts (denoted by A+ and A−,
respectively). To investigate how the a priori quality of each axiom set influences the
results, we created six distinct annotation sets S 1 to S 6 using different annotation meth-
ods. The different methods result in different validity ratios |A+|/(|A+| + |A−|) of the
datasets, where |S | denotes the cardinality of a set S . The size of each set followed by
the corresponding validity ratio in percent are shown in Table 1.

We then applied our methodology starting from the revision state (O ∪ O− ∪ A+ ∪
A−,O,O−) with O containing the axioms of the NanOn ontology and with O− con-
taining axioms expressing inconsistency and concept unsatisfiability. We obtained a
complete revision state (O∪O− ∪A+ ∪A−,O∪A+,O− ∪A−) where on-the-fly expert
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Table 2. Revision results for different axiom choosing strategies

impact
+

guaranteed impact
− upper bound rand

S 1 69% 4,677 36,773 48% 11,860 51,677 9% 17,828 46,461 74% 4,110 11,399 45%
S 2 83% 2,584 18,702 65% 8,190 55,273 12% 20,739 67,625 83% 2,645 27,850 60%
S 3 20% 3,137 26,759 43% 3,914 27,629 28% 9,947 46,461 48% 3,509 13,202 31%
S 4 29% 2,198 15,601 43% 3,137 18,367 31% 7,309 10,217 51% 2,177 7,002 31%
S 5 8% 1,778 11,443 39% 1,290 6,647 54% 954 1,438 54% 801 1,989 41%
S 6 13% 9,352 212,041 54% 8,166 99,586 76% 6,797 16,922 76% 5,219 19,861 57%

decisions about approval or decline were simulated according to the membership inA+
orA−. For computing the entailments, we used the OWL reasoner HermiT.2

For each set, Table 2 shows the effects of the different choice functions impact
+,

guaranteed and impact
− by measuring the reduction of expert decisions compared to

evaluating the whole set manually (1st column for each axiom set and choice function),
followed by the number of necessary reasoner calls when using decision spaces (2nd

column for each axiom set and choice function) and the corresponding number of rea-
soner calls without the use of decision spaces (3rd column for each axiom set and choice
function). As a baseline, we also include the reduction of expert decisions when choos-
ing axioms randomly (last column). The upper bound for the manual effort reduction
was obtained by applying the “impact oracle” function:

KnownImpact(α) =




impact+(α) if α ∈ A+,
impact−(α) if α ∈ A−.

The results of the evaluation show that:
– Decision spaces save on average 75% of reasoner calls, which leads to a consid-

erable overall performance gain given that, on average, 88% of computation time
in our experiments is spent within the methods of the reasoner according to our
profiling measurements. The experiments with the same datasets took on average 8
times longer without the application of decision spaces.

– Compared to an all manual revision, a significant effort reduction of on average
44% is already achieved when axioms are chosen randomly for each expert decision
by automatically approving and declining axioms based on the computed revision
closure. However, there is still some space for improvement, since the “impact
oracle” manages to reduce the manual effort of revision on average by 64%.

– If the ratio of approved axioms is rather high or rather low, impact
+ or impact

−,
respectively, perform best.

– If the ratios of approved and declined axioms are more or less equal, the guaranteed
impact is the best choice.

From these observations we can conclude that the appropriate axiom choosing strategy
has to be selected based on the expected ratio of valid axioms. We see that an application
of the most suitable axiom choosing strategy for each validity ratio, listed in grey rows,
yields on average an effort reduction of 61%, which is 15% higher than the performance
of random and only 3% less than the effort reduction achieved by the “impact oracle”.

2 http://www.hermit-reasoner.com
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5 Related Work

In our previous work [3], we proposed an approach for determining a beneficial order
of axiom evaluation under the assumption of a high validity ratio within the axiom set
under investigation. The latter approach aims at reducing the manual effort of revision
by eliminating the redundancy within the corresponding axiom set, which is the major
factor leading to automatic axiom evaluation under the assumption of a high validity
ratio. Prior to the interactive revision, a minimal non-redundant subset of axioms under
investigation is identified and then reviewed by the expert thereby not requiring the
expensive computation of axiom impacts after each expert decision.

In addition to our own work, we are aware of two approaches for supporting the
revision of ontological data based on logical appropriateness: Meilicke et al. [2] and
Jiménez-Ruiz et al. [1] propose two approaches, both of which are applied in the con-
text of mapping revision. In these approaches, dependencies between evaluation deci-
sions are determined based on a set of logical criteria, each of which is a subset of the
criteria that can be derived from the notion of revision state consistency introduced in
Definition 1. Similarly to our approach, Meilicke et al. aim at reducing the manual ef-
fort of mapping revision by relying on a heuristic notion of impact. The approach is,
however, difficult to generalize to the revision of ontologies since the notion of impact
is based on the hypothetically possible number of mapping axioms for two ontologies
O1 and O2 and further relies on the assumption that the set of possible mapping axioms
is mostly disjoint from the axioms in O1 ∪ O2. This assumption is justified in case of
mapping revision, since axioms in O1 (O2) usually refer only to entities from O1 (O2),
while mapping axioms link entities from O1 and O2. For interactive ontology revision
in general, however, the axioms that are to be revised are typically not disjoint from the
already evaluated axioms.

The focus of ContentMap [1] lies within the visualization of consequences and user
guidance in case of difficult evaluation decisions, while the minimization of the manual
and computational effort required for the revision is out of scope. ContentMap selec-
tively materializes and visualizes the logical consequences caused by the axioms under
investigation and supports the revision of those consequences. ContentMap requires an
exponential number of reasoning operations in the size of the ontology under revision
since dependencies between the consequences are determined by comparing their jus-

tifications (sets of axioms causing the entailment aka minAs). Our approach, however,
requires at most a polynomial number of entailment checks.

Another strand of work starting from [7] is related to the overall motivation of en-
riching knowledge bases with additional expert-curated knowledge in a way that mini-
mizes the workload of the human expert: based on the attribute exploration algorithm
from formal concept analysis (FCA), several works have proposed structured interac-
tive enumeration strategies of inclusion dependencies or axioms of certain fragments of
description logics which then are to be evaluated by the expert. While similar in terms
of the workflow, the major difference of these approaches to ours is that the axioms are
not pre-specified but created on the fly and therefore, the exploration may require (in
the worst case exponentially) many human decisions.
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6 Conclusions and Future Work

In this paper, we proposed a methodology for supporting interactive ontology revision
based on logical criteria. We stated consistency criteria for revision states and intro-
duced the notion of revision closure, based on which the revision of ontologies can
be partially automatized. Even though a significant effort reduction can be achieved
when axioms are chosen randomly for each expert decision, choosing an appropriate
order usually yields a higher effort reduction. We introduced the notion of axiom impact
which is used to determine a beneficial order of evaluation. Depending on the expected
ratio of approved axioms, impact

+, impact
− or the guaranteed impact can be employed

in order to achieve a higher effort reduction. In fact, in three out of six cases during the
evaluation, the maximum possible effort reduction was achieved when employing the
best suitable axiom choosing strategy. Moreover, we provided an efficient and elegant
way of determining the revision closure and axiom impact by computing and updating
structures called decision spaces which saved 75% of reasoner calls during our evalua-
tion.

In our future work, we will investigate how the axiom choosing strategy can be
adjusted according to the current ratio of approved axioms. Another open question is
how the axioms under investigation can be efficiently partitioned into sets that can be
reviewed independently.
Acknowledgments This work is supported by the German Federal Ministry of Educa-
tion and Research (BMBF) under the SAW-project NanOn, by the German Research
Foundation (DFG) under the project ExpresST, and by the EPSRC project HermiT:
Reasoning with Large Ontologies.
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Abstract. Query answering in Ontology Based Data Access (OBDA) exploits
the knowledge of an ontology’s TBox to deal with incompleteness of the ABox
(or data source). Current query-answering techniques with DL-Lite require expo-
nential size query reformulations, or expensive data pre-processing. Also, these
techniques present severe redundancy issues when dealing with ABoxes that are
already (partially) complete. It has been shown that addressing redundancy is not
only required for tractable implementations of decision procedures, but may also
allow for sizable improvements in execution times. Considering the previous obser-
vations, in this paper we extend the results aiming at improving query answering
performance in OBDA systems that were developed in [9] for DL-LiteF , to the
case where also role inclusions are present in the TBox. Specifically, we first show
that we can characterize completeness of an ABox by means of dependencies,
and that we can use these to optimize DL-LiteA TBoxes. Second, we show that
in OBDA systems we can create ABox repositories that appear to be complete
w.r.t. a significant portion of any DL-LiteA TBox. The combination of these results
allows us to design OBDA systems based on DL-LiteA in which redundancy is
minimal, the exponential aspect of query answering is notably reduced and that
can be implemented efficiently using existing RDBMSs.

1 Introduction

The current approaches to Ontology Based Data Access (OBDA) with lightweight
Description Logics (DLs) of the DL-Lite family [2] rely on query reformulation. These
techniques are based on the idea of using the ontology to rewrite a given query into a
new query that, when evaluated over the data sources, returns the certain answers to the
original query. Experiments with unions of conjunctive queries (UCQs) have shown that
reformulations may be very large, and that the execution of these reformulations suffers
from poor performance. This triggered the development of alternative reformulation
techniques [6,10], in which the focus has been on the reduction of the number of
generated queries/rules. These techniques have shown some success, however query
reformulation in all of them is still worst-case exponential in the size of the original query.
Alternative approaches [5] use the expansion of the extensional layer of the ontology (i.e.,
the ABox) w.r.t. the intensional knowledge (i.e., the TBox) to avoid query reformulation
almost entirely. However, the cost of data expansion imposes severe limitations on the
� This work has been supported by the EU FP7-ICT Project ACSI (257593).
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system. We believe that approaching the problem of the high cost of query answering
in OBDA systems requires a change of focus: namely, from the ’number of queries’
perspective, to the perspective that takes into account the ’duplication in the answers’
appearing in query results under SQL multiset semantics. Duplication in results is a
sign of redundancy in the reasoning process; it not only generated not only by the
reformulation procedures as traditionally thought, since also techniques based on ABox
expansion show this problem. Instead, redundancy is the consequence of ignoring the
semantics of the data sources. In particular, when the data in a source (used to populate
the ABox of the ontology) already satisfies an inclusion assertion of the TBox (i.e., is
complete w.r.t. such an inclusion assertion), then using that inclusion assertion during
query answering might generate redundant answers [8]. As noted in [4], the runtime
of decision procedures might change from exponential to polynomial if redundancy is
addressed, and this is also the case in OBDA query answering. In [9], we addressed both
problems, redundancy and the exponential blow-up of query reformulations, for the DL
DL-LiteF . We followed two complementary directions and in this paper we extend both
to deal also with the case where role inclusions are present in the TBox.

Specifically, in [9], we first presented an approach to take into account completeness
of the data with respect to DL-LiteF TBoxes. We characterized completeness using ABox

dependencies and showed that it is possible to use dependencies to optimize the TBox
in order to avoid redundant computations independently of the reasoning technique.
Second, we focused on how we can optimally complete ABoxes in OBDA systems by
relying on the fact that in OBDA systems it is possible to manipulate not only the data,
but also the mappings and database schema. This allows us to conceive procedures to
store an ABox in a source in such a way that it appears to be complete with respect to a
significant portion of the TBox, but without actually expanding the data. We presented
two such procedures, one for general and one for ’virtual’ OBDA systems, both designed
to take advantage of the features of modern RDBMSs effectively. These results allow for
the design of systems that can delegate reasoning tasks (e.g., dealing with hierarchies,
existentially quantified individuals, etc.) to stages of the reasoning process where these
tasks can be handled most effectively. The result is a (sometimes dramatic) reduction of
the exponential runtime and an increase in the quality of the answers due to the reduction
of duplication. Here, we extend the TBox optimization procedure and one of the ABox
completion mechanisms to DL-LiteA ontologies, in which role inclusions are allowed.

The rest of the paper is organized as follows: Section 2 gives technical preliminaries.
Section 3 presents our extension to DL-LiteA of the general technique for optimizing
TBoxes w.r.t. dependencies. Section 4 introduces data dependencies in OBDA systems,
describing why it is natural to expect completeness of ABoxes. Section 5 presents our
extension of one of the techniques for completing ABoxes in OBDA systems to allow
for DL-LiteA ontologies. Section 6 concludes the paper.

2 Preliminaries

In the rest of the paper, we assume a fixed vocabulary V of atomic concepts, denoted A
(possibly with subscripts), and atomic roles, denoted P , representing unary and binary
relations, respectively, and an alphabet Γ of (object) constants.
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Databases. In the following, we regard a database (DB) as a pair D = �R, I�, where R
is a relational schema and I is an instance of R. The active domain ΓD of D is the set of
constants appearing in I, which we call value constants. An SQL query ϕ over a DB
schema R is a mapping from a DB instance I of R to a set of tuples.
DL-Lite ontologies. We introduce the DL DL-LiteA, on which we base our results. In DL-

LiteA, a basic role, denoted R, is an expression of the form P or P−, and a basic concept,
denoted B, is an expression of the form A or ∃R. An ontology is a pair O = �T ,A�

where T is a TBox and A an ABox. A TBox is a finite set of (positive) inclusions

B1 � B2 or R1 � R2, disjointness assertions B1 � ¬B2, and functionality assertions

(funct R). An ABox is a finite set of membership assertions A(c) or P (c, c�), where
c, c� ∈ Γ . Moreover, DL-LiteA imposes the syntactic restriction that a role P declared
functional, via (funct P ), or inverse functional, via (funct P−), cannot be specialized,
i.e., cannot appear in the right-hand side of a role inclusion assertion R � P or R � P−.
Queries over ontologies. An atom is an expression of the form A(t) or P (t, t�), where
t and t� are atom terms, i.e., variables or constants in Γ . An atom is ground if it contains
no variables. A conjunctive query (CQ) q over an ontology O is an expression of the
form q(x) ← β(x,y), where x is a tuple of distinct variables, called distinguished, y is
a tuple of distinct variables not occurring in x, called non-distinguished, and β(x,y) is
a conjunction of atoms with variables in x and y, whose predicates are atomic concepts
and roles of O. We call q(x) the head of the query and β(x,y) its body. A union of

CQs (UCQ) is a set of CQs (called disjuncts) with the same head. Given a CQ Q with
body β(z) and a tuple v of constants of the same arity as z, we call a ground instance

of Q the set β[z/v] of ground atoms obtained by replacing in β(z) each variable with
the corresponding constant from v.
Semantics. An interpretation I = (∆I , ·I) consists of a non-empty interpretation

domain ∆I and an interpretation function ·I that assigns to each constant c an element
cI of ∆I , to each atomic concept A a subset AI of ∆I , and to each atomic role P a
binary relation over ∆I . Moreover, basic roles and basic concepts are interpreted as
follows: (P−)I = {(o2, o1) | (o1, o2) ∈ P I} and (∃R)I = {o | ∃o�. (o, o�) ∈ RI}.
An interpretation I is a model of B1 � B2 if BI

1 ⊆ BI
2 , of R1 � R2 if RI

1 ⊆ RI
2 , of

B1 � ¬B2 if BI
1 ∩ BI

2 = ∅, and of (funct R) if for each o, o1, o2 ∈ ∆I we have that
(o, o1) ∈ RI and (o, o2) ∈ RI implies o1 = o2. Also, I is a model of A(c) if cI ∈ AI ,
and of P (c, c�) if (cI , c�I) ∈ P I . In DL-LiteA, we adopt the Unique Name Assumption
(UNA), which enforces that for each pair of constants o1, o2, if o1 �= o2, then oI1 �= oI2 .
For a DL-LiteA assertion α (resp., a set Θ of DL-LiteA assertions), I |= α (resp., I |= Θ)
denotes that I is a model of α (resp., Θ). A model of an ontology O = �T ,A� is an
interpretation I such that I |= T and I |= A. An ontology is satisfiable if it admits a
model. An ontology O entails an assertion α, denoted O |= α, if every model of O is
also a model of α. Similarly, for a TBox T and an ABox A instead of O. The saturation

of a TBox T , denoted sat(T ), is the set of DL-LiteA assertions α s.t. T |= α. Notice
that sat(T ) is finite, hence a TBox.

Let ΓA denote the set of constants appearing in an ABox A. The answer to a CQ
Q = q(x) ← β(x,y) over O = �T ,A� in an interpretation I, denoted ans(Q,O, I),
is the set of tuples c ∈ ΓA × · · · × ΓA such that there exists a tuple c� ∈ ΓA × · · · × ΓA
such that the ground atoms in β[(x,y)/(c, c�)] are true in I. The answer to an UCQ
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Q in I is the union of the answers to each CQ in Q. The certain answers to Q in O,
denoted cert(Q,O), is the intersection of every ans(Q,O, I) for all models I for O.
The answer to Q over an ABox A, denoted eval(Q,A), is the answers to Q over A
viewed as a DB instance. A perfect reformulation of Q w.r.t. a TBox T is a query Q� such
that for every ABox A such that �T ,A� is satisfiable, cert(Q, �T ,A�) = eval(Q�,A).
Mappings. We adopt the definitions for ontologies with mappings from [7]. First we
extend interpretations to be able to create object constants from the value constants in a
DB D. Given an alphabet Λ of function symbols we define the set τ(Λ,ΓD) of object

terms as the set of all terms of the form f(d1, . . . , dn), where f ∈ Λ, the arity of f is
n, and d1, . . . , dn ∈ ΓD. We set Γ = ΓD ∪ τ(Λ,ΓD), and we extend the interpretation
function so that for each c ∈ τ(Λ,ΓD) we have that cI ∈ ∆I . We extend queries by
allowing the use of predicate arguments that are variable terms, i.e., expressions of the
form f(t), where f ∈ Λ with arity n and t is an n-tuple of variables or value constants.
Given a TBox T and a DB D, a mapping (assertion) m for T is an expression of the
form ϕ(x) ❀ ψ(t) where ϕ(x) is an SQL query over D with answer variables x, and
ψ(t) is a CQ over T without non-distinguished variables using variable terms over
variables in x. We call the mapping simple if the body of ψ(t) consists of a single atom,
and complex otherwise. A simple mapping is for an atomic concept A (resp., atomic role
P ) if the atom in the body of ψ(t) has A (resp., P ) as predicate symbol. In the following,
we might abbreviate the query ψ in a mapping by showing only its body. A virtual ABox

V is a tuple �D,M�, where D is a DB and M a set of mappings, and an ontology with

mappings is a tuple OM = �T ,V�, where T is a TBox and V = �D,M� is a virtual
ABox in which M is a set of mappings for T .

An interpretation I satisfies a mapping assertion ϕ(x) ❀ ψ(t) w.r.t. a DB D =
�R, I� if for every tuple v ∈ ϕ(I) and for every ground atom X in ψ[x/v] we have that:
if X has the form A(f(c)), then (f(c))I ∈ AI , and if X has the form P (f1(c1), f2(c2)),
then ((f1(c1))I , f2(c2)I) ∈ P I . An interpretation I is a model of V = �D,M�,
denoted I |= V , if it satisfies every mapping in M w.r.t. D. A virtual ABox V entails an
ABox assertion α, denoted V |= α, if every model of V is a model of α. I is a model of
OM = �T ,V� if I |= T and I |= V . As usual, OM is satisfiable if it admits a model.
We note that, in an ontology with mappings OM = �T , �D,V��, we can always replace
M by a set of simple mappings, while preserving the semantics of OM. It suffices to
split each complex mapping ϕ ❀ ψ into a set of simple mappings that share the same
SQL query ϕ (see [7]). In the following, we assume to deal only with simple mappings.
Dependencies. ABox dependencies are assertions that restrict the syntactic form of
allowed ABoxes. In this paper, we focus on unary and binary inclusion dependencies
only. A unary (resp., binary) inclusion dependency is an assertion of the form B1 �A B2,
where B1 and B2 are basic concepts (resp., R1 �A R2, where R1 and R2 are basic
roles). In the following, for a basic role R and constants c, c�, R(c, c�) stands for P (c, c�)
if R = P and for P (c�, c) if R = P−. An ABox A satisfies an inclusion dependency
σ, denoted A |= σ, if the following holds: (i) if σ is A1 �A A2, then for all A1(c) ∈ A

we have A2(c) ∈ A; (ii) if σ is ∃R �A A, then for all R(c, c�) ∈ A we have A(c) ∈ A;
(iii) if σ is A �A ∃R, then for all A(c) ∈ A there exists c� such that R(c, c�) ∈ A; (iv) if
σ is ∃R1 �A ∃R2, then for all R1(c, c�) ∈ A there exists c�� such that R2(c, c��) ∈ A;
(v) if σ is R1 �A R2, then for all R1(c, c�) ∈ A we have R2(c, c�) ∈ A. An ABox A
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satisfies a set of dependencies Σ, denoted A |= Σ, if A |= σ for each σ ∈ Σ. A set
of dependencies Σ entails a dependency σ, denoted Σ |= σ, if for every ABox A s.t.
A |= Σ we also have that A |= σ. The saturation of a set Σ of dependencies, denoted
sat(Σ), is the set of dependencies σ s.t. Σ |= σ.Given two queries Q1, Q2, we say that
Q1 is contained in Q2 relative to Σ if eval(Q1,A) ⊆ eval(Q2,A) for each ABox A

s.t. A |= Σ.

3 Optimizing TBoxes w.r.t. Dependencies

In a DL-LiteA ontology O = �T ,A�, the ABox A may be incomplete w.r.t. the TBox T ,
i.e., there may be assertions B1 � B2 in T s.t. A�|= B1 �A B2. When computing the
certain answers to queries over O, the TBox T is used to overcome such incompleteness.
However, an ABox may already be (partially) complete w.r.t. T , e.g., an ABox A satisfy-
ing A1 �A A2 is complete w.r.t. A1 � A2. While ignoring completeness of an ABox is
’harmless’ in the theoretical analysis of reasoning over DL-LiteA ontologies, in practice,
it introduces redundancy, which manifests itself as containment w.r.t. dependencies

among the disjuncts (CQs) of the perfect reformulation, making the contained disjuncts
redundant. For example, let T and A be as before, and let Q be q(x) ← A2(x), then any
perfect reformulation of Q must include q1 = q(x) ← A1(x) and q2 = q(x) ← A2(x)
as disjuncts. However, since q1 is contained in q2 relative to A1 �A A2, we have that q1
will not contribute new tuples w.r.t. those contributed by q2.

It is possible to use information about completeness of an ABox, expressed as
a set of dependencies, to avoid redundancy in the reasoning process. One place to
do this is during query reformulation, using techniques based on conjunctive query
containment (CQC) with respect to dependencies to avoid the generation of redundant
queries. However, this approach is expensive, since CQC is an NP-complete problem
(even ignoring dependencies), and such optimizations would need to be performed
every time a query is reformulated. We show now how we can improve efficiency by
pre-processing the TBox before performing reformulation. In particular, given a TBox T

and a set Σ of dependencies, we show how to compute a TBox T � that is smaller than T

and such that for every query Q the certain answers are preserved if Q is executed over
an ABox that satisfies Σ. Specifically, our objective is to determine when an inclusion
assertion of T is redundant w.r.t. Σ, and to do so we use the following auxiliary notions.

Definition 1. Let T be a TBox, B, C basic concepts, R, S basic roles, and Σ a set of

dependencies over T . A T -chain from B to C in T (resp., a Σ-chain from B to C in Σ)

is a sequence of inclusion assertions (Bi � B�
i)

n
i=0 in T (resp., a sequence of inclusion

dependencies (Bi �A B�
i)

n
i=0 in Σ), for some n ≥ 0, such that: B0 = B, B�

n = C, and

for 1 ≤ i ≤ n, we have that B�
i−1 and Bi are basic concepts s.t., either (i) B�

i−1 = Bi,

or (ii) B�
i−1 = ∃R�

and Bi = ∃R�−
, for some basic role R�

. A T -chain from R to S in T

(resp., a Σ-chain from R to S in Σ) is a sequence of inclusion assertions (Ri � R�
i)

n
i=0

in T (resp., a sequence of inclusion dependencies (Ri �A R�
i)

n
i=0 in Σ), for some n ≥ 0,

such that: R0 = R, R�
n = S and for 1 ≤ i ≤ n, we have that R�

i−1 = Ri.

Intuitively, when there is a T -chain from B to C, the existence of an instance of B in
a model implies the existence of an instance of C. For a Σ-chain, this holds for ABox
assertions. We use T -chains and Σ-chains to characterize redundancy as follows.
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6 Mariano Rodrı́guez-Muro and Diego Calvanese

Definition 2. Let T be a TBox, B, C basic concepts, R, S basic roles, and Σ a set

of dependencies. The inclusion assertion B � C (resp., R � S) is directly redundant
in T w.r.t. Σ if (i) Σ |= B �A C (resp., Σ |= R �A S) and (ii) for every T -chain

(Bi � B�
i)

n
i=0 with B�

n = B in T (resp., for every T -chain (Bi � B�
i)

n
i=0 with B�

n = ∃R
and for every T -chain (Ri � R�

i)
m
i=0 with R�

m = R), there is a Σ-chain (Bi �A B�
i)

n
i=0

(resp., a Σ-chain (Bi �A B�
i)

n
i=0 and a Σ-chain (Ri �A R�

i)
m
i=0). Then, B � C (resp.,

R � S) is redundant in T w.r.t. Σ if (a) it is directly redundant, or (b) there exists

B� �= B (resp., R� �= R) s.t. (i) T |= B� � C (resp., T |= R� � S), (ii) B� � C (resp.,

R� � S) is not directly redundant in T w.r.t. Σ, and (iii) B � B�
(resp., R � R�

) is

directly redundant. in T w.r.t. Σ.

Given a TBox T and a set of dependencies Σ, we apply our notion of redundancy
w.r.t. Σ to the assertions in the saturation of T to obtain a TBox T � that is equivalent to
T for certain answer computation.

Definition 3. Given a TBox T and a set of dependencies Σ over T , the optimized
version of T w.r.t. Σ, denoted optim(T , Σ), is the set of inclusion assertions {α ∈

sat(T ) | α is not redundant in sat(T ) w.r.t. sat(Σ)}.

Correctness of using T � = optim(T , Σ) instead of T when computing the certain
answers to a query follows from the following theorem.

Theorem 1. Let T be a TBox and Σ a set of dependencies over T . Then for every

ABox A such that A |= Σ and every UCQ Q over T , we have that cert(Q, �T ,A�) =
cert(Q, �optim(T , Σ),A�).

Proof. First we note that during query answering, only the positive inclusions are
relevant, hence we ignore disjointness and functionality assertions. Since sat(T ) adds
to T only entailed assertions, cert(Q, �T ,A�) = cert(Q, �sat(T ),A�), for every Q
and A, and we can assume w.l.o.g. that T = sat(T ). Moreover, cert(Q, �T ,A�) is
equal to the evaluation of Q over chase(T ,A). (We refer to [2] for the definition of
chase for a DL-LiteF ontology.) Hence it suffices to show that for every B � C (resp.,
R � R) that is redundant with respect to Σ, chase(T ,A) = chase(T \ {B � C},A).
We show this by proving that if B � C (resp., R � S) is redundant (hence, removed by
optim(T , Σ)), then there is always a chase(T ,A) in which B � C (resp., R � S) is
never applicable. Assume by contradiction that B � C (resp., R � S) is applicable to
some assertion B(c) (resp., R(c, c�)) during some step in chase(T ,A). We distinguish
two cases that correspond to the cases of Definition 2.

(a) Case where B � C (resp., R � S) is directly redundant, and hence Σ |=
B �A C (resp., Σ |= R �A S). We distinguish two subcases: (i) B(c) ∈ A (resp.,
R(c, c�) ∈ A). Since A |= B �A C (resp., A |= R �A S), we have C(c) ∈ A (resp.,
S(c, c�) ∈ A), and hence B � C is not applicable to B(c) (resp., R � S is not applicable
to R(c, c�)). Contradiction. (ii) B(c) /∈ A (resp., R(c, c�) /∈ A). Then there is a sequence
of chase steps starting from some ABox assertion B�(c�) (resp., R(a, a�) or B(a)) that
generates B(c) (resp., R(c, c�)). Such a sequence requires a T -chain (Bi � B�

i)
n
i=0 with

B0 = B� and B�
n = B (resp., a T -chain (Ri � R�

i)
n
i=0 with R0 = R� and R�

n = R,
or a T -chain (Bi � B�

i)
n
i=0 with B0 = B and B�

n = ∃R), such that each Bi � B�
i
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(resp., each Ri � R�
i or each Bi � B�

i) is applicable in chase(T ,A). Then, by the
second condition of direct redundancy, there is a Σ-chain (Bi �A B�

i)
n
i=0 (resp., a

Σ-chain (Ri �A R�
i)

n
i=0 or a Σ-chain (Bi �A B�

i)
n
i=0 ). Since A |= B0 �A B�

0 (resp.,
A |= R0 � R�

0 or A |= B0 �A B�
0 ) we have that B�

0(c
�) ∈ A (resp., R�

0(a, a
�) ∈ A

or B�
0(a) ∈ A) and hence B0 � B�

0 is not applicable to B�(c�) (resp., R0 � R�
0 is not

applicable to R�(a, a�), or B0 � B�
0 is not applicable to B�(a)). Contradiction.

(b) Case where B � C has been removed by Definition 2(b), and hence there exists
B� �= B such that T |= B � B� (resp., R� �= R s.t. T |= R � R�). First we note
that any two oblivious chase sequences for T and A produce results that are equivalent
w.r.t. query answering. Then it is enough to show that there exists some chase(T ,A) in
which B� � C (resp., R� � S) is always applied before B � C (resp., R � S) and in
which B � C (resp., R � S) is never applicable. Again, we distinguish two subcases:
(i) B(c) ∈ A (resp., R(c, c�) ∈ A). Then, since B � B� is directly redundant, we have
that Σ |= B �A B�. Since A |= Σ, we have that B�(c) ∈ A (resp., R�(c, c�) ∈ A), and
given that B� � C (resp., R� � S) is always applied before B � C (resp., R � S), C(c)
(resp., S(c, c�)) is added to chase(T ,A) before the application of B � C (resp., R � S),
hence B � C (resp., R � S) is in fact not applicable. Contradiction. (ii) B(c) /∈ A

(resp., R(c, c�) /∈ A). Then, arguing as in Case (a).(ii), using B � B� instead of B � C
(resp., R � R� instead of R � S), we can derive a contradiction. ��

Complexity and implementation. Due to space limitations, we cannot provide a full
description of how to compute optim(T , Σ). We just note that the checks that are
required by optim(T , Σ) can be reduced to computing reachability between two nodes
in a DAG that represents the reachability relation of the chains in T and Σ. This operation
can be done in linear time.
Consistency checking. Consistency checking may also suffer from redundancy when
the ABox is already (partially) complete w.r.t. T . In this case, we need to consider,
in addition to inclusion dependencies, also functional and disjointness dependencies.
Due to spaces limitations we cannot provide more details, and just note that using
these dependencies it is possible to extend the definitions to generate TBoxes that avoid
redundant consistency checking operations.

4 Dependencies in OBDA Systems

The purpose of the current section is to complement our argument w.r.t. completeness of
ABoxes by discussing when and why we can expect completeness in OBDA systems.
We start by observing that in OBDA systems, ABoxes are constructed, in general, from
existing data that resides in some form of data repository. In order to create an ABox,
the system requires some form of mappings from the source to the ontology. These may
be explicit logical assertions as the ones used in this paper, or they may be implicitly
defined through application code. Therefore, the source queries used in these mappings
become crucial in determining the structure of the ABox. In particular, any dependencies
that hold over the results of these queries will be reflected in the OBDA system as ABox
dependencies.
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8 Mariano Rodrı́guez-Muro and Diego Calvanese

Example 1. Let R be a DB schema with the relation schema employee with attributes
id, dept, and salary, that stores information about employees, their salaries, and the
department they work for. Let M be the following mappings:

SELECT id,dept FROM employee ❀ Employee(emp(id)) ∧
WORKS-FOR(emp(id), dept(dept))

SELECT id,dept FROM employee
WHERE salary > 1000

❀ Manager(emp(id))∧
MANAGES(emp(id), dept(dept))

where Employee and Manager are atomic concepts and WORKS-FOR and MANAGES

are atomic roles. Then for every instance I of R, the virtual ABox V = ��R, I�,M�

satisfies the following dependencies:

Manager �A Employee Manager �A ∃MANAGES ∃WORKS-FOR �A Employee

∃MANAGES �A Manager Employee �A ∃WORKS-FOR

In particular, the dependency in Column 1 follows from the containment relation between
the two SQL queries used in the mappings, and the remaining dependencies follow from
the fact that we populate WORKS-FOR (resp., MANAGES) using the same SQL query
used to populate Employee (resp., Manager).

Turning our attention to the semantics of the data sources, we note that any given
DB is based on some conceptual model. At the same time, if we associate the data of any
given DB to the concepts and roles of a TBox T , it follows that this data is semantically

related to these concepts and roles, and that the conceptual model of the DB has some
common aspects with the semantics of T . It is precisely these common aspects that
get manifested as dependencies between queries in the mappings and that give rise to
completeness in ABoxes. Therefore, the degree of completeness of an ABox in an OBDA
system is in direct relation with the closeness of the semantics of the conceptual model
of the DB and the semantics of the TBox, and with the degree in which the DB itself
complies to the conceptual model that was used to design it.

Example 2. To illustrate the previous observations we extend Example 1. First we note
that the intended meaning of the data stored in R is as follows: (i) employees with a
salary higher than 1,000 are managers, (ii) managers manage the department in which
they are employed, and (iii) every employee works for a department. Then, any TBox
that shares some of this semantics will present redundancy. For example, if T is

Manager � Employee Manager � ∃MANAGES Employee � ∃WORKS-FOR

∃MANAGES
− � Department ∃WORKS-FOR

− � Department

then the first row of assertions is redundant w.r.t. Σ. Instead, the semantics of the
assertions of the second row is not captured by the mappings. In an OBDA system with
such components, we should reason only w.r.t. Department. This can be accomplished
by optimizing T w.r.t. Σ using the technique presented in Section 3.

5 Dependency Induction

We focus now on procedures to complete ABoxes with respect to TBoxes. The final
objective is to simplify reasoning by diverting certain aspects of the process (e.g.,
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dealing with concept/role hierarchies and domain and range assertions) from the query
reformulation stage to other stages of the query answering process where they can be
handled more efficiently. We call these procedures dependency induction procedures

since their result can be characterized by a set of dependencies that hold in the ABox(es)
of the system. Formally, given an OBDA system O = �T ,V�, where V = ��R, I�,M�,
we call a dependency induction procedure a procedure that uses O to compute a virtual
ABox V � such that the number of assertions in T for which V � is complete is higher
than those for V . An example of a dependency induction procedure is ABox expansion,
a procedure in which the data in I is chased w.r.t. T . The critical point in dependency
induction procedures is the trade-off between the degree of completeness induced, the
system’s performance, and the cost of the procedure. In [9] we presented two dependency
induction mechanism that provide good trade-offs. Both of them are designed for the
case in which the data sources are RDBMSs. In the current paper we extend one of these
procedures, the semantic index technique, to the DL-LiteA setting. In particular, given a
DL-LiteA TBox T and a virtual ABox V , the extended semantic index is able to generate
a virtual ABox V � where, if T |= B � A (resp., T |= R1 � R2), then V � |= B �A A
(resp., Σ |= R1 �A R2). Hence, V � is complete for all DL-LiteA inferences except those
involving mandatory participation assertions, e.g., B � ∃R.
Semantic Index. This technique applies in the context of general OBDA systems in
which we are free to manipulate any aspect of the system to improve query answering.
The basic idea is to encode the implied is-a relationships of T in the values of numeric

indexes that we assign to concept and role names. ABox membership assertions are then
inserted in the DB using these numeric values s.t. one can retrieve most of the implied
instances of any concept or role by posing simple range queries to the DB (which are
very efficient in modern RDBMSs). Our proposal is related to techniques for managing
large transitive relations in knowledge bases (e.g., the is-a hierarchy) [1], however, our
interest is not in managing hierarchies but in querying the associated instance data. Our
proposal is also related to a technique for XPath query evaluation known as Dynamic

Intervals [3], however, while the latter deals with XML trees, we have to deal with
hierarchies that are DAGs. Formally, a semantic index is defined as follows.

Definition 4. Given a DL-LiteA TBox T and its vocabulary V , a semantic index for
T is a pair of mappings �idx , range� with idx : V → N and range : V → 2N×N

,

such that, for each pair E1, E2 of atomic concepts or atomic roles in V , we have that

T |= E1 � E2 iff there is a pair ��, h� ∈ range(E2) such that � ≤ idx (E1) ≤ h.

Using a semantic index �idx , range� for a TBox T , we construct V = �R, I� with
the completeness properties described above by proceeding as follows. We define a
DB schema R with a universal-like relation TC [c1, idx] for storing ABox concept
assertions, and a relation TR[c1, c2, idx] for storing ABox role assertions, s.t. c1 and
c2 have type constant and idx has type numeric. Given an ABox A, we construct I
such that for each A(c) ∈ A we have �c, idx (A)� ∈ TC and for each P (c, c�) ∈ A we
have �c, c�, idx (P )� ∈ TR. The schema and the index allow us to define, for each atomic
concept A and each atomic role P , a set of range queries over D that retrieves most
constants c, c� such that O |= A(c) or O |= P (c, c�). E.g., if range(A) = {�2, 35�}, we
define ’SELECT c1 FROM TC WHERE idx >= 2 AND idx <= 35’. We use these
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10 Mariano Rodrı́guez-Muro and Diego Calvanese

queries to define the mappings of the system as follows1: (i) for each atomic concept
A and each ��, h� ∈ range(A), we add the mapping σ�≤idx≤h(TC ) ❀ A(c1); (ii) for
each atomic role P and each ��, h� ∈ range(P ), we add the mapping σ�≤idx≤h(TR) ❀
P (c1, c2); (iii) for each pair of atomic roles P , P � such that T |= P �− � P and
each ��, h� ∈ range(P �) we add the mapping σ�≤idx≤h(TR) ❀ P (c2, c1); (iv) for
each atomic concept A, each atomic role P s.t. T |= ∃P � A (resp., ∃P− � A)
and each ��, h� ∈ range(P ), we add the mapping σ�≤idx≤h(TR) ❀ A(c1) (resp.,
σ�≤idx≤h(TR) ❀ A(c2)); (v) last, we replace any pair of mappings σ�≤idx≤h(TC ) ❀
A(c1) and σ��≤idx≤h�(TC ) ❀ A(c1) such that �� ≤ h and � ≤ h� by the mapping
σmin(�,��)≤idx≤max(h,h�)(TC ) ❀ A(c1) (similarly for role mappings).

A semantic index can be trivially constructed by assigning to each concept and
role a unique (arbitrary) value and a set of ranges that covers all the values of their
subsumees. However, this is not effective for optimizing query answering since the size
of M determines exponentially the size of the final SQL query. To avoid an exponential
blow-up, we create �idx , range� using the implied concept and role hierarchy as follows.

Let T be a TBox, and DC the minimal DAG that represents the implied is-a relation
between all atomic concepts of T (i.e., the transitive reducts of the concept hierarchy)2.
Then we can construct idx by initializing a counter i = 0, and visiting the nodes in DC

in a depth-first fashion starting from the root nodes. At each step and given the node N
visited at that step, if idx (N) is undefined, set idx (N) = i and i = i+1, else if idx (N) is
defined, backtrack until the next node for which idx is undefined. Now, to generate range
we visit the nodes in DC starting from the leafs and going up. For each node N in the visit,
if N is a leaf in DC , then we set range(N) = {�idx (N), idx (N)�}, and if N is not a leaf,
then we set range(N) = merge({�idx(N), idx(N)�}∪

�
Ni | Ni→N∈DC

range(Ni)),
where merge is a function that, given a set r of ranges, returns the minimal set r� of ranges
that has equal coverage as r, e.g., merge({�5, 7�, �3, 5�, �9, 10�}) = {�3, 7�, �9, 10�}.
We proceed exactly in the same way with the DAG DR representing the role hierarchy.

Example 3. Let A, B, C, D be atomic concepts, let R, S, M be atomic roles, and
consider the TBox T = {B � A,C � A,C � D,D � ∃R, ∃R � D,S � R,M�R}.
Let the DAGs DC and DR for T be the ones depicted in Fig. 1. The technique generates
idx and range as indicated in Fig. 1, generates the mappings in Fig. 3, and for any ABox,
the technique generates a virtual ABox V that satisfies all the dependencies Σ in Fig. 2.
Then, we will have that in query answering, rewriting is only necessary w.r.t. D � ∃R,
which would be the output of optim(T , Σ).

Our evaluation of the semantic index technique, described in [9], shows its effective-
ness in improving the cost and efficiency of query answering.

6 Conclusions and Future Work

In this paper we focused on issues of redundancy and performance in OBDA systems.
Several directions can be taken starting from the ideas presented here. First, although

1 Here we use relational algebra expressions instead of SQL to simplify the exposition.
2 We assume w.l.o.g. that T does not contain a cyclic chain of basic concept or role inclusions.

Under such an assumption DC is unique.
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1, {(1, 3)}
A

B
2, {(2, 2)}

C
3, {(3, 3)}

4, {(3, 4)}
D

S
6, {(6, 6)}

5, {(5, 7)}
R

M
7, {(7, 7)}

Fig. 1. DC , DR and the values for idx and range.

B �A A C �A A
C �A D ∃R �A D
S �A R M �A R

Fig. 2. The induced dependencies.

σ1≤idx≤3(TC ) ❀ A(c1)
σ2≤idx≤2(TC ) ❀ B(c1)
σ3≤idx≤3(TC ) ❀ C(c1)
σ3≤idx≤4(TC ) ❀ D(c1)

σ5≤idx≤7(TR) ❀ R(c1, c2)
σ6≤idx≤6(TR) ❀ S(c1, c2)
σ7≤idx≤7(TR) ❀ M(c1, c2)
σ5≤idx≤7(TR) ❀ D(c1)

Fig. 3. The mappings created by the technique.

TBox pre-processing is the best place to first address redundancy, it is also necessary to
apply redundancy elimination during reasoning, e.g., during query rewriting. Second,
redundancy may also appear during consistency checking, i.e., when an ABox is sound
w.r.t. to the TBox; this can also be characterized with dependencies. With respect to
evaluation, in [9] we presented a preliminary experiments that show that the semantic
index technique can provide excellent performance with a fraction of the cost of ABox
expansion, however, further experimentation is still required. In particular, it is necessary
to provide a comprehensive benchmarks of the techniques discussed in this paper in
comparison to other proposals. We are also exploring the context of SPARQL queries
over RDFS ontologies; here we believe that our techniques can be used to provide high-
performance SPARQL end points with sound and complete RDFS entailment regime
support, without relying on inference materialization, as is usually done.
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1 Introduction

Despite most of the information available in the Semantic Web (SW) is context depen-
dent, there is a lack of mechanism to qualify knowledge with the context in which it
is supposed to hold. In the current practice, contextual information is often crafted in
the ontology identifier or in the annotations, non of which affects reasoning. Extensions
of the SW languages with specific mechanisms that allow to qualify knowledge, e.g.,
w.r.t. its provenance [6] or w.r.t. time and events [17], were proposed. Among other
works that offer possible solutions [8, 22, 13], the most interesting are ALCALC [14]
and Metaview [24], however, a widely accepted approach has not yet been reached.

Instead of extending the current SW languages, we propose a shift of approach: to
adapt the theories of context proposed by McCarthy [18] and well studied in AI [7,
15, 3]. We adopt the context-as-a-box metaphor [3] to represent context, in which a
context is seen as a “box” containing knowledge in form of logical statements, whose
boundaries are determined with contextual attributes (called dimensions) qualifying the
knowledge inside the box. An example context representing knowledge about football
in Italy in year 2010 is depicted in Fig. 1. We will most often rely on three dimensions:
time, location and topic; but others were considered as well [15].

time = 2010, location = Italy, topic = football
Team � =22has player.Player
Player � �1plays for.Team
Team(Milan)
plays for(Cassano,Milan)
· · ·

Fig. 1. Italian national football league under the context as a box metaphor

To clarify the requirements for contextual representation in the SW, consider a sce-
nario from the domain of football. Knowledge will be qualified with time, location, and
the following topics: football (FB), FIFA world cups (FWC), national football leagues
(NFL), world news (WN), and national news (NN). Suppose that all information about
FWC and NFL should be included in FB, and for each nation all facts about its NFL
should be included in its NN. Also all information about FWC should be included in
WN. On the other hand, only a part of information about NFL should be included in WN
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(only that of worldwide interest). A well designed contextual representation formalism
should support the following requirements:

knowledge about context: knowledge about contexts such as contextual dimensions
and relations between contexts as for instance that one context is more specific
than some other, should be explicitly represented and reasoned about. For example,
we should be able to assert that the context of FWC in 2010 is more specific than
the context of FB and WN in the same year;

contextually bounded facts: in each context we should be able to state facts with local
effect that do not necessarily propagate everywhere, e.g., an axiom like “a player is
a member of only one team” should be true in some contexts (e.g., FWC, NFL, for
each year) but not in more general contexts like FB;

reuse/lifting of facts: be able to include “automatically” all the information contained
in more specific contexts. For example, facts in FWC should be lifted up into the
WN, and FB. This lifting should be done without spoiling locality of knowledge;

overlapping and varying domains: objects can be present in multiple contexts, but
not necessarily in all contexts, e.g., a player can exist in both the FWC context and
in the NFL contexts, but many players present in NFL will not be present in FWC;

inconsistency tolerance: two contexts may possibly contain contradicting facts. For
instance NN of Italy could assert that “Cassano is the best player of the world”,
while at the same time the world news report that “Rooney is the best player of the
world”, without making the whole system inconsistent;

complexity invariance: the qualification of knowledge by context should not increase
the complexity.

Based on these requirements, we propose a framework called Contextualized Knowl-
edge Repository (CKR), build on top of the expressive description logic SROIQ3 [10]
that is behind OWL 2 [26]. A CKR knowledge base is composed of DL knowledge
bases, called contexts, each qualified by a set of contextual attributes that specify the
boundaries within which the knowledge base is assumed to be true. Contexts are orga-
nized by a hierarchical coverage relation that regulates the propagation of knowledge
between them. The paper defines the syntax and semantics of CKR; shows that con-
cept satisfiability and subsumption are decidable with the complexity upper bound of
2NEXPTIME (i.e., same as for SROIQ); and finally it provides a sound and complete
Natural Deduction calculus that characterizes the propagation of knowledge between
contexts. Proofs of our statements are available in [21].

2 Contextualized Knowledge Repository

Logical representation of contextual knowledge is based on two classes of formulae:
one class to specify knowledge within contexts, and another to predicate about con-
texts. McCarthy [18] proposed to use a unique language for both types of knowledge,
namely quantified modal logic. While this is optimal from the representational perspec-
tive, it easily leads to undecidability. At the opposite extreme there are approaches such

3 Although we are able to represent any SROIQ axioms in CKR, to maintain decidability the
framework currently excludes reflexivity and role disjointness axioms. See [21] for discussion.
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as multi-context systems [7], distributed [4] or package-based description logics [2],
where context structure is fixed and it is not possible to specify knowledge about con-
texts, which limits their practical applicability. We therefore propose an intermediate
approach, by allowing to specify the context structure and properties in a (simple) log-
ical meta-language, but avoiding to mix it with the object-language used within each
context in order to maintain good computational properties.

The meta-language is used to specify context structure. It uses a meta-vocabulary Γ ,
a standard DL vocabulary that contains: (a) a set of individuals called context identifiers;
(b) a finite set of roles A = {A1, . . . , An} called dimensions; (c) for each dimension
A ∈ A a set of individuals DA called dimensional values and a role ≺A called coverage
relation. The number of dimensions n = |A| is assumed to be a fixed constant. This
will be important in order not to introduce additional complexity blow up. Also, relevant
research on contextual dimensions suggests that their number is usually very limited
[16]. The meta-assertions of the form A(C, d) for a context identifier C and some d ∈

DA (e.g., time(c0, 2010)), state that the value of the dimension A of the context C is
d. The meta-assertions of the form d ≺A e (e.g., Italy ≺space Europe) state that the
value d of the dimensions A is covered by the value e. Depending on the dimension, the
coverage relation has different intuitive meanings, e.g., if A is space then the coverage
relation is topological containment, if A is topic then it is topic specificity.

A (full) dimensional vector d is a set of assignments {A1:=dA1 , . . . , An:=dAn},
with dAi ∈ DAi for each 1 ≤ i ≤ n. Note that dAi (eAi , . . . ) denotes the actual value
that d (e, . . . ) assigns to the dimension Ai. DΓ is the set of all dimensional vectors of
Γ . For any B ⊆ A, dB = {B:=dB | B ∈ B} and if B ⊂ A, then dB is called partial
dimensional vector. Note that dA = d. Given two (partial) dimensional vectors dB and
eC, the completion of dB w.r.t. eC is dB+eC = dB ∪ {(A:=eA) ∈ eC | A /∈ B}.

The object-language is used to specify knowledge inside the contexts. It uses an
object-vocabulary, obtained from any standard DL vocabulary Σ (containing individ-
uals, concepts, and roles) by closing it w.r.t. what we call concept/role qualification.
That is, for every concept/role symbol X of Σ and every (partial) dimensional vec-
tor dB, a new concept/role symbol XdB , called the qualification of X w.r.t. dB, is
added to Σ. Qualified symbols are necessary for cross context semantic reference,
e.g., the concept of “Italian professor” in the context of France will be formalized
by Professorlocation:=Italy. If not ambiguous we will omit the attribute name, using e.g.
ProfessorItaly instead of Professorlocation:=Italy.

Definition 1 (Context). A context C on the meta/object-vocabulary pair �Γ,Σ � is a
triple �id(C), dim(C),K(C)� where:

1. id(C) is a context identifier of Γ ;
2. dim(C) is a full dimensional vector of DΓ ;
3. K(C) is a DL knowledge base over Σ.

Note that while symbols appearing inside contexts can possibly be qualified with partial
dimensional vectors, dim(C), the dimensional vector of the context C, is never partial.
We use the notation Cd to denote a context with dim(C) = d.

Definition 2 (Contextualized Knowledge Repository). A contextualized knowledge
repository (CKR) on a meta/object-vocabulary pair �Γ,Σ � is a pair K = �M,C� where:
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4 Luciano Serafini and Martin Homola

1. C is a set of contexts on �Γ,Σ �, one for each context identifier of Γ ;
2. M, called meta-knowledge, is a DL knowledge base on Γ where

(a) every A ∈ A is a functional role;
(b) for every Cd ∈ C, and every A ∈ A, M |= A(id(Cd), dA);
(c) for every A ∈ A, the relation {d ≺A d� | M |= ≺A(d, d�)} is a strict partial

order on DA.

For a CKR K, B ⊆ A, dimensional vectors d, e, and contexts C, C� we say: (a) e
covers d w.r.t. B (denoted d ≺B e) if M |= ≺B(dB , eB) for every B ∈ B; (b) e covers
d (denoted d ≺ e) if d ≺A e; (c) C� covers C (denoted C ≺ C�) if dim(C) ≺ dim(C�).

If one context covers another it means that its perspective is broader. We will see that
this is reflected in the semantics and the domain of the broader context always contains
the domain of the narrower context. The coverage induces a hierarchical organization
of contexts in each CKR. For instance Fig. 2 depicts the context coverage induced from
the following coverage relations between dimensional values:

FWC ≺topic WN NFL ≺topic FB africa ≺space world
FWC ≺topic FB NFL ≺topic NN italy ≺space world

Fig. 2. Coverage relation between contexts

Besides for the coverage relation, which is explicitly expressed in CKR, there are
other relations between contexts [3]. We chose to represent the coverage relation be-
cause many other relations between contexts can be axiomatized on top of it. For in-
stance the temporal relation between contexts can be axiomatized via GCI axioms in
a broader context, e.g., to assert that everyone who is a professor in 2011 typically is
a professor also in 2012 (i.e., none of the years covers the other, but instead they are
consecutive), we can add the axiom Professor2011 � Professor2012 into some context
that covers both 2011 and 2012 (e.g., one associated with the decade 2011–2020).

A model of a CKR is composed of local models for each context that must satisfy
some additional restrictions. Given a CKR K, a model for a context Cd is a pair Id =�
∆d, ·

Id
�

such that Id |= K(Cd) in the usual DL sense [10] with two exceptions: (a)
∆d may also be empty; (b) ·Id is not required to interpret individuals of Σ that do not
occur in K(C). In the rest of the paper, whenever we write φId for any expression φ, we
will also mean that Id is defined on all constants occurring in φ.

Definition 3 (CKR Model). A model of a CKR K is a family I = {Id}d∈DΓ of local
models such that for all d, e, and f , for every atomic concept A, atomic role R, atomic
concept/role X and individual a:

1. (�d)If ⊆ (�e)If if d ≺ e
2. (Af )Id ⊆ (�f )Id

3. (Rf )Id ⊆ (�f )Id × (�f )Id
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4. aId = aIe , given d ≺ e, either if aId is defined,
or if aIe is defined and aIe ∈ ∆d

5. (XdB)
Ie = (XdB+e)Ie

6. (Xd)Ie = (Xd)Id if d ≺ e
7. (Af )Id = (Af )Ie ∩∆d if d ≺ e
8. (Rf )Id = (Rf )Ie ∩ (∆d ×∆d) if d ≺ e
9. Id |= K(Cd)

The semantics takes care that local domains respect the coverage hierarchy (condi-
tion 1). Given contexts Cd ≺ Ce, if an individual a occurs in the narrower context then
it must be defined also in the broader context with the same meaning; if a only occurs in
the broader context however, it does not have to be defined in the narrower one (condi-
tion 4). The interpretation of any concept or role qualified with some f ∈ DΓ is always
roofed under (�f )Id in any context Cd, i.e., in a sense �f represents the � of Cf inside
Cd (conditions 2 and 3). This is always true regardless of the relation between Cf and
Cd. If Cd ≺ Ce then the interpretation of any concept and role Xf in these contexts must
be equal modulo the domain of the narrower context (conditions 7 and 8). Treatment of
partially qualified symbols is done in condition 5: missing values are always taken from
the current context in which the symbol appears. Therefore in the end all symbols (even
those with empty qualifying vector) are treated as fully qualified by the semantics. Fi-
nally, for each CKR model we require that each local interpretation Id is a model of Cd
in the usual sense for DL (condition 9). Finally notice that ⊥d is always interpreted in
the empty set. Therefore we can simplify the notation by using just ⊥.

3 Reasoning in CKR

In the following we devise a proof theoretical characterization of CKR entailment in
the natural deduction (ND) style [20], with special focus on the rules for transferring
knowledge across contexts. We decide to characterize CKR entailment with ND, since
ND provides a clear intuition on how knowledge propagates across contexts. This al-
lows to show interesting properties of CKR reasoning like the fact that (a) in consistent
CKR, unconnected contexts do not interact (b) propagation always follows the coverage
relation, and other similar properties. ND formalisms also provide a first base for the
development of a forward reasoning algorithm, which constitutes a natural extension of
the forward local reasoning supported by OWLIM, the platform on top of which a first
version of CKR with limited expressive capacity of RDFS has been implemented [9].

We now briefly introduce ND, for more details see [20]. A ND calculus is a set of
inference rules of the form:

[Bn+1] [Bn+m]
α1 · · · αn αn+1 · · · αn+m

α
ρ (1)

with n,m ≥ 0, where αi and α are formulae and Bi are sets of formulae. The αi’s are
the premises of ρ, α is the conclusion and the Bi’s are the assumptions discharged by
ρ. A deduction of α depending on a set of formulae Φ is a tree rooted in α inductively
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constructed starting from a set of assumptions in Φ by applying the inference rules.
More formally: a formula α is a deduction of α depending on {α}; if for each 1 ≤

i ≤ n + m, Πi is a deduction of αi depending on Φi and the calculus contains a
rule of the form (1), then Π1···Πn+m

α is a deduction of α depending on (
�n

i=1 Φi) ∪��n+m
i=n+1 (Φi \Bi)

�
. A formula α is derivable from Φ if there is a deduction of α

depending on a subset of Φ.
CKR reasoning tasks are, as in any DL, concept satisfiability and entailment; how-

ever in CKR these tasks are relativized w.r.t. a context. A CKR K is d-satisfiable (a con-
cept C is d-satisfiable w.r.t. K) if there exists a model I of K with ∆d �= ∅ (CId �= ∅).
A formula φ is d-entailed by K (denoted K |= d : φ) if Id |= φ in every model I of K.

Reasoning rules in the ND calculus for CKR allow to deduce conclusions in one of
the contexts based on evidence from other contexts, they are therefore a kind of bridge
rules [7]. As an example consider the following simple bridge rule:

d : A � B d ≺ e
e : Ad � Bd

(2)

It implies that whenever A � B is true in a context Cd such that d ≺ e, then Ad � Bd

should be true in Ce. The rule is indeed sound thanks to conditions 5 and 6 of Definition
3 that impose that in any CKR model I the interpretation of A and B in Id coincide
respectively with the interpretations of Ad and Bd in Ie. The rationale of rule (2) is that
a statement in a narrower context, can be embedded into a larger context, by applying a
transformation that preserves its semantics.

We generalize this idea by introducing the notion of embedding between DL knowl-
edge bases. An embedding is a function that translates expressions from one vocabulary
to another in a suitable manner. The input vocabulary Σ will be split into Σc (symbols
fully specified w.r.t. the current context) and Σe (symbols external to the current con-
text) and each of the sets of symbols will be translated differently. More formally: let
Σ and Σ� be two DL alphabets, Σ = Σc � Σe, � ∈ Σc. A DL embedding is a total
function f : Σ → Σ� that maps individuals, atomic concepts, and atomic roles of Σ to
individuals, atomic concepts, and atomic roles of Σ� respectively. For every embedding
f the extension f∗ that maps complex expressions and axioms over Σ into complex
expressions and axioms over Σ� is recursively defined on top of f as given in Table 1.

Two DL-interpretations I and I � of Σ and Σ� respectively are said to comply with
the DL embedding f if: (a) aI = f(a)I

�
for each individual a of Σ such that aI is

defined; (b) XI = f(X)I
�

for each concept/role X ∈ Σc; (c) AI = f(A)I
�
∩ f(�)I

�

for each concept A ∈ Σe; (d) RI = f(R)I
�
∩ f(�)I

�
× f(�)I

�
for each role R ∈ Σe.

Lemma 1. If I and I � comply with the DL-embedding f : Σ → Σ� then: (a) for every
concept/role X , XI = (f∗(X))I

�
; (b) for every axiom φ, I |= φ iff I � |= f∗(φ).

The specific embedding that will be instrumental in order to characterize the logical
consequence in CKR is now introduced as the @d operator.

Definition 4 (@d operator). Given a CKR K over �Γ,Σ �, for every d ∈ DΓ , the
operator (·)@d is defined as f∗

d(·), using the embedding fd of Σ into itself such that:
(a) fd(a) = a for every individual a; (b) fd(Xd�

B
) = Xd�

B+d for every concept/role
Xd�

B
∈ Σ; (c) Σc = {Xd�

B
∈ Σ | d�

B � dB}; (d) Σe = Σ \Σc.
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f∗(A) =

�
f(A) if A ∈ Σc

f(�) � f(A) if A ∈ Σe

f∗(R) =

�
f(R) if R ∈ Σc

f(I ) ◦ f(R) ◦ f(I ) if R ∈ Σe

f∗(¬C) = f(�) � ¬f∗(C)

f∗(∃R.C) =

�
∃f(R).f∗(C) if R ∈ Σc

f(�) � ∃f(R).f∗(C) if R ∈ Σe

f∗(∀R.C)=

�
f(�) � ∀f(R).f∗(C) if R ∈ Σc

f(�) � ∀f(R).(¬f(�) � f∗(C)) if R ∈ Σe

f∗(� nR.C) =

��nf(R).f∗(C) if R ∈ Σc

f(�) � �nf(R).f∗(C) if R ∈ Σe

f∗(∃R.Self) =

�
∃f(R).Self if R ∈ Σc

f(�) � ∃f(R).Self if R ∈ Σe

f∗(⊥) = ⊥
f∗(C � D) = f∗(C) � f∗(D)
f∗(C � D) = f∗(C) � f∗(D)
f∗({a}) = {f(a)}
f∗(�nR.C) = f(�) � �nf(R).f∗(C)
f∗(R−) = (f(R))−

f∗(R ◦ S) = f∗(R) ◦ f∗(S)
f∗(C(a)) = f∗(C)(f(a))
f∗(R(a, b)) = f(R)(f(a), f(b))
f∗(C � D) = f∗(C) � f∗(D)
f∗(R � S) = f∗(R) � f(S)
f∗(a = b) = f(a) = f(b)
f∗(a �= b) = f(a) �= f(b)

Table 1. DL-embedding on complex expressions and axioms; note: I is the identity role, which
can be easily added to SROIQ using the axioms � � ∃I .Self and � � �1I .�

For instance if the concept Team occurs in Cd with d = �FWC, 2010,Africa�, it
belongs to Σc as d�

B � dB for B = ∅. Hence Team@d = TeamFWC,2010,Africa. This
is natural, as in a context wider than Cd the concept TeamFWC,2010,Africa is fully de-
fined by Team in C�FWC,2010,Africa�. But NationalTeamFB /∈ Σc as FB �� FWC. Hence
NationalTeamFB@�FWC, 2010,Africa� = NationalTeamFB,2010,Africa��FWC,2010,Africa.
Intuitively, to embed NationalTeamFB from C�FWC,2010,Africa� into a broader context one
must restrict it to �FWC,2010,Africa because its interpretation in the broader context may
be broader.

A ND system for a CKR K = �C,M� over �Γ,Σ � is shown in Table 2. Here αi

are either object-formulae of the form d : φ (d ∈ DΓ , φ is a DL formula over Σ) or
meta-formulae µ over Γ , while α and βi are always object-formulae. A formula d : φ
is derivable from K and Φ (denoted K, Φ � d : φ) if it is derivable from Φ∪{d : φ | φ ∈

Cd,d ∈ DΓ } ∪ {µ | M |= µ} using the ND rules of Table 2. A shorthand K � d : φ is
used for K, ∅ � d : φ.

Theorem 1 (Soundness and Completeness). K � d : φ if and only if K |= d : φ.

Let us show some example deductions in the CKR K with structure depicted in Fig 2.
Example 1 shows how knowledge is propagated from Cwc to Ci via the common super-
context Cf , and Example 2 shows how knowledge is propagated from Cwn to Cf via the
common sub-context Cwc. Finally Example 3 shows how contradicting knowledge can
coexist in different separated context.

Example 1. The following deduction shows how the subsumption wc : WChamp �

Player propagates from the FWC context Cwc to the Italian NFL context Ci. Notice
that the result of this deduction, i.e., i : WChampwc � Playerwc, in the context Ci is
weaker than the premise as it holds only on the set of players of the Italian National
League. In other words, the knowledge shifting from Cwc to Ci is limited by the domain
of interpretation of Ci.

(1) wc : WChamp � Player premise
(2) f : (WChamp � Player)@wc Pop, wc � f

(3) f : WChampwc � Playerwc by @

(4) f : WChampwc � �i � Playerwc � �i LReas
(5) f : (WChampwc � Playerwc)@i by @

(6) i : WChampwc � Playerwc Push, i � f
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8 Luciano Serafini and Martin Homola

d :φ1 . . . d :φn {φ1 . . . φn} |= φ
d :φ

LReas
d :⊥(a)
e :� � ⊥

Bot

d � e
f :Ad � �e

-
f : ∃Rd� � �d

-
f :� � ∀Rd�d

Top
[d : �(a)]
d : � � ⊥

d : � � ⊥
aE

e :φ@d e :�d(a1) · · · e :�d(an) d � e
d :φ

Push
d :φ d � e

e :φ@d
Pop

d :A �B(x)
[d :A(x)] [d :B(x)]

e :φ e :φ
e :φ

�E
d : ∃R.A(x)

[d :R(x, y), d :A(y)]
e :φ

e :φ
∃E

d :�nR.A(x)
[d : yi �= yj , d :R(x, yi), d :A(yi)]1≤i �=j≤n

e :φ
e :φ

(�n)E

Restrictions : 1) LReas can be applied if every individual occurring in φ occurs in a φi for
some 1 ≤ i ≤ n; 2) in the Push rule a1, . . . , an are assumed to be all individuals occuring
in φ; 3) the individuals a, y, and yi, 1 ≤ i ≤ n, occuring in aE, ∃E, and (�n)E are new, not
occuring elsewhere in K and the proof apart from the assumptions discharded by these rules.

Table 2. CKR inference rules

Example 2. The following deduction shows how wn : Playerf � Pro (i.e., every foot-
ball player mentioned in the world news is a professional) propagates from Cwn to Cf ,
trough the common sub-context Cwc.

(1) wn : Playerf � Pro premise
(2) wn : (Playerf � Pro)@wn Pop, wn � wn

(3) wn : Playerf � Prown by @

(4) wn : Playerf � �wc � Prown � �wc by LReas
(5) wc : Playerf � Prown Push, wc � wn

(6) f : Playerf � �wc � Prown � �wc Pop, wc � f

(7) f : Playerf � �wc � Prown LReas

Notice that we did not infer that f : Playerf � Prown, i.e., that every Player of football
is a professional player in the world news, but the fact that this subsumption holds only
on the players of the FWC domain.

Example 3. Suppose that the Italian News context Cin contains the facts that Rooney
does not take part to the Italian league in 2010, i.e., ¬�i(Rooney), and that he is not
considered a good football player, i.e., ¬GoodPlayerf (Rooney). Suppose also that the
world news context Cwn contains the opposite evaluation, i.e. GoodPlayerf (Rooney).
In the CKR of Fig. 2, these two contradicting statements do not necessarily lead to in-
consistency. Indeed, to derive inconsistency one has to find a context where to combine
the two contradicting facts. However, to transfer the facts wn : GoodPlayerf (Rooney)
and in : ¬GoodPlayerf (Rooney) into a common context, one have to pass through Ci.
But the fact that Rooney is not an individual of Ci disables any inference about Rooney
in Ci. Model-theoretically we admit CKR models where RooneyIwn �= RooneyIin .
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4 Decidability and Complexity

Decidability of CKR entailment is proved indirectly by embedding a CKR into a single
DL knowledge base, we will again use DL-embeddings. Given a meta-vocabulary Γ

and an object-vocabulary Σ = NC � NR � NI, a DL-vocabulary #(Γ,Σ ) = #NC �

#NR � #NI is defined as follows: #NC = {Ae
d | A ∈ NC ∧ d, e ∈ DΓ }; #NR =

{Re
d | R ∈ NR ∧ d, e ∈ DΓ }; #NI = {ae | a ∈ NI ∧ e ∈ DΓ }. An embedding of Cd

into #(Γ,Σ ) is now done by the #d operator:

Definition 5 (#d operator). Given K = �C,M� over �Γ,Σ � and d ∈ DΓ , (·)#d is
defined as g∗d(·), where gd : Σ → #(Γ,Σ ) is a DL-embedding defined as follows:
(a) gd(a) = ad for every individual a; (b) gd(Xd�

B
) = Xd

d�
B+d for every concept/role

Xd�
B

; (c) Σc = Σ; (d) Σe = ∅.

Using the #d operator we now transform a CKR K over �Γ,Σ � into a DL theory
#(K) over #(Γ,Σ ). For every individual a, concept C, role R, concept/role X , and for
every d, e, f ∈ DΓ , #(K) contains the following axioms (the gap in the numbering is
to maintain the correspondence with Definition 3):

1. �f
d � �f

e for d ≺ e;
2. Cd

e � �d
e ;

3. ∃Rd
e .� � �d

e and � � ∀Rd
e .�

d
e ;

4. ad = ae, if d ≺ e;
6. Xd

d ≡ Xe
d, if d ≺ e;

7. Cd
f ≡ Ce

f � �d
d, if d ≺ e;

8. I dd ◦Re
f ◦ I

d
d � Rd

f and Rd
f � Re

f , if d ≺ e;
9. φ#d for all φ ∈ K(C) and d = dim(C).

Lemma 2. Given a CKR K, (a) if K is d-satisfiable then #(K) is satisfiable; (b) if there
is a d such that #(K) �|= �d

d � ⊥, then K is d-satisfiable.

Reasoning in CKR is now reduced into reasoning in SROIQ. Subsumption is decid-
able for SROIQ KB that are �-stratified [12]. Hence we can prove decidability only
for CKRs that are transformed into �-stratified KBs. We say that a CKR is �-stratified
if the set of RIA

�
d∈DΓ

{(R � S)#d |R � S ∈ K(Cd)} is �-stratified. The RIA in-
troduced in step 8 are not �-stratified, but it suffices to add I dd ◦Re

f � S1, S1◦I dd � Rd
f ,

where S1 is a new role w.r.t. each pair Rd
f and Re

f . Hence if a K is �-stratified, there is
a �-stratified SROIQ KB equivalent to #(K), and hence subsumption is decidable.

Theorem 2. If K is �-stratified, then checking if K |= d : C � D is decidable with the
complexity upper bound of 2NEXPTIME.

The complexity upper bound is established by the fact that the number of dimen-
sions (a fixed constant) and also the number of contexts are bounded. The number of
contexts n is always smaller than the size m of the knowledge base K because in order
to initialize a context we must add several axioms into M. Consecutive analysis of the
construction of #(K) shows that its size is bounded by k ×m × n2 for some constant
k, and therefore under O(m3). So the size of #(K) and the time required to generate it
is polynomial in the size of K.
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5 Related Work

Both aRDF [25] and Context Description Framework [13] extend RDF triples by an n-
tuple of qualification attributes with partially ordered domains. Apart from CKR being
based on SROIQ it differs from these approaches by qualifying whole theories and not
each formula separately. This approach is more compact as usually the context is shared
by a group of formulae. An extension of RDFS to cope with context was proposed by
[8] and further developed in [1]. A new predicate isin(c,φ ) is used to assert that the
triple φ occurs in the context c. A set of operators to combine contexts (c1 ∧ c1, c1 ∨ c2,
¬c) and to relate contexts (c ⇒ c2, c → c2) is defined, making the approach particularly
suited for manipulating contexts. Unfortunately, no sound and complete axiomatization
or decision procedure was provided so far.

The contextual DL ALCALC [14] is a multi-modal extension of the ALC DL with
the contextual modal operator [C]rA representing “all objects of type A in all contexts
of type C reachable from the current context via relation r.” In both ALCALC and CKR
contextual structure is formalized in a meta-language separated from the domain lan-
guage used to describe the domain. The main difference is that CKR is more expressive
in the object-language (SROIQ vs. ALC) but less expressive in the contextual as-
sertions, allowing qualification of knowledge only w.r.t. individual contexts rather than
context classes as in ALCALC .

The Metaview approach [24] enriches OWL ontologies with logically treated an-
notations and it can be used to model contextual metadata similarly to CKR albeit on
per-axiom basis. The main difference is that in the Metaview approach the contextual
level has no implications on ontology reasoning. Instead, a contextually sensitive query
language MQL is provided.

CKR is also logically related to approaches such as multi-context systems [7], dis-
tributed description logics [4], and especially to package-based description logics [2]
and semantic imports [19]. While similar techniques are employed in CKR in order to
facilitate information reuse in between contexts, they are used to meet different goals.
The amount of information that is possibly “imported” from one context to another
by qualified symbols depends on the relation of these context in the CKR’s coverage
hierarchy, thus reflecting the underlaying ideas of the AI theories of context.

6 Conclusion

CKR is a novel framework for representing contextual knowledge in the SW. We have
provided a sound and complete axiomatization and we have shown that reasoning in
CKR is decidable at no additional complexity costs. After the recent introduction of
a tractable version of CKR built on top of RDFS [11] we plan to investigate on other
tractable local languages, e.g., OWL-Horst [23]. For the tractable version we have de-
veloped a prototype [9, 11] on top of the Sesame 2 RDF triple store, where contexts have
been naturally implemented with named graphs [5]. We also want to study a distributed
tableaux based reasoning technique for CKR.
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In the Search of Improvements to the
EL+ Classification Algorithm

Barış Sertkaya
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Abstract. We investigate possible improvements to the existing algo-
rithm for classifying EL

+ TBoxes. We present a modified algorithm based
on the well-known linear closure algorithm from relational databases. De-
spite its better worst-case complexity, surprisingly it turns out that this
algorithm does not perform well in practice. We discuss optimizations to
the existing algorithm and evaluate them using our prototypical reasoner
cheetah on several large bio-medical knowledge bases.

1 Introduction

In [9, 8] Brandt has shown that the tractability result in [2] for subsumption w.r.t.
cyclic EL TBoxes can be extended to the DL ELH, which in addition to EL allows
for general concept inclusion axioms and role hierarchies. Later in [3] Baader et.
al. have shown that the tractability result can even be further extended to the
DL EL++ which in addition to ELH allows for the bottom concept, nominals,
role inclusion axioms, and a restricted form of concrete domains. In addition to
these promising theoretical results, it turned out that despite their relatively low
expressivity, these fragments are still expressive enough for the well-known bio-
medical knowledge bases SNOMED [12] and (large parts of) Galen [19], and the
Gene Ontology GO [11]. In [4, 6, 20] the practical usability of these fragments
on large knowledge bases has been investigated. The CEL Reasoner [18] was
as a result of these studies the first reasoner that could classify the mentioned
knowledge bases from life sciences domain in reasonable times.

Successful applications of the EL family increased investment of further work
in this direction. The EL family now provides the basis for the profile OWL2
EL1. Moreover, there are now a few other reasoners specifically tailored for the
EL family, like Snorocket [16] and TrOWL [21], and CB [15], which extends
the EL++ algorithm to Horn SHIQ. A comprehensive study comparing the
performace of several reasoners on large bio-medical knowledge bases has been
presented in [13].

In the present work we investigate possible improvements to the existing clas-
sification algorithm for the EL family. We present a modified algorithm based
on the well-known linear closure algorithm [7] from relational databases [17].
We evaluate both the modified algorithm and the implementation of the simple

1 http://www.w3.org/TR/owl2-profiles/#OWL 2 EL
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algorithm in our prototypical EL+ reasoner cheetah on several large knowl-
edge bases from life sciences. Surprisingly, it turns out that despite its better
worst-case complexity, the modified algorithm performs worse than the simple
algorithm in practice. In Section 2 we introduce the linear closure algorithm
from relational databases. In Section 3 we present our modified algorithm based
on linear closure, and in Section 4 we present our experimental results.

2 Computing Closure Under Functional Dependencies

In relational databases [17], specification of constraints on data is of crucial im-
portance for correct modelling of the world and correct design of the database
schemas. One way of specifying constraints is using functional dependencies in-
troduced in [10]. A functional dependency occurs when the values of a tuple on
one set of attributes uniquely determine the values on another set of attributes.
Formally, given a relation r and a set of attribute names R, a functional depen-
dency (FD) is a pair of sets X,Y ⊆ R written as X → Y . The relation r satisfies
the FD X → Y if the tuples with equal X-values also have equal Y-values. In
this case, one says that the set of attributes X functionally determine the set of
attributes Y .

Given a set of FDs F and an FD X → Y , one interesting question is whether
F implies X → Y , i.e., whether every relation that satisfies all FDs in F also
satisfy X → Y , which we denote as F |= X → Y . In order to answer this, one
can compute the smallest set of all FDs that F implies by using a set of inference
axioms called Armstrong’s axioms [1] and check whether the mentioned FD is an
element of this set. However, the set of FDs that F implies can be considerably
larger than F and costly to compute. Thus one is interested in answering this
question without computing this set. Instead, one computes the so-called closure
of X under F and checks whether it contains Y . The closure of a set of attributes
X ⊆ R under a set of FDs F is the smallest subset X+ of R such that X ⊆ X+

and for every A → B ∈ F if A ⊆ X+ holds, then B ⊆ X+ holds as well. 2

2.1 The Linear Closure Algorithm

In [7] Beeri and Bernstein have given an algorithm for efficiently computing
closure under a set of FDs. Briefly, for each attribute the algorithm keeps an
index pointing to the set of FDs whose left handsides contain that attribute.
Additionally, for each FD it keeps a counter whose value is initally the size of
the left handside of that FD. Initialization of these data structures is shown in
the procedure Initialization in Algorithm 1.

For computing the closure of a set of attributes x under a set of FDs F it
keeps a queue update which is initally equal to x. In the procedure Closure it
repeatedly fetches and removes an attribute from update and decrements the

2 Note that, from the viewpoint of logic, computing closure is computing consequences
in propositional Horn logic. In fact, the notions we have defined can easily be refor-
mulated in propositional logic when we view the attributes as propositional variables.
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Algorithm 1 The Linear Closure Algorithm
Procedure: Initialization

1: for all FD W → Z ∈ F do
2: count[W → Z] := |W |

3: for all attribute A ∈ W do
4: list[A] := list[A] ∪ {W → Z}

5: end for
6: end for
7: newdep := update := x

Procedure: Closure

1: while update �= ∅ do
2: choose an A from update
3: update := update \ {A}

4: for all FD W → Z ∈ list[A] do
5: count[W → Z] := count[W → Z]− 1
6: if count[W → Z] = 0 then
7: add := Z \ newdep
8: newdep := newdep ∪ add
9: update := update ∪ add
10: end if
11: end for
12: end while

return newdep

counters of FDs that contain this attribute in the left handside. Once a counter
becomes zero, it extends the queue update and the closure newdep with the
new attributes on the right handside of that FD. This continues until the queue
update becomes empty.

Note that the initialization takes at most |F |.|W | time, which is linear in the
size of the input. Now consider the closure computation: Each attribute can enter
update at most once. For each attribute A fetched from update the counters of
the FDs in list[A] are decremented, which is performed at most ΣW→Z∈F |W |

times. If the counter of any FD W → Z becomes 0, then the new attributes in
Z are added to update and newdep. If the involved sets are represented as bit
vectors, this operation takes time proportional to ΣW→Z∈F |Z|.

Since all steps of the algorithm can be performed in time linear in the sizes
of FDs F and the set of attributes, the algorithm has complexity O(n).

3 A Modified Algorithm for classifying EL+ TBoxes

In the present section we present an EL+ classification algorithm based on the
linear closure algorithm introduced in the previous section. EL+ is the DL al-
lowing for the top concept �, conjunction C � D, existential restriction ∃r.A,
general concept inclusion axioms (GCIs) C � D and role inclusion axioms (RIs)
r1 ◦ · · · ◦ rn � s, where A is an atomic concept, r an atomic role, and C,D
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concept descriptions. RIs are interpreted as rI1 ◦ · · · ◦ rIn ⊆ sI , where ◦ denotes
composition of binary relations.

In [9, 8] Brandt has shown that the tractability result in [2] for subsumption
w.r.t. cyclic TBoxes can be extended to the DL ELH, which in addition to
EL allows for GCIs and simple RIs, i.e., RIs with an atomic role on the left
handside. Later in [3] Baader et. al. have shown that the tractability result can
even be further extended to the DL EL++ which in addition to EL+ allows for
the bottom concept ⊥, nominals {a} and a restricted form of concrete domains.

In [4, 5] Baader et. al. have considered a restriction of the polynomial-time
classification algorithm in [3] to EL+ and have given a refined version of the al-
gorithm tailored for efficient implementations of it. This algorithm initially turns
the input TBox into a normalized TBox by applying a series of normalization
rules. Afterwards, it applies a set of completion rules to compute a mapping S

assigning to each concept name a subset of the concept names occurring in the
original TBox. The completion rules are repeatedly applied until no rule applies
any more. Consequently, the mapping S maps every concept name A to its set
of subsumers. That is, B ∈ S(A) implies that the subsumption relation A � B

holds in the original TBox. What is important here is a clever strategy for finding
the next completion rule to be applied. Because if this is done by a brute-force
approach, even though still polynomial, the algorithm will not perform well in
practice for large real life TBoxes. In order to avoid this, the “refined” algorithm
suggested in [4, 5] uses a modification of the approach used in [14] for check-
ing satisfiability of propositional Horn formulae. As shown in [6, 20], the refined
classification algorithm makes at most O(n4) additions to the mapping S and
to the other data structures used.

In the following, we present an algorithm based on the linear closure al-
gorithm introduced in the previous section. We exploit the similarity between
computing closure under a set of functional dependencies and computing the set
of subsumers of a concept. In its simplest form, one can view a GCI that consists
of conjunctions of concept names on both sides as an FD. In this case, comput-
ing the subsumers of a concept w.r.t. a set of such GCIs trivially boils down to
computing the closure of that concept under that set of GCIs, and classifying
the TBox boils down to computing the closure of every concept name occurring
in the TBox. For the general case, where TBox contains RIs, and where GCIs
contain existential restrictions, the inferences due to these should of course also
be taken into account.

As in the existing algorithm, we first transform the TBox into a normal
form. Our normal form slightly differs from the original one introduced in [9,
3]. Instead of only binary conjunctions on the left handsides of GCIs, it allows
for conjunctions of arbitary size. This kind of GCIs have already been used
in the normal form in [4, 6]. There it was reported that for large knowledge
bases like SNOMED [12], this minor change considerably reduces the number
of newly introduced concept names, and thus reduces the size of the normalized
knowledge base. Here, in addition to the left handside, we also allow conjunctions
of arbitrary size on the right handside of GCIs. Of course theoretically this does
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not make any difference but it in the implemtation of the algorithm it allows a
compact representation of the axioms.

3.1 The Normal Form

Given a TBox T we write CNT and CN�
T to denote the sets of concept names

occurring in T with and without the top concept, respectively. Likewise we write
RNT to denote the set of role names occurring in T . We say that T is in normal
form if

1. all GCIs in T are of the form

C1 � . . . � Cn � D1 � . . . �Dm

where Ci is either a concept name from CN�
T or is of the form ∃r.A, and Dj

is either a concept name from CNT or is of the form ∃r.A where A ∈ CN�
T

and r ∈ RNT .
2. all role inclusions are of the form r � s or r1 ◦ r2 � s where r1, r2, s ∈ RNT .

Basically, a normalized GCI consists of conjunctions on both sides where con-
juncts are either concept names or existentially quantified concept names. Role
inclusion axioms are normalized exactly the same way as in [4, 6]. Note that

NF1 r1 ◦ . . . ◦ rk � s ❀ r1 ◦ . . . ◦ rk−1 � u, u ◦ rk � s
NF2 C1 � . . . � ∃r.Ĉ � . . . � Cn � D ❀ Ĉ � A, C1 � . . . � ∃r.A � . . . � Cn � D
NF3 C � D1 � . . . � ∃r.Ĉ � . . . �Dm ❀ C � D1 � . . . � ∃r.A � . . . �Dm, A � Ĉ

where Ĉ �∈ CN�
T , C,D,Ci, Di are arbitrary concept descriptions, u denotes a new role

name, and A denotes a new concept name.

Fig. 1. Normalization rules

our normalization rules shown in Figure 1 are a “stripped down” version of the
original normalization rules. Therefore the linear upper bound on the size of the
normalized TBox shown in [4, 20] also holds for our normalization rules.

3.2 The Modified Classification Algorithm

Like the linear closure algorithm, our classification algorithm maintains a set of
counters in order to decide when to apply a GCI. However we do not maintain
only one counter per GCI, but for every concept name we have a counter for
every GCI. This is because we want to compute the subsumer list of every
concept name occurring in the input TBox, and not only one concept name. The
counters initally contain the size (number of conjuncts) of the left handsides of
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the GCIs. For every concept name we maintain a stack that keeps track of the
concepts still to be processed for that concept name. Note that our algorithm
differs from the original classification algorithm in [4, 6] here in the sense that
instead of keeping track of axioms to be processed we keep track of concepts
to be processed. Our possible stack entries are concept names A ∈ CN�

T , or
existentially restricted concept names ∃r.A where A ∈ CN�

T . The counters are
kept in the two-dimensional array count[A][C � D] and the stacks are stored
as q(A) for A ∈ CN�

T and C � D ∈ T .
In addition to these, for every concept name we keep an index pointing to the

list of GCIs that contain this concept name on the left handside. This information
is stored in list(A) for A ∈ CNT . As in the original algorithm we keep a
subsumer list S(B) for each concept name B. Unlike the original algorithm in
addition to concept names this list also contains concept descriptions of the form
∃r.A where A ∈ CN�

T . Therefore we do not have the data structure R(·, ·) in the
original algorithm for storing relations.

Having explained the data structures we are now ready to give the algo-
rithm. The first procedure properly initializes the data structures count[·][·],
list(·), q(·), and S(·).

Algorithm 2 initialize the data structures
Procedure: Initialization

1: for all GCI α =
�
{C1, . . . , Cn} �

�
{D1, . . . , Dm} ∈ T do

2: for all A ∈ CNT do
3: count[A][α] = n
4: end for
5: for all C ∈ {C1, . . . , Cn} do
6: list(C) = list(C) ∪{α}
7: end for
8: end for
9: for all A ∈ CNT do
10: q(A) = {A,�}

11: S(A) = {A,�}

12: end for

Next we describe the processing of the stacks. Upon popping an entry (a
normalized concept description) C from q(A) we call process-concept-name if
C is a concept name, and process-existential-restriction if C is an exis-
tential restriction. Later we traverse the GCIs that have C on the left handside
and decrement the counters for A. If the counter count[A][

�
{C1, . . . , Cn} ��

{D1, . . . , Dm}] becomes zero, we extend S(A) and q(A) with the new concept
descriptions in {D1, . . . , Dm}.

A concept name fetched from the stack of A is processed as in Algorithm 4,
and an existential restriction popped from the stack of A is processed as shown
in Algorithm 5. Here �∗

T denotes the reflexive transitive closure of the role hier-
archy axioms in the normalized TBox. Processing of the stacks continues until
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Algorithm 3 process stack entry C popped from q(A)

Procedure: process-stack-entry(A,C)

1: if C ∈ CNT then
2: process-concept-name(A,C)
3: end if
4: if C = ∃r.E then
5: process-existential-restriction(A,∃r.E)
6: end if
7: for all GCI α =

�
{C1, . . . , Cn} �

�
{D1, . . . , Dm} ∈ list(C) do

8: count[A][α] = count[A][α] - 1
9: if count[A][α] = 0 then
10: q(A) = q(A) ∪ {Di | Di �∈ S(A)}
11: S(A) = S(A) ∪ {Di | Di �∈ S(A)}
12: end if
13: end for

Algorithm 4 process the concept name B popped from q(A)

Procedure: process-concept-name(A,B)

1: for all D ∈ CNT s.t. ∃r.A ∈ S(D) and ∃r.B �∈ S(D) do
2: q(D) = q(D) ∪ { ∃r.B}

3: S(D) = S(D) ∪ { ∃r.B}

4: end for

all stacks q(·) are empty. Note that our algorithm differs from the “refined”
algorithm introduced in [5, 6] only in the way how the stacks (there queues)
are processed, and how axioms that apply at a particular step are detected. In
principle it still performs exactly the same operations in the “abstract” algo-
rithm introduced there. That is, it still performs the completion rules in [5, 6].
In fact, the lines 9-11 of Algorithm 3 implement the completion rules R1, R2
and part of R3 in [6]. Lines 2-4 of Algorithm 5 implement rest of R3, and the
whole process-existential-restricton procedure implement rules R4 and
R5. Since we do not modify the original abstract algorithm in [5, 6] we do not
need to give proof of correcteness of our algorithm here.

It has been shown in [6, 20] that the refined algorithm there makes at most
n4 additions to the subsumer list S(·) and to the queues used, where n is the
size of the normalized TBox. For every addition to S(·) this algorithm performs
a subset check in order to decide whether the fetched axiom from the queue is
applicable at that step or not. This subset check brings an overhead which in
the worst-case is n, thus the overall runtime of the original algorithm is O(n5).

The counters used by our algorithm allow us to check whether an axiom
applies without doing the subset check mentioned above, thus avoid the n-step
overhead in the worst-case. Basically, this is how our algorithm achieves a better
worst-case complexity O(n4) instead of the O(n5) worst-case complexity of the
original algorithm.
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Algorithm 5 process the existential restriction ∃r.E fetched from q(A)

Procedure: process-existential-restriction(A,∃r.E)

1: for all s ∈ RNT s.t. r �
∗
T s do

2: for all D ∈ CNT s.t. D ∈ S(E) and ∃s.D �∈ S(A) do
3: q(A) = q(A) ∪ { ∃s.D}

4: S(A) = S(A) ∪ { ∃s.D}

5: end for
6: for all D ∈ CNT s.t. ∃x.A ∈ S(D) and ∃y.E �∈ S(D) and x, y ∈ RNT s.t.

x ◦ s � y ∈ T do
7: q(D) = q(D) ∪ { ∃y.E}

8: S(D) = S(D) ∪ { ∃y.E}

9: end for
10: for all D ∈ CNT s.t. ∃x.D ∈ S(E) and ∃y.D �∈ S(A) and x, y ∈ RNT s.t.

s ◦ x � y ∈ T do
11: q(A) = q(A) ∪ { ∃y.D}

12: S(A) = S(A) ∪ { ∃y.D}

13: end for
14: end for

4 Implementation and Evaluation

In order to evaluate the runtime behaviour of our modified algorithm, we have
implemented it and performed a series of tests on large bio-medical knowledge
bases: Foundational Model of Anatomy3 (FMA) is a large but simple TBox that
contains 75139 concept names. Similarly, the Gene Ontology 4 (GO) and Na-
tional Cancer Institute Thesaurus 5 (NCI) are large knowledge bases with shal-
low hierarchies. The GO contains 25070 concept names, and the NCI contains
27652 concept names. We have stripped down Galen 6 by removing function-
alities and inverse roles to obtain the knowledge base Galen−, which contains
23136 concept names. Finally we have also used the very large knowledge base
SNOMED 7, which contains 293707 concept names. We have implemented the
algorithm in the C programming language due to its speed and efficient use of
the memory, which is important for dealing with these large knowledge bases.
Currently our implementation can only read EL+ knowledge bases written in
OWL 2 Functional-Style Syntax. We have implemented the parser for this syn-
tax using the tools lex and yacc, which are used for generating lexical analyzer
and parser for a given grammar.

In order to evaluate its performance, we have implemented the modified
algorithm presented above, in our prototypical reasoner cheetah8. We have

3 http://sig.biostr.washington.edu/projects/fm/AboutFM.html
4 http://www.geneontology.org/
5 http://www.cancer.gov/cancertopics/cancerlibrary/terminologyresources
6 http://www.co-ode.org/galen/
7 http://www.nlm.nih.gov/research/umls/Snomed/snomed main.html
8 http://code.google.com/p/cheetah
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FMA GO NCI SNOMED Galen−

cheetah 4.78 1.37 1.29 179.57 21.41
cheetah∗ 4.03 1.00 0.88 92.23 12.32

CB 6.59 3.17 2.13 46.88 3.20
Table 1. Comparison of runtimes in seconds

compared its performance with the performance of the simple algorithm that
performs subset checks instead of maintaining counters in order to decide when
to apply an axiom. The simple algorithm still uses the normalization rules intro-
duced in Section 3.1, and stacks for keeping track of concepts still to be processed,
but does not use counters. Instead, for a concept name B popped from q(A), it
compares the left handsides of axioms containing B with the current subsumers
of A, and applies an axiom if the former is a subset of the later. In our compar-
ison we have also involved the CB Reasoner9 that has been introduced in [15].
The underlying algorithm of the CB Reasoner extends the EL++ classification
algorithm in [4] to the much more expressive fragment Horn SHIQ, for which
reasoning is not tractable any more. CB is able to classify the medical knowledge
base Galen [19] that uses this expressivity, and as reported in [13], it outperforms
all other reasoners for several other large bio-medical knowledge bases as well.

The results of our experiments were surprising. Despite its better worst-case
complexity, in practice our modified algorithm performed worse than our imple-
mentation of the simple algorithm. The results of our experiments are shown in
Table 1, where cheetah represents the implementation of our modified algo-
rithm, and cheetah∗ the implementation of the simple algorithm. The exper-
iments are run on a computer with an Intel Core i3 processor running at 2.1
GHz, 8 GB of main memory and on the Linux operating system with 2.6.38
kernel. As seen in Table 1, the modified algorithm performs always worse than
the simple algorithm. A closer look into the input knowledge bases reveals that
the worst-case, i.e., axioms with very long conjunctions on the left handsides do
not occur in practice. In fact, in SNOMED the longest conjunction on the left
handside of a GCI is 12, for the Galen version we used it is 5, for FMA, GO and
NCI it is just 1. When it comes to average size of conjunctions on the left hand
side, for SNOMED it is 1.30 and for Galen− it is 1.29, which are very small com-
pared to the number of concept names occurring in these knowledge bases. This
explains the poor performance of the modified algorithm. The worst-case, i.e.,
large conjunctions on the left handsides, does not occur in any of the knowledge
bases we have used in our experiments. In practice the conjunctions on the left
handsides are so small that even plain subset check is fast enough compared to
the overhead of maintaining the counters.

According to the table the CB Reasoner performs in general better than
both cheetah and cheetah∗. This is due to our unoptimized implementation
of the processing of stacks. CB spends a big portion of the runtime for loading

9 http://code.google.com/p/cb-reasoner

397



and normalizing the knowledge base however it is very efficient in computing
the subsumer lists. For instance for SNOMED in our experiments it took CB
13.99 seconds to load and normalize the knowledge base, and only 21.47 seconds
to compute the subsumer lists. On the other hand for cheetah∗ loading and
normalizing the knowledge base took 3.9 seconds, and computing the subsumer
lists took 84.13 seconds.

5 Concluding Remarks and Future Work

We have investigated a modification to the EL+ classification algorithm for im-
proving its worst-case complexity. It turned out the modified algorithm performs
worse in practice. However, there is some room for further improvement of both
the modified and the simple algorithm. During the execution of both algorithms,
some axioms are applied several times, which in principle could be avoided. For
instance if we are processing the stack of concept name A and find out that A
is subsumed by B, we can skip the axioms already applied while computing the
subsumers of B and just extend the subsumer list of A with that of B. This
would bring the overhead of keeping track of which axioms have already been
applied for which concept name, but save the effort of applying those axioms
again. One other possible improvement is to make use of the axioms that have
only one concept name or existential restriction, i.e., no conjuction on the left
handside. One can apply such axioms immediately before the execution of the
algorithm, thus pre-filling the stacks and subsumer lists with told-subsumers
appropriately.

As future work we are going to implement and test these further improve-
ments. In addition to this, we are going to extend the cheetah reasoner to
support the OWL2 EL Profile and improve its usability by providing a platform
independent Java interface and a Protege plugin for it.

Acknowledgements: We would like to thank Yevgeny Kazakov for giving his
remarks and providing information about the CB Reasoner.
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1 Introduction

DL reasoning is of high computational complexity even for basic DLs such as ALCI
[3, Chapter 3]. Intuitively, due to disjunctions (or-branching) and/or existential quan-
tifiers (and-branching), a DL reasoner may need to investigate (at least) exponentially
many combinations of concepts. A range of highly-tuned optimizations, such as absorp-
tion, dependency-directed backtracking, blocking, and caching [3, Chapter 9], can be
used to tame these sources of complexity. None of these techniques, however, provide
formal tractability guarantees. Such guarantees can be obtained by restricting the lan-
guage expressivity, as done in the EL [2], DL-Lite [4,1], and DLP [8] families of DLs.
Tractable DLs typically do not support disjunctions, which eliminates or-branching, and
they either significantly restrict universal quantification (as in EL and DL-Lite) or disal-
low existential quantification (as in DLP), which eliminates or reduces and-branching.

Obtaining tractability guarantees for hard computational problems has been exten-
sively studied in parameterized complexity [5]. The general idea is to measure the “hard-
ness” of a problem instance of size n using a nonnegative integer parameter k, and the
goal is to solve the problem in time that becomes polynomial in n whenever k is fixed.
A particular goal is to identify fixed parameter tractable (FPT) problems, which can be
solved in time f (k) · nc, where c is a constant and f is an arbitrary computable function
that depends only on k. Note that not every problem that becomes tractable if k is fixed
is in FPT. For example, checking whether a graph of size n contains a clique of size k
can clearly be performed in time O(nk), which is polynomial if k is a constant; however,
since k is in the exponent of n, this does not prove membership in FPT.

Note that every problem is FPT if the parameter is the problem’s size, so a useful
parameterization should allow increasing the size arbitrarily while keeping the param-
eter bounded. Various problems in AI were successfully parameterized by exploiting
the graph-theoretic notions of tree decompositions and treewidth [6,7,10], which we
recapitulate next. A hypergraph is a pair G = �V,H� where V is a set of vertices and
H ⊆ 2V is a set of hyperedges. A tree decomposition of G is a pair �T, L� where T is
an undirected tree whose sets of vertices (also called bags) and edges are denoted with
B(T ) and E(T ), and L : B(T )→ 2V is a labeling of B(T ) by subsets of V such that

(T1) for each v ∈ V , the set {b ∈ B(T ) | v ∈ L(b)} induces a connected subtree of T , and
(T2) for each e ∈ H, there exists a bag b ∈ B(T ) such that e ⊆ L(b).

The width of �T, L� is defined as maxb∈B(T ) L(b) − 1. Finally, the treewidth of G is the
minimum width among all possible tree decompositions of G. Consider now an in-
stance N of the SAT problem, where N is a finite set of clauses (i.e., disjunctions
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of possibly negated propositional variables). The notions of tree decompositions and
treewidth of N are defined w.r.t. the hypergraph GN = �VN ,HN� where VN is the set of
propositional variables occurring in N, and HN contains the hyperedge {p1, . . . , pk} for
each clause (¬)p1 ∨ . . . ∨ (¬)pk ∈ N. When parameterized by treewidth, SAT is FPT
[10]. Intuitively, the treewidth of N shows how many propositional variables must be
considered simultaneously in order to check the satisfiability of N; thus, bounding the
treewidth has the effect of bounding or-branching.

Inspired by these results, we present a novel DL reasoning algorithm that ensures
fixed parameter tractability. To this end, in Section 3 we introduce a notion of a de-
composition D of a signature Σ. Intuitively, D is a graph that restricts the propagation
information between the atomic concepts in Σ. A decomposition of Σ can be seen as
one or more tree decompositions, each reflecting the propagation of information due
to or-branching, interconnected to reflect the propagation of information due to and-
branching. We identify a parameter ofD called width; intuitively, this parameter deter-
mines an upper bound on the number of concepts that must be considered simultane-
ously to solve a reasoning problem. Let O be anALCI ontology normalized to contain
only axioms of the form

�

i Ai �
�

j B j, A � ∃R.B, and A � ∀R.B, where A(i) and B( j)
are atomic concepts, and R is a (possibly inverse) role. We present a resolution-based
reasoning calculus that runs in time O( f (d) · |D| · |O|), where d is the width ofD, |D| is
the size ofD, and |O| is the number of axioms in O. Our calculus is not complete for all
D: it is not guaranteed to derive all consequences that might be of interest. To remedy
that, we introduce a notion ofD being admissible for O and the relevant consequences,
and we show that admissibility guarantees completeness.

Ideally, given O and the relevant consequences, one would identify an admissible
decompositionD of smallest width and then run our calculus in order to obtain an FPT
algorithm. In Section 4, however, we show that, for certain O, all admissible decompo-
sitions of smallest width have exponentially many vertices. This is in contrast to tree
decompositions (e.g., for each instance of SAT, a tree decomposition of minimal width
exists in which the number of vertices is linear in the size of the instance) and is due
to the fact that, in addition to or-branching, our decompositions analyze information
flow due to and-branching as well. We therefore further restrict the notion of admissi-
ble decompositions in several ways. For each of the resulting notions, one can compute
a decomposition of width at most d (if one exists) in time f (d) · |O|c with f a computable
function and c an integer constant; together with our resolution-based calculus, we thus
obtain an FPT calculus for reasoning with normalizedALCI ontologies.

In Section 5 we show that the minimum decomposition width of several commonly
used ontologies is much smaller than the respective ontology’s size. This suggests that
decomposition width provides a “reasonable” measure of ontology complexity, and that
our approach might even provide practical tractability guarantees.

Our results can be applied to SHI ontologies by transforming away role hierar-
chies and transitivity and normalizing the ontology in a preprocessing step. Such trans-
formations, however, are don’t-care nondeterministic, and the minimum decomposition
width of the normalization result might depend on the nondeterministic choices. In this
paper we thus restrict our attention to normalized ALCI ontologies, and we leave an
investigation of how normalization affects the minimum width for future work.
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R1 A � A
R2

K1 � M1 � A A � K2 � M2

K1 � K2 � M1 � M2

R3 K � M
: K � M ∈ O R4

B ��i Di �
�

j E j

or
�

i Di �
�

j E j

A ��i Ci �
�

j F j
:

A � ∃R.B ∈ O
Ci � ∀R.Di ∈ O
E j � ∀R−.F j ∈ O

Fig. 1. A simple resolution calculus

2 Source of Complexity in DL Reasoning

In order to motivate the results presented in the following sections, in this section we
present a very simple calculus that is not FPT, and we discuss the rough idea for making
the calculus FPT. The calculus is based on resolution, and is similar to the calculus pre-
sented in [9]. Resolution can often provide worst-case optimal calculi whose best case
complexity is significantly lower than the worst case complexity; indeed, the calculus
from [9] has demonstrated excellent practical performance.

The calculus manipulates clauses—expressions of the form K � M, where K is a
finite conjunction of atomic concepts, and M is a finite disjunction of atomic concepts.
With sig(K), sig(M), and sig(K � M) we denote the sets of atomic concepts occurring
in K, M, and K � M, respectively. We consider two disjunctions (resp. conjunctions) to
be the same whenever they mention the same atoms; that is, we disregard the order
and the multiplicity of atoms. We write empty K and M as � and ⊥, respectively.
Furthermore, we say that a clause K� � M� is a strengthening of a clause K � M if
sig(K�) ⊆ sig(K) and sig(M�) ⊆ sig(M). We write K � M ∈̂ N if the set of clauses N
contains at least one strengthening of the clause K � M.

Given a normalized ontology O, our calculus constructs a derivation—a sequence
S0,S1, . . . of sets of clauses such that S0 = ∅, and for each i > 0, set Si is obtained
from Si−1 by applying a rule from Fig. 1. Rules R1 and R2 implement propositional
resolution, and rule R3 ensures that each clause in O is taken into account. Rule R4
handles role restrictions; letter R stands for a role (i.e., R need not be atomic), and
inv(R) is the inverse role of R; finally, note that the atom B in the premise of the rule is
optional. Intuitively, the rule says that, if B, Di, and ¬E j jointly imply a contradiction,
but A � ∃R.B, Ci � ∀R.Di, and ¬F j � ∀R.¬E j hold, then A, Ci, and ¬F j jointly imply
a contradiction too. Reasoning with the second premise is analogous.

A saturation is defined as S � �i Si. The calculus infers a clause K � M, written
O � K � M, if K � M ∈̂ S. It is straightforward to see that the calculus is sound: if
O � K � M, then O |= K � M. Typically, resolution is used as a refutation-complete
calculus; however, it is possible to show that the variant of resolution presented here
is complete in the following stronger sense: if O |= K � M, then O � K � M; note that
this means that the calculus infers at least one strengthening of each clause entailed by
O. This stronger notion of completeness can be useful in practice; for example, O can
be classified using a single run of the calculus, which is not the case for calculi (such as
tableau) that are only refutationally complete.
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Let d be the number of atomic concepts in O. Since each clause is uniquely identi-
fied by the atomic concepts that occur in K and/or M, the calculus can derive at most
4d clauses, which is exponential in |O|. The high complexity of DL reasoning arises
because one may have to consider exponentially many combinations of concepts, and
this fact fundamentally underpins all DL reasoning algorithms. Clearly, a tractable algo-
rithm should consider only polynomially many combinations. For example, reasoning
algorithms for EL exploit the fact that only polynomially many combinations are “rele-
vant” and that all of them can be constructed deterministically. In the following sections,
we ensure tractability of reasoning in a radically different way. Instead of restricting the
ontology language, we show that by restricting the structure of the ontology with a
suitable parameter one can limit the number of concepts that must be simultaneously
considered, which effectively limits the exponent in the above calculation. Since the
base of the exponent not depend on |O|, we will thus obtain an FPT reasoning calculus.

3 Reasoning with Decompositions

In this section we develop the notions of decomposition, decomposition admissibility,
and the resolution calculus. We start by introducing the notion of decomposition.

Definition 1. Let Σ = �ΣA, ΣR� be a DL signature, where ΣA is a finite set of atomic
concepts and ΣR is a finite set of atomic roles; let ΣR− = {R− | R ∈ ΣR} be the set of
inverse roles of ΣR; and let � be a symbol not contained in ΣA ∪ ΣR ∪ ΣR− .

A decomposition of Σ is a labeled graph D = �V,E, sig�, where V is a finite set
of vertices, E ⊆ V ×V × (ΣR ∪ Σ−R ∪ {�}) is a set of directed edges labeled by a role or
by �, and sig : V → 2ΣA is a labeling of each vertex with a set of atomic concepts. The
width ofD is defined as wd(D) � maxv∈V |sig(v)|.

Note that D is not defined w.r.t. an ontology, but w.r.t. a signature Σ, and we will
establish a link between D and O shortly in our notion of admissibility. This is mainly
so as to gather all conditions that guarantee completeness in one place. We discuss the
intuition behind this definition after presenting the resolution-based calculus.

Definition 2. Let Σ be a DL signature, let D = �V,E, sig� be a decomposition of Σ,
and let O be a normalized ALCI ontology over Σ. The resolution calculus for D and
O is defined as follows.

A clause system for D is a function S that assigns to each vertex v ∈ V a set of
clauses S(v). A derivation of the calculus is a sequence of clause systems S0,S1,S2, . . .
such that S0(v) = ∅ for each v ∈ V and, for each i > 0, Si is obtained from Si−1 by
an application of a derivation rule from Fig. 2; we assume that each derivation is fair
in the usual sense. The saturation is the clause system S defined by S(v) �

�
i Si(v) for

each v ∈ V. The calculus infers a clause K � M at vertex v, written O, v �D K � M, if
K � M ∈̂ S(v); furthermore, the calculus infers a clause K � M, written O �D K � M,
if a vertex v ∈ V exists such that O, v �D K � M.

The calculus is complete (sound) ifO |= K � M implies (is implied by)O �D K � M
for each clause K � M over Σ. Given a set of clauses C over Σ, the calculus is C-
complete if O |= K � M implies O �D K � M for each K � M ∈ C.
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R1 add A � A to S(v)
: A ∈ sig(v)

R2
K1 � M1 � A ∈ S(v) A � K2 � M2 ∈ S(v)

add K1 � K2 � M1 � M2 to S(v)

R3 add K � M to S(v)
: K � M ∈ O

sig(K � M) ⊆ sig(v)

R4

B ��i Di �
�

j E j ∈ S(u)
or

�

i Di �
�

j E j ∈ S(u)
add A ��i Ci �

�
j F j to S(v)

:

A � ∃R.B ∈ O
Ci � ∀R.Di ∈ O
E j � ∀inv(R).F j ∈ O
�u, v,R� ∈ E
sig(A ��i Ci �

�
j F j) ⊆ sig(v)

R5
K � M ∈ S(u)

add K � M to S(v)
: �u, v, �� ∈ Esig(K � M) ⊆ sig(v)

Fig. 2. The decomposition calculus

While the simple calculus from Section 2 saturates a single set of clauses, the res-
olution calculus for D and O saturates one set of clauses per decomposition vertex. In
particular, for a vertex v ∈ V, set S(v) contains only clauses whose propositional atoms
are all contained in sig(v), so v identifies a propositional subproblem of O. Rules R1–R3
implement propositional resolution “within” each vertex v. Rule R5 propagates proposi-
tional consequences from vertex u to vertex v connected by an �-labeled edge; thus, the
�-labeled edges ofD “connect” the subproblems of O in accordance with or-branching.
Finally, rule R4 propagates modal consequences from a vertex u to a vertex v connected
by an R-labeled edge; thus, the R-labeled edges of D “connect” the subproblems of O
in accordance with and-branching. A clause is inferred if at least one saturated set S(v)
contains a strengthening of the clause.

Note that rules R1–R3 consider only one vertex at a time, whereas rules R4 and R5
involve two vertices. Thus, although this was not our initial motivation, the calculus
seems to exhibit significant parallelization potential. We leave a thorough investigation
of the reasoning problem in terms of parallel complexity classes for future work.

The notion of C-completeness takes into account that one might be interested not
only in refutational completeness, but in the derivation of all clauses from some set C.
For example, if one is interested in the classification of O, then C would contain all
clauses of the form A � B with A and B atomic concepts occurring in O.

The following proposition determines the complexity of the calculus in terms of the
sizes ofD and the number |O| of axioms in O. It essentially observes two key facts: first,
since the clauses in each S(v) are restricted to atomic concepts in sig(v), the maximum
number of clauses in S(v) is determined solely by wd(D); and second, given a node or a
pair of nodes, all rules can be applied in time that also depends solely on wd(D). Once
we limit the size ofD, this proposition will provide us with an FPT algorithm.

404



Proposition 1. Let D = �V,E, sig� and O be as in Definition 2. The saturation of the
resolution calculus forD andO can be computed in time O( f (wd(D)) · (|V| + |E|) · |O|),
where f is some computable function.

The rules of our calculus are clearly sound for arbitrary decompositions D and
ontologies O; however, the converse is not true. As a trivial example, note that the
decomposition with the empty vertex and edge sets satisfies Definition 1, and that our
calculus does not infer any clause using suchD. Therefore, we next introduce the notion
of admissibility, which we later show to be sufficient for completeness.

Definition 3. LetD = �V,E, sig� be a decomposition of a DL signature Σ = �ΣA, ΣR�.
Let W ⊆ V be an arbitrary set of vertices. The signature of W is defined as

sig(W) �
�

w∈W sig(w). The �-projection of D w.r.t.W is the undirected graph DW
that contains the undirected edge {u, v} for each �u, v, �� ∈ E with u, v ∈ W. SetW is
�-connected if, for all u, v ∈ W, vertices {w0,w1, . . . ,wn} ⊆ W exist such that w0 = u,
wn = v, and �wi−1,wi, �� ∈ E for each 1 ≤ i ≤ n; furthermore,W is an �-component of
D ifW is �-connected, and eachW� such thatW �W� ⊆ V is not �-connected.

DecompositionD is admissible for an ontologyO if �u, v, �� ∈ E implies �v, u, �� ∈ E
for all u, v ∈ V, and if each �-componentW ofD satisfies the following properties:

(i) DW is an undirected tree;
(ii) for each atomic concept A ∈ sig(W), the set {w ∈ W | A ∈ sig(w)} is �-connected;

(iii) for each clause K � M ∈ O such that sig(K) ⊆ sig(W), a vertex w ∈ W exists such
that sig(K � M) ⊆ sig(w);

(iv) for each axiom A � ∃R.B ∈ O such that A ∈ sig(W), an �-componentU of D and
vertices w ∈ W and u ∈ U exist such that

– �u,w,R� ∈ E,
– A ∈ sig(w),
– B ∈ sig(u),
– for each C � ∀R.D ∈ O, if C ∈ sig(W) then C ∈ sig(w) and D ∈ sig(u), and
– for each E � ∀inv(R).F ∈ O, if E ∈ sig(U) then E ∈ sig(u) and F ∈ sig(w).

A clause K � M is covered by D if an �-componentW of D and a vertex w ∈ W
exist such that sig(K) ∪ [sig(M) ∩ sig(W)] ⊆ sig(w). Decomposition D is admissible
for C if each clause in C is covered byD.

Definition 3 incorporates two largely orthogonal ideas. First, each �-componentW
of D reflects the propositional constraints on domain elements of a particular type in a
model ofO. To deal with or-branching, eachW is a tree decomposition formed by undi-
rected �-labeled edges. Conditions (i)–(iii) are analogous to (T1) and (T2) in Section 1,
but (iii) is more general: instead of requiring sig(K � M) ⊆ sig(w) for each K � M ∈ O
and some w ∈ W, Condition (iii) takes into account that, if sig(K) � sig(W), then
K � M can be satisfied by making the atomic concepts in sig(K) \ sig(W) false on the
appropriate domain element; thus, sig(K � M) ⊆ sig(w) must hold for some w ∈ W
only if sig(K) ⊆ sig(W). Admissibility for C uses an analogous idea.

Second, to deal with and-branching, the �-components of D are interconnected via
role-labeled edges. If a concept A occurs in an �-componentW and in an axiom of O of
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the form A � ∃R.B, then a domain element corresponding toW might need to have an
R-successor; to reflect that,Dmust contain an �-componentU, and vertices w ∈ W and
u ∈ U connected by an R-labeled edge must exist such that A ∈ sig(w) and B ∈ sig(u).
Furthermore, in order to address the universal quantifiers over R, if C � ∀R.D ∈ O and
C ∈ sig(W), then C ∈ sig(w) and D ∈ sig(u) must hold, and analogously for universals
over inv(R). These conditions ensure that w and u contain all atomic concepts that might
be relevant for modal reasoning, which in turn allows our calculus to infer all relevant
constrains on atomic concepts.

The following theorem shows that admissibility indeed ensures completeness.

Theorem 1. Let O be an ontology, let C be a set of clauses, and letD = �V,E, sig� be
a decomposition that is admissible for O and C. Then, the resolution calculus forD and
O is C-complete.

Ideally, given an ontology O and a set of clauses C, one would identify a decom-
position D of smallest width and then apply the resolution calculus for D and O to
obtain an FPT algorithm. The following theorem shows, however, that this idea does
not work, since it is not the case that, for each ontology O, there exists a decomposition
of minimal width that is admissible for O and whose size is polynomial in |O|. In order
to address this problem, in Section 4 we further restrict the notion of admissibility.

Theorem 2. A family of ALCI ontologies {On} exists such that each decomposition
admissible for On and C = {C � ⊥} of minimal width has size exponential in |On|.

4 Constructing Decompositions of Polynomial Size

In Section 4.3 we present a general method for computing admissible decompositions
of polynomial size, for which we obtain the desired FPT result. This method embodies
two largely orthogonal ideas, each of which we present separately for didactic purposes.
In particular, in Section 4.1 we present an approach for analyzing and-branching, and
in Section 4.2 we present an approach for analyzing or-branching.

4.1 Analyzing And-Branching via Deductive Overestimation

In this section we present an approach for analyzing and-branching, which is inspired
by the reasoning algorithm for EL [2]. The approach uses an overestimation of the
subsumption relation to construct the decomposition. It manipulates expressions of the
form K � A, where K is a conjunction of atomic concepts, and A is an atomic concept.
Given anALCI ontology O and a set of clauses C, the deductive overestimation � for
O and C is the relation obtained by exhaustive application of the rules shown in Fig. 3.

Intuitively, K � A states that an object whose existence is required to satisfy K can
become an instance of A. On EL ontologies � coincides with the subsumption relation,
but on more expressive ontologies � overestimates the subsumption relation. In order
to check whether a clause K � M ∈ C is entailed by O, rule E1 introduces an instance
of all atomic concepts in K. Rule E2 addresses the fact that, if some object α is an
instance of A1, . . . , An and O contains a clause A1 � . . . � An � B1 � . . . � Bm, then the
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E1 K � A1 . . . K � An
: A1 � . . . � An � B1 � . . . � Bm ∈ C

K = A1 � . . . � An

E2
K � A1 . . . K � An

K � B1 . . . K � Bm
: A1 � . . . � An � B1 � . . . � Bm ∈ O

E3
K � A
B � B

: A � ∃R.B ∈ O

E4
K � A K � C

B � D
: A � ∃R.B ∈ O

C � ∀R.D ∈ O E5
K � A B � E

K � F
: A � ∃R.B ∈ O

E � ∀R−.F ∈ O

Fig. 3. Computing the deductive overestimation for O and C

object must be an instance of some Bi. Since a polynomial overestimation method that
reasons by case is unlikely to exist, rule E2 overestimates the subsumption relation by
saying that α can be an instance of all B1, . . . , Bm. Rule E3 takes into account that, given
A � ∃R.B ∈ O, each instance of A needs an R-successor that is an instance of B. Anal-
ogously to the EL reasoning calculus, in order to obtain a polynomial overestimation
method, rule E3 “reuses” the same successor to satisfy multiple existential restrictions
to the same concept B. Finally, rules E4 and E5 implement modal reasoning.

Having computed �, we construct the decompositionDE = �V,E, sig� of the sym-
bols occurring in O and C as shown below. Note that DE contains no �-labeled edges,
as this decomposition method does not analyze or-branching. By Theorems 1 and 3, the
resolution calculus forDE and O is C-complete.

V � {vK | K � A for some A} sig(vK) � {A | K � A}
E � {�vB, vK ,R� | K � A and A � ∃R.B ∈O}

Theorem 3. DecompositionDE is admissible for O and C.

4.2 Analyzing Or-Branching via Tree Decomposition

We now present an approach for computing admissible decompositions that analyzes
or-branching. The approach handles the clauses in O as explained in Section 1 for SAT,
and it imposes additional constraints in order to satisfy condition (iv) of Definition 3.

Given a normalized ontology O and a set of clauses C, we define the hypergraph
GO,C = �V,H� such that V and H are the smallest sets satisfying the following proper-
ties. For each atomic concept A occurring in O or C, we have A ∈ V . For each clause
K � M ∈ O, we have sig(K � M) ∈ H. For each A � ∃R.B ∈ O, set H contains hyper-
edges domA�∃R.B and ranA�∃R.B defined as shown below, where Ci � ∀R.Di, 1 ≤ i ≤ n
and E j � ∀inv(R).F j, 1 ≤ j ≤ m are all axioms in O of the respective forms:

domA�∃R.B � {A,C1, . . . ,Cn, F1, . . . , Fm},
ranA�∃R.B � {B,D1, . . . ,Dn, E1, . . . , Em}.

Finally, sig(K � M) ∈ H for each K � M ∈ C.
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Given a tree decomposition �T, L� of GO,C, we construct (don’t-care nondeterminis-
tically) a decompositionDT = �V,E, sig� as follows. The vertices ofDT are the bags of
T—that is,V � B(T ). The signatures of DT are the labels of T—that is, sig � L. The
�-edges ofDT are the edges of T—that is, for each {u, v} ∈ E(T ), we have �u, v, �� ∈ E.
Finally, for each A � ∃R.B ∈ O, choose vertices u, v ∈ V such that ranA�∃R.B ⊆ L(u)
and domA�∃R.B ⊆ L(v) and set �u, v,R� ∈ E; such u and v exist due to property (T2) of
the definition of tree decompositions in Section 1.

Theorem 4. Every decompositionDT is admissible for O and C.

4.3 Analyzing And- and Or-Branching Simultaneously

We now show how to combine the approaches for analyzing and- and or-branching to
obtain a C-decomposition of a normalizedALCI ontology O and a set of clauses C.

The procedure consists of three steps. First, we compute the relation � as described
in Section 4.1. This step analyzes the and-branching inherent in O and C.

Second, for all K such that K � A for some A, we simultaneously define hyper-
graphs GK = �VK ,HK� where VK � {A | K � A}, and HK are the smallest sets satisfy-
ing the following conditions. For each clause K� � M� ∈ Owith sig(K� � M�) ⊆ VK , we
have sig(K� � M�) ∈ HK . For each axiom A � ∃R.B ∈ O such that A ∈ VK , set HK con-
tains hyperedge domK,A�∃R.B and set HB contains hyperedge ranK,A�∃R.B defined below,
where Ci � ∀R.Di, 1 ≤ i ≤ n and E j � ∀inv(R).F j, 1 ≤ j ≤ m are all axioms in O of the
respective forms such that Ci ∈ VK and E j ∈ VB:

domK,A�∃R.B � {A,C1, . . . ,Cn, F1, . . . , Fm},
ranK,A�∃R.B � {B,D1, . . . ,Dn, E1, . . . , Em}.

Finally, [sig(K � M) ∩ VK] ∈ HK for each K � M ∈ C.
Third, we compute a tree decomposition �TK , LK� for each hypergraph GK ; without

loss of generality we assume that all sets B(TK) are disjoint. We then construct the
decomposition DC = �V,E, sig� as follows. The vertices of DC are the bags of the
tree decompositions—that is, V � �K B(TK). The signatures of DC are the labels of
the tree decompositions—that is, sig �

�
K LK . The �-edges of DC are the edges of

the tree decompositions—that is, �u, v, �� ∈ E for each {u, v} ∈ E(TK). Finally, for each
axiom A � ∃R.B ∈ O and each K such that A ∈ VK , choose u ∈ B(VB) and v ∈ B(VK)
such that ranK,A�∃R.B ⊆ L(u) and domK,A�∃R.B ⊆ L(v) and set �u, v,R� ∈ E; such u and v
exist due to property (T2) of the definition of tree decompositions in Section 1.

The class of all C-decompositions of O and C consists of all decompositions ob-
tained in the way specified above. Note that the first step (computation of �) is deter-
ministic, but the second step is not as each GK may admit several tree decompositions.
The C-width of O and C is the minimal width of any C-decomposition of O and C.

Theorem 5. Every decompositionDC is admissible for O and C.

To show that DL reasoning is FPT if the C-width is bounded, we next estimate the
effort required for computing a C-decomposition of O and C. With �O� and �C� we de-
note the sizes of (i.e. the numbers of symbols required to encode) O and C, respectively.
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Table 1. Upper bounds on C-width for classification

Ontology |ΣA| |Σnorm
A | wd(DE) wd(DC)

SNOMED CT (http://ihtsdo.org/snomed-ct/) 315,489 516,703 349 100
SNOMED CT-SEP (see [9] for reference) 54,973 149,839 1,196 168
FMA (http://fma.biostr.washington.edu/) 41,700 81,685 1,166 35
GALEN (http://opengalen.org/) 23,136 49,245 646 54
OBI (http://obi-ontology.org/) 2,955 4,296 304 45

Proposition 2. An algorithm exists that takes as input a positive integer d, a normalized
ALCI ontology O, and a set of clauses C, that runs in time O(g(d) · (�O� + �C�)5) for
g a computable function, and that computes a C-decomposition of O and C of width at
most d whenever at least one such decomposition exists.

We can now formulate the main FPT result for C-decompositions.

Theorem 6. Let d be a positive integer, let O be a normalized ALCI ontology, and
let K � M be a clause. The problem of deciding whether a C-decomposition of O and
C = {K � M} of width at most d exists, and if so, whether O |= K � M, is FPT.

5 Experimental Results

It can be argued that FPT is interesting only if the parameter can be substantially smaller
than the input size. In order to judge the “usefulness” of C-width as a complexity mea-
sure, we measured the C-width of several ontologies (listed in Table 1) that are often
used for evaluating DL reasoners. We weakened all ontologies toALCHI by discard-
ing all unsupported features, we applied the structural transformation from [9], and we
eliminated role inclusion axioms by unfolding the role hierarchy into universal restric-
tions to obtain normalizedALCI ontologies. Note that there are several different ways
of formulating and optimizing structural transformation, and each could produce an
ontology of a different C-width, so our results are not necessarily optimal.

After normalization, we next computed the deductive overestimation � and the de-
composition DE as described in Section 4.1, we constructed the hypergraphs GK as
described in Section 4.3, and we fed all of them into TreeD1—a library for computing
tree decompositions—to construct a C-decomposition DC. For each ontology we con-
sidered two sets of goal clauses: C1 = {A � ⊥ | A ∈ ΣA}, which corresponds to checking
satisfiability of all atomic concepts, and C2 = {A � B | A, B ∈ ΣA}, which corresponds
to classification. In theory, the C-width of O and C1 can be smaller than the C-width of
O and C2; however, we have not observed a difference between the two in practice, so
we present here only the results for classification. Also, please note that TreeD was able
only to produce approximate, rather than exact tree decompositions; hence, our results
provide only an upper bound on the C-width.

The results of our experiments are shown in Table 1. For each ontology we list
the number of atomic concepts in the original ontology (|ΣA|), the number of atomic

1 http://www.itu.dk/people/sathi/treed/
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concepts after normalization (|Σnorm
A |), and the widths of the two decompositions that

we constructed. Notice that although some of the tested ontologies contain tens or even
hundreds of thousands of concepts, the width ofDC rarely exceeds one hundred, and it
is always by several orders of magnitude smaller than the total number of concepts in
the ontology. This suggests that our notion of a decomposition might even prove to be
useful in practice, provided that our resolution algorithm is suitably optimized.

6 Conclusion

We presented a DL reasoning algorithm that is fixed parameter tractable for a suitable
notion of the input width. We see two main challenges for our future work. On the the-
oretical side, our approach should be extended to more complex ontology languages;
handling counting seems particularly challenging. On the practical side, our algorithm
should be optimized for practical use. A particular challenge is to combine the construc-
tion of a decomposition with actual reasoning and thus save preprocessing time.
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9. Simančík, F., Kazakov, Y., Horrocks, I.: Consequence-Based Reasoning beyond Horn On-
tologies. In: Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011) (July
16–22 2011), to appear

10. Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In: Giunchiglia, E.,
Tacchella, A. (eds.) Proc. of the 6th Int. Conf. on Theory and Applications of Satisfiabil-
ity Testing (SAT 2003), Selected Revised Papers. LNCS, vol. 2919, pp. 188–202. Springer,
Santa Margherita Ligure, Italy (May 5–8 2003)

410



Repairing Incomplete Reasoners
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Abstract. The pressing need for scalable query answering has moti-
vated the development of many incomplete ontology-based reasoners.
Improving the completeness of such systems without sacrificing their
favourable performance would be beneficial to many applications. In this
paper, we address the following problem: given a query q, a TBox T and
an incomplete reasoner ans (i.e., one that accepts q and T as valid inputs
but fails to return all query answers to q w.r.t. T and some dataset), we
aim at computing a (hopefully small) TBox R (a repair) which logically
follows from T and such that ans is provably complete w.r.t. q and T ∪ R,
regardless of the input data. We identify conditions on q, T and ans that
are sufficient to ensure the existence of such repair and present a practi-
cal repair generation algorithm. Our experiments suggest that repairs of
small size can be computed for well-known ontologies and reasoners.

1 Introduction

In Semantic Web applications, a description logic TBox is frequently used for
describing the meaning of data stored in various sources. A query language
(based on conjunctive queries) is then used for data access [13]. Unfortunately,
when using an expressive ontology language, computing query answers can be
costly, and in a Semantic Web setting, datasets may be extremely large.

Motivated by the need for scalable query answering, there has been a growing
interest in the development of incomplete ontology-based reasoning systems,
which are not guaranteed to compute all query answers for some combinations
of queries, TBoxes and datasets accepted as valid inputs. Many such systems
(e.g., Jena, OWLim, and Oracle’s Semantic Store) are based on rule technologies;
others are based on approximate reasoning techniques [7, 11, 1].

Incomplete query answers, however, may not be acceptable in some cases, and
even if some incompleteness is acceptable, computing as many answers as possi-
ble without affecting performance would be beneficial to many applications. Not
surprisingly, many techniques for improving the completeness of (incomplete)
reasoning systems have been proposed in recent years. A widely use approach
relies on the materialisation of certain kinds of TBox consequences, prior to
accessing the data. TBox materialisation is indeed a convenient and low-cost
solution, as it does not rely on modifying the internals of the reasoning sys-
tem at hand: it can either be included by reasoning systems’ implementors as
a pre-processing step (e.g., DLEJena [3], PelletDB, TrOWL [11], Minerva [10]
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and DLDB [6]), or it can be performed by application designers, who have little
knowledge of and/or control over the reasoner. This approach, however, exhibits
several limitations:

1. TBox materialisation is done blindfold, without taking into account neither
the capabilities of the incomplete reasoner under consideration, nor the pre-
cise sources of its incompleteness for the application at hand.

2. In order to avoid a blowup in the size of the TBox, materialisation involves
only simple atomic subsumption relations, and relevant entailments describ-
ing more complex dependencies are typically ignored.

3. It is often difficult, or even infeasible, to estimate the extent to which mate-
rialisation has improved the system’s completeness for the given application
at hand, especially if the data is very large, unknown, or frequently changing.

In this paper, we present a novel approach to TBox materialisation that attempts
to address many of these limitations. Given a TBox T expressed in a language
L, a conjunctive query (CQ) q, and a reasoning system ans satisfying certain
properties known in advance (e.g., soundness), we aim at computing a (hopefully
small) set of TBox axioms R, called a (q, T )-repair for ans, such that R logically
follows from T and the system is guaranteed to compute all answers to q w.r.t.
T ∪ R(and hence also w.r.t. T ), regardless of the input data.

Our TBox materialisation techniques are “guided” by both the input query
and TBox and the capabilities of the reasoner at hand, thus limiting the number
of materialised consequences. Furthermore, our approach provides a provable
completeness guarantee: after extending T with a (q, T )-repair, the incomplete
reasoner at hand is indistinguishable from a complete one w.r.t. q and T , and
regardless of the data (which is often unknown or frequently changing). Finally,
if a (q, T )-repair does not exist for the given reasoner, we also provide means
for quantifying the extent to which the reasoner’s completeness improved upon
materialisation of a given set of TBox consequences.

Our main contributions can be summarised as follows:

– We formalise the notion of a repair for a given CQ, TBox and reasoner.
– We identify sufficient conditions for the existence of a repair. Our conditions

establish a bridge between the framework of completeness evaluation [16, 15]
and the notion of interpolation in the context of DLs [8, 14, 9].

– We then present a practical algorithm that is guaranteed to compute a repair
under certain assumptions. Our algorithm extends well-known query rewrit-
ing techniques for DLs [12, 2] with means for computing suitable interpolants
for each query in the rewriting.

– Although the assumptions required by our algorithm may seem somewhat
strict, we provide empirical evidence that repairs can be computed for well-
known ontologies and incomplete reasoners. Furthermore, the size of such
repairs is surprisingly small and preliminary evaluation has shown that their
impact on performance is negligible. Finally, for reasoner which are complete
only for a very weak description logic, we show that our techniques can
provide “partial repairs”, whose impact can be quantified.

2

412



Although our main focus is on repairing rule-based reasoners, we feel that our
techniques are also highly relevant to recent DL approximation frameworks [11,
1], and provide new insights into the process of approximation.

Proofs for all lemmas and theorems can be found online.1

2 Preliminaries

We use DLs that do not allow for nominals and we also assume that only atomic
assertions are allowed in ABoxes.

Let C, R, and I be countable, pairwise disjoint sets of atomic concepts,
atomic roles, and individuals. An ELHI-role is either an atomic role P or its
inverse P−. The set of ELHI-concepts is defined inductively by the following
grammar, where A ∈ C, R is an ELHI-role, and C(i) are ELHI-concepts:

C := # | ⊥ | A | C1 % C2 | ∃R.C

An ELHI-TBox T is a finite set of GCIs C1 ' C2 with Ci ELHI-concepts
and RIAs R1 ' R2 with Ri ELHI-roles. An ABox A is a finite set of assertions
A(a) or P (a, b), for A ∈ C, P ∈ R, and a, b ∈ I. An ELHI-ontology O = T ∪ A
consists of an ELHI-TBox T and an ABox A.

Moreover, the DLP fragment of ELHI [5] (DLP-ELHI) is obtained from
ELHI by disallowing concepts of the form ∃R.C on the right-hand side of GCIs.

A conjunctive query (CQ) q is an expression of the form

q(x1, . . . , xn) ← α1, . . . , αm

where each αi is a concept or role atom of the form A(t) or R(t, t′) (for t, t′

function-free terms and A, R atomic) and each xj is a distinguished variable
occurring in some αi. The remaining variables are called undistinguished. We
use the standard notion of a certain answer to q w.r.t. O = T ∪ A, and we
denote with cert(q,O) the set of all certain answers to q w.r.t. O. Given q1, q2

with the same distinguished variables "x we say that q1 subsumes q2 w.r.t. T ,
written q2 'T q1, if the FO-entailment T |= ∀"x.(Bq2

→ Bq1
) holds, with Bqi the

formula obtained from the conjunction of all body atoms in qi by existentially
quantifying over all undistinguished variables.

Finally, a UCQ rewriting u for a CQ q and TBox T is a union of conjunctive
queries (a set of CQs with the same distinguished variables) that satisfies the
following properties for each ABox A such that O = T ∪ A is consistent [2]:
cert(q′,A) ⊆ cert(q,O) for each q′ ∈ u, and cert(q,O) ⊆

⋃
q′∈u cert(q′,A).

3 Completeness Repairs

We start by recalling from [16, 15] the notions of a CQ answering algorithm, and
of completeness for a query q and TBox T .

1 https://rapidshare.com/files/460900188/main.pdf

3
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Definition 1. A CQ answering algorithm ans for a DL L is a procedure that,
for each L-ontology O and CQ q computes in a finite number of steps a set
ans(q,O) of tuples of constants. It is sound if ans(q,O) ⊆ cert(q,O) for each O
and q. It is complete if cert(q,O) ⊆ ans(q,O) for each O and q. It is monotonic
if ans(q,O) ⊆ ans(q,O′) for each O, O′ and q with O ⊆ O′. It is invariant under
renamings if, for each q,O = T ∪ A, O′ = T ∪ A′ and isomorphism ν between A
and A′ we have "a ∈ ans(q,O) if and only if ν("a) ∈ ans(q,O′). It is well-behaved
if it is sound, monotonic and invariant under renamings. We denote with CL

the class of all well-behaved CQ answering algorithms for L.
Finally, we say that ans is (q, T )-complete for a query q and TBox T if for

each ABox A s.t. O = T ∪ A is consistent, we have that cert(q,O) ⊆ ans(q,O).

This general definition allow us to abstract from the specifics of implemented
systems. All incomplete reasoning algorithms known to us are well-behaved: they
are sound, query answers can only grow if we add axioms to the ontology, and
they do not depend on trivial renamings of ABox individuals. Furthermore, a
(q, T )-complete algorithm, even if incomplete in general, behaves exactly like
a complete one w.r.t. the given query q and TBox T , regardless of the data.
Consider, as a running example, the following ELHI-TBox T0 and query q0:

T0 = {∃takes.Course ' Student, GradCo ' Course,

GradSt ' ∃takes.GradCo, PhDSt ' GradSt, Student % Course ' ⊥}
q0(x) ← Student(x)

Consider an algorithm ans0 that first translates DLP-ELHI GCIs in T0 into a
datalog program using standard transformations (and discarding the remaining
GCIs), then saturates the input ABox w.r.t. the program, and finally answers
q0 w.r.t. the saturated ABox. Clearly, ans0 is not (q0, T0)-complete: it returns
the empty set for A = {GradSt(a)}, whereas cert(q0, T0 ∪ A) = {a}. Computing
the missing answer requires axiom GradSt ' ∃takes.GradCo, which is discarded.
Note, however, that one could dispense with the discarded axiom and still recover
the missing answer by extending T0 with the following DLP-ELHI TBox R0:

R0 = {GradSt ' Student} (1)

Since T0 |= R0, extending T0 with R0 does not change the meaning of T0. The
behaviour of ans0 w.r.t. T0∪R0, however, is now different because ans0 translates
R0 into a datalog clause and hence ans0(q0, T0 ∪R0 ∪ A) = {a}.

Note also that adding R0 allows us to recover missing answers w.r.t. many
other ABoxes different from A. For example, given A′ = {PhDSt(b)} and T0∪A′,
we have that b is a certain answer to q0 that is computed by ans0 only after
extending T0 with R0.

Our example suggests that given q, T and an algorithm ans that is incomplete
for q and T , it may be possible to recover all missing answers to q (w.r.t. all
possible ABoxes) by “repairing” T for ans—that is, by materialising a (hopefully
small) number of T -consequences that ans can process.

4
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Definition 2. Let L be a DL, q a CQ, T an L-TBox, A an ABox, and ans a
CQ answering algorithm for L. A (q, T ,A)-repair R for ans is an L-TBox such
that

1. T |= R; and
2. cert(q, T ∪ A) ⊆ ans(q, T ∪ R ∪ A).

Given a set A of ABoxes, we say that R is a (q, T ,A)-repair for ans if it is a
(q, T ,A)-repair for ans for each A ∈ A. Finally, we say that R is a (q, T )-repair
for ans if it is a (q, T ,A)-repair for ans for every ABox A s.t. T ∪ Ais consistent.

Unfortunately, deciding, on the one hand, whether ans is (q, T )-complete and,
on the other hand, whether R is a (q, T )-repair for ans may involve computing
query answers w.r.t. an unlimited number of ABoxes. In [16, 15], however, it was
shown that under certain conditions on q and T it is possible to decide (q, T )-
completeness by computing query answers only w.r.t. a finite (and hopefully
small) number of ABoxes. Such finite set of ABoxes is called a testing base.

Definition 3. Let L be a description logic, let C be a class of CQ answering
algorithms for L, let T be an L-TBox, and let q be a CQ. A (q, T )-testing base
B for C is a finite set of ABoxes A such that the following property holds for
each algorithm ans in C: if cert(q, T ∪ A) ⊆ ans(q, T ∪ A) for each A ∈ B, then
cert(q, T ∪ A′) ⊆ ans(q, T ∪ A′) for each ABox A′ consistent with T .

In our previous work [16, 15] we have shown how to compute a (q, T )-testing
base (if one exists) for the class CL of well-behaved algorithms.

Consider our running example. The set of ABoxes B0 = {A1, . . . ,A5} defined
as follows is a (q0, T0)-testing base for the class of all well-behaved algorithms:

A1 = {Student(a)}, A2 = {takes(a, b),Course(b)},
A3 = {GradSt(a)}, A4 = {takes(a, b), GradCo(b)}, A5 = {PhDSt(a)}

Intuitively, in order to compute a (q, T )-repair, we only need to consider the
(finitely many) ABoxes in a (q, T )-testing base instead of all (infinitely many)
possible ABoxes.

Theorem 1. Let L be a DL, q a CQ, T an L-TBox, and B a (q, T )-testing base
for CL. The following property holds for each ans ∈ CL: If R is a (q, T ,B)-repair
for ans, then R is also a (q, T )-repair for ans.

In our running example, clearly, ans0 only fails to compute certain answers w.r.t.
A3 and A5. Furthermore, R0 is a (q0, T0,B0)-repair for ans0. But then, Theorem
1 ensures that R0 is also a (q0, T0)-repair. Thus, by simply adding R0 to T0, we
can guarantee that ans0 will compute all certain answers, regardless of the data.

4 Computing Repairs

Theorem 1 provides a sufficient condition for the existence of a (q, T )-repair for
a well-behaved algorithm ans. To apply the theorem, however, we first need to
compute a (q, T )-testing base B and then a (q, T ,B)-repair R for ans.

5
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As shown in [15, 16], a (q, T )-testing base B for CL can always be computed
from a UCQ rewriting u for q and T . UCQ rewritings are guaranteed to exist
if T is expressed in the DL underpinning the OWL 2 QL profile and they may
also exist even if T is expressed in the DLs underpinning the OWL 2 EL profile;
this is often the case in many real-world ontologies. Hence, in this paper we will
restrict ourselves to TBoxes and queries for which a UCQ rewriting exists.2

Given a (q, T )-testing base B, however, the existence of a (q, T ,B)-repair
may also depend on the capabilities of the algorithm under consideration. For
instance, in the case of our running example, no (q0, T0,B0)-repair exists for an
algorithm that ignores the TBox and simply matches the query to the data (even
though such algorithm is well-behaved).

Our techniques for computing repairs rely on a particular form of interpo-
lation [8, 14]. We next make the connection between repairs and interpolation
precise, and describe an algorithm for computing interpolants.

4.1 Completeness Repairs and Interpolation

As already discussed, algorithm ans0 from our running example misses answers
w.r.t. A3,A5 ∈ B0, and R0 from (1) is a (q0, T0,B0)-repair for ans0. Furthermore,
B0 can be obtained by “instantiating” queries from the following UCQ rewriting
u = {q1, . . . , q5} for q0 and T0:

q1(x) ← Student(x), q2(x) ← takes(x, y), Course(y),
q3(x) ← GradSt(x), q4(x) ← takes(x, y), GradCo(y), q5(x) ← PhDSt(x)

In particular, A3 = {GradSt(a)} is obtained by instantiating q3. We then say
that q3 is “relevant” to ans0. Formal definitions of instantiation and relevance
are given next.

Definition 4. Let q be a CQ, Bq the body atoms in q, and π a mapping from
all variables of q to individuals. The following ABox is an instantiation of q:

Aq
π := {A(π(x)) | A(x) ∈ Bq} ∪ {R(π(x), π(y)) | R(x, y) ∈ Bq}

Definition 5. Let u be a UCQ rewriting for q and an L-TBox T , let ans be well-
behaved and let B be a (q, T )-testing base. We say that qi ∈ u is relevant to ans if
an instantiation Ai of qi exists s.t. Ai ∈ B and cert(q, T ∪ Ai) ,⊆ ans(q, T ∪ Ai).

Note also that q3 is subsumed by q0 w.r.t. T0. We can then identify R0 as an
interpolant for the subsumption q3 'T0

q0 since T0 |= R0, q3 'R0
q0 and R0

only mentions symbols occurring in either q0 or q3.

Definition 6. Let T be an L-TBox and let q, q′ be CQs such that q′ 'T q. A
TBox - expressed in fragment L′ of L and using only symbols occurring in q or
q′ is an L′-interpolant for q′ 'T q if T |= - and q′ '$ q.
2 The notion of a testing base can be extended, and such (extended) testing bases can

be computed from Datalog rewritings. The study of such extensions is ongoing work.
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The following theorem establishes which are the relevant interpolants for com-
puting a repair. Furthermore, if each such interpolants can be expressed in a
weak enough language, for which ans is provably complete, we can easily obtain
a repair from the union of such interpolants.

Theorem 2. Let u be a UCQ rewriting for q and an L-TBox T . Let ans ∈ CL

be an algorithm that is complete for a fragment L′ of L. Let q1, . . . , qn be those
queries in u relevant to ans. Finally, for each 1 ≤ i ≤ n let -i be an L′-
interpolant for qi 'T q. Then, - =

⋃
1≤i≤n -i is a (q, T )-repair for ans.

4.2 Computing Interpolants

Assumptions First, we restrict ourselves to TBoxes expressed in ELHI. Sys-
tems such as REQUIEM can compute a UCQ rewriting w.r.t. an ELHI-TBox,
provided that one exists [12].

Second, we observe that most state-of-the-art incomplete systems are based
on deductive database and rule technologies. Given O = T ∪ Aand q as input,
the ABox A is deterministically saturated with new assertions using axioms
in T , and then q is answered directly w.r.t. the saturated ABox. Furthermore
existing systems rarely extend the input ABox with “fresh” individuals and hence
cannot handle existential quantification on the right-hand-side of TBox axioms.
In fact, many such systems are complete for DLs of the DLP family. Thus, we
will consider DLP-ELHI as our target language for computing interpolants.

In this setting, we also need to restrict the kinds of queries we are considering
to guarantee the existence of the relevant interpolants. It is rather straightfor-
ward to find ELHI-TBoxes and queries q for which a UCQ rewriting does exist,
but the DLP-ELHI interpolants required by Theorem 2 do not. For example,
let T = {A ' ∃R.C} and consider the following queries

q(x) ← R(x, y), C(y) q′(x) ← A(x)

Clearly, {q, q′} is a UCQ rewriting for q and T . There is, however, no DLP-ELHI
interpolant for q′ 'T q since such interpolant would need to contain existential
quantification on the right-hand-side of GCIs.

Consequently, from now onwards we focus on queries with only distinguished
variables. This restriction is not unreasonable in practice since the standard
language for querying ontologies on the Web (SPARQL) treats undistinguished
variables as if they were distinguished [4].

The Algorithm Algorithm 1 computes a UCQ rewriting u (if one exists) for an
ELHI-TBox T and a query q with no undistinguished variables. Furthermore,
for each q′ ∈ u, it computes a DLP-ELHI interpolant for q′ 'T q.

Our algorithm extends the rewriting algorithm implemented in the RE-
QUIEM system [12], which first transforms T and q into a set of clauses (Lines
1, 2 in Algorithm 1) and then uses a resolution calculus to compute u.

7
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Algorithm 1 Extended Resolution-based algorithm
Algorithm: extendedUCQRewriting(q, T )
Input: T ∈ ELHI and q with no undistinguished vars.

1: T := clausify(T )
2: q := clausify(q)
3: σ(q) := ∅
4: for all α ∈ T do σ(α) := {α}
5: u := T ∪ {q}
6: repeat

7: Pick clauses C1, C2 from u with C1 $= C2

8: C := resolve(C1, C2)
9: u := u ∪ {C}

10: RC := σ(C1) ∪ σ(C2)
11: repeat

12: Pick clauses D1, D2 from RC with D1 $= D2

13: RC := RC ∪ {resolve(D1, D2)}
14: until RC is saturated
15: σ(C) := prune(RC)
16: until u is saturated
17: (u,σ ) := ff(u,σ )
18: (u,σ ) := unfold(u,σ )
19: if u is not a UCQ, return failure
20: return (u,σ )

Interpolants are tracked down during resolution by means of a mapping σ
from clauses to sets of clauses. Initially, σ maps q to the empty set (since q '∅ q),
and each clause from T to itself (Lines 3, 4). The rules in the resolution-based
calculus from [12] are exhaustively applied in Lines 6–16, and new clauses are
generated in Lines 7–9 exactly as in [12]. Then, for each new clause C produced as
a resolvent of C1 and C2 our algorithm computes its corresponding interpolant
σ(C). This is done by first saturating σ(C1) ∪ σ(C2) (Lines 11–14) and then
removing all clauses mentioning a symbol that is neither in C nor in q (Line
15). After u is saturated, the algorithm removes all clauses that contain function
symbols (Line 16). Then, at this point, both rewriting and interpolants are given
as sets of function-free clauses, so the procedure unfold transforms each C ∈ u
into a datalog rule and “rolls-up” σ(C) into a DLP-ELHI GCI. Finally, the
algorithm rejects the input if u is not a UCQ (e.g., a datalog program) and
returns both the UCQ rewriting and the interpolant for each query otherwise.

Lemma 1. If u computed by Algorithm 1 is a UCQ, then u is a UCQ rewriting
for q and T . Furthermore, for each q′ ∈ u, σ(q′) is a DLP-ELHI interpolant
for q′ 'T q.

Algorithm 2 computes a repair by considering only those queries and ABoxes
for which ans fails. Correctness follows from Theorem 2 and Lemma 1.

Theorem 3. Algorithm 2 computes a (q, T )-repair for an algorithm ans that is
complete for DLP-ELHI.

8
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Algorithm 2 Computing a Repair
Algorithm: computeRepair(ans, q, T )
Input: T , q as in Algorithm 1, ans well-behaved.

1: (u,σ ) := extendedUCQRewriting(q, T )
2: B := computeTestingBase(u)
3: Repair := ∅
4: for all A ∈ B do

5: if cert(q, T ∪ A) $⊆ ans(q, T ∪ A) then

6: q′ := query in u that generated A
7: Repair := Repair ∪ σ(q′)
8: end if

9: end for

10: return Repair

If ans is not complete for DLP-ELHI (e.g., if it is an RDFS-reasoner), then the
TBox R computed by Algorithm 2 may not be a repair; however, adding R may
still have the desired effect of “mitigating” the reasoner’s incompleteness.

5 Evaluation

We have developed a prototype tool based on Algorithms 1 and 2. Our imple-
mentation uses REQUIEM [12] and the system described in [16, 15] for comput-
ing (q, T )-testing bases and relevant queries. Additionally, our tool implements
optimisations to eliminate redundancy in the computed repairs.

We have evaluated our techniques first using LUBM’s TBox and its 14 test
queries (all of which contain only distinguished variables) and then a version
of the GALEN TBox together with 4 sample queries for which a UCQ rewrit-
ing can be computed using REQUIEM. In each case, we have evaluated the
following systems: Sesame 2.3-prl,3 OWLim,4 Jena v2.6.35 and DLEJena.6 Our
experiments consisted of the following steps:

1. For each TBox T and test query q we computed a (q, T )-testing base and
measured the proportion of certain answers that each system is able to com-
pute w.r.t. the ABoxes in the (q, T )-testing base (δini) [16].

2. For each system and each q for which it was found incomplete (i.e., δini < 1),
we computed a repair R (which might be only “partial” for some systems).

3. For each case in Step 2 we have extended T with the corresponding R,
computed a (q, T ∪ R)-testing base and obtained a new completeness degree
value δfin.

4. To evaluate the effects that adding TBox axioms had on systems’ perfor-
mance in the LUBM scenario, we used the LUBM performance evaluation

3 http://www.openrdf.org/
4 http://www.ontotext.com/owlim/
5 http://jena.sourceforge.net/
6 http://lpis.csd.auth.gr/systems/DLEJena/
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LUBM

Sesame OWLim/Jena

Q2 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q12 Q13 Q6 Q8 Q10
#urel 1 4 4 166 34 27 1 166 2 4 1 4 1
#R 0 0 4 1 1 1 0 1 0 4 1 1 1
δini .75 .68 0 .003 .04 .04 0 .001 .25 .2 .99 .98 .99
δfin .75 .68 .75 .004 .05 .05 0 .002 .25 .2 1 1 1

GALEN

OWLim Jena DLEJena

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
#urel 36 72 72 12 24 48 48 6 36 72 72 6
#R 2 2 2 2 2 2 2 1 2 2 2 1
δini .84 .83 .84 .77 .94 .94 .94 .92 .84 .83 .84 .84
δfin 1 1 1 1 1 1 1 1 1 1 1 1

Table 1. Experiments for LUBM & GALEN

tool [6] and measured the loading and query answering times using the orig-
inal and the repaired TBox.

Our results for LUBM are summarised in the upper part of Table 1, where 'urel

represents the number of relevant queries in the UCQ rewriting (see Definition
5), and 'R the number of axioms in the computed repair. The only system not
included in the table is DLEJena, which was already complete for all queries
(w.r.t. the original TBox). OWLim and Jena were found incomplete for three
queries and Sesame for 10 of them. As shown in the table, we were able to repair
both OWLim and Jena for all queries. This was a reasonable result, since these
systems are considered to be complete for DLP-ELHI. Furthermore, all repairs
consisted of the same, unique axiom. In contrast, no query could be fully repaired
for Sesame. A slight increase in the completeness degree can be observed in 4
queries and a more significant one only in Q5. Again, this is unsurprising, since
Sesame is essentially an RDFS reasoner. No measurable performance changes
were observed for any system after repair, which suggests that completeness
can be improved (at least in this scenario) without affecting scalability. Finally,
repairs were computed in times ranging between a second and 3 minutes.

Results for GALEN are given in the lower part of the table. As shown in
the table, we were able to fully repair OWLim, Jena and DLEJena, and repairs
contained at most two axioms in each case (a relatively small number compared
to the number of queries in urel). All repairs could be computed in less than a
minute. Finally, Sesame hasn’t been included in the table because no improve-
ment could be measured for any query.

6 Conclusions

In this paper, we have studied the problem of repairing an incomplete reasoning
systems given a query and a TBox. An important feature of our repairs is that
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they provide data independent completeness guarantees: once an incomplete sys-
tem has been repaired, we can ensure that its output answers will be the same
as those of a complete one for the given q and T , regardless of how large and
complex the dataset is. Furthermore, our preliminary experiments suggest that
repairs can indeed be very small and their effect on systems’ performance may
even be negligible in some applications. Our results will allow application de-
signers to use highly scalable reasoning systems in their application with the
guarantee that they will behave as if they were complete, thus bringing together
“the best of both worlds”. The extension of our techniques to more expressive
DLs and a more extensive evaluation are ongoing work.

Acknowledgments Research supported by project SEALS (FP7-ICT-238975).
B. Cuenca Grau is supported by a Royal Society University Research Fellowship.

References

1. Botoeva, E., Calvanese, D., Rodriguez-Muro, M.: Expressive approximations in
DL-Lite ontologies. In: AIMSA. pp. 21–31 (2010)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

3. G. Meditskos and N. Bassiliades: Combining a DL reasoner and a rule engine for
improving entailment-based OWL reasoning. In: Proc. ISWC. pp. 277–292 (2008)
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Abstract. The canonical standard description logic reasoning service is
classification, that is, the generation of the set of atomic subsumptions
which are entailed by some ontology. While this consequence relation is
well defined and finite, there is significant variance in the composition of
that set. For example, it is common (in tools and in discussion) to exclude
some tautologies (e.g., A � �, A � A). While for many purposes such
divergences are harmless, there are many for which precision about what
appears in the classification is essential, for example, estimating differ-
ences in logical content. In this paper, we propose definitions for different
types of finite entailment sets of an OWL ontology based on the tran-
sitive closure and transitive reduction of its asserted and inferred class
graphs. The purpose of this work is to introduce a flexible and extensible
specification for selecting a particular set of entailments, with the aim of
ensuring the correctness and replicability of OWL-based applications.

1 Introduction and Motivation

The Web Ontology Language OWL 2 DL is based on the expressive description
logic SROIQ [6]. It is designed to ‘facilitate ontology development and sharing
via the Web’,1 with OWL development tools aiming at users with little or no
knowledge in description logics. Entailment is regarded as the ‘key inference’ of
the Semantic Web [12], and while the entailment relation |= is well defined for
OWL ontologies [7], misleading nomenclature in ontology tools and anecdotal
evidence show that there exist common misconceptions about entailments: first,
it is often assumed that the set of entailments of an ontology is finite, and it
is possible to extract the set of all entailments of an ontology. Second, it is as-
sumed that only non-trivial information is contained in the set of entailments,
and tautologies such as A � A are not entailments. Third, the term entailments
is used interchangeably with inferences, and the information that is asserted in
the ontology is often not considered to be an entailment itself. While the prob-
lem of reasoning with and extracting meaningful entailments from inconsistent
ontologies has been previously discussed in the literature [8,4], we focus on con-
sistent ontologies for the purpose of this paper, and limit the definitions and
examples to atomic subsumptions and equivalences.

1 http://w3.org/TR/owl2-overview
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The ontology editor Protégé 42 for instance comes with a ‘selected entail-
ments’ tab which shows a list of atomic SubClassOf, SubPropertyOf and Type

(class assertion) axioms. The tool also offers the option to ‘Save inferred axioms
as ontology’ which saves asserted and inferred axioms as a new OWL ontology.
Similarly, Top Braid Composer3 offers to ‘Save [the] inference graph’ as a new
file. In all cases, it is not clear how the entailments are generated, what the se-
lection criteria is for entailments (inferences), and how the user can modify the
ontology to affect these entailments. For example, given an ontology containing
only subsumptions and equivalences between named classes, Protégé 4 exports
all direct and strict subsumptions between the classes, but offers no options to
export the indirect or non-strict subsumptions explicitly. Top Braid Composer,
however, does not include (direct or indirect) atomic subsumptions at all in the
exported ‘inference graph’.

Ontologies that are available on the web may be published as ‘compiled’
versions, which include the ontology and its entailments of some description. The
OWL version of the National Cancer Institute (NCI) Thesaurus, for example,
‘includes inferred relationships’.4 There is, however, no definition of what is
regarded as an inferred relationship, how these relationships are determined,
and what the selection criteria is. This may leave users wondering what kinds
of information they are dealing with, and what implications this has for their
understanding of the ontology.

Analytical applications that are based on justifications (minimal subsets of
the ontology that are sufficient for the entailment to hold) extract the entailed
atomic subsumptions of an ontology and compute the justifications therefore
[3,5]. Again, transparency of the entailment extraction process is vital for these
applications in order to ensure correct and meaningful results. For instance, the
number of entailments, as well as the number and properties of their justifi-
cations, can be skewed by including or excluding subsumptions caused by un-
satisfiable classes, not distinguishing between direct and indirect subsumptions,
whether unsatisfiable classes are treated as a subclass or equivalent to bottom,
and similar selection criteria. Furthermore, imported ontologies add to the com-
plexity of the problem: computing entailments from the imports closure of an
ontology also considers the entailments and justifications of imported ontologies.
This may distort the actual number and types of entailments, while also adding
a computational overhead to entailment extraction procedures.

The above examples demonstrate how the notion of entailments is widely
used in OWL applications, however without a clear understanding of how the
entailment relation relates to the set of axioms that is obtained from an ontology.
In order to ensure the correctness and replicability of data based on the entail-
ments of an ontology, it is necessary to explicitly specify which (finite) subset of
the set of all entailments should be extracted from the ontology. In this paper,
we discuss the different aspects of extracting entailments of OWL ontologies and

2 http://protege.stanford.edu
3 http://topquadrant.com/products/TB Composer.html
4 http://evs.nci.nih.gov/ftp1/NCI Thesaurus/ReadMe.txt
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provide definitions for practical entailment sets. We propose ways of dealing with
imported entailments based on the justifications for the entailment. Rather than
providing an exhaustive definition for all possible entailment sets of a SROIQ

ontology, the focus of this paper is to encourage clarity when using the term
‘entailments’ in the context of OWL ontology applications.

2 Applications

2.1 Inferred Ontology Generation in the OWL API

The OWL API5 provides the convenience class InferredOntologyGenerator,
which allows users to ‘fill’ a new ontology with the desired type of entail-
ments, such as inferred atomic SubClass axioms and ClassAssertions. By de-
fault, this method only retrieves the direct superclasses of a named class when
using InferredSubClassOfAxiomGenerator. For each class that does not have
any direct superclasses other than OWL:Thing, the reasoner returns a node la-
belled OWL:Thing. While this method provides a common basis for computing
the inferred ontology, it does not offer any flexibility for the user to specify which
relationships should be included in the output. We propose the implementation
of more specific and flexible entailment generation methods in the OWL API
as an addition to or extension of existing methods, in order to allow users to
conveniently extract clearly defined finite entailment sets from an OWL ontology.

2.2 Presenting Entailments to End-Users

The OWL ontology editor Protégé 4 provides a view of ‘selected entailments’ of
the ontology. As the editor offers no further explanation to how these entailments
were extracted in the classification process, this view does not support under-
standing of the ontology. It may even seem surprising to the end-user that some
trivial axioms, such as A � OWL:Thing, are displayed in the panel while others
are missing. A more detailed and modifiable view could support users in explor-
ing the class hierarchy when attempting to understand entailment relations in
the ontology.

2.3 Explanation of Entailments

Explanation of entailments for the purpose of debugging a description logic on-
tology has been the focus of research since the early applications of description
logics for modelling domain knowledge [9,10,11]. Most OWL ontology editors
provide explanation facilities presenting the part of the ontology which causes
the entailment to hold. It may be argued that, from a user perspective, a crucial
part of understanding why an entailment holds in an ontology is to have a clear
understanding of the notion of entailments, while also being able to control the
method of extracting the entailment.

5 http://owlapi.sourceforge.net
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2.4 Metrics

Analytical applications that consider the number and type of entailments in or-
der to infer semantic ontology metrics benefit from clearly defined entailment sets
in two ways: first, the basis of the measurements, i.e. what exactly is measured, is
well defined and transparent, therefore ensuring consistent measurements which
are independent from a particular implementation or individual modifications
of the results provided by the OWL API. Second, greater flexibility allows to
extract entailments that are fit for a specific purpose. For instance, when de-
scribing the inferential power of an ontology, it is not necessary to consider the
asserted entailments as they hold no information value. On the other hand, to
explore the justificatory structure of an OWL ontology, we need to consider that
there may be non-obvious and possibly complex reasons for entailments that are
asserted in the ontology; this makes it necessary to compute the justifications
for both inferred and asserted entailments in order to capture these ‘hidden’
justifications.

3 Extracting and Counting Entailments

In this section we present different criteria for defining the set of entailments of
an OWL ontology. We provide four definitions for finite entailment sets based on
the class graph of the ontology, which we then illustrate with examples. In each
case, we expect the input to be an OWL 2 DL ontology O, with the output being
a set of OWL 2 DL axioms α. Please note that for the purpose of demonstrating
our approach, we only focus on atomic entailments, i.e. relations between named
atomic classes in the ontology.

3.1 Entailments of Description Logic Ontologies

In the remainder of this paper the letters A, B denote class names, C,D (possibly
complex) concepts, a an individual,O = (T ,A) a description logic ontology which
is the union of a TBox T and an ABox A, α an axiom in O, and I = (∆I , ·I)
an interpretation of an ontology O. The notations for � and OWL:Thing, and ⊥

and OWL:Nothing are used interchangeably.
The term finding entailments of a DL ontology summarises different reason-

ing tasks, such as the subsumption problem, equivalence and satisfiability check-
ing with respect to a TBox T , and instance checking with respect to an ABox
A.

Entailment relations in SROIQ are defined based on the formal semantics
given by an interpretation I [2]. An ontology O = (T ,A) entails that a (possibly
complex) concept C is subsumed by a concept D, written as O |= C � D, if
CI ⊆ DI for every model I of O. Similarly, O entails that C is equivalent to D if
CI = DI for every model I of O. A concept C is entailed to be unsatisfiable, i.e.
O |= C ≡ ⊥ (commonly expressed as O � C ≡ ⊥) if CI = ∅ for every model I
of O. Regarding instance checking for the ABox A, O entails that an individual
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Cat

Mammal

Animal

(a) Asserted Class Graph

{Puma, MountainLion, Cougar}

NorthAmericanCougar

Cat

Mammal

Animal

(b) Inferred Class Graph

Fig. 1. Asserted and Inferred Class Graphs

a is an instance of a concept C (O |= C(a)) if aI ∈ CI for every model I of O.
The set of entailments of an ontology is therefore the set of all axioms α such
that O |= α.

3.2 Inferred and Asserted Class Graphs

The asserted class graph of an ontologyO is a labelled directed acyclic graphG =
(V,E, L) with nodes labelled with (a non-empty set of) class names, including
� and ⊥, from the signature of O. The graph is initialised by creating a node
u for each class name in the signature of O, with the class name being in the
label L(u) of the node. An edge (u, v) is added if it is asserted in O that A � B
for some A ∈ L(u), B ∈ L(v), where A and B are class names, �, or ⊥. For
any two nodes u, v in the graph with L(u) = {A}, L(v) = {B}, the nodes are
collapsed into a single node w if the ontology contains the two subsumption
axioms A � B and B � A, or the equivalence class axiom A ≡ B. This leads to
existing edges (u, x), (v, y) for some node x, y in the graph, being replaced by
the corresponding edges (w, x), (w, y).

The inferred class graph G� = (V �, E�, L�) of the ontology contains an edge
(u, v) if O |= A � B for some A ∈ L(u), B ∈ L(v). A class name A is in the
label L(u) of a node u in the inferred class graph if O |= A ≡ Bi for all Bi in
L(u).

The asserted and inferred class graphs in Figure 1 are based on the following
toy ontology:
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Example 1 (Toy ontology)

NorthAmericanCougar � Cougar Mammal � Animal

Cougar ≡ MountainLion Puma ≡ Cougar

Puma � Cat Cat � Mammal

3.3 Generating Axioms From the Transitive Reduction and

Transitive Closure

The inferred and asserted class graphs of an ontology are uniquely defined. Re-
trieving these class graphs may be sufficient for counting entailments, as every
subsumption relationship between nodes is represented by a single edge, and the
arity of a node label (i.e. the number of distinct class names in the node) is
equal to the number of equivalent classes. OWL applications however generally
present the asserted and inferred class hierarchy as sets of OWL axioms, which
need to be generated from the relationships in the respective class graphs.

Generating axioms from the transitive closure of the inferred class graph is
straightforward: a SubClassOf axiom is created for each pair of class names in
the label of the sub- and superclass node respectively, and an EquivalentClasses

axiom for each pair of class names in the label of a node. Example 2 demonstrates
how this method can quickly lead to a large set of entailments. In some situations
however it is sufficient and more economical to use a subset of these relations
based on the transitive reduction of the graph.

The transitive reduction of a directed acyclic graph is a canonical represen-
tation for the paths in the graph [1]. The main challenge here is: how can we
express, in one single axiom, an edge between nodes which are labelled with
multiple class names? Furthermore, if a node is labelled with several equivalent
classes, we would like the number of axioms generated from this node to reflect
how many equivalent classes the label contains; therefore, multiple nodes that
contain different numbers of class names in their labels cannot be represented
by a single EquivalentClasses axiom.

For the purpose of expressing subsumptions in the transitive reduction, a
function Rep(u) is introduced which selects a single class name from the label of
a node u to act as a representative for the node. This function is intended to be
user-defined and may retrieve a randomly selected element, the first element in
a lexicographical ordering, or even a freshly generated class name (such as the
concatenation of the class names in the node), to name a few examples.

In order to generate EquivalentClasses axioms from a node with arity n, where
n > 2, we apply a function Pairwise(u) to the node label. This introduces an
ordering < on the class names in the label of the node (such as a lexicographical
order) and returns a set of pairs of class names (Ai, Ai+1) where Ai < Ai+1.
While OWL 2 allows EquivalentClasses axioms with an arity greater than two,
we choose to express equivalences in binary axioms, which corresponds to the
description logic notation of Ai ≡ Ai+1.
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3.4 Top, Bottom, and Tautologies

While an unsatisfiable class is generally referred to as being a subclass of Bottom,
the class is in fact equivalent to the bottom node OWL:Nothing, as discussed
above. We consider this in our definitions and treat an unsatisfiable named class
not as a subsumption, but as an atomic equivalence. Likewise, a universal class,
i.e. a class that is equivalent to OWL:Thing, is not treated as superclasses of Top,
but as an equivalent class.

Furthermore, tautologies such as A � �, ⊥ � A and A � A for all named
classes A are not included in the entailment set, as they do not hold any infor-
mation value.

3.5 Different Types of Entailment Sets

We define the set of inferred atomic entailments of an ontology O as the union
of the inferred atomic subsumptions Sub and the inferred atomic equivalences
Equiv for the asserted and inferred class graphs G = (V,E, L) and G� =
(V �, E�, L�) respectively. The following definitions are ordered by two aspects:
whether they are based on the transitive closure Tc(E�) or transitive reduction
Tr(E�) of the inferred class graph, and whether they include (A+) or exclude
(A−) asserted subsumptions and equivalences respectively.

Transitive closure, inferred, including asserted

SubTcA
+(O) :={A � B | there is (u, v) ∈ E�, A ∈ L�(u), B ∈ L�(v),

A �= B,A �= ⊥, B �= �}

EquivTcA
+(O) :={A ≡ B | there is u ∈ V �, A,B ∈ L�(u), A �= B}

Transitive closure, inferred, not including asserted

SubTcA
−(O) :={A � B | there is (u, v) ∈ E�, A ∈ L�(u), B ∈ L�(v)

(u, v) �∈ E,A �= B,A �= ⊥, B �= �}

EquivTcA
−(O) :={A ≡ B | there is u ∈ V �, A,B ∈ L�(u), A �= B,

there is no v ∈ V s.t. A,B ∈ L(v)}

Transitive reduction, inferred, including asserted

SubTrA
+(O) :={A � B | there is (u, v) ∈ TR(E�),

A = Rep(u), B = Rep(v), A �= B,A �= ⊥, B �= �}

EquivTrA
+(O) :={A ≡ B | there is u ∈ V �, (A,B) ∈ Pairwise(u), A �= B}
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Transitive reduction, inferred, not including asserted

SubTrA
−(O) :={A � B | there is (u, v) ∈ TR(E�),

A = Rep(u), B = Rep(v), (u, v) �∈ E,A �= B,A �= ⊥, B �= �}

EquivTrA
−(O) :={A ≡ B | there is u ∈ V �, (A,B) ∈ Pairwise(u), A �= B,

there is no v ∈ V s.t. A,B ∈ L(v)}

3.6 Examples

The properties of different entailment sets are demonstrated using the above toy
ontology as an example.

Example 2 (Transitive closure, including asserted, 18 axioms)

Cougar ≡ MountainLion Cougar ≡ Puma

MountainLion ≡ Puma Puma � Cat

Puma � Mammal Puma � Animal

MountainLion � Cat MountainLion � Mammal

MountainLion � Animal Cougar � Cat

Cougar � Mammal Cougar � Animal

NorthAmericanCougar � Puma NorthAmericanCougar � MountainLion

NorthAmericanCougar � Cougar NorthAmericanCougar � Cat

NorthAmericanCougar � Mammal NorthAmericanCougar � Animal

The transitive closure, including asserted, makes explicit the relationships be-
tween every single class in the ontology. It is the largest finite entailment set
to be extracted from the class graph. The alternative variant of this set exclud-
ing asserted entailments simply discards the axioms that occur in the original
ontology, yielding a set of 12 axioms.

Example 3 (Transitive reduction, including asserted, 6 axioms)

NorthAmericanCougar � Cougar Cougar ≡ MountainLion

MountainLion ≡ Puma Puma � Cat

Cat � Mammal Mammal � Animal

The entailment set based on the transitive reduction of the class graph uses
representative elements from each node to produce a minimal representation
of the class hierarchy. In this example, the function selects the class names
that are asserted to be in SubClassOf relationships in the ontology, otherwise it
selects a random class name from the node. The function Pairwise(u) applies a
lexicographical ordering on the class names in each node, as described above.
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3.7 Counting Entailments

Having translated the class graph into a set of OWL axioms based on the above
definitions, the number of entailments can be computed in an unambiguous way.
By choosing a representative class name for each node in the transitive reduction,
the number of entailed atomic subsumptions is equal to the number of edges in
the graph, i.e. one edge in the graph is represented by one axiom.

For the transitive closure of the class graph, the number of entailed subsump-
tion axioms is the sum of all n(u) ∗ n(v) for each edge (u, v) in the graph, with
n(u) the number of class names in a node u. The number of entailed binary
equivalence class axioms is n(u) ∗ (n(u)− 1)/2 for each node u in the graph.

3.8 Implementation

We have implemented the entailment extractor methods using the OWL API.6

The code is intended to be used with any OWL reasoner that is compatible with
the current version of the OWL API. Preliminary tests with large ontologies such
as the NCI Thesaurus show that all types of entailment sets can be extracted in
practical time.

4 Dealing with Imports

Another issue that needs to be dealt with when extracting and counting entail-
ments from an ontology is its import structure. An OWL ontology O (the ‘root’
ontology) that imports another OWL ontology O’ can have different kinds of en-
tailments: those that hold in O \ O’ (native entailments), those that are entirely
from the imported ontology, i.e. they hold in O’ \ O (imported entailments),
and those that hold in O ∪ O’ but not in O \ O’ (mixed entailments). When
performing analytical tasks on the root ontology such as analysing its inferen-
tial power, it may be considered misleading to include the number of imported
entailments. Furthermore, if the imported ontology itself imports another ontol-
ogy (and so on), we will almost certainly obtain data that is not relevant to our
original root ontology. While this may not be problematic for some tasks, the
origin of entailments needs to be at least made obvious in a way such that the
user can make their own judgements on how to handle them.

4.1 Classification of Imported Entailments

We propose a classification of these three types of entailments in an ontology
which is based on the notion of justifications for an entailment. A justification is
a minimal subset of the ontology that is sufficient for the entailment to hold [10].
The ‘origin’ of an entailment given an ontology imports structure is determined
by the set of its justifications.

6 The source code is available for download and modification at
http://code.google.com/p/owl-entailment-extractor.
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Type 1: Native entailments We may want to restrict the entailment extrac-
tion to the root ontology and discard all entailments that originate partly or
entirely from the imported ontologies. In this case, the class graph construction
and reasoning process is limited to the root ontology axioms only. Computing
justifications is not necessary for this type of entailments.

Type 2: Imported entailments While the entailments that originate purely
from the imported ontology may not be relevant to application, an analysis of the
type and numbers provides information about the computational overhead they
may cause when not excluding them from the entailment set. Type 2 entailments
are extracted by computing the inferred class graph for axioms that are contained
in the imported ontology only. Computing justifications is not necessary for this
type of entailments.

Type 3: Mixed entailments In this type, we gather all entailments that are
considered ‘mixed’ for at least one of the following reasons: first, an entailment
that has at least one justification which contains axioms from both O and O’ is
considered mixed. Second, an entailment that has some justification that com-
prises axioms from O, and some justification that comprises axioms from O’.7

Type 3 entailments are computed by extracting all entailments from the union
of the imports closure of the root ontology, then sequentially generating justi-
fications for these entailments. If the set of justifications contains axioms from
both the root and the import ontologies, the entailment is marked as ‘mixed’
and no further justifications need to be found.

5 Conclusions and Future Work

Due to the ambiguous use of the term ‘entailments’ in the OWL community, it
is necessary to explicitly specify the selection criteria for entailments in both an-
alytical and user-oriented applications. The methods for extracting entailments
from OWL ontologies currently provided by the OWL API and ontology devel-
opment tools provide little flexibility and do not support understanding of the
entailment relationships in the ontology. We have presented well-founded and
extensible definitions for different types of entailment sets of an OWL ontology,
based on its class graph. Depending on the purpose, users can extract entail-
ments from the transitive reduction or the transitive closure of the ontology,
and decide whether the asserted entailments should be included. We have also
introduced different ways of dealing with entailments that are partly or entirely
caused by imported ontologies. The proposed methods offer flexibility and trans-
parency when handling entailments, which may support ontology understanding
as well as clarify analytical tasks.

7 While this distinction is not relevant to the classification of entailments, it does
matter in the context of analysing the structure of justifications in an ontology.
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Thus far, we have discussed definitions and examples for entailed subsump-
tions between atomic classes. In order to capture the wide range of entailments
from an expressive description logic such as SROIQ and to provide exten-
sive information about an ontology, these definitions can be extended in two
directions: first, to cover the expressivity of OWL 2 DL ontologies beyond sub-
sumptions between named classes, such as class assertions, object property hi-
erarchies and data property hierarchies. Second, we may also want to capture
non-atomic entailments, such as literals (disjointness of classes) and subsump-
tions and equivalences between complex class expressions (e.g. existential and
universal restrictions on atomic class names). In the case of complex class expres-
sions, it will be necessary to identify which complex entailments are of interest
to users, depending on the needs of a particular application.
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Abstract. The preferential and rational consequence relations first stud-
ied by Lehmann and colleagues play a central role in non-monotonic
reasoning, not least because they provide the foundation for the deter-
mination of the important notion of rational closure. Although they can
be applied directly to a large variety of logics, these constructions suf-
fer from the limitation that they are largely propositional in nature.
One of the main obstacles in moving beyond the propositional case has
been the lack of a formal semantics which appropriately generalizes the
preferential and ranked models of Lehmann et al. In this paper we pro-
pose a semantics to fill that gap for description logics, an important
class of decidable fragments of first-order logic. Our semantics replaces
the propositional valuations used in the models of Lehmann et al. with
structures we refer to as concept models. We prove representation re-
sults for the description logic ALC for both preferential and rational
consequence relations. We argue that our semantics paves the way for
extending preferential and rational consequence, and therefore also ra-
tional closure, to a whole class of logics that have a semantics defined in
terms of first-order relational structures.

1 Introduction

There has by now been quite a substantial number of attempts to incorporate
defeasible reasoning in logics other than propositional logic. One such endeavor,
and the broad focus of this paper, has been to extend the influential version
of preferential reasoning first studied by Lehmann et al. [7, 9] to logics beyond
the propositional. A stumbling block to this end has been that research on pref-
erential reasoning has really only reached maturity in a propositional context,
whereas many logics of interest have more structure. A generally accepted se-
mantics for first-order preferential reasoning, with corresponding syntactic proof
system or characterization, does not yet exist. The first tentative exploration of
preferential predicate logics by Lehmann et al. didn’t fly (pun intended), primar-
ily because propositional logic was sufficiently expressive for the non-monotonic
reasoning community at the time, and first-order logic introduced too much com-
plexity [8]. But this changed with the surge of interest in description logics as
knowledge representation formalism. Description logics (DLs) [1] are decidable
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fragments of first-order logic, and are ideal candidates for the kind of extension
to preferential reasoning we have in mind: the notion of subsumption present
in all DLs is a natural candidate for defeasibility, while at the same time, the
restricted expressivity of DLs ensures that attempts to introduce preferential
reasoning are not hampered by the complexity of full first-order logic. The aim
of this paper is to extend the work of Lehmann et al. [7, 9] beyond propositional
logic without moving to full first-order logic. We restrict our attention to the
description logic ALC here, but the results are broadly applicable to other DLs,
as well as other similarly structured logics such as logics of action and logics of
knowledge and belief.

The central question answered in this paper is how the existing semantics
for both preferential and rational propositional non-monotonic consequence rela-
tions should be generalized to languages with more structure, and in particular,
to ALC. Specifically, what is the meaning of a preferential (or rational) sub-
sumption statement C �∼ D — what properties should it have, and what is its
corresponding formal semantics? The main results of this paper, and our answers
to these questions, are the two representation results presented in Theorems 3
and 4, respectively. Key to the establishment of these results are the notions of
a concept model, which gives a reading of the meaning of concepts suitable for
our purposes, and a DL preferential model, giving meaning to non-monotonic
subsumption statements. The latter generalizes the notion of a propositional
preferential model in terms of concept models.

The rest of the paper is structured as follows. In Section 2 we give a brief
account of the work on preferential and rational subsumption for the proposi-
tional case as developed by Lehmann and colleagues. Section 3 is the heart of
the paper in which we define the semantics for both preferential and rational
subsumption for ALC and prove representation results for both. Importantly,
the representation results provided here are with respect to the corresponding
propositional properties. From this we conclude that the semantics we present
here forms the foundation of a semantics for preferential and rational conse-
quence for a whole class of DLs and related logics and provides a natural and
intuitive semantic framework on which to base such work. In Section 4 we use the
fundamental results of the previous section to show that the notions of proposi-
tional preferential entailment and rational closure can be ‘lifted’ to the case for
DLs, specifically ALC. In Section 5 we discuss related results. We conclude with
Section 6 in which we also discuss future work.

We assume that the reader is familiar with description logics. For more details
on description logics in general, and the description logic ALC in particular, the
reader is referred to the DL handbook [1].

2 Propositional Preferential Consequence

In this section we give a brief introduction to propositional preferential and
rational consequence, as initially defined by Kraus et al. [7]. A propositional
defeasible consequence relation |∼ is defined as a binary relation on formulas
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α, β, γ, . . . of an underlying (possibly infinitely generated) propositional logic
equipped with a standard propositional entailment relation |= [7]. |∼ is said to
be preferential if it satisfies the following set of properties:

(Ref) α |∼ α (LLE)
α ≡ β,α |∼ γ

β |∼ γ
(And)

α |∼ β,α |∼ γ

α |∼ β ∧ γ

(RW)
α |∼ β,β |= γ

α |∼ γ
(Or)

α |∼ γ,β |∼ γ

α ∨ β |∼ γ
(CM)

α |∼ β,α |∼ γ

α ∧ β |∼ γ

The semantics of (propositional) preferential consequence relations is in terms
of preferential models; these are partially ordered structures with states labeled
by propositional valuations. We shall make this terminology more precise in
Section 3, but it essentially allows for a partial order on states, with states
lower down in the order being more preferred than those higher up. Given a
preferential model P, a pair α |∼ β is in the consequence relation defined by P
iff the minimal states (according to the partial order) of all those states labeled
by valuations that are propositional models of α, are also labeled by propositional
models of β. The representation theorem for preferential consequence relations
then states:

Theorem 1 (Kraus et al. [7]). A defeasible consequence relation is a prefer-

ential consequence relation iff it is defined by some preferential model.

If, in addition to the properties of preferential consequence, |∼ also satisfies the
following Rational Monotony property, it is said to be a rational consequence
relation:

(RM)
α |∼ β,α �|∼¬ γ

α ∧ γ |∼ β

The semantics of rational consequence relations is in terms of ranked prefer-
ential models, i.e., preferential models in which the preference order is modular :

Definition 1. Given a set S, ≺ ⊆ S × S is modular i ff≺ is a partial order on

S, and there is a ranking function rk : S �→ N s.t. for every s, s
� ∈ S, s ≺ s

� iff
rk(s) < rk(s�).

The representation theorem for rational consequence relations then states:

Theorem 2 (Lehmann and Magidor [9]). A defeasible consequence relation

is a rational consequence relation iff it is defined by some ranked model.

3 Semantics for DL Preferential Consequence

It has been argued elsewhere that description logics are ideal candidates for the
extension of propositional preferential consequence since the notion of subsump-
tion in DLs lends itself naturally to defeasibility [3, 6, 4]. The basic idea is to
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reinterpret defeasible consequence of the form α |∼ β as defeasible subsumption

of the form C �∼ D, where C and D are DL concepts, and classical entailment |=
as DL subsumption �. The properties of preferential consequence from Section 2
are then immediately applicable.

Definition 2. A subsumption relation �∼ ⊆ L× L is a preferential subsumption

relation iff it satisfies the properties (Ref), (LLE), (And), (RW), (Or), and

(CM), with propositional entailment replaced by classical DL subsumption. �∼ is

a rational subsumption relation iff in addition to being a preferential subsumption

relation, it also satisfies the property (RM).

However, up until now it has not been clear how to best generalize the propo-
sitional semantics for the DL case. Since DLs have a standard first-order seman-
tics, the obvious generalization from a technical perspective is to replace the
propositional valuations in preferential models with first-order interpretations.
Intuitively, this also turns out to be a natural generalization of the proposi-
tional setting, with the notion of normal first-order interpretation characterizing
a given concept replacing the propositional notion of normal worlds satisfying a
given proposition. Formally, our semantics is based on the notion of a concept

model, which is analogous to that of a Kripke model in modal logic [2]:

Definition 3 (Concept Model). A concept model is a tuple M = �W,R,V�
where W is a set of possible worlds, R = �R1, . . . ,Rn�, where each Ri ⊆ W×W,

1 ≤ i ≤ |NR|, and V : W �→ 2NC is a valuation function.

Observe that the valuation function V can be viewed as a propositional val-
uation with propositional atoms replaced by concept names. From the definition
of satisfaction in a concept model below it is then clear that, within the con-
text of a concept model, a world occurring in that concept model is a proper
generalization of a propositional valuation.

Definition 4 (Satisfaction). Given M = �W,R,V� and w ∈ W:

• M , w � �;

• M , w � A iff A ∈ V(w);
• M , w � C �D iff M , w � C and M , w � D;

• M , w � ¬C iff M , w �� C;

• M , w � ∃ri.C iff there is w
� ∈ W s.t. (w,w�) ∈ Ri and M , w

� � C.

Let U denote the set of all pairs (M , w) where M = �W,R,V� is a concept
model and w ∈ W.

Worlds are, loosely speaking, interpreted DL objects. And while this corre-
spondence holds technically (from the correspondence between ALC and mul-
timodal logic K [13]), a possible worlds reading of the meaning of a concept is
also more intuitive in the current context, since this leads to a preference order
on rich first-order structures, rather than on interpreted objects. This is made
precise below.
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Let S be a set, the elements of which are called states. Let � : S �→ U be a
labeling function mapping every state to a pair (M , w) where M = �W,R,V�
is a concept model s.t. w ∈ W. Let ≺ be a binary relation on S. Given C ∈ L,
we say that s ∈ S satisfies C (written s |≡ C) i ff�(s) � C, i.e., M , w � C. We
define �C = {s ∈ S | s |≡ C}. �C is smooth iff each s ∈ �C is either ≺-minimal in
�C, or there is s� ∈ �C s.t. s� ≺ s and s

� is ≺-minimal in �C. We say that S satisfies
the smoothness condition iff for every C ∈ L, �C is smooth.

We are now ready for our definition of preferential model.

Definition 5 (Preferential Model). A preferential model is a triple P =
�S, � ,≺� where S is a set of states satisfying the smoothness condition, � is a

labeling function mapping states to elements of U , and ≺ is a strict partial

order on S, i.e., ≺ is irreflexive and transitive.

These formal constructions closely resemble those of Kraus et al. [7] and of
Lehmann and Magidor [9], the difference being that propositional valuations are
replaced with elements of the set U .

Definition 6 (Preferential Subsumption). Given concepts C,D ∈ L and a

preferential model P = �S, � ,≺�, we say that C is preferentially subsumed by D

in P (denoted C �∼ PD) iff every ≺-minimal state s ∈ �C is s.t. s ∈ �D.

We are now in a position to prove one of the central results of this paper.

Theorem 3. A defeasible subsumption relation is a preferential subsumption

relation iff it is defined by some preferential model.

The significance of this is that the representation result is proved with respect
to the same set of properties used to characterize propositional preferential con-
sequence. We therefore argue that preferential models, as we have defined them,
provide the foundation for a semantics for preferential (and rational) subsump-
tion for a whole class of DLs and related logics. We do not claim that this is
the appropriate notion of preferential subsumption for ALC, but rather that it
describes the basic framework within which to investigate such a notion.

In order to obtain a similar result for rational subsumption, we restrict our-
selves to those preferential models in which ≺ is a modular order on states (cf.
Definition 1):

Definition 7 (Ranked Model). A ranked model Pr is a preferential model

�S, � ,≺� in which ≺ is modular.

Since ranked models are preferential models, the notion of rational subsump-
tion is as in Definition 6. We can then state the following result:

Theorem 4. A defeasible subsumption relation is a rational subsumption rela-

tion iff it is defined by some ranked model.
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4 Rational Closure

One of the primary reasons for defining non-monotonic consequence relations of
the kind we have presented above is to get at a notion of defeasible entailment :
Given a set of subsumption statements of the form C �∼ D or C � D, which
other subsumption statements, defeasible and classical, should one be able to
derive from this? It can be shown that classical subsumption statements of the
form C � D can be encoded as defeasible subsumption statements of the form
C�¬D �∼ ⊥. For the remainder of this paper we shall therefore concern ourselves
only with finite sets of defeasible subsumption statements, and refer to these
as defeasible TBoxes, denoted T . We permit ourselves the freedom to include
classical subsumption statements of the form C � D in a defeasible TBox, with
the understanding that it is an encoding of the defeasible subsumption statement
C � ¬D �∼ ⊥.

Our aim in this section is to show that the results for the propositional
case [9] with respect to the question above can be ‘lifted’ to ALC. We provide
here appropriate notions of preferential entailment and rational closure. It must
be emphasized that the results obtained in this section rely heavily on similar
results obtained by Lehmann and Magidor [9] for the propositional case, and
the semantics for preferential and rational subsumption presented in Section
3. Similar to the results of that section, our claim is not that the versions of
preferential and rational closure here are the appropriate ones for ALC. In fact,
our conjecture is that they are not, due to their propositional nature. However,
we claim that they provide the appropriate springboard from which to investigate
more appropriate versions, for ALC, as well as for other DLs and related logics.

The version of rational closure defined here provides us with a strict gen-
eralization of classical entailment for ALC TBoxes in which the expressivity of
ALC is enriched with the ability to make defeasible subsumption statements.
For example, consider the defeasible ALC TBox:

T = {BM � M,VM � M,M �∼ ¬F,BM �∼ F},

where BM abbreviates the concept BacterialMeningitis, M stands for Menin-

gitis, VM for viralMeningitis, and F abbreviates FatalDisease. One should be
able to conclude that viral meningitis is usually non-fatal (VM �∼ ¬F ). On the
other hand, we should not conclude that fatal versions of meningitis are usually
bacterial (F �M �∼ BM), nor, for that matter, that fatal versions of meningitis
are usually not bacterial ones (F �M �∼ ¬BM).

Armed with the notion of a preferential model (cf. Section 3) we define pref-
erential entailment for ALC as follows.

Definition 8. C �∼ D is preferentially entailed by a defeasible TBox T iff for

every preferential model P in which E �∼ PF for every E �∼ F ∈ T , it is also the

case that C �∼ PD.

Firstly, we can show that preferential entailment is well-behaved and coincides
with preferential closure under the properties of preferential subsumption (i.e.,
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the intersection of all preferential subsumption relations containing a defeasible
TBox). More precisely, let T be a defeasible TBox. Then the set of defeasible
subsumption statements preferentially entailed by T , viewed as a binary relation
on concepts, is a preferential subsumption relation. Furthermore, a defeasible
subsumption statement is preferentially entailed by T iff it is in the preferential
closure of T .

From this it follows that if we use preferential entailment, the meningitis
example can be formalized by letting T = {BM � M VM � M , M �∼ ¬F,
BM �∼ ¬F}. However, VM �∼ ¬F is not preferentially entailed by T above (we
cannot conclude that viral meningitis is usually not fatal) and preferential en-
tailment is thus generally too weak. We therefore move to rational subsumption
relations.

The first attempt to do so is to use a definition similar to that employed for
preferential entailment: C �∼ D is rationally entailed by a defeasible TBox T iff for
every ranked model Pr in which E �∼ Pr

F for every E �∼ F ∈ T , it is also the case
that C �∼ Pr

D. However, this turns out to be exactly equivalent to preferential
entailment. Therefore, if the set of defeasible subsumption statements obtained
as such is viewed as a binary relation on concepts, the result is a preferential
subsumption relation and is not, in general, a rational consequence relation.

The above attempt to define rational entailment is thus not acceptable. In-
stead, in order to arrive at an appropriate notion of (rational) entailment we
first define a preference ordering on rational subsumption relations, with rela-
tions further down in the ordering interpreted as more preferred.

Definition 9. Let �∼ 0 and �∼ 1 be rational subsumption relations. �∼ 0 is prefer-

able to �∼ 1 (written �∼ 0 � �∼ 1) i ff

• there is C �∼ D ∈ �∼ 1 \ �∼ 0 s.t. for all E s.t. E � C �∼ 0¬C and for all F s.t.

E �∼ 0F , we also have E �∼ 1F ; and

• for every E,F ∈ L, if E �∼ F is in �∼ 0\ �∼ 1, then there is an assertion G �∼ H

in �∼ 1 \ �∼ 0 s.t. G �H �∼ 1¬H.

Space considerations prevent us from giving a detailed motivation for� here,
but it is essentially the motivation for the same ordering for the propositional
case provided by Lehmann and Magidor [9]. Given a defeasible TBox T , the idea
is now to define rational entailment as the most preferred (w.r.t. �) of all those
rational subsumption relations which include T .

Lemma 1. Let T be a (finite) defeasible TBox and let R be the class of all

rational subsumption relations which include T . There is a unique rational sub-

sumption relation in R which is preferable to all other elements of R w.r.t. �.

This puts us in a position to define an appropriate form of (rational) entail-
ment for defeasible TBoxes:

Definition 10. Let T be a defeasible TBox. The rational closure of T is the

(unique) rational subsumption relation which includes T and is preferable (w.r.t.

�) to all other rational subsumption relations including T .
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It can be shown that VM �∼ ¬F is in the rational closure of T (we can con-
clude viral meningitis is usually not fatal), but that neither F � M �∼ BM nor
F �M �∼ ¬BM is.

We conclude this section with a result which can be used to define an algo-
rithm for computing the rational closure of a defeasible TBox T . For this we
first need to define a ranking of concepts w.r.t. T which, in turn, is based on a
notion of exceptionality. A concept C is said to be exceptional for a defeasible
TBox T iff T preferentially entails � �∼ ¬C. A defeasible subsumption statement
C �∼ D is exceptional for T if and only if its antecedent C is exceptional for T .

It turns out that checking for exceptionality can be reduced to classical sub-
sumption checking.

Lemma 2. Given a defeasible TBox T , let T � be its classical counterpart in

which every defeasible subsumption statement of the form D �∼ E in T is replaced

by D � E. C is exceptional for T iff � � ¬C is classically entailed by T �.

Let E(T ) denote the subset of T containing statements that are exceptional
for T . We define a non-increasing sequence of subsets of T as follows: E0 = T ,
and for i > 0, Ei = E(Ei−1). Clearly there is a smallest integer k s.t. for all j ≥ k,
Ej = Ej+1. From this we define the rank of a concept w.r.t. T : rT (C) = k − i,
where i is the smallest integer s.t. C is not exceptional for Ei. If C is exceptional
for Ek (and therefore exceptional for all Es), then rT (C) = 0. Intuitively, the
lower the rank of a concept, the more exceptional it is w.r.t. the TBox T .

Theorem 5. Let T be a defeasible TBox. The rational closure of T is the set

of defeasible subsumption statements C �∼ D s.t. either rT (C) > rT (C �¬D), or
rT (C) = 0 (in which case rT (C � ¬D) = 0 as well).

From this result it is easy to construct a (näıve) decidable algorithm to deter-
mine whether a given defeasible subsumption statement is in the rational closure
of a defeasible TBox T . Also, if checking for exceptionality is assumed to take
constant time, the algorithm is quadratic in the size of T . Given that excep-
tionality reduces to subsumption checking in ALC which is ExpTime-complete,
it immediately follows that checking whether a given defeasible subsumption
statement is in the rational closure of T is an ExpTime-complete problem. This
result is closely related to a result by Casini et al. [4] which we refer to again in
the next section.

5 Related Work

Quantz and Ryan [11, 12] were probably the first to consider the lifting of non-
monotonic reasoning formalisms to a DL setting. They propose a general frame-
work for Preferential Default Description Logics (PDDL) based on an ALC-like
language by introducing a version of default subsumption and proposing a se-
mantics for it. Their semantics is based on a simplified version of standard DL
interpretations in which all domains are assumed to be finite and the unique
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name assumption holds for object names. Their framework is thus much more
restrictive than ours. They focus on a version of entailment which they refer to
as preferential entailment, but which is to be distinguished from the version of
preferential entailment we have presented in this paper. We shall refer to their
version as Q-preferential entailment.

Q-preferential entailment is concerned with what ought to follow from a set of
classical DL statements, together with a set of default subsumption statements,
and is parameterised by a fixed partial order on (simplified) DL interpretations.
They prove that any Q-preferential entailment satisfies the properties of a pref-
erential consequence relation and, with some restrictions on the partial order,
satisfies Rational Monotony as well. Q-preferential entailment can therefore be
viewed as something in between the notions of preferential consequence and pref-
erential entailment we have defined for DLs. It is also worth noting that although
the Q-preferential entailments satisfy the properties of a preferential consequence
relation, Quantz and Ryan do not prove that Q-preferential entailment provides
a characterisation of preferential consequence.

Britz et al. [3] and Giordano et al. [6] use typicality orderings on objects in
first-order domains to define versions of defeasible subsumption for ALC and ex-
tensions thereof. Both approaches propose specific non-monotonic consequence
relations, and hence their semantic constructions are special cases of the more
general framework we have provided here. In contrast, we provide a general se-
mantic framework which is relevant to all logics with a possible worlds semantics.
This is because our preference semantics is not defined in terms of orders on in-
terpreted DL objects relative to given concepts, but rather in terms of a single
order on relational structures. Our semantics for defeasible subsumption yields a
single order at the meta level, rather than ad hoc relativized orders at the object
level.

Casini and Straccia [4] recently proposed a syntactic operational characteri-
zation of rational closure in the context of description logics, based on classical
entailment tests only, and thus amenable to implementation. Their work is based
on that of Lehmann and Magidor [9], Freund [5] and Poole [10], and represents
an important building block in the extension of preferential consequence to de-
scription logics. However, this work lacks a semantics, and we can only at present
conjecture that the rational closure produced by their algorithm coincides with
the notion of the rational closure of a defeasible TBox presented in this paper.

6 Conclusion and Future Work

The main contribution of this paper is the provision of a natural and intuitive
formal semantics for preferential and rational subsumption for the description
logic ALC. We claim that our semantics provides the foundation for extending
preferential reasoning in at least three ways. Firstly, as we have seen in Section 4,
it allows for the ‘lifting’ of preferential entailment and rational closure from the
propositional case to the case for ALC. Without the semantics such a lifting
may be possible in principle, but will be very hard to prove formally. Secondly,
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it paves the way for defining similar results for other DLs, as well as other
similarly structured logics, such as logics of action and belief. We are at present
investigating similar notions for logics of action. And thirdly, it provides the
tools to tighten up the versions of preferential and rational subsumption for
ALC presented in this paper in order to truly move beyond the propositional.
The latter point is the obvious one to pursue first when it comes to future work.
Below we provide some initial ideas on moving beyond propositional properties.
The value added by the semantics is the ability it provides to test whether
appropriate constraints on the orderings in ranked models can be found that
matches the new properties.

Consider the following defeasible TBox, which is a slightly modified version
of our previous meningitis example:

T = {BM � M,M �∼ ¬F,BM �∼ F,� � ∀cm.F},

where BM , M , and F are as before, and cm abbreviates the role causaMortis.
The last statement encodes the classical subsumption statement that all causes
of death are fatal.

It is easily verified that ∃pc.BM � ∃pc.M is in the rational closure of T
(where pc abbreviates the role potentiallyCauses), and so it should be since it
is entailed by BM � M . We would also expect to conclude ∃pc.M �∼ ∃pc.¬F
from T since it contains M �∼ ¬F . However, there is no propositional property
to guarantee the latter. This prompts us to consider the following property:

C �∼ D

∃r.C �∼ ∃r.D (Näıve Role Introduction)

Arguably, then, if meningitis is usually non-fatal, then potential causes of
meningitis are usually potential causes of something non-fatal.

But there are problems with this reasoning. The following example makes
this explicit: From M �∼ ¬F , Näıve Role Introduction also allows us to conclude
that ∃cm.M �∼ ∃cm.¬F . So usually, fatal cases of meningitis are fatal cases of
something non-fatal. This is clearly counter-intuitive. Intuitively, cm usually
relates to an abnormal type of meningitis, such as bacterial meningitis, which is
usually fatal. An additional blocking mechanism is therefore needed to prevent
the rule from being applied when the entire range of the role r is abnormal with
respect to C. In order to provide such a mechanism, we need to go beyond ALC,
and include the ability to express role inverses.3 We then have the following Role
Introduction property:

(RI)
C �∼ D, C ��∼ ∀r−.⊥

∃r.C �∼ ∃r.D

The effect of the premise C ��∼ ∀r−.⊥ is to block application of the rule if C is
normally disjoint from the range of r. On the other hand, if normally C overlaps
with the range of r, it follows that ∃r.C �∼ ∃r.D.

3 Given a role name r, the role inverse of r is denoted by r−. For an interpretation I,
(r−)

I
= {(y, x) | (x, y) ∈ rI}.
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Now consider again the example above. The intention of role cm is modeled
by � � ∀cm.F , the intuition being that only something fatal can be the cause
of death. It then follows classically that ¬F � ∀cm−

.⊥, and by (RW) that
M �∼ ∀cm−

.⊥. This property (RI) is therefore blocked for the statement M �∼ ¬F .
Note that (RI) applied to pc is not blocked, as we do not have that M �∼ ∀pc−.⊥.
(RI) applied to cm is also not blocked for BM �∼ F . The interesting thing about
(RI) is that it does not hold for the preferential closure of a TBox, whereas it
does hold for the rational closure.

This illustrates that there are intuitively appealing properties characterizing
rational DL-entailment that merit further investigation.
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Abstract. We present an optimized query rewriting algorithm for OWL
2 QL that computes the rewriting set of a user query by avoiding un-
necessary inferences and extended clause subsumption checks. The eval-
uation shows a significant performance improvement in comparison to
other similar approaches. Alternatively, instead of a rewriting set, the
algorithm can produce an equivalent non-recursive datalog program.

1 Introduction

The problem of answering conjunctive queries (CQ) over expressive DL ontolo-
gies suffers from high worst-case complexity. The DL-LiteR language [1], which
underpins the OWL 2 QL profile, overcomes this problem by allowing a limited
expressivity. In DL-LiteR, the CQ answering problem is tractable from the data
point of view, and can be solved by splitting the answering procedure in two
steps [5, 1, 6]: the query rewriting, in which the CQ is expanded into a union of
CQs (UCQ), and the execution of the UCQ over the database. Apart from hav-
ing the advantage of using the mature relational database technology, rewriting
can be based on first order resolution-based reasoning algorithms [4]. The main
restriction is that, for large terminologies and/or large queries, the exponential
complexity in the query size may result in a very large number of rewritings.

Several CQ answering algorithms for DL-LiteR have been proposed. In [2,
7], the rewriting strategy is based on reformulating the conjuncts of the query
according to the taxonomic information of the ontology. Although the strategy
is effective, some of the ontology axioms must be rewritten in terms of auxiliary
roles. This restriction is lifted in [4], which proposes a resolution-based rewriting
strategy, called RQR. However, its strategy may get tangled in long inference
paths leading to unnecessary or to non function free rewritings. Such rewritings
are discarded in the end, but their participation in the inference process and
the increased number of required subsumption checks degrades performance.
Another approach, called Presto, is proposed in [6] which, instead of a UCQ,
computes a non-recursive datalog program, deferring thus part of the complexity
to the database system, where it can be handled using disjunctive views.

In this paper we present Rapidf , a goal-oriented query rewriting algorithm
for queries posed over DL-LiteR ontologies. Instead of exhaustively performing
resolution, it performs a restricted sequence of inferences that lead directly to
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rewriting sets with, hopefully, no unnecessary rewritings. In this way, we avoid
a large number of blind inference paths and the need for extended query sub-
sumption checks. Rapidf improves the Rapid algorithm [3] by supporting the full
syntactic expressivity of DL-LiteR (i.e. axioms of the form A ! ∃P.B, ∃P ! ∃S,
∃P ! ∃R.B), all types of queries, and by further refining the unfolding step and
reducing the need for subsumption checks. We describe also a simple modifica-
tion of Rapidf , called Rapidd, which, instead of the complete set of rewritings,
outputs an equivalent non recursive datalog program, similarly to [6].

2 Preliminaries

A DL-LiteR ontology is a tuple 〈T ,A〉, where T is the terminology and A the
assertional knowledge. Formally, T is a set of axioms of the form shown in
Table 1, where A, B are atomic concepts and P , S atomic roles. A is a finite set
of assertions of the form A(a) or P (a, b), where a, b are individuals.

A CQ Q has the form A ← B, where atom A is the head, and the set of
atoms B (seen as a conjunction) is the body of Q. We denote B by bodyQ, and
A by headQ. A CQ Q is posed over an ontology 〈T ,A〉 if the predicates of all
atoms B ∈ bodyQ are entities of T and have arities 1 or 2, if the entity is a
concept or a role, respectively. Hence, B is a concept atom B(t) or a role atom
S(t, s). termsB (varsB, consB) are the sets of terms (variables, constants) that
appear in B. For a set of atoms B we have termsB =

⋃
B∈B termsB, for a CQ Q

we have termsQ = terms ({headQ}∪bodyQ) and similarly for varsQ, consQ. An
atom or CQ is function free if it contains no functional terms. User queries are
always function free. Given a function free CQ Q, a term t ∈ termsQ is called
distinguished if it appears in headQ, and non distinguished otherwise; bound if it
is a constant, or a distinguished variable, or a variable that appears at least twice
in bodyQ, and unbound otherwise. We denote the set of bound terms, bound
and unbound variables of Q by termsB Q, varsB Q and varsUB Q, respectively. For
an atom A we also write varsB A and varsUB A instead of varsA ∩ varsB Q and
varsA \ varsB Q, respectively, if it is clear that A ∈ bodyQ, for some Q.

A tuple of constants a is a certain answer of a CQ Q posed over the ontology
O = 〈T ,A〉 iff Ξ(O)∪{Q} |= C(a), where C is the predicate of headQ and Ξ(O)
the clausification of O into first order clauses (see Table 1, where it is assumed
that each axiom introduces a distinct function f). The set that contains all
answers of Q over O is denoted by cert (Q,O). It has been proved [5, 1] that
for any CQ Q and DL-LiteR ontology O, there is a set Q of function free CQs
(called query rewritings) such that cert(Q, 〈T ,A〉) =

⋃
Q′∈Q cert(Q′, 〈∅,A〉).

Formally, a function free CQ Q′ is a rewriting of a CQ Q posed over ontology
O, i ffQ andQ′ have the same head predicate and Ξ(O)∪{Q} |= Q′. Nevertheless,
not all possible rewritings are needed for the complete computation of cert (Q,O),
since some of them may be equivalent or subsumed by others. We say that a CQ
Q subsumes a CQ Q′ (or Q′ is subsumed by Q) and write Q!Q′, iff there is a
substitution θ such that head (Qθ) = headQ′ and body (Qθ) ⊆ bodyQ′. If Q and
Q′ are mutually subsumed, they are equivalent. If Q is a set of CQs and for some
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CQ Q there is a Q′ ∈ Q equivalent to Q, we write Q ∈̂ Q. A set rewr (Q,O) is
a rewriting set of the CQ Q over O iff for each rewriting Q′ of Q over O, either
Q′ ∈̂ rewr (Q,O) or there is a Q′′ ∈ rewr (Q,O) such that Q′′ !Q′. Given a CQ
Q, let Q′ be the CQ headQ ← {B}B∈B for some B ⊆ bodyQ. If B is a minimal
subset of bodyQ such that Q ! Q′, Q′ is called condensed or a condensation
of Q, and is denoted by condQ. Since a CQ is equivalent to its condensation,
we can find cert (Q,O) by computing a rewriting set of Q that contains only
condensed rewritings and no two rewritings Q,Q′ such that Q !Q′. Hence, we
say that Q′ is a core rewriting of a CQ Q over O, iff it is a rewriting of Q over
O, it is condensed, and there is no (non equivalent) rewriting Q′′ of Q over O
such that Q′′ !Q′. The core rewriting set rewrC (Q,O) of Q over O is the set of
all the core rewritings of Q over O.

Axiom Clause Axiom Clause
A ! B B(x) ← A(x)
S ! P P (x, y) ← S(x, y) S ! P− P (y, x) ← S(x, y)
S− ! P P (x, y) ← S(y, x) S− ! P− P (y, x) ← S(y, x)
∃S ! A A(x) ← S(x, y) ∃S− ! A A(x) ← S(y, x)
A ! ∃P P (x, f(x)) ← A(x) A ! ∃P− P (f(x), x) ← A(x)

A ! ∃P.B P (x, f(x)) ← A(x)
A ! ∃P−.B

P (f(x), x) ← A(x)
B(f(x)) ← A(x) B(f(x)) ← A(x)

∃S ! ∃P P (x, f(x)) ← S(x, y) ∃S ! ∃P− P (f(x), x) ← S(x, y)
∃S− ! ∃P P (x, f(x)) ← S(y, x) ∃S− ! ∃P− P (f(x), x) ← S(y, x)

∃S ! ∃P.B P (x, f(x)) ← S(x, y) ∃S ! ∃P−.B
P (f(x), x) ← S(x, y)

B(f(x)) ← S(x, y) B(f(x)) ← S(x, y)

∃S− ! ∃P.B P (x, f(x)) ← S(y, x) ∃S− ! ∃P−.B
P (f(x), x) ← S(y, x)

B(f(x)) ← S(y, x) B(f(x)) ← S(y, x)

Table 1. Translation of DL-LiteR axioms into clauses of Ξ(O).

3 Goal-oriented Query Rewriting

Rapidf computes rewrC (Q,O) for a user query Q in an efficient way. Its strategy
is based on the distinguishing property of the bound variables, namely that
whenever a CQ Q is used as the main premise in a resolution rule in which
an atom A ∈ bodyQ unifies with the head of the side premise and the mgu θ
contains a binding v/t for some variable v ∈ varsB Q, the application of θ affects
several atoms of the query apart from A.

Rapidf consists of the following steps: (1) The clausification step, in which
O is transformed into Ξ(O). (2) The shrinking step, in which the clauses of
Ξ(O) are selectively used as side premises in resolution rule applications in or-
der to compute rewritings which differ from the user query Q in that they do
not contain one or more variables in varsB Q, because the application of the res-
olution rule led to their unification with a functional term which subsequently
was eliminated. (3) The unfolding step, which uses the results of the previous
step to compute the remaining rewritings of Q, by applying the resolution rule
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without that the bound variables of the main premise are affected. In principle,
only unbound variables are eliminated or introduced at this step. However, some
bound variables of the main premise may also be eliminated, not through the
introduction and subsequent elimination of functional terms, but while condens-
ing the conclusion. Obviously, the same can happen at the shrinking step. (4)
The subsumption check step, in which subsumed rewritings are removed.

For efficienty, Rapidf does not implement the shrinking and unfolding steps
by applying directly the resolution rule. Instead, a shrinking and unfolding in-
ference rule are defined, which combine a series of several successful resolution
rule application steps into one. In this way, the resolution rule is used only if it
eventually leads to a function free and hopefully also non subsumed rewriting,
and a large number of unnecessary inferences is avoided. The rules of Rapidf
make use of the unfolding and function sets of atom.

3.1 Atom Unfolding Sets

The saturation of Ξ(O) w.r.t. the resolution rule contains clauses of the form

A(x) ← B(x), A(x) ← S(x, y), P (x, y) ← S(x, y),
P (x, f(x)) ← B(x), P (x, f(x)) ← S(x, y),
P (g(x), f(g(x))) ← B(x), P (g(x), f(g(x))) ← S(x, y),
P (g(h(x)), f(g(h(x)))) ← B(x), . . . P (g(h(x)), f(g(h(x)))) ← S(x, y), . . .

as well as the respective clauses with the role atom arguments inverted. We note
that in the clauses of the first two rows, the non functional terms of the head
appear also in the body. Based on this remark, and given that in the unfolding
step we want the bound variables not to unify with functional terms but be
preserved in the conclusion, we define the unfolding of an atom as follows:

Definition 1. Let A be a function free atom and T a subset of termsA. Atom
Bθ′ is an unfolding of A w.r.t. T iff Ξ(O) +R Aθ ← B for some substitution
θ on a (possibly empty) subset of varsA \ T to functional terms, where θ′ is a
renaming of varsB \ T such that for v ∈ varsB \ T we have vθ′ /∈ varsA.

In the above, +R denotes derivability under the first-order resolution rule.
Essentially,Bθ′ is an unfolding ofA w.r.t. T if it is the body of a clause inferrable
from Ξ(O) that has in its head an atom A′ (of the same predicate as A), and
both B and A′ contain unaltered all terms in T (which should contain the bound
terms in A). Since the variable renaming θ′ contains no essential information, we
collect all unfoldings and define the unfolding set of atom A for T w.r.t. Ξ(O)
as the set D(A;T ) = {B | Ξ(O)∪ {A} +J (T ) B}, where J (T ) are the inference
rules shown in Table. 2, in the form A C

B . Given T , A (the main premise) and a
clause C ∈ Ξ(O) (the side premise), by applying the respective rule we get atom
B (the conclusion). We also define the set D̂(A;T ) = D(A;T ) ∪ {A}. It is easy
to prove that given A and T ,= ∅ we have Ξ(O) +R Aθ ← B iff Bθ′ ∈ D(A;T ),
for θ,θ ′ as defined in Def. 1.
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T rule T rule

{}, {t} A(t) A(x) ← B(x)
B(t)

{} A(t) A(f(x)) ← B(x)
B(z)

{} A(t) A(f(x)) ← S(x, y)
S(z, w)

{} A(t) A(f(x)) ← S(y, x)
S(w, z)

{}, {t} A(t) A(x) ← S(x, y)
S(t, z)

{}, {t} A(t) A(x) ← S(y, x)
S(z, t)

{}, {t} P (t, v) P (x, f(x)) ← B(x)
B(t)

{}, {t} P (v, t) P (f(x), x) ← B(x)
B(t)

{}, {t} P (t, v) P (x, f(x)) ← S(x, y)
S(t, z)

{}, {t} P (v, t) P (f(x), x) ← S(x, y)
S(t, z)

{}, {t} P (t, v) P (x, f(x)) ← S(y, x)
S(z, t)

{}, {t} P (v, t) P (f(x), x) ← S(y, x)
S(z, t)

{t}, {s},
P (t, s) P (x, y) ← S(x, y)

S(t, s)

{t}, {s},
P (t, s) P (x, y) ← S(y, x)

S(s, t)
{}, {t, s} {}, {t, s}

Table 2. The J (T ) inference rules (w and z are any newly introduced variables).

3.2 Atom Function Sets

As we have already seen, the closure of Ξ(O) contains clauses of the form
P (x, f(x)) ← B(x), P (f(x), x) ← B(x) and A(f(x)) ← B(x), as well as of
the form P (g(x), f(g(x))) ← B(x) and P (g(x), f(g(x))) ← S(x, y). Unlike in
the unfolding case, now we are interested in the behavior of the functional term
f(x), which appears in the head but not in the body, because if f(x) appears in
the body of a rewriting, it may be possible to eliminate it by using such clauses.
Let funcsΞ(O) be the set of all functions in Ξ(O). According to Table 1, each
DL-LiteR axiom that has an existential quantifier in the RHS introduces a dis-
tinct function f . Hence, each function f ∈ funcsΞ(O) is uniquely associated with
the concept or role that appears in the LHS of the axiom that introduces f . Let
atom f [x] denote the atom that (a) has as predicate the entity associated with f ,
(b) has the variable x in the place of the bound variable of the respective axiom
of Table 1 which introduces f , and (c) has a distinct variable (not elsewhere
used, as needed) in the place of the unbound variable, if any. E.g. if the axiom
A ! ∃P.B introduces function f1 then atom f1[x] is the atom A(x), and if the
axiom ∃S− ! ∃P.B introduces function f2 then atom f2[x] is the atom S(z, x),
where z is some variable not used elsewhere. We define the set of all functions
that may appear in the place of a bound variable v of an atom A when resolving
any of its unfoldings with a non function free clause in Ξ(O) as follows:

Definition 2. Let A be a function free atom, T a non empty subset of termsA
and v a variable in varsA∩ T . The function set Fv(A;T ) of all functions asso-
ciated with A in variable v w.r.t. T is defined as follows:

Fv(A;T ) =
{f | B(v) ∈ D̂(A;T ) and B(f(x)) ← atom f [x] ∈ Ξ(O)} ∪
{f | S(v, t) ∈ D̂(A;T ) and S(f(x), x) ← atom f [x] ∈ Ξ(O)} ∪
{f | S(t, v) ∈ D̂(A;T ) and S(x, f(x)) ← atom f [x] ∈ Ξ(O)}
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It follows that (a) if A ≡ P (v, t) then f ∈ Fv(A;T ) i ffΞ(O) +R P (f(t), s) ←
atom f [t], (b) if A ≡ P (t, v) then f ∈ Fv(A;T ) i ffΞ(O) +R P (s, f(t)) ←
atom f [t], where in both cases s = t if t ∈ T otherwise either s = t, or s = g(f(t))
for some function g, and (c) if A ≡ A(v) then f ∈ Fv(A;T ) i ffΞ(O) +R
A(f(t)) ← atom f [t]. Again, T stands for the set of bound terms in A.

3.3 Query Shrinking

The shrinking step computes rewritings that can be inferred from the user query
Q by eliminating one or more of its bound variables through their unification
with a functional term. Given that the rewritings in rewr (Q,O) are function free,
if a function is introduced in some rewriting during the standard resolution-based
inference process, subsequently it must be eliminated. However, we know that
each function appears in at most two clauses of Ξ(O), both of which have as
body the atom atom f [x]. Now, the functional term f(x) can be introduced in a
CQ only if some inference led to the substitution of a bound variable v by f(x).
Hence, in order for f(x) to be eliminated, all atoms in which f(x) has been
introduced must contain f in their function sets, for the appropriate argument.
Moreover, if Q contains the terms say P (x, v) and P (v, y) and v is eliminated
this way by unifying with f(x), variables x and y must be unified. If in place of
x, y there are constants, these should coincide in order for the inference to be
possible. This is the intuition behind the following shrinking inference rule:

Definition 3. Let Q be a CQ and v a non distinguished bound variable of Q.
Write Q in the form A ← B1, . . . ,Bk,C1, . . . ,Cn, where Bi are the atoms in
bodyQ that contain v, and Ci the remaining atoms. Let also C =

⋃k
i=1 consBi

and X =
⋃k

i=1(vars
B Bi) \ v. The shrinking rule S on Q is defined as follows:

A ← B1, . . . ,Bk,C1, . . . ,Cn f ∈
⋂k

i=1 Fv(Bi; termsB Bi) ∧ |C| ≤ 1
cond (Aθ ← atom f [t],C1θ, . . . ,Cnθ)

where θ =
⋃

x∈X {x/t}, and t = a if C = {a} otherwise t is a variable /∈ varsQ.

3.4 Query Unfolding

Let S∗(Q) be the closure of condQ under application of the inference rule S,
for any CQ Q. By construction, S∗(Q) contains a ‘representative’ for all query
structures that can result from Q by eliminating one or more variables in varsB Q
by using functional terms. This representative can be considered as a ‘top’ query,
in the sense that in can produce several more CQs with no further structural
changes due to bindings of bound variables with functional terms. Hence, the
remaining rewritings can be obtained by computing, for each Q′ ∈ S∗(Q), all
CQs that can be inferred from Q′ by replacing one or more of its atoms by one
of their unfoldings. In this way we can eventually compute all rewritings of Q.
This can be achieved by applying the following unfolding inference rule:
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Definition 4. An unfolding of CQ Q : A ← B1, . . . ,Bn, is the conclusion of
any application of the following unfolding rule W:

A ← B1, . . . ,Bn Ci ∈ D̂(Bi; termsB Bi) for i = 1 . . . n
cond (A ← C1γ1, . . . ,Cnγn)

where γi is a renaming of varsUB Ci such that xγi /∈
⋃n

j=1,j %=i vars (Cjγj) for all

x ∈ varsUB Ci.

Let W∗(Q) be the closure of a condQ under application of the inference rule
W, for any Q. The strategy by which Rapidf computes the core rewriting set of
a user query Q is justified by the following theorem:

Theorem 1. Let Q be a CQ over a DL-LiteR ontology O.
If Q′ ∈

⋃
Q′′∈S∗(Q) W∗(Q′′) then Q′ ∈̂ rewr (Q,O) (soundness), and if Q′ ∈

rewrC (Q,O) then Q′ ∈̂
⋃

Q′′∈S∗(Q) W∗(Q′′) (completeness).

3.5 Query Unfolding Optimization

If we apply exhaustively the W rule in order to compute W∗(Q), we may end
up with many subsumed rewritings. Because the subsumption check operation
needed to remove them is very costly, Rapidf applies W in a cleverer way, so as
to get as few as possible subsumed rewritings. In fact, it restates the unfolding
problem as follows: Given a CQ Q of the form A ← B1, . . . ,Bn, find the non
subsumed CQs that are conclusions of all possible applications of W on Q.
For convenience, define Bi = D̂(Bi; termsB Bi), so that we get the sequence
of the possibly non disjoint unfolding sets B1, . . . ,Bn. For simplicity, we drop
the substitutions γi in Def. 4 by assuming that each time a rule of J (T ) that
introduces a new variable is applied, this variable does not appear elsewhere.

For any B ∈
⋃n

i=1 Bi, define the set indB = {j | B ∈ Bj} of the indices
of all unfolding sets that contain B. We call the set C = {C1, . . . ,Ck} with

k ≤ n a selection for Q iff (a)
⋃k

i=1 indCi = Nn, where Nn
.
= {1, . . . , n}, and (b)

indCi \ indCj ,= ∅ for all i, j ∈ Nk, i.e. if C contains at least one atom from each
unfolding set and no two sets indCi overlap fully. Clearly, a selection corresponds
to an unfolding ofQ, in particular toA ← C. However, of interest are theminimal
selections, which can produce non subsumed rewritings. We call a selection C for
Q minimal, iff there is no selection C′ for Q such that C′ ⊂ C, i.e. if condition
(b) above is replaced by the stronger condition indCi \

(⋃k
j=1,j %=i indCj

)
,= ∅

for all i ∈ Nk, i.e. if all atoms Ci need to be present in set C in order for⋃k
i=1 indCi = Nn to hold. If this were not the case, we could form the selection

C′ = {C1, . . . ,Ci−1,Ci+1,Ck} ⊂ C, hence C would not be minimal.
In this computation of minimal selections only equality between the elements

of the sets Bi is taken into account, and not subsumption relations. However,
an unfolding set may contain an atom with an unbound variable (e.g. P (x, ∗),
where ∗ is unbound) which unifies with an atom of another unfolding set that
contains only bound variables (e.g. P (x, y)). The unfoldings of a CQ Q resulting
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after such unifications are made may subsume or be subsumed by several of the
unfoldings given directly by other minimal selections for Q. In order to take into
account atom subsumption relations, we compute all possible bindings for the
unbound variables that appear in the sets Bi in advance and enrich the respective
sets Bi with the respective atoms, before computing the minimal selections. In
particular, if for some i, j ∈ Nn we have C ∈ Bi and C′ ∈ Bj and there is a
substitution θ on varsUB C′ such that C′θ = C, we add C to Bj . The presence of
any such two atoms C′ and C in any pair Bi,Bj , regardless of whether they were
present from the beginning or introduced at the enrichment phase, establishes a
parent-child relationship between C′ and C. Let parentsC and childrenC denote
the set of parent and child atoms of atom C across all the sets Bi. Obviously,
a child can have several parents in different unfolding sets, possibly distinct
between each other, and the same holds for the children of a parent.

In order to avoid the production of subsumed rewritings due to such atom
subsumptions, for each candidate unfolding Q : A ← C obtained from a minimal
selection C, Rapidf performs two checks: (1) For each parent C of an atom in
C, it constructs a candidate rewriting with body C′ = {C} ∪ (C \ childrenC), i.e
it replaces all children of C by their parent. If C′ is a minimal selection, then
Q is discarded because it is subsumed by A ← C′. E.g. Q(x) ← S(x, y), T (x, y)
is subsumed by Q(x) ← S(x, ∗), T (x, z) where S(x, y) is a child of S(x, ∗). (2)
For each atom C that is a child of an atom in C it constructs the candidate
body C′ = {C} ∪ {D | D ∈ C and indD ! indC}, i.e. it replaces the parent by
its child C and keeps all the remaining atoms of C that are not ‘covered’ (in
terms of their indices) by C. If cond (A ← C′)!Q then Q is discarded because
it is subsumed. E.g. Q(x, y) ← R(x, y), S(y, w), T (y, z), S(v, z) is subsumed by
Q(x, y) ← R(x, y), S(y, z), where S(y, z) is child of both S(y, w) and S(v, z).

The only case an unfoldingQ′ ofQ obtained in this way may subsume another
unfolding of Q is when the condensation of Q′ does not contain one or more of
the variables in varsB Q; this implies that a structural change has happened
to condQ′. To cover this case, we always compute the condensation of each
unfolding given by the above procedure. If the condensation does not contain a
bound variable of Q it is marked as impure, otherwise as pure. Given that the
unfolding step is executed for each rewriting produced by the shrinking step, the
final step is the check for subsumed rewritings within the results of the entire
unfolding process. The check is done after first grouping the results into sets that
are known not to contain subsumed rewritings. As explained, these are the sets
of pure unfoldings obtained during the unfolding step for each rewriting given
by the shrinking step. Each impure unfolding is considered to be a separate set.

The overall structure of Rapidf for a user query Q is shown in Algorithm 1.
Procedure Shrink computes S∗(Q), by iteratively applying Def 3. For each
rewriting computed by Shrink, procedure Unfold computes its minimal se-
lections and discards any subsumed unfoldings as described above. Finally, the
unfoldings, grouped into sets of pure unfoldings and singleton sets of impure
unfoldings, are processed by procedure CheckSubsumption, which checks for
subsumptions across sets only and removes any subsumed rewritings.
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Algorithm 1 The Rapidf algorithm

procedure Rapidf (CQ Q, ontology O)
Qf = ∅
for all Qs ∈ Shrink(Q,O) do

Qt ← ∅
for all Q′ ∈ Unfold(Qs,O) do

if varsB Q ⊆ vars (condQ′) then
Qt ← Qt ∪ {Q′}

else
Qf ← Qf ∪ {{condQ′}}

end if
end for
Qf ← Qf ∪ {Qt}

end for
return CheckSubsumption(Qf )

end procedure

3.6 Rapidd: Rewritings as a non-recursive Datalog program

The side premises Ci ∈ D̂(Bi, termsB Bi) of the unfolding rule W may be seen
as the clauses Ci ← Di for some Di ∈ D̂(Bi, termsB Bi). Hence, similarly to
[6], given a user CQ Q, instead of applying exhaustively the unfolding rule on
S∗(Q), in order to produce all unfoldings and then check for subsumptions among
them so as to get rewrC (Q,O), we can produce a non-recursive datalog program
PQ, which contains the rewritings produced at the shrinking step plus the side
premises of the W rules that can possibly be applied. Rapidd works exactly this
way: The clausification and shrinking steps are as in Rapidf , but the unfolding
and subsumption check steps are replaced by a single step which rewrites the
unfolding of all atoms that appear in the body of the rewritings in S∗(Q) in
the form of a set of clauses U , which are then appended to the set of rewritings
obtained at the shrinking step so that PQ is produced. Before doing this however,
the rewritings in S∗(Q) need to be modified in two ways, as in [6].

First, we can remove from the body of the several Q′ ∈ S∗(Q) the atoms
that will certainly produce only subsumed rewritings (in the case we were to
apply exhaustively the W rule, as before, in order to compute all rewritings);
this happens if there are two atoms A,B ∈ bodyQ′ and a θ such that A = Cθ
for some C ∈ D(termsB B), i.e. if A is subsumed by C. In this case we just
remove B from bodyQ′. Let rr (S∗(Q)) be the set of clauses obtained in this way
from S∗(Q) and also after removing from it any subsumed clauses.

Next, we must construct the set of clauses U . This is straightforward, but we
must take into account the different bindings that bound and unbound variables
can have during the unfolding. So, for all atoms A that appear in the clauses of
rr (S∗(Q)) we compute the set D(A; varsB A) and then we construct from A a
new atom A′ by removing from the arguments of A all unbound variables and
replacing the predicate p of A by a new predicate pt1 or pt1t2 , if A is a concept
or role atom, respectively, and ti = 0 if the i-th argument of A is unbound and
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ti = 1 otherwise. Finally we normalize the clauses in rr (S∗(Q)) by replacing all
appearances of A by A′, and add to U the clause A′ ← A as well as the clause
A′ ← D for all D ∈ D(A; varsB A).

PQ is the union of U and the normalized version of all clauses in rr (S∗(Q)).

4 Evaluation

We evaluated Rapidf by comparing it with Rapid and Requiem, the implemen-
tation of RQR. We used the same datasets as in [4], namely the V, S, U, A,
P5, UX, AX, P5X ontologies. (V models European history, S European financial
institutions, and A information about abilities, disabilities and devices. U is a
DL-LiteR version of the LUBM benchmark ontology. P5 is synthetic and models
graphs with paths of length 5. UX, AX and P5X are obtained by rewriting U,
A and P5 without qualified existential restrictions). The results are shown in
Table 3. T is the rewriting computation time and R the number of rewritings.
For Rapidf (Rapf ), Rapid (Rap) and Requiem (Req), one number is given for
the rewritings, since all these algorithms compute the same core rewriting set.
For Rapidd (Rapd), the column R is the number of clauses in PQ.

Rapf Rap Req Rapd

O Q T T T R T R

V

1 .001 .001 .001 15 .001 16
2 .001 .001 .001 10 .001 13
3 .001 .015 .016 72 .001 29
4 .015 .031 .062 185 .001 44
5 .016 .016 .015 30 .001 13

S

1 .001 .001 .001 6 .001 7
2 .001 .001 .062 2 .001 3
3 .001 .001 .515 4 .001 5
4 .001 .001 1.047 4 .001 5
5 .001 .001 17.984 8 .001 7

U

1 .001 .001 .001 2 .001 4
2 .001 .001 .047 1 .001 2
3 .001 .001 .109 4 .001 8
4 .001 .001 2.031 2 .001 3
5 .001 .001 7.781 10 .001 8

A

1 .001 .001 .047 27 .001 54
2 .001 .001 .047 50 .001 33
3 .016 .016 .063 104 .001 33
4 .015 .031 .156 224 .001 60
5 .062 .078 .610 624 .001 38

Rapf Rap Req Rapd

O Q T T T R T R

P5

1 .001 .001 .001 6 .001 7
2 .001 .001 .015 10 .001 16
3 .001 .001 .047 13 .001 19
4 .015 .015 .688 15 .001 21
5 .015 .015 16.453 16 .001 22

P5X

1 .001 .001 .001 14 .001 15
2 .001 .001 .031 25 .001 31
3 .016 .031 .297 58 .001 34
4 .078 .172 7.375 179 .001 36
5 1.234 2.625 3:48.690 718 .001 37

UX

1 .001 .001 .001 5 .001 7
2 .001 .001 .078 1 .001 2
3 .001 .001 1.125 12 .001 10
4 .001 .001 19.375 5 .001 6
5 .001 .015 57.672 25 .001 11

AX

1 .001 .015 .063 41 .001 69
2 .109 .141 2.781 1,431 .001 51
3 .375 .469 29.109 4,466 .001 57
4 .265 .641 23.516 3,159 .001 85
5 3.375 49.984 1:56:21.585 32,921 .001 72

Table 3. Evaluation results. The times T are in hh.mm.ss.msec format The results
for Requiem are for its greedy modality, which applies forward query subsumption,
dependency graph pruning and greedy unfolding.

The results show clearly the efficiency of Rapidf . It is always faster than
Rapid, and much faster than Requiem; in several cases the improvement is sig-
nificant. The most striking case is ontology AX and query 5, in which Rapidf
completes the computation of the 32,921 core rewritings in less than 4 seconds,
while Rapid needs 50 seconds and Requiem about 2 hours. The more detailed

453



Goal-oriented Query Rewriting for OWL 2 QL 11

study of this particular case showed that Rapidf computes directly the final
core rewriting set and performs no subsumption checks at all. On the other
hand, Rapid spends about 45 seconds checking for subsumptions and Requiem
about 1.5 hours.

Table 3 also shows, as expected, that Rapidd is always much faster than any
of the other algorithms, since it does not include the unfolding step, which is
the main source of complexity, even for the optimized Rapidf algorithm. For
the same ontologies and query pairs tested in [6], similar times and numbers of
rewritings are reported. Note, however that the rewriting sizes do not coincide,
because Rapidd and Presto do not produce the same datalog programs. This is
due to the fact that the Split and EliminateEJVars steps of Presto are performed
in a different way by the shrinking step of Rapidd. The expansion of the datalog
program to a UCQ is of course the same, for both algorithms.

5 Conclusions

We presented Rapidf , an efficient algorithm for the computation of the core
rewriting set of queries posed over DL-LiteR ontologies. Rapidf optimizes the
inference process by replacing the application of the first order resolution rule
by specialized shrinking and unfolding rules, which save the algorithm from
many unnecessary rewritings, subsumption checks and blind inference paths.
We presented also Rapidd a modification of Rapidf , which does not unfold the
rewritings, but encodes the unfoldings into a datalog program similarly to [6].
The experimental evaluation of Rapidf showed a significant performance benefit
if compared to RQR and Rapid, which in several practical cases can alleviate
the exponential behavior. The performance of Rapidd is similar to Presto, but
Rapidd supports the full syntactic expressivity of DL-LiteR.
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C � D I(C) ∩ I(D) ∀r.C
{x ∈ D | ∀ y : (x, y) ∈ I(r) → y ∈ I(C)} ALC

P (C|D) ∈ [α1, α2],

D C

∀x : P (C(x)|D(x)) ∈ [α1, α2],

I D D � P (C) ∈
[α1, α2]

P (∀r.C|D)
ALC r

P (r) ∈ [β1, β2]

∀x, y : P (r(x, y)) ∈ [β1, β2],

A B C r

C C ≡ A � ∃r.B
r (x, y)

B (x) ∃r.B (x)
C (x) A (x) ∃r.B (x)
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1 Introduction

Modularity in ontologies Modern ontologies can get quite large as well as complex,
which poses challenges to tools and users when it comes to processing, editing, analyz-
ing them, or reusing their parts. This suggests that exploiting modularity of ontologies
might be fruitful, and research into this topic has been an active area for ontology en-
gineering. Much recent effort has gone into developing logically sensible modules, that
is, parts of an ontology which offer strong logical guarantees for intuitive modular prop-
erties. One such guarantee is called coverage. It means that a module captures all the
ontology’s knowledge about a given set of terms (signature). A module in this sense is a
subset of an ontology’s axioms that provides coverage for a signature, and each possible
signature determines such a module. The minimal modules to provide coverage for a
signature are those based on Conservative Extensions (CEs) [2], that are however not
feasible to be computed for many expressive languages. Modules based on syntactic lo-
cality [5] also provide coverage because they are efficiently computable approximations
of CEs; however, such modules are not in general minimal.

The extraction of such a module given a set of terms (signature) is well understood
and starting to be deployed in standard ontology development environments, such as
Protégé 4,1 and online.2 Locality-based modules have already been effectively used for
ontology reuse [14] and as a subservice for incremental reasoning [3]. However, we
think that by investigating the family FO of all locality-based modules we can obtain
information about topicality, connectedness, structure, superfluous parts of an ontology,
or agreement between actual and intended modeling.

Previous work In [6] we investigated the number of (locality-based) modules that an
ontology can have. There are examples of artificial ontologies with exponentially many
w.r.t. their size: for example, the ontology O = {Ai � B | i = 1, . . . , n}, where each
subset of the ontology is a module. However, we tried to understand if real ontologies
generate an exponential family FO of modules. To this aim, we selected some ontolo-
gies from the TONES ontology repository3 and tried to extract all of their modules. The
results we obtained made us tend towards rejecting the hypothesis, but they were not
strong enough for a clear rejection.

1 http://www.co-ode.org/downloads/protege-x
2 http://owl.cs.manchester.ac.uk/modularity
3 http://owl.cs.manchester.ac.uk/repository/browser
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In [7] we introduced a different approach to look at modules: we noticed that an on-
tology can be partitioned into building blocks, called atoms, that do not split over two
modules. Atoms are interesting because they are in 1-1 correspondence with genuine
modules, i.e., modules that are not the union of two uncomparable (w.r.t. set inclu-
sion) modules. Moreover, they are computable in polynomial time (provided that the
extraction of a locality-based module is polynomial). The set of atoms is called Atomic
Decomposition (AD). The AD of an ontology is stable, in the sense that is well-defined
given any (suitable) notion of locality-based module. This suggests us that we could use
it for performing several tasks of interest for users of ontologies, as the estimation of
the number of modules of an ontology. We started exploiting this matter in [8].

Following [7], in this paper we describe more extensively the AD of an ontology:
its definition, its properties, its generation. We then introduce some tasks of interest for
ontology engineers that could be performed by means of the ADs. For each such task,
we discuss with the help of several examples some issues about the suitability of the sole
AD to perform it. Hence, we introduce a family of refinements of AD, called Labelled
Atomic Decomposition (LAD), useful to solve the issues raised. In particular, these
issues are deeply discussed w.r.t. one such specific task: the Fast Module Extraction
(FEM), t.i., the extraction of a single module without loading the ontology.

2 Preliminaries

We assume the reader to be familiar with Description Logics [1], and only briefly sketch
here some of the central notions around locality-based modularity. We use L for a De-
scription Logic, e.g., SHIQ, and O,M, etc., for a knowledge base, i.e., a finite set of
axioms. Moreover, we respectively use �α or �O for the signature of an axiom α or of an
ontology O, i.e., the set of concept, role, and individual names used in α or in O.

Conservative extensions (CEs) capture the above described encapsulation of knowl-
edge. They are defined as follows.

Definition 1. Let L be a DL, M⊆ O be L-ontologies, and Σ be a signature.

1. O is a deductive Σ-conservative extension (Σ-dCE) of M w.r.t. L if for all axioms
α over L with �α ⊆ Σ, it holds that M |= α if and only if O |= α.

2. M is a dCE-based module for Σ of O if O is a Σ-dCE of M w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide for many DLs [11,15,17].
Therefore, approximations have been devised. We focus on syntactic locality (here for
short: locality). Given an ontologyO, and a set of terms, called seed signature, Σ ⊆ �O,
we say that an axiom α ∈ O is ⊥-local w.r.t. Σ if we can clearly identify it as a
tautology when all the terms not in Σ are substituted by ⊥ (the formal definition can
be found in [5]). An analogous definition can be made for �-locality. Then, a locality-
based module is recursively computed as follows: starting from an empty set M, each
axiom α ∈ O is tested whether it is local w.r.t. Σ; if not, α is added toM, the signature
Σ is extended with all terms in �α, and the test is re-run against the extended signature.
Then,M⊆ O and all axioms inO\M being local w.r.t. Σ∪�M is sufficient forO to be
a Σ-dCE of M. By alternating the extraction of ⊥- and �-module over the previously
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extracted module, we obtain various notion of modules. When the fixpoint is reached,
the resulting notion is called �⊥∗-locality. Locality-based modules can be efficiently
computed and provide coverage; that is, they capture all the relevant entailments, but
not necessarily only those [5,13]. A module extractor is implemented in the OWL API.4

Given a module notion x ∈{� ,⊥,�⊥∗}, we denote by x-mod(Σ,O) the x-module
of O w.r.t. Σ. The following properties of locality-based modules will be of interest for
our modularization [5,17].

Proposition 2. Let O be an ontology, Σ a signature and x ∈{� ,⊥,�⊥∗}. Then the
following properties hold:
(a) for any Σ�, x-mod(Σ,O) ⊆ x-mod(Σ ∪Σ�,O) (monotonicity)
(b) for Σ� with Σ ⊆ Σ� ⊆ Σ∪�M, x-mod(Σ�,O) = x-mod(Σ,O) (self-containedness)
(c) each axiom α entailed by O \ x-mod(Σ,O) and such that �α ⊆ Σ is a tautology
(depletingness).

Proposition 3. Any notion of locality-based modules satisfying the properties in Prop. 2
is such that any given signature generates a unique module.

From now on, we focus on the �⊥∗ notion of locality-based modules. However, we
want to underline that what we discuss in the rest of the paper can be carried out for
each notion of module satisfying monotonicity, self-containedness, and depletingness.

3 Atomic Decomposition

In [7] we introduced a new approach to represent the whole family FO of locality-
based modules of an ontology O. The key point is observing that some axioms appear
in a module only if other axioms do. In this spirit, we defined a notion of “logical
dependence” between axioms: the idea is that an axiom α depends on another axiom β
if whenever α occurs in a module M then β also belongs to M.

To keep the formalization clean, we remove from the ontology syntactic tautologies,
i.e. always-local axioms, and global axioms, i.e. axioms that belong to all modules. We
can always remove these unwanted axioms and consider them separately. Then, for each
axiom α is well-defined the smallest module containing it.

Proposition 4. The module �⊥∗-mod(�α,O) is the smallest containing α.

Proof. We recall that �⊥∗-mod satisfies the properties as in Prop. 2. Then:

1. α is non-local w.r.t. �α (because is not a syntactic tautology), henceMα is not empty
2. Mα is the unique and thus smallest module for the seed signature �α
3. by monotonicity, enlarging the seed signature �α results in a superset of Mα

4. M� = �⊥∗-mod(�M�,O) = �⊥∗-mod(�M� ∪ �α,O) ⊇ �⊥∗-mod(�α,O) by self-
containedness and monotonicity, thus any module M� that contains α needs to
contain also Mα. ��

Definition 5. The module Mα = �⊥∗-mod(�α,O) as in Prop. 4 is called α-module.
4 http://owlapi.sourceforge.net/
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The dependency between axioms allows us to identify clumps of highly interrelated
axioms that never split over two or more modules [7]; these clumps are called atoms.

Definition 6. An atom is a maximal disjoint subset of an ontology such that their ax-
ioms either appear always together in modules, or none of them does.

Definition 7. The family of atoms of an ontology O is denoted by A(FO) and is called
Atomic Decomposition (AD).

The AD is evidently a partition of the ontology, thus is linear w.r.t. the size of the
ontology. Moreover, atoms are the building blocks of all modules [10].

Proposition 8. Each module is the union of suitable atoms.

We summarize in the following table the ontologies’ fragments described so far.

Structure O FO A(FO)

Elements axioms α modules M atoms a, b, . . .
Maximal size baseline exponential linear
Mathem. object set family of sets poset

Proposition 9. Let a be an atom in the AD A(FO) of an ontology O; then, for any
selection of axioms S = {α1, . . . , ακ} ⊆ a we have that �⊥∗-mod( �S,O) = Mα. In
particular, for each αi ∈ a, Mαi = Mα.

Proof. Let α ∈ a be an axiom, and let us consider the module Mα. Then:

1. a ⊆Mα by the definition of atoms
2. as a consequence, Mα ⊇ �⊥∗-mod( �S,O) for every selection S of axioms from a
3. by Prop. 4, the inverted inclusion �⊥∗-mod(�αi,O) ⊇Mα also holds. ��

A module Ma = �⊥∗-mod(�a,O) is called compact. From Prop. 9 it is clear that
the set of compact modules coincides with the one of α- modules. Hence, we can denote
by Ma the module Mα for each α ∈ a. Now, we are ready to extend the definition of
“logical dependency” to atoms.

Definition 10. Let a and b be two distinct atoms of an ontology O. Then:

- a is dependent on b (written a � b) if Mb ⊆Ma

- a and b are independent if Ma ∩Mb = ∅
- a and b are weakly dependent if, they are neither independent nor dependent; in

this case, there exists an atom c which both a and b are dependent on.

Thanks to Def. 10, the AD inherites the mathematical structure of partially ordered
set, thus can be represented by means of a Hasse diagram.

Proposition 11. The binary relation “ �” as in Def. 10 is a partial order over the set
A(FO) of atoms of an ontology O.

Proof. This is true because � satisfies reflexivity, antisymmetry, and transitivity. ��
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Algorithm 1 Atomic decomposition
Input: An ontology O.
Output: The set G of α-modules; the poset of
atoms (A(FO),�); the set of generating ax-
ioms GenAxs; for α ∈ GenAxs, the cardinality
CardAtom(α) of its atom.

ToDoAxs←�⊥∗-mod( eO,O)\�⊥∗-mod(∅,O)
GenAxs← ∅

for each α ∈ ToDoAxs do

Module(α) ← �⊥
∗-mod(eα,O) { �= ∅}

new ← true
for each β ∈ GenAxs do

if Module(α) = Module(β) then

Atom(β) ← Atom(β) ∪ {α}
CardAtom(β) ← CardAtom(β) + 1
new ← false

end if

end for

if new = true then

Atom(α) ← {α}
CardAtom(α) ← 1
GenAxs← GenAxs ∪ {α}

end if

end for

for each α ∈ GenAxs do

for each β ∈ GenAxs do

if β ∈ Module(α) then

Atom(β) � Atom(α)
end if

end for

end for

A(FO) ← {Atom(α) | α ∈ GenAxs}
G ← {Module(α) | α ∈ GenAxs}
return [(A(FO),�),G,GenAxs,CardAtom(·)]

Name #logical #α- #Con. #max. #max.
axioms mods comp. mod. atom

Koala 42 23 5 18 7
Mereology 44 17 2 11 4
University 52 31 11 20 11
People 108 26 1 77 77
miniTambis 173 129 85 16 8
OWL-S 277 114 1 57 38
Tambis 595 369 119 236 61
Galen 4, 528 3, 340 807 458 29

Table 1. Experiments summary
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Figure 1. The AD of Koala

Prop. 9 and Prop. 11 provide the basis for our polynomial algorithm for the compu-
tation of the AD since it allows us to construct A(FO) via α-modules only. The whole
procedure is described in Alg. 1. A proof for its correctness can be found in [10].

We ran Algorithm 1 on a selection of ontologies, including those used in [6], and
indeed managed to compute the AD in all cases, even for ontologies where a complete
modularization was previously impossible. Table 1 summarizes ontology data: size,
expressivity, number of compact modules (= number of atoms), number of connected
components in the AD poset, size of largest compact module and of largest atom. Our
tests were obtained on a 2.16 GHz Intel Core 2 Duo Macbook with 2 GB of memory
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running Mac OS X 10.5.8; each AD was computed within a couple of seconds (resp. 3
minutes for Galen).

We have also generated a graphical representation using GraphViz5. Our ADs show
atom size as node size, see e.g. Fig. 1. It shows four isolated atoms, e.g., Atom 22,
consisting of the axiom DryEucalyptForest � Forest. This means that, although
other modules may use some (but not all) 22’s terms, they do not “need” 22’s axioms
for any entailment. Hence, removing (the axioms in) isolated atoms from the ontology
would not result in the loss of any entailments regarding other modules or terms. Of
course, for entailments involving both DryEucalyptForest and Forest and possibly
other terms, axioms in isolated atoms may be needed. A similar structure is observable
in all ontologies considered, see the graphs at http://bit.ly/i4olY0 .

The following results have a deep impact on the way we describe modules in ADs:
the poset structure of an AD is a 1-1 representation of compact modules.

Definition 12. The principal ideal of an atom a is the set (a] = {α ∈ b | b � a} ⊆ O.

Lemma 13. Principal ideals of atoms are modules.

Proof. Given an atom a ∈ A(FO), we want to compare its principal ideal (a] =
�

b�a b
with the module Mα. By the definition of atoms, Mα ⊇ (a]. We still need to prove
that the equality holds. By contraposition, let Mα be a proper superset of (a]. Then it
contains at least one atom b which a is not dependent on. Let β be an axiom in b, and
let us consider Mβ . By Prop. 4, Mβ is the smallest module containing b. Then, Mβ is
contained in Mα, and since the latter is the smallest module containing a, this means
that a is dependent on b. This last fact contradicts the assumption. ��

Prop. 9 implies that two axioms from the same atom generate the same compact
module. The converse also holds.
Proposition 14. Let α,β be two axioms such that Mα = Mβ . Then, an atom a exists
such that α,β ∈ a.

Proof. By contraposition, let a and b be two distinct (hence, disjoint) atoms such that
α ∈ a and β ∈ b. Then, by Prop. 13 the principal ideals (a] and (b] are also distinct
modules, and this contradicts the hypothesis. ��

Another interesting property is the existence of a mapping, denoted by rO, between
the family FO of modules of the ontology O into the set of antichains of the poset
structure of the AD, such that if M = a1 ∪ . . . ∪ an, then rO(M) is the minimum
set of atoms such that M = (a1] ∪ . . . ∪ (aκ]. In particular, {a1, . . . , aκ} is a set of
uncomparable atoms. Unfortunately, this mapping is not 1-1.

Corollary 15. For each module M of an ontology O, there are uncomparable (w.r.t.
the dependency relation �) atoms a1, . . . , aκ such that M =

�n
i=1(ai].

Proof. By the definition of atoms, if M contains one axiom from an atom ai, then it
contains all its axioms. By the definition of dependency, ifM contains one atom ai, then
it contains all the atoms that ai depends on. Finally, we can consider only uncomparable
atoms because in case M contains an b such that ai � b, then b is already included in
the representation of M as (a1] ∪ . . . ∪ (ai] ∪ . . . ∪ (aκ]. ��

5 http://www.graphviz.org/About.php
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3.1 Genuine modules

Another notion of module that we want to describe consists of those that do not fall
apart into more than one piece, and hence have a strong internal coherence.

Definition 16. A module is called fake if there exist two uncomparable (w.r.t. ⊆) mod-
ules M1,M2 with M1 ∪M2 = M; a module is called genuine if it is not fake.

Lemma 17. The notions of α- and genuine modules coincide.

Proof. Both directions are proven by contraposition.

α- ⇒ genuine : Let M be a fake module. Then there are two uncomparable modules
M1 and M2 such that M = M1 ∪M2. In particular, there exist suitable atoms such
thatM1 = a1∪ . . .∪aκ andM2 = b1∪ . . .∪b�. Since the modules are uncomparable,
then there is at least one atom ak in M1 such that ak �∈{ b1, . . . , b�}; similarly, there
is at least one atom bl in M2 such that bk �∈{ a1, . . . , aκ}. Finally, there is no atom
c ∈ M = {a1, . . . , aκ, b1, . . . , b�} dependent both on ak and on bl, otherwise these
atoms would be both in M1 and in M2; hence, M is not compact.

genuine ⇒ α- : Let M be a non compact module. By Cor. 15, there exist atoms
a1, . . . , aκ such that M = (a1] ∪ . . . ∪ (aκ], with κ ≥ 2. By Lemma 13 we have that
the principal ideal of every atom is a module. HenceM = (a1]∪ . . .∪ (aκ] is the union
of uncomparable modules, and more in specific, fake. ��

A straightforward consequence of Cor. 15 and Lemma 17 is the set of genuine
modules to be a base for all locality-based modules: more precisely, each module is
the union of a combination of genuine modules. However, the converse does not hold:
not all combinations are modules, and given an AD is non-trivial to determine which
combinations of genuine modules generate a module.

Example 18. Let us consider the ontology O = {Ai � Ai+1 | i = 0, . . . , n− 1}. Then,
the AD of this ontology consists of n atoms pairwise independent. However, for each
choice of two terms Aκ, A� with κ < �, the module for the seed signature Σ = {Aκ, A�}
is the set �⊥∗(Σ,O) = {Aκ � Aκ+1, . . . , A�−1 � A�}. In other words, the atoms
concerning the terms “between” Aκ and A� are not really independent, because they are
“pulled into” the module for Σ.

The reason for this to happen can be found in the overlapping of minimal seed
signatures for genuine modules. We have seen in Sect.2 how modules are extracted, and
how the seed signature is “enlarged” to include the signature of all non-local axioms.
Hence, if the extended signature overlaps with the minimal seed signature of a different
genuine module M�, then M� is pulled into the module extracted.

4 Towards Applications

4.1 What for?

Fast Module Extraction (FME) : Ontologies are sometimes difficult even to load, so
an interesting task to perform would be the off-line extraction of modules by using the
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AD of an ontology; in practice, we want to be able to recognize which combinations of
atoms generate a module, that is, find the inverse of the representing mapping rO. As
briefly introduced in Ex. 18, this operation does not directly follow from the AD: we
need more information concerning the minimal seed signatures of genuine modules, be-
cause their overlapping can cause other atoms to fall into the module we are extracting.
Further in this section we are going to discuss some preliminary issues about FME.

Module Count (MC) : In [6] we tried to compute a full modularization for the ontolo-
gies of different size listed in Table 1 in order to test the hypothesis that the number of
modules does not grow exponentially with the size of the ontology. Unfortunately, we
managed to compute all modules for two ontologies only, namely Koala and Mereology.
For the others, we sampled subontologies and extracted all of their modules. The results
we obtained made us tend towards rejecting the hypothesis, but they were not strong
enough for a clear rejection. From Cor. 15 we derive that one plausible application of
ADs is an estimate of the number of modules of an ontology, as a first approximation by
counting the number of antichains of the AD poset. However, this approach has been
proven unsuccessful: the estimate is still too large, because not all antichains gener-
ate a module, as in Ex.18. So the problem remains open, and only preliminary though
encouraging results are reported in [8].

Topicality for Ontology Comprehension (TOC) : The AD of an ontology derives
from strong logical properties of locality-based modules, so we expect it to preserve, or
indeed reveal, these properties. The first observation that we want to point out is that,
given an ontology and a notion of module, the structure defined in its AD is uniquely
determined. The stability of this structure implies that the issues described in what
follows are well-defined. Since modules are defined as set of axioms providing coverage
to a given set of terms Σ, it is natural to investigate the relations between terms and
modules.

In [9] we have exploited different notions of topicality in ontologies (and, more in
general, for logic-based theories) for notion of modules with strong logical properties.
Clearly, a notion as AD is too loose to define topicality for ontologies, since the sole
structure does not explain what the ontology is about. A refined suitable version of AD
would also contain labels to describe the content of an atom. Preliminary results in this
sense are reported in [9].

Beside the tasks described so far that we started addressing, we identified at least
other two tasks of interest, that we briefly describe in what follows.

Suggesting axioms to Repair First (RF) : One task that ontology engineers perform
commonly is maintaining and repairing ontologies. Interesting tools for this task make
use of Justifications [12]. Justifications are minimal sets of axioms that explain why a
specific entailment holds. Ontology engineers often search justifications for classes to
be unsatisfiable. Unfortunately, justifications can be large, and numerous. The logical
dependency of axioms defined in AD could be used to suggest which axioms of a jus-
tification to repair first, and in particular, those that the other axioms depend on. The
hope is that mistakes in the modeling phase propagate within the ontology by means of
the logical dependency as defined here.
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Suggesting Seed Signatures (SigSug) : The users of ontologies are often interested in
extracting a (possibly minimal) set of axioms that “know everything” about a specific
set of terms. However, locality-based modules are designed to provide coverage for a
given seed signature Σ. Even if related to what required, modules are often too small,
because users are interested also in the relation that a term has with some of its sub- or
super-classes, or sub- or super-roles. However, there is no trivial relation between the
seed signature of input and the signature of the module extracted, so these relations are
sometimes left out the module. The current solution for this problem is the extraction
of a module for an enlarged signature, but the AD could be of interest for refining this
approach.

Throughout the description of the various tasks, we mentioned that often the AD is
too loose w.r.t. the actual modular structure of the ontology, hence adding information
can be of help in real applications. One possible refinement of ADs consists of includ-
ing information about seed signatures in the AD: the result is called Labelled Atomic
Decomposition (LAD).

Definition 19. Given: an ontology O and its AD A(FO) = {a1, . . . , an}, a labelling
function Lab(.) is a function fromA(FO) to the power set of �O, that matches each atom
with a suitable set of terms from the ontology.

The information to be added depends on the task the users want to perform. Through-
out the rest of this section we briefly discuss the suitability of a specific labelling func-
tion to perform FME directly from the LAD of an ontology.

4.2 LAD for Fast Module Extraction

Let us consider the labelling function Labssig such that to each atom a is assigned the set
of minimal seed signatures that generate the module M = (a]. This labelling is useful
to discover “hidden relations” between an atom and terms that do not occur in it.

Example 20. Let us consider the ontology O = {A ≡ B, B � C, B � D � C � E � (G �
¬G), D � E, E ≡ F}. Each axiom identifies an atom, and O equals the principal ideal of
the atom a3 consisting of the axiom B � D � C � E � (G � ¬G). Although the signature
of a3 contains neither A nor F, the set Σ = {A, F} is indeed a minimal seed signature of
the module (a3]. The need of this axiom for the signature Σ is not evident at first sight.

On the other hand, Labssig does not include “irrelevant” terms: since under any in-
terpretation of G the concept G � ¬G is always �, then G does not appear in any of the
minimal seed signatures of the atom a3. Although this can be seen as a good behaviour
of Labssig, we need to consider how �⊥∗-modules are extracted: whenever an axiom α
is non local, the seed signature Σ is extended with all terms in �α. This means that in our
example G belongs to the extended signature of the module a3, and can interfere with
other terms of the seed signature of input, even if it is logically irrelevant. We need to
keep track of this information too. We define LabFEM to be the refinement of Labssig by
adding to the label of each atom also its irrelevant terms, i.e., all terms in the module
that do not occurr in any minimal seed signature. In Fig. 2 we show such LAD for the
ontology Koala. The refinement of Labssig affects only the atom labelled {Koala}.
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{MaleStudentWith3Daughters}
{Student, hasChildren}

{Student, Parent}
{isHardWorking, hasChildren, University}

{isHardWorking, Parent, University}

{GraduateStudent}
{KoalaWithPhD}

{Koala, 
hasDegree}

{Degree, 
hasDegree}

{Student}
{isHardWorking, 

University}

{Koala}
——————-
DryEucForest

{Quokka} {hasDegree} {Degree}

{hasChildren}
{Parent}

{isHardWorking}
{Marsupials, 

Person}
{TasmanianDevil}

{Person} {Marsupials}

{Habitat, Male}
{Habitat, Female}

{Habitat, hasHabitat}
{Habitat, Animal}

{Habitat, hasGender}

{Gender, Male}
{Gender, Female}

{Gender, hasHabitat}
{Gender, Animal}

{Gender, hasGender}

{Male}
{Female}

{hasHabitat}
{Animal}

{hasGender}

{Gender}
{Habitat, 

University}
{Habitat, 
Forest}

{DryEucForest, 
Forest}

{Forest, 
RainForest}

Figure 2. LAD for performing FME of the ontology Koala

A problem that arises with LabFEM consists of the possibility of labels to be of
exponential size w.r.t. the ontology size, as in the following example.

Example 21. Let us consider the the family of ontologiesOn = {Ai ≡ Ai−1�A�i−1, Bi ≡
Bi−1 � B�i−1, Ci ≡ Ci−1 � C�i−1, Di ≡ Di−1 � D�i−1, Ai � Bi � Ci � Di | i = 1, . . . , n}.
Then, #On = 5n, and each AD consists of 5n atoms with an axiom each. Now, some
minimal seed signatures for the atom an

i = {Ai�Bi � Ci�Di} contain 2 terms, one from
{Ai, Bi} and one from {Ci, Di}. However, each term can be replaced by the two terms
defining it (for example, Ai can be replaced by Ai−1, A�i−1). Since this procedure can be
recursively applied, the atom an

i results to have at least 4i minimal seed signatures.

Despite the discussion throughout this section, a procedure to perform FME is still
not defined, and the exploitation of this matter is in our future work.

5 Outlook

We presented the Atomic Decomposition of an ontology, and showed its definition, its
properties, and its tractable generation. The AD reveals the overall modular structure of
an ontology, thus we expect to apply such decomposition in various scenario, from the
module count, to the support to ontology engineers in the modeling phase. We have also
introduced a family of refinements of AD, called Labelled Atomic Decompositions, jus-
tifying the need for labels in the specific task consisting of extracting a module without
loading the ontology.
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Future work includes the completion of the preliminary results described here. In
particular, we want to explore suitable ADs/LADs for the tasks described in this pa-
per. Then, we are open to investigate other tasks that could be of interest for users of
ontologies and where a suitable LAD would be of help.
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Abstract. We present ELPA, a probabilistic extension of the lightweight
DL EL with a fixed TBox and a set of probabilistic ABoxes, and study
the problem of satisfiability in such context.

1 Introduction

This work studies an extension of Description Logic EL, called ELPA, that allows
for probabilistic assessments on ABoxes. We concentrate on the problem of veri-
fying the satisfiability of an ELPA-knowledge base, proposing algorithms for this
problem based on recent advances on probabilistic satisfiability (PSAT) [FB11].
Consider an example, adapted from [LS10].

Example 1.1 Two symptoms of Lyme disease are fever and fatigue. As these
symptoms are common and the disease is rare, the chance that they are indeed
caused by Lyme disease is small. Nevertheless, because the disease is of difficult
diagnosis, patients get treated if there is a chance that they have it.

The TBox T0 contains the following axioms:
Fatigue ! Symptom
Fever ! Symptom
Lyme ! Disease
Symptom ! ∃hasCause.Disease
Patient ! ∃suspectOf.Disease
Patient ! ∃hasSymptom.Symptom
∃hasSymptom.(∃hasCause.Lyme)! ∃suspectOf.Lyme

And the following ABox A0:
Fever(s1)
hasSymptom(john, s1)
Fatigue(s2)
hasSymptom(john, s2)
Patient(john)

Consider also the following probabilistic statements originating from medical
experience on symptoms that are caused by Lyme disease.

A1 = ∃hasCause.Lyme(s1), P (A1) ≥ 0.1

A2 = ∃hasCause.Lyme(s2), P (A2) ≥ 0.2

Now we want to know whether we can consistently assert an upper bound pub
for the probability of John having Lyme disease:

A3 = ∃suspectOf.Lyme(john), P (A3) ≤ pub !
The set of statements in the example above is a probabilistic knowledge base.

It contains four probability assignments; A0, which is the conjunction of 5 atomic
statements, is assigned probability 1; the other three atomic ABoxes A1,A2 and
A3 get probabilities smaller than 1.

! Work supported by Fapesp Thematic Project 2008/03995-5 (LOGPROB). Authors
supported by CNPq grants PQ 302553/2010-0, 304043/2010-9, 305395/2010-6.
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Our method is an alternative to existing combinations of DL with probabili-
ties that impose deterministic restrictions on probabilities. For example, [LS10]
assigns probabilities to concepts over a fixed interpretation, forcing the proba-
bility of ABoxes to be either 0 or 1. No such deterministic “side effects” occur
in our method.

Our goal in this work is to formally define the notion of ELPA-knowledge
bases and its satisfiability problem and provide algorithms to verify it. Adding
probabilities to logic sentences usually adds complexity; e.g. probabilistic 2SAT
is NP-complete [GKP88]. We show that ELPA-satisfiability is in NP.

1.1 Related work

There have been several proposals to add probabilities to description logics in
recent years [LS08]; most of this work is based on various kinds of probabilistic
logic [GT07,Hal03].

Probabilistic description logics differ in several dimensions. Some approaches
associate probabilities with elements of TBoxes [Jae94,KLP97,CP09], while oth-
ers associate probabilities with ABoxes [DS05], and still others combine both
kinds of assessments [Luk08]. In this paper we focus on probabilities over ABoxes.

As an alternative classification scheme, some logics assign probabilities over
elements of the domain [DPP06,DS05,Hei94,Jae94,KLP97,Luk08], while others
assign probabilities over interpretations [CL06,DFL08,LS10], with some logics
in between [Seb94]. In this paper we focus on probabilities over interpretations.

Yet another classification is possible, as we have probabilistic description
logics that allow for assessments of stochastic independence, often organized
through graphs [CL06,DPP06,KLP97,CP09], and logics that do not allow for
assessments of stochastic independence [DS05,Hei94,Jae94,Luk08,LS10]. In this
paper we do not allow for stochastic independence.

In a sense, our work is a refinement of First Order Probabilistic Logic by
Jaumard et al [JFSS06]; however, we use the decidable and tractable logic EL,
and we show that our probabilistic version remains in NP. Note that probability
assignments remain external to the logic EL; this has the advantage of making it
capable of dealing with conditional probabilities of ABox statements in a classical
manner, as P (A(a)|B(b)) = P (A(a) ∧ B(b))/P (B(b). A complete treatment of
conditional probabilities remains outside the scope of this work. Another related
problem is probability inference; that is, determining the maximal and minimal
values for pub that leave the knowledge base satisfiable; this problem is also
outside the scope of this work.

1.2 Organization of the paper

The remainder of the paper is organized as follows. In the next section, we
introduce the logic ELPA. We first define the probabilistic assignments that are
allowed in the ABox, and then formalise the satisfiability problem for ELPA,
showing that it is in NP. We show that the probabilistic knowledge base in
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ELPA can be translated into a normal form that is used in Section 3, where an
algorithm for testing the satisfiability of ELPA is presented.

2 The Probabilistic DL ELPA

We introduce ELPA, a probabilistic extension of the polynomial-time Description
Logic EL with a fixed TBox and a set of probabilistic ABoxes.

We first establish a regular EL vocabulary. Fix countably infinite sets NC, NR,
and NI of concept names, role names, and individual names, respectively. The
set of EL-concepts is given by the following syntax rules:

C ::= A | C "D | ∃r.C

where A ranges over NC, C and D over EL-concepts and r over NR. No negation
or disjunction of concepts is expressible in this language.

A TBox is a finite set of concept inclusions (CIs) of the form C $ D; TBoxes
usually represent an ontology. On the other hand, ABoxes represent instance
data and obey the following syntax rules

A ::= C(a) | r(a, b) | A ∧ A′

where C and r are as before, a, b ∈ NI and A, A′ range over ABoxes.
The standard EL semantics is used for TBoxes and ABoxes, based on inter-

pretations I = (∆I , ·I), where ∆I is a non-empty set called domain and ·I is an
interpretation function that maps each each A ∈ NC to a subset AI ⊆ ∆I , each
r ∈ NR to a subset rI ⊆ ∆I ×∆I , and each a ∈ NI to an element aI ∈ ∆I ; see
[BBL05]. We extend the interpretation I for all concepts in the usual way. So
(C "D)I = CI ∩DI and (∃r.C)I = {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}.
Then concept inclusion C $ D is satisfied by interpretation I, represented by
I |= C $ D iff CI ⊆ DI . Similarly TBox T is satisfied by interpretation I,
I |= T , iff I |= C $ D for every C $ D ∈ T .

For ABoxes, we say that C(a) is satisfied by I, represented by I |= C(a) iff
aI ∈ CI ; similarly, I |= r(a, b) iff( aI , bI) ∈ rI ; and I |= A ∧ A′ if both I |= A
and I |= A′. If both a TBox T and an ABox A are true under I, we say that
the pair (T ,A), called a (deterministic) knowledge base, is satisfied by I. The
problem of deciding if a deterministic knowledge base (T ,A) is satisfiable in EL
can be solved in polynomial time [Bra04].

2.1 Probability Assignments to ABoxes

We now introduce probabilities in ABoxes. We deal with probability distribution
π over the set of interpretations endowed with a suitable algebra.

Let T be a TBox. Given a probability distribution π over the set of all
interpretations I, the probability of an ABox A in the context of T is given by
the probability of all interpretations that satisfy all of T and A, that is, the
probability of {I|I |= A and I |= T }.
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A probability assignment to an ABox, is an expression of the form

P (A) #$p,

where A is an ABox, #$∈{≤ ,≥,=} and p ∈ Q, 0 ≤ p ≤ 1. Note that probability
assignments are external to the logic EL, and are not statements in the logic.

Let PA be a set of k probability assignments

PA = {P (Ai) #$i pi|1 ≤ i ≤ k}.

Then the pair 〈T ,PA〉 is a probabilistic knowledge base in the DL EL with sets
of probability assignments, ELPA. Clearly, all probability assignments in PA are
to be evaluated in the context T .

The main problem of this work is, given an ELPA probabilistic knowledge
base, determine whether there exists a probability distribution π such that, in
the context of the TBox T , π satisfies all the assignments in PA; this is the satis-
fiability problem for an ELPA-knowledge base. Before we formalize this problem,
we must “finitize” the set of all interpretations of a TBox T , as the set IT of all
interpretations of a TBox T is uncountably infinite.

For that, define an equivalence relation-
PA

⊆ IT ×IT , where PA = {P (Ai) =
pi|1 ≤ i ≤ k} is a set of probabilistic assignments, such that

I -
PA

I ′ iff for every k, 1 ≤ i ≤ k, I |= Ai if and only if I ′ |= Ai;

that is, I and I ′ satisfy the same ABoxes in PA in a context of TBox T .

Lemma 2.1 Let n be the number of atomic elements in PA. The relation -
PA

is an equivalence relation on IT × IT and the set of equivalence classes IT /-PA

has at most 2n distinct equivalence classes.

Each equivalence class of I/-
PA

will be represented by any interpretation I
in it. We can now formalise the satisfiability problem for an ELPA-knowledge
base 〈T ,PA〉 . We will write I(A) = 1 for I |= A and I(A) = 0 for I.|= A.

2.2 The Satisfiability of Probabilistic Knowledge Bases

Let n be the number of atomic elements in PA, |PA| = k. Consider I1, . . . , In′ ,
n′ ≤ 2 be all the -

PA
-distinct interpretations that satisfy T . Consider a k × n′

matrix A = [aij ] such that aij = Ij(Ai). The probabilistic satisfiability problem
for an ELPA-knowledge base K = 〈T ,PA〉 is to decide if there is a probability
vector π of dimension n′ that obeys the ELPA-restrictions :

Aπ #$p,
∑

πi = 1, π ≥ 0. (1)

An ELPA-knowledge baseK is satisfiable iff its associated ELPA-restrictions (1)
have a solution. If π is a solution to (1) we say that π satisfies K. The last two
conditions of (1) force π to be a probability distribution. It is convenient to
assume that first two conditions of (1) are joined, A is a (k+1)×n′ matrix with
1’s at its first line, p1 = 1 in vector p(k+1)×1, so #$1-relation is “=”; we will keep
this convention in the rest of the paper.
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Example 2.2 Recall Example 1.1 with pub = 0.3, where the probability of
John having Lyme is at most 30%. We consider only the 3 ABox with prob-
abilistic assignments, and only interpretations of these atoms that are jointly
consistent with the fixed TBox and the fixed (probability 1) ABox formulas.
Consider the following probability distribution π and the probability it assigns
to the ABoxes in Example 1.1.

π A1 A2 A3

I1 0.75 0 0 0
I2 0.10 0 1 1
I3 0.03 1 0 1
I4 0.12 1 1 1

1.00 0.15 0.22 0.25

It is easy to verify that the interpretations I1–I4 are all consistent with 〈T0,A0〉,
so all probability relations are verified by π, so probabilistic database for pub =
0.3 is satisfiable. !

Some important questions remain: how to compute a probability distribu-
tion when one exists, and whether that probabilistic knowledge base remains
satisfiable when pub = 0.05 or not, and how to verify it. This paper presents
algorithms for that.

An important result of [GKP88] guarantees that a satisfiable knowledge base
has a “small” witness:

Fact 2.3 If ELPA-restrictions (1) for knowledge base K = 〈T ,PA〉 with PA =
{P (Ai) = pi|1 ≤ i ≤ k} have a solution, then there are k + 1 columns of matrix
A such that the system A(k+1)×(k+1)π = p(k+1)×1has a solution π ≥ 0.

This result is a consequence of Caratheodory’s Theorem [Eck93], which states
that if a k-dimensional point is a convex combination of m points, then it is a
convex combination of at most k + 1 points among them. Fact 2.3 gives an
NP-certificate for the satisfiability of an ELPA-knowledge basel; hence:

Corollary 2.4 The ELPA-satisfiability problem is in NP.

Finding polynomial-sized certificates is the heart of the matter. We will now
study algorithms that solve the ELPA-satisfiability problem. We start by defining
a normal form for ELPA-knowledge base. Note that Fact 2.3 is stated for equality
only, and we also allow inequalities; the normal form will be useful both for the
algorithms and for showing that all those cases can be reduced to equality only,
with all probabilistic assignments over atoms only.

2.3 A Normal Form for Probabilistic Knowledge Base

For the sake of providing a normal form, we add a few new convenient definitions.
Let N0 be a set of 0-ary atomic propositions. A propositional rule is an expression
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of the form q → A1 or A2 → q, where q ∈ N0 and A1,A2 ABoxes, with the
obvious semantic that I |= q → A1 iff I.| = q or I |= A1; and I |= A2 → q iff
I |= q or I.|= A2. We extend the notion of ABox such that

A ::= C(a) | r(a, b) | q | A ∧ A′

such that q ∈ N0 and C(a), r(a, b),A,A′ are as before; we call q, C(a), r(a, b)
atomic ABoxes.

If R is a set of propositional rules and A an ABox, R ∪ A is a set of Horn
clauses, and thus has a polynomial-time computable minimal model; so the I-
satisfiability of R ∪ A reduces to the I-satisfiability of the atomic positive for-
mulas in its minimal model. Thus the satisfiability problem of EL with TBoxes,
ABoxes and sets of propositional rules can be achieved in polynomial time.

We also distinguish deterministic ABoxes, which are assigned probability 1,
from probabilistic ABoxes, which are assigned probabilities < 1.

We then extend previous definitions with the notion of a set of proposi-
tional rules. For the rest of this paper, an extended ELPA-knowledge base is a
4-tuple Ke = 〈T ,R,A,PA〉 , in which the probabilistic assignment of ABoxes
PA is evaluated in an (deterministic) evaluation context consisting of a triple
C = 〈T ,R,A〉 of TBox, propositional rules and deterministic ABox A; we also
represent Ke = 〈C,PA〉 . Clearly, an ELPA-knowledge base K is a special case of
an extended ELPA-knowledge base Ke the previous view in which R = ∅ and A
is part of PA.

Now we define the normal form. A knowledge base Ke = 〈T ,R,A,PA〉 is in
(atomic) normal form if PA is of the form

PA = {P (yi) = pi | yi is an atom, 1 ≤ i ≤ k}, with 0 < pi < 1.

In this case, PA is an atomic probability assignment evaluated in context C =
〈T ,R,A〉. Clearly, C is a small generalisation of the deterministic knowledge
bases of, for instance, [BBL05].

By adding a small number of propositional rules, any knowledge base can be
brought into atomic normal form.

Theorem 2.5 (Normal Form) For every extended ELPA-knowledge base Ke

there exists an atomic normal form knowledge base Ke
nf that is satisfiable iff Ke

is; the former can be obtained from the latter in polynomial time O(k× %), where
k = |PA| and % is the largest number of conjuncts in an ABox in PA. !

Example 2.6 We transform the knowledge base(s) of Example 1.1 into the
normal form. The TBox T0 and deterministic ABox A0 remain the same. We
introduce atoms q1, q2, q3 for ABoxes A1,A2,A3 respectively, which generates
the following set or rules R0:

q1 → ∃hasCause.Lyme(s1), q2 → ∃hasCause.Lyme(s2), ∃suspectOf.Lyme(john) → q3

C0=〈T0,R0,A0〉 is the evaluation context; the atomic probability assignment is

PA0 = { P (q1) = 0.1, P (q2) = 0.2. P (q3) = pub }.
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The normal form knowledge base is Ke
0 = 〈C0,PA0〉. Note that the probability

distribution of Example 2.2 does not satisfy Ke
0 when pub = 0.3, but by Theo-

rem 2.5 there must exist other interpretations involving q1, q2, q3 and rules R0

and another probability distribution π that satisfies Ke
0. !

The following result allows us to see a satisfiable normal form knowledge base
Ke

nf as an interaction between a solution to assignments PA constrained by the
EL-decisions of context 〈T ,R,A〉. An interpretation I is 〈T ,R,A〉-consistent if
I jointly satisfies T , R and A. Recall that we represent the binary I-evaluation
of ABoxes such that I(A) = 1 iff I |= A. Lemma 2.7 is the basis for the ELPA-
satisfiability solving algorithm that we present in the next section.

Lemma 2.7 A normal form knowledge base Ke = 〈T ,R,A,PA〉 is satisfiable
iff there is a binary (k + 1) × (k + 1)-matrix AKe , such that all of its {0, 1}-
columns represent interpretations that are 〈T ,R,A〉-consistent and AKe · π = p
has a solution π ≥ 0.

3 An Algorithm for ELPA Satisfiability

We present a logic-algebraic algorithm to verify the satisfiability of a normal
form knowledge base Ke = 〈T ,R,A,PA〉 and, if the answer is positive, present
a satisfying model in the form of a set of k+1 EL-interpretations, where k = |PA|,
and a probability distribution over them.

We first establish some terminology. If A is a matrix, Aj is its j-th column
and Ai is its i-th line; A(s) is the state of matrix A at step s. If A is a matrix and
b a column of compatible dimension, A[j := b] is obtained by replacing A’s j-th
column with b. A square matrix that has an inverse is non-singular. A matrix A
that satisfies conditions (2) is a feasible solution for PA.




1 · · · 1
a1,1 · · · a1,k+1
...

. . .
...

ak,1 · · · ak,k+1


 ·




π1

π2
...

πk+1


 =




1
p1
...
pk


 ,

ai,j ∈ {0, 1}, A is non-singular, πj ≥ 0

(2)

We always assume that the lines ofA are ordered such that the input probabilities
p1, . . . , pk in (2) are in decreasing order. By Lemma 2.7, 〈C,PA〉 has a solution iff
there is a partial solution A satisfying (2) such that if πj > 0 then a1,j , . . . , ak,j
represent C-consistent interpretations for 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1. We usually
abuse terminology calling Aj a C-consistent column.

This method is based on PSAT-solving method of [FB11], which is an im-
provement on the methods of [KP90,HJ00]; it consists of an algebraic optimisa-
tion problem in the form of a special linear program of the form

minimize objective function〈|J |, f〉
subject to Aπ = p,π ≥ 0, f =

∑
j∈J πj and

J = {j|Aj is C-inconsistent,πj > 0}
(3)
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which is solved iteratively by the simplex algorithm [BT97]. Matrix A is a
(k + 1)× (k + 1) {0,1}-matrix, whose columns represents an EL-interpretations
and whose lines represent the atoms occurring in PA. An iterative step s re-
ceives a matrix A(s) and employs a column generation method that solves an
auxiliary problem; the latter is a logic-based satisfiability problem that em-
ploys EL-decision procedure, generates a column that replaces some column
in A(s), obtains A(s+1) and decreases the objective function 〈|J |, f〉, where
〈|J1|, f1〉 > 〈|J2|, f2〉 iff0 ≤ |J1| < |J2| or |J1| = |J2| and f1 < f2, until its
minimum is reached. The objective function is discussed in Section 3.1.

In the iterative method, some columns are not C-consistent and the process
is done such that the number of C-consistent columns Aj associated to πj > 0
never decreases.

We now define A(0), the starting feasible solution. For that, consider an empty
context C = ∅, that is a knowledge base 〈∅,PA〉 . As the elements of p are in
decreasing order, consider the {0, 1}-matrix I∗ = [ai,j ]1≤i,j≤k+1 where ai,j = 1
iff i ≤ j, that is, I∗ is all 1’s in and above the diagonal, 0’s elsewhere. As p is in
decreasing order, I∗ satisfies 〈∅,PA〉 and is called a relaxed solution for 〈C,PA〉 .
Clearly, I∗ is a feasible for PA. Make A(0) = I∗.

Example 3.1 Consider the form of knowledge base in Example 2.6 with pub =
0.3 (left) and pub = 0.05 (right). An initial feasible solution for it is A(0) ·π

(0) = p,
with atoms ordered in decreasing probability, namely







1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1






·







0.7
0.1
0.1
0.1






=







1
0.3
0.2
0.1







q3
q2
q1







1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1






·







0.8
0.1
0.05
0.05






=







1
0.2
0.1
0.05







q2
q1
q3

On the left, all columns are C-consistent, so the problem is satisfiable with so-
lution A(0) and π as above. On the right, the second and third columns of A(0)

are C-inconsistent, so the decision is not yet made.

The relaxed solution is the initial feasible solution of our method. Further
feasible solutions are obtained by generating new {0, 1}-columns and substituting
them into a feasible solution, as shown by the following.

It is well known from the pivoting in the simplex algorithm that given any
{0, 1}-column of the form b = [1 b1 · · · bk]′, A[j := b] is a feasible solution.
So we simply assume there is a function merge(A, b) that computes it. Our
method moves through feasible solutions, at each step generating a column b
that decreases the value of the objective function.

3.1 The Objective Function

In a feasible solution A such that Aπ = p and π ≥ 0, some columns may not be
C-consistent. Let J = {j|Aj is C-inconsistent and πj > 0}; J is the set of column
indexes in A corresponding to C-inconsistent columns with non-null associated
probability; clearly |J | ≤ k + 1. If J = ∅, we call A a solution. As |J | = 0 when
a solution is found, it is one component of the objective function. However, it is
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Algorithm 3.1 ELPA-satisfiability solver
Input: A normal form ELPA knowledge base 〈T ,R,A,PA〉.
Output: Solution A; or “No”, if unsatisfiable.

1: p := sortDecrescent({1} ∪ {pi|P (yi) = pi ∈ PA};
2: A(0) := I∗; s := 0; compute 〈|J(s)|, f(s)〉;
3: while 〈|J(s)|, f(s)〉 %= 〈0, 0〉 do

4: b(s) = GenerateColumn(A(s), p, C);

5: return “No” if b
(s)
1 < 0; /* instance is unsat */

6: A(s+1)=merge(A(s), b
(s));

7: increment s; compute 〈|J(s)|, f(s)〉;
8: end while
9: return A(s); /* PSAT instance is satisfiable */

not guaranteed that, if a solution exists, we can find a sequence of iterations in
which |J | decreases at every step s.

The second component of the objective function is the sum of probabilities
of C-inconsistent columns, f =

∑
j∈J πj . Note that f and |J | become 0 at the

same time, which occurs iff a positive decision is reached. The simplex algorithm
with appropriate column generation ensures that, if there is a solution, it can
be obtained with finitely many steps of non-increasing f -values. We thus use a
combined objective function 〈|J |, f〉 ordered lexicographically.

We first try to minimise the number of C-inconsistent columns; if this is not
possible, then minimise f , keeping J constant. So a knowledge base instance
〈C,PA〉 associated to program (3) is satisfiable iff the objective function is min-
imal at 〈0, 0〉.

Assume there is a functionGenerateColumn(A, p, C), presented at Section 3.2,
that generates a C-consistent column that decreases the objective function, if one
exists; otherwise it returns an illegal column of the form [−1 · · · ]. Algorithm 3.1
presents a method that decides a PSAT instance by solving problem (3).

Algorithm 3.1 starts with a relaxed solution for 〈C,PA〉 (line 2), and via
column generation (line 4) generates another feasible solution (line 6), decreasing
the objective function, until either the search fails (line 5) or a solution is found;
the latter only occurs with the termination of the loop in lines 3–8, when the
objective function reaches 〈0, 0〉.

3.2 Column Generation for ELPA

Algorithm 3.1 is, unsurprisingly, almost the same algorithm for PSAT solving
in [FB11]; the only difference between the two rests in the column generation
method GenerateColumn(A, p, C).

It has been shown in [FB11] that to eliminate a C-inconsistent column Aj

associated to πj > 0, a new C-consistent column b = [1 y1 . . . yk]′ to substitute
Aj must satisfy the set of linear inequalities:

(LRij) (A−1
j πi −A−1

i πj)[1 y1 . . . yk]
′ ≥ 0, 1 ≤ i ≤ k + 1 (4)

485



Such a column is here obtained by a combination of a SAT solver, which guar-
antees that (4) is verified, with an EL-solver to guarantee that b is C-consistent.
This combination can be done in several ways.

(a) By coding the polynomial time EL-decision in a SAT solver.
(b) By using EL-theories as an SMT (SAT Modulo Theories) engine.
(c) By coupling an EL-solver at the end of the SAT solver, rejecting C-inconsistent

answers, and proceeding with the SAT solver after the rejection.

The latter option is perhaps the most straightforward and is the one we
employ here.

Example 3.2 Recall the matrix A(0) in Example 3.1 on the right, whose sec-
ond and third columns were C inconsistent. Applying Algorithm 3.1 with column
generation as above, all 3 columns generated by the SAT solver were rejected
by the EL-solver, so no column could be generated that minimised the objective
function in 〈0, 0〉. Therefore the corresponding ELPA-knowledge base is unsatis-
fiable. !

Theorem 3.3 Algorithm 3.1 with column generation as above is correct and
always terminates.

4 Conclusions and Further Work

We have introduced the notion of ELPA-knowledge bases and its satisfiability
problem, and we have shown that the problem has a finite version that can
be tacked by algorithms that resemble PSAT solvers. We have also provided
complexity upper bounds for these algorithms.

Algorithm 3.1 has the theoretical possibility of generating an exponential
number of steps. It remains an open problem to find an example in which such
an exponential number of steps occur. It also remains an open problem whether
a polynomial time algorithm exists for ELPA-satisfiability. Our plan for future
work is to investigate the practical behavior of our algorithms, and to explore
logics that allow for probability over TBoxes and for stochastic independence.
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Abstract. In this paper we present a formal framework and tool supporting the user in
the task of formulating a precise query – which best captures their information needs –
even in the case of complete ignorance of the vocabulary of the underlying information
system holding the data. Our intelligent interface is driven by means of appropriate
automated reasoning techniques over an ontology describing the domain of the data in
the information system.
We will define what a query is and how it is internally represented, which operations
are available to the user in order to modify the query and how contextual feedback is
provided about it presenting only relevant pieces of information. We will then describe
the elements that constitute the query interface available to the user, providing visual
access to the underlying reasoning services and operations for query manipulation.
Lastly, we will define a suitable representation in “linear form”, starting from which
the query can be more easily expressed in natural language.

1 Introduction

Recent research showed that adopting formal ontologies as a means for accessing heteroge-
neous data sources has many benefits, in that not only does it provide a uniform and flexible
approach to integrating and describing such sources, but it can also support the final user in
querying them, thus improving the usability of the integrated system.

We introduce a framework that enables access to heterogeneous data sources by means of
a conceptual schema and supports the users in the task of formulating a precise query over it.
In describing a specific domain, the ontology defines a vocabulary which is often richer than
the logical schema of the underlying data and usually closer to the user’s own vocabulary.
The ontology can thus be effectively exploited by the user in order to formulate a query that
best captures their information need. The user is constantly guided and assisted in this task
by an intuitive visual interface, whose intelligence is dynamically driven by reasoning over
the ontology. The inferences drawn on the conceptual schema help the user in choosing what
is more appropriate with respect to their information need, restricting the possible choices to
only those parts of the ontology which are relevant and meaningful in a given context.

The most powerful and innovative feature of our framework lies in the fact that not only
do not users need to be aware of the underlying organisation of the data, but they are also not
required to have any specific knowledge of the vocabulary used in the ontology. In fact, such
knowledge can be gradually acquired by using the tool itself, gaining confidence with both
the vocabulary and the ontology. Users may also decide to just explore the ontology without
actually querying the information system, with the aim of discovering general information
about the modelled domain.

Another important aspect is that only queries that are logically consistent with the con-
text and the constraints imposed by the ontology can be formulated, since contradictory
or redundant pieces of information are not presented to the user at all. This makes user’s
choices clearer and simpler, by ruling out irrelevant information that might be distracting
and even generate confusion. Furthermore, it also eliminates the often frustrating and time-
consuming process of finding the right combination of parts that together constitute a mean-
ingful query. For this reason, the user is free to explore the ontology without the worry of
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making a “wrong” choice at some point and can thus concentrate on expressing their infor-
mation need at best.

Queries can be specified through a refinement process consisting in the iteration of few
basic operations: the user first specifies an initial request starting with generic terms, then
refines or deletes some of the previously added terms or introduces new ones, and iterates the
process until the resulting query satisfies their information need. The available operations on
the current query include addition, substitution and deletion of pieces of information, and all
of them are supported by the reasoning services running over the ontology.

In this paper we present a complete and coherent view of the Quelo tool, whose basic
ideas have been already sketched in the past ([4; 1; 2; 3; 6]). Quelo relies on a web-based
client-server architecture consisting of three components:

1. the tool logic, responsible of “reasoning” over the ontology in order to provide only
relevant information w.r.t. the current query;

2. the natural language generation (NLG) engine, that given a query and a lexicalisation
map for the ontology produces an English sentence; the lexicon is automatically gener-
ated from the ontology;

3. the user interface (GUI), that provides visual access to the query and editing facilities for
it, allowing to interact with the reasoning sub-system while benefiting from the services
of the NLG engine.

2 The Abstract Functionality

In this section we describe the behaviour of the tool using a generic representation based on
an abstract user interface. Consider a scenario in which we have a conceptual schema, say an
OWL ontology, we know nothing about. In such situation, the tool reveals to be particularly
useful in that it allows to discover information about the ontology and the modelled domain,
even when its vocabulary is completely ignored. What we call intensional navigation of the
ontology is the process of building a query, starting from a very general request which is
then refined by adding or deleting constraints according to the user’s information need. In
our abstract representation, the default initial query generically asks for some “thing”. Four
operations are available for manipulating the query: add for the addition of new terms and
relations; substitute for replacing a portion of the query with a more general, equivalent or
more specific term; delete for discarding parts of the query; and weaken for making a portion
of the query as general as possible.

The first step in the refinement of our query consists in being more specific about what
we are looking for. This can be achieved by selecting something within the query and asking
for a substitution. In our example, we tick the check-box associated with the term Thing and
then press the Substitute button. As shown in Figure 1, we are presented with a three-part
menu listing all the possible substitutions available for the selected portion of the query:
terms that appear at the top are more general than the selection, the ones in the middle are
equivalent, while those at the bottom are more specific. Moreover, these terms are organ-
ised in sub-menus according to the taxonomic information defined in the ontology. Thus, we

Fig. 1: Example of specialisation
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(a) (b)

Fig. 2: Addition of (a) a new term and (b) a new relation

can easily navigate the different options choosing the desired level of detail for the substi-
tution. In our case, instead of Person we choose the further specific term Rich Person as a
replacement for the selection, resulting in the query visible on the right side of Figure 1.

Another way of modifying a query is to add constraints in the form of new terms or
relations. As shown in Figure 2, upon clicking on the add button a two-part menu is dis-
played, containing suitable terms and relations that can be safely added to the query. Terms
are shown in the upper part of the menu, while relations in the lower one. The chosen item
is inserted in a specific place of the query, that can be selected by means of the radio but-
ton present in each line. Figure 2a shows how the new term Single Person is added to the
first (and only) line of the query, while Figure 2b shows how adding a relation results in the
creation of a new line, indented w.r.t. the first one and consisting of the name of the relation
lives in followed by the label House associated with its range. Observe that the menu of
Figure 2b, compared to that of Figure 2a, does not include the term Single Person and the
relation married to Person as possible options. In fact, the former is already present in the
query, thus it would be redundant to propose it again; the latter became incompatible with
the query due to the addition of the previous term, and this means that in our ontology a
person who is rich and single (or perhaps just single) cannot be married to anyone.

A query can be made more general or “weaker” in a variety of ways, one of which is the
substitution with a more general term. Other possibilities are given by deletion and weaken-
ing, both of which remove selected elements from the query but with distinct approaches and
outcomes. The difference between them is shown in Figure 3: while in Figure 3a deleting the
selected portion causes the second row of the query to disappear, in Figure 3b weakening the
same portion preserves the row, although the term House is replaced with the generic term
Thing.

Suppose that our ontology states that a rich man who is married to a beautiful woman and
lives in a beautiful house is indeed a lucky person. As a result of the substitution shown in
Figure 4, where the whole query is replaced with the (more general) term Lucky Person, the
second line disappears. In some situations this “side-effect” is undesired, because we would
perhaps like to operate on that part of the query later on. The closed padlock icon visible in
the third line of the query indicates that that line is protected against such an “accidental”
deletion and would not inadvertently disappear as the result of the substitution. However,
note that locked portions of the query are still fully affected by explicit deletion.

(a) (b)

Fig. 3: Example of (a) deletion and (b) weakening
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Fig. 4: Preventing side-effects of substitution

3 The Reasoning module

The framework and its functional API are defined in a formal way; here, we concisely sum-
marise the main definitions introduced in [7] and formally prove the most important of tool’s
properties, namely that it generates only “meaningful” queries.

3.1 Formal framework

From the point of view of the reasoning sub-system, a query is a labelled tree where each
node corresponds to a variable and is associated with a set of concept names from the ontol-
ogy, while each edge is labelled with a role name.

Let N be a countably infinite set of node names, C be a finite set of concept names and R
a finite set of role names, and let N, C and R be pairwise disjoint. A query Q is a quintuple
�V, E, o, V, E� in which (V,E) is a directed tree rooted in o ∈ V , with set of nodes V ⊆ N
and with set of edges E ⊆ V × V ; V is a total function, called node-labelling function,
associating each node with either a non-empty set of concept names or with the singleton
{�}; and E is called the edge-labelling function that associates each edge with a role name.
A query consisting of exactly one node, whose set of labels is a singleton, is called atomic.
For an edge e = �x, y�, we indicate its initial node x with init(e) and its terminal node with
ter(e). Given queries S and Q, we say that S is a subquery of Q, and write S ⊆ Q, iff
V (S) ⊆ V (Q), E(S) ⊆ E(Q), each node n ∈ V (S) is s.t. VS(n) ⊆ VQ(n) and every
edge e ∈ E(S) is such that ES(e) = EQ(e). We say that S is a complete subquery of Q
(in symbols S � Q) if it also holds that, for every n ∈ V (S), VS(n) ⊇ VQ(n) and every
descendant of oS in Q is a node in S. A selection within a query Q is a subquery S of Q,
which is called simple if S � Q or S consists of exactly one node, namely its root oS ,
such that VS(oS) is a singleton or is equal to VQ(oS). Every selection S within a query Q
partitions the nodes of Q into selected, which belong to V (S), and unselected, belonging
to V (Q) \ V (S). The selected nodes can be further partitioned into totally selected, having
all of their labels selected, and partially selected, which have some, but not all, of their
labels selected. An example of query as represented is shown in Figure 5, which also shows
the compact graphical notation we use for representing a selection within a query: selected
nodes are drawn using a double circle and selected labels within each of them are underlined.

x

y

marriedTo

w

z

owned by

livesIn

{Man}

{Woman}
{Beautiful,House}

{RichPerson}

Fig. 5: Example of query and a selection within it
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The weakening of a query Q w.r.t. a selection S within Q is the query Q � S obtained
from Q by replacing its node-labelling function VQ with a function that associates each
totally selected node with {�}, each partially selected node n with VQ(n) \ VS(n) and each
unselected node m with VQ(m).

The last notion we introduce is that of sticky edges, which are edges that can only be
deleted explicitly (that is, when performing a deletion), but never implicitly (e.g., as the
consequence of a substitution). Sticky edges are closed w.r.t. the tree structure of the query,
that is, when an edge e is sticky, then all the edges in the path from the root of the query to
ter(e) are such. The meaning and importance of sticky edges will become more clear in the
next section, where we introduce and describe the two operations delete and substitute. For
the moment, sticky edges can be simply understood as immutable (to some extent) pieces
of information within a query, which are not modified as a “side effect” of an operation not
directly intended to do so.

3.2 Functional API

To draw the inferences that are at the basis of the query formulation tasks, we express a
query as a concept of some description logic (DL) language, for which the containment test
of two conjunctive queries is decidable and available as a reasoning service. In what follows,
we assume the existence of an underlying knowledge base K in such a DL language L over
C and R. We say that C is a sub-concept of (or subsumes) D in K, and write C �K D, iff
K |= C � D, in which case we also say that D is a super-concept of (or is subsumed by) C.
Two concepts C and D are equivalent in K, written C ≡K D, iff one subsumes the other and
vice versa. For two concept names c1 and c2 we say that c1 is a direct sub-concept of c2 (and
that c2 is a direct super-concept of c1) iff c1 subsumes c2 and there is no c ∈ C equivalent to
neither c1 nor c2 and such that c1 �K c �K c2.

Before introducing the functional API, let us first give some preliminary definitions.
Given a query Q and n ∈ V (Q), the operation roll-up(Q,n) translates Q into an L-concept
w.r.t. n and it is defined as enc-rollup(Q,n, n), where enc-rollup is the recursive procedure
described in Algorithm 1. We use roll-up(Q) as an abbreviation for roll-up(Q, o), where o
is the root of Q. The concept roll-up(Q,n) is called the context of Q w.r.t. n, expressing the
informative content of Q from the point of view of a specific node, which we call the focus.
Queries Q1 and Q2 are equivalent, in symbols Q1 ≡ Q2, iff roll-up(Q1) ≡K roll-up(Q2).
We say that a query Q over a consistent knowledge base K is satisfiable iff its roll-up is such
in K (that is, K�|= roll-up(Q) � ⊥).

The functional API of the tool is structured in two main parts:

– the underlying reasoning services, consisting of the operations getComp, getRel, getSupers,
getEquiv, getSubs;

– the operations for query manipulation, including addRel, addComp, weaken, substitute
and delete.

Given a query Q and a node n, we say that a concept name c is compatible with Q focused
in n iff c � roll-up(Q,n) �� ⊥, while a role name r is such iff ∃r−. roll-up(Q,n) �� ⊥.
The operation getComp(Q,n) returns a directed acyclic graph (DAG) G, whose nodes are
all the concept names that are compatible with Q focused in n and that are neither sub-
nor super-concepts of roll-up(Q,n), and whose edges are all the pairs of concept names
c1, c2 ∈ V (G) such that c1 is a direct sub-concept of c2. In other words, the output of
getComp is a taxonomy of concept names which are compatible with the query and not in
hierarchy with the context. The operation getRel(Q,n) returns a DAG G, whose nodes are
all the pairs �r, c� of role names and concept names such that r is compatible with Q focused
in n and c is a sub- or a super-concept of ∃r−. roll-up(Q,n), and whose edges are the pairs
��r, c1�, �r, c2�� ∈ V (G)× V (G) such that c1 is a direct super-concept of c2.

Let S be a selection within a query Q. Then, the operations getSupers, getEquiv and
getSubs return the concept names that are more general than, equivalent to and more specific
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Algorithm 1 Calculate enc-rollup(Q,n,m)

Input: a query Q and two nodes n,m ∈ V (Q)
Output: a concept C expressing Q in the description logics language L
1: C ← c, for some c ∈ V(n)
2: for all x ∈ V(n) such that x �= c do
3: C ← C � x
4: end for
5: for all children x of n in Q such that x �= m do
6: R ← E(�n, x�)
7: C ← C � ∃R . enc-rollup(Q, x, n)
8: end for
9: if n �= o then

10: Let p be the parent node of n in Q
11: if p �= m then
12: R ← E(�p, n�)
13: C ← C � ∃R− . enc-rollup(Q, p, n)
14: end if
15: end if
16: return C

than roll-up(S), respectively. Moreover, the concept names in the output of getSubs(Q,S)
are additionally required to be compatible with Q focused in the root of S.

Let Q be a query and n a focus node. For a concept name c in the output of getComp(Q,n),
the operation addComp adds c to V(n). More precisely, the result of addComp(Q,n, c)
is the query Q� obtained from Q by replacing its node-labelling function V with V � :=
V [n �→V (n) ∪ {c}]. For a pair �r, c� in the output of getRel(Q,n), the operation addRel
creates a new node n� such that V(m) = {c} and an edge e = �n,m� with E(e) = r.

Let Q and R be queries and �E be a set of sticky edges. Then, the operation prune deletes
from Q the maximal number of non-root nodes, having no incoming sticky edge (if any) and
associated with the same concept names both in R and Q, such that the result is still a query.

Let S be a selection within a query Q and let �E be a set of sticky edges. We define
weaken(Q,S) as Q� S and

delete(Q,S, �E) := prune
�
weaken(Q,S), R, �E

�
,

where R is the query obtained from S by replacing VS with the function on V (S) asso-
ciating each node n that is both in Q and S with VQ(n) ∩ VS(S) if such intersection is
non-empty and with {�} otherwise, and each other node m of S with VS(m). The last oper-
ation we introduce is “substitution” which, for a concept name c in the output of getSupers
(generalisation) or getEquiv or getSubs (specialisation), is defined as follows:

substitute(Q,S, �E, c) := delete(Q�, S, �E) ,

where Q� is the query obtained from Q by adding c to the set of concept names associated
with the root of S.

3.3 Properties of the framework

We will now formally state that, starting from an atomic query that is satisfiable, the query
obtained by means of the operations in the tool’s functional API is satisfiable. In order to do
that, we first prove that the operations for query manipulation preserve satisfiability, i.e., the
application of each of them to a satisfiable query results in a query that is satisfiable.

Lemma 1. Each of the operations addComp, substitute, addRel, weaken and delete pre-

serves query satisfiability.
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The fundamental property of the tool is then proved by means of a simple induction.

Theorem 1. The query obtained from an initial satisfiable atomic query through a finite

sequence of applications of the operations addComp, addRel, substitute, weaken and delete
is satisfiable.

4 The user interface

In this section we describe the basic elements of the concrete UI Quelo, based on natural
language generation. In the UI, the query is represented as a continuous string of natural
language text, composed of a sequence of coherent text constituents called spans. Each of
the tags occurring in the query is associated with a span by means of an injective mapping.
As for each edge there is one and only one corresponding edge tag, if a span is associated
with the tag of an edge we simply say that the span is associated with that edge.

The English sentence representing the query in the UI is generated by the NLG sub-
system, which will be described in the next section. Here is an example of the textual ren-
dering of the query in natural language as displayed by the UI:

4.1 Hovering

In graphical user interfaces terminology, the user hovers on a graphic element whenever the
mouse cursor moves from some point outside the element to some point inside the element.
In normal conditions, as the user hovers on the query, the system gives visual hints about its
structure:

– hovering on the span associated with a tag of some node n causes the span to become
lightly highlighted, along with all the spans associated with the tags occurring in the
complete subquery rooted in n;

– hovering on the span associated with the tag of some edge e causes that span and all the
spans associated with the elements of tags

�
ter(e)

�
to become lightly highlighted.

The highlighting is such that spans associated with different tags are visualised as distinct,
even when adjacent. One way of obtaining this kind of effect is, for instance, by rounding
the corners of the highlighted rectangular area around each span. The only case in which
highlighting on hovering does not trigger is when a menu is being displayed.

Associated with each node of the query is a button, called the add-button, which is lo-
cated below the text baseline immediately after the rightmost span associated with a tag of
that node. Hovering on the add-button of some node lightly highlights all the spans associ-
ated with tags of that node.

4.2 Selection

The UI provides facilities to easily select portions of the query. A simple selection can be
directly specified by clicking on the span associated with a tag of some node n in one of the
following ways:
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– a single click results in an atomic selection, highlighting only the span on which the
click occurred;

– a double click results in a node selection, highlighting all the spans associated with the
elements of tags(n);

– a triple click results in a complete selection, highlighting all the spans in the complete
subquery rooted in n.

A selection can be cleared by clicking on an area of the UI where clicking does not have
any other effect (e.g., on the white space between the lines of text representing the query,
or on a span that is not associated with any tag). Clearing a selection results in an empty

selection.
Observe that when a node has only one node label, an atomic selection on that node

happens to be also a node selection, and when a node has no children, a node selection is
also a complete selection. Thus, an atomic selection on a node having only one label and no
children is also a node selection as well as a complete selection.

We consider atomic selections to have the lowest priority and complete selections the
highest, and when a simple selection belongs to more than one class, it is considered to be
only of the type with higher priority. Furthermore, whenever a double click would result in
the same kind of selection a single click would, it yields a complete selection instead.

A complex selection (non-simple) is obtained from an empty or simple selection by
control-clicking on additional spans associated with node tags, which are consequently in-
cluded in the existing selection. Note that a complex selection can be disconnected, in the
sense that it is not a well-formed subquery from the formal point of view, because there
might be two selected nodes that are not connected by an edge.

From the graphic point of view, spans associated with tags in a selection are highlighted
in a stronger way (e.g., a darker color) than they are when highlighted because of hovering
and, unlike the highlighting effect triggered by hovering, it is not possible to distinguish
between adjacent selected spans associated with the same node. When the selection includes
one or more paths between nodes (that is, all of the nodes in a path within the query are
selected), spans associated with edge tags are also highlighted.

The visual appearance of the spans associated with tags of selected nodes or edges does
not change as the result of an hovering event, as shown here:

Moreover, as the reader might already have noticed, when a non-empty selection is
present, the add-buttons become invisible without changing the layout of the text.

4.3 Addition

The query logic sub-system provides two operations, namely addComp and addRel, for re-
fining a query through the addition of compatible terms and relations to a focus node. The
UI makes these operations available to the user by means of a pop-up menu, activated by
clicking on the add-button of a node which is set as the focus.

The menu contains a list of suitable arguments for the invocation of either addComp
or addRel. The menu entries are concept names and pairs consisting of a role name and a
concept name, which are obtained from the output of the Quelo operations getComp and
getRel w.r.t. the current query and focus. In particular, for a query Q focused in n, the menu
is populated with the nodes in the graph resulting from disjoint union of the output graphs
of getComp(Q,n) and getRel(Q, n), arranged in the following way:

– nodes with no incoming edge populate a menu of level 0, which is the topmost menu,
where entries corresponding to concept names are listed before entries associated with
pairs of concept/role names.
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– for each node n in a menu at level k, all the nodes that are reachable from n in one step
populate a sub-menu at level k + 1 associated with entry n.

The actual items shown to the user in the above menu structure are natural language descrip-
tions of the node-entries (either concept names or atomic concept/role pairs) generated by
the NLG sub-system.

Some of the items come with an icon on their left: an upward-pointed (resp., downward-
pointed) triangle is displayed for concept names (resp., role/concept pairs) indicating that the
option is associated with a nested sub-menu containing more specific (resp., more generic)
options of the same type. Hovering on any of these options opens the pop-up menu associated
with that item and displayed next to it.

Clicking on any of the elements in the menu triggers the invocation of either addComp
or addRel, according to whether the clicked item is associated with a concept name or a
concept/role pair, respectively. Upon clicking, the menus disappear and the UI updates its
representation of the query after the necessary changes are performed by the Quelo sub-
system.

4.4 Weakening and Deletion

The user can weaken (respectively, delete) a selected portion of the query by pressing the
backspace (resp., delete) key on the keyboard, which invokes the Quelo operation weaken
(resp., delete) with the current query and selection as input arguments. Upon weakening
(resp., deletion), the selection is cleared and the UI updates its representation to reflect the
changes in the query.

Note that the operations weaken and delete, as defined in our functional API, cannot
directly handle a disconnected complex selection. However, such a selection can be decom-
posed by the UI in a series of connected selections that are then suitable for the actual invo-
cation of the two operations.

Observe that in some cases deletion produces the same result as weakening (e.g., for a
node selection rooted in a non-leaf node).

4.5 Substitution

The Quelo sub-system provides the operation substitute in order to allow the substitution
of a selection within the query with a more generic, equivalent or more specific term. The
UI makes this operation available to the user: upon long-clicking on a selected portion (i.e.,
strongly highlighted) of the query a pop-up menu is displayed, listing all the possible terms
with which the selection can be replaced.

Such a menu is populated with concept names that are more general than, equivalent to
and more specific than the selection and that are retrieved from the Quelo sub-system by
means of the operations getSupers, getEquiv and getSubs, respectively. More general terms
are shown at the top of the list, equivalent terms in the middle and more specific terms at
the bottom. At the left of each item an icon is shown: an upward-pointing triangle for more
general terms, a square for equivalent terms and a downward-pointing triangle for more
specific terms.

The substitution menu has a similar hierarchical structure as the menu for addition, re-
flecting the taxonomic information in the output graphs of the operations getSupers, getEquiv
and getSubs. In particular, some (possibly none) of the more general terms might be further
generalised, in which case hovering on one such item triggers a sub-menu containing its di-
rect super-concepts; similarly, if some of the more specific terms can be further specialised,
then hovering on one such item triggers a sub-menu containing its direct sub-concepts that
are compatible with the query. The same rules for further generalisation/specialisation apply
to the items in the sub-menus, while equivalent terms (if any) cannot be further generalised
nor specialised.
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As in the case of addition, the actual items shown to the user in the substitution menu
are natural language descriptions generated by the NLG sub-system, rather than bare concept
names. Clicking on any of given options triggers the invocation of substitute with the current
selection and the concept name associated with the clicked item as input arguments. The
selection is then cleared and the UI updates the representation of the query after the selected
elements have been replaced with the chosen term.

Observe that the operation substitute, as defined in our functional API, cannot deal with
disconnected complex selection and, unlike the case of weakening and deletion, the problem
cannot be overcome by converting such selection in a series of connected ones. This is due
to the fact that substitution relies on the roll-up of the input selection itself, which is thus
required to be tree-shaped (i.e., connected). For this reason, in the presence of a disconnected
selection, the substitution operation is disabled.

5 Natural language rendering

The natural language interface of the tool masks the composition of a precise query as
the composition of English text describing the equivalent information needs. Interfaces fol-
lowing this paradigm are known as “menu-based natural language interfaces to databases”
or“conceptual authoring” (see,most notably, [8]). As we have seen before, the users of such
systems edit a query by composing fragments of generated natural language provided by the
system through contextual menus. In [6] we describe how the natural language rendering of
a query is achieved.

We start by defining a particular linear form of the query that satisfies certain constraints,
necessary to represent the elements of the query using a linear medium, that is, text. The
constraints are enforced at the API level to ensure that different graphical user interfaces
represent the query in a homologous way. Moreover, a consistent ordering of the query ele-
ments needs to be preserved during the operations for query manipulation to avoid confusing
the end user. The linearised version of the query is then used as a guide for the language gen-
eration performed by the tool’s NLG engine.

The natural language interface (NLI) of the tool relies on a natural language generation
(NLG) system to produce the textual representation of the query, following an idea first
presented in [11] and lately refined in [8].

For the tool’s NLI to work with a specific knowledge base (KB) a lexicon and a template
map must be provided for it. Devising these resources requires an understanding of both
the domain of interest and basic linguistic notions such as verb tenses, noun genders and
countability. To ease the burden of developing these resources from scratch, we let the system
generate them automatically. This technique follows an approach to domain independent
generation proposed in [10], after the learning of a rich corpus of relations. The functionality
we implemented allows to produce all the resources necessary to configure our NLI for use
with a new KB, using as a source of data the ontology itself. It has to be noted that the process
is not completely reliable, therefore system engineers must review the result and make the
necessary corrections.

6 Future Work

The framework and functional API presented in this paper consider only the addition of
new relations to the query, but they could be extended to deal with attributes (i.e., properties
relating a concept to a datatype) as well. The only difference with the current framework
would be that a node associated with a datatype (i.e., the “range” of the attribute) cannot be
the focus of a query for operations other than deletion. This basically means that such a node
is always a leaf of the query tree and the only operation allowed on it is deletion. Then, since a
node of this kind cannot be refined by adding a compatible term or attaching a new property,
the query is never rolled-up with respect to it, thus avoiding the nonsensical eventuality
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that an edge associated with an attribute has to be inverted (going from the datatype to the
subject). Though apparently simple, allowing for attributes poses some interesting questions,
that we are currently investigating, in order to deal with concrete values from the point of
view of reasoning.

Another direction we plan to pursue is that of continuing the series of experiments al-
ready carried on (see [1; 2]), in order to evaluate the usability of the tool and its complexity
of use from the user’s point of view. In particular, we are interested in determining how
difficult it is for the user to formulate queries using the tool and to understand the results.

An online fully functional demonstrator of Quelo is freely accessible at:

http://krdbapp.inf.unibz.it:8080/quelo/
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1   Introduction 

The problem of reasoning over ontologies written in Description Logic (DL) [1] has 
received strong interest, particularly after the Semantic Web inception. The necessity 
of creating reasoners to deal with OWL (Ontology Web Language) [2], in its various 
versions, posed interesting research questions for inference systems, making the 
problem earn the reputation of being complex, whose users see solutions as black 
boxes. Consequently, not many inference systems became well known to the public; 
indeed, tableaux methods [1] took over the field. Apart from the reasoning algorithms, 
many other practical issues have been brought about, stemming from the natural 
features of the Web, that ask for certain requirements for inferencing. Among them, 
the use of memory is certainly an important asset for a good reasoning performance. 
Therefore, methods that do not require a huge amount of memory may be promising. 
 This paper tries to tackle this issue by adapting a reasoning method that makes a 
parsimonious usage of memory. The inference system proposed here is based on the 
connection calculus [3], which is a clear and effective inference method applied 
successfully over first order logic (FOL). Its main features meet with the demands: it 
keeps only one copy of each logical sentence in memory and it does not derive new 
sentences from the stored ones. The formal system, the ALC Connection Method (ALC 
CM), displays some desirable features for a DL reasoner,: it is able to perform all DL 
inference services, namely, subsumption, unsatisfiability (or inconsistency), 
equivalence and disjointness. As the most widespread DL tableaux systems, ALC CM 
reduces them to subsumption or validity - the dual of unsatisfiability, used in most DL 
systems (interested readers should check that information at [7]).   
 The rest of the article is organized as follows. Section 2 defines one of the most 
basic description logic languages, ALC (Attributive Concept Language with 
Complements) [1], together with the disjunctive normal formal used by the method. 
ALC  was chosen as the starting of the work, because it constitutes the foundation of 
many other Description Logics. Section 3 brings a proposed ALC ontologies’ matrix 
normal form that fits to the connection method. Section 4 describes the ALC adapted 
connection method and states the key logical properties for inference systems 
(soundness, completeness and termination). Section 5 brings discussion in the light of 
representation and reasoning, and section 6 presents future work and conclusions. 
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2  The Description Logic ALC 

Description Logics (DLs for short) are a family of knowledge representation 
formalisms that have been gaining growing interest in the last two decades, 
particularly after OWL (Ontology Web Language) [2], was approved as the W3C 
standard for representing the most expressive layer of the Semantic Web. 
 An ontology or knowledge base in ALC is a set of axioms 	
  defined over the triple 
( , , ) [1], where 	
  1T18Tis the set of concept names or atomic concepts (unary 
predicate symbols), 	
   1T18Tis the set of role or property names (binary predicate 
symbols), and 1T18T the set of  individual names  (constants), instances of NC  and	
   . 
 NC  contains concepts (like Bird,	
  Animal,	
  etc) as well as other concept definitions 
as follows. If	
   r is a role (r	
   	
   	
  ) and C	
  and	
  D are concepts (C,	
  D 	
   	
   0T18T) then the 
following definitions belong to the set of ALC concepts: (i) C	
   	
  D  (the intersection of 
two concepts); (ii) C	
   	
  D  (the union of two concepts); (iii) ¬0TC (the complement of 
a concept); (iv) r.C (the universal restriction of a concept by a role); and (v) 
r.C	
  (the existential restriction of a concept by a role). Note that, in the definitions 

above, C	
  and	
  D can be inductively replaced by other complex concept expressions. 
 There are two axiom types allowed in ALC: (i) Assertional axioms, which are 
concept assertions C(a), or role assertions R(a,b), where C NC , r	
   NR ,	
  	
  a,b NO  
and (ii) Terminological axioms, composed of any finite set of GCIs (general concept 
inclusion) in one of the forms C	
   	
  D	
  or	
  C	
   	
  D, the latter meaning C	
   	
  D	
  and	
  D	
   	
  C, 
C	
  and	
  D being concepts. An ontology or knowledge base (KB) is referred to as a pair 
(T,A), where T is the terminological box (or Tbox) which stores terminological 
axioms, and A is the assertional box (ABox) which stores assertional axioms. T  may 
contain cycles, in case at least an axiom of the form C	
   	
  D,	
  D	
  can	
  be	
  expanded	
  to	
  an	
  
expression	
  that	
  contains	
  C. 
 There are two major ways of defining ALC semantics. The most frequently used 
one relies on the definitions of interpretation, model, fixpoints, etc, over a domain  
[1]. Another way is mapping ALC constructs to first order logic (FOL) (like in [6]) 
and exploiting the semantics defined for FOL. FOL semantics is available, for 
instance in [3]. The latter was chosen, with the purpose of taking advantage of the 
already formalized completeness and soundness theorems for the work. 
 Next, the ALC disjunctive normal form used by the inference system is presented.  

2.1.  An ALC  Positive Matrix Form 

Definition 1 (ALC disjunctive normal form (ALC DNF), clause). An ALC DNF 
formula is a disjunction of conjunctions, in the form C …	
   	
  C , where each C  is a 
clause. Clauses are conjunctions of ALC predicates (ALC concepts or relations, 
instantiated or not), like L …	
   L , also denoted as  {L ,… , L }. ALC formulae can 
be also expressed in ALC disjunctive clausal form or ALC positive matrix form, as 
{ , … , },. A formula stated this way is called an ALC matrix. In an ALC  matrix, 
each clause occupies a column. 
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To reach this normal form, the first two actions to be made over the axioms are: (i) 
splitting equivalence axioms of the form C	
   	
  D	
   into	
  two	
  axioms	
  C	
   	
  D	
  and	
  D	
   	
  C, 
and (ii) converting all the axioms into a Negated Normal Form (NNF), in which 
negations occurs only on literals [1]. Next, some necessary definitions are introduced.  

Definition 2 (ALC disjunction, ALC conjunction). An ALC disjunction is either a 
literal, a disjunction 	
  E E  or an universal restriction 	
   r. E 	
  .	
   An ALC conjunction 
is either a literal, a conjunction  or an existential restriction r. E . E  and  E  
are arbitrary concept expressions. 

Definition 3 (ALC pure disjunction). The set  of ALC pure disjunctions is the 
smallest set where: (i) D 	
    for every literal D ; (ii)	
  D D  	
   	
  , in case 
D , D ; (iii) if D 	
    then 	
   r. D 	
   . An element D 	
   	
  is an ALC  pure 
disjunction. An ALC  non-pure disjunction is an ALC disjunction that is not pure.  

Definition 4 (ALC pure conjunction). The set  of ALC pure conjunctions is the 
smallest set where: (i) C 	
    for every literal	
  C ; (ii) C C 	
    iff C , C 	
   ; 
and (iii) if C 	
    then r. C 	
   . An element C 	
   	
  is an ALC  pure conjunction. 
An ALC  non-pure conjunction is an ALC conjunction that is not pure.  

Definition 5 (Impurity on a non-pure expression). Impurities on non-pure ALC DL 
expressions are either conjunctive expressions in a non-pure disjunction or disjunctive 
expressions in a non-pure conjunction. The set of impurities is called ALC impurity 
set, and is denoted by	
   . 

Example 1 (Impurities on non-pure expressions). 
The expression ( r. (D …	
   D (C …	
   C ) (A …	
   A )), a non-pure 
disjunction, contains two impurities: (C …	
   C )	
  and	
   A …	
   A . 
Definition 6 (Positive normal form). An ALC axiom is in positive normal form iff it 
is in one of the following forms: ( )	
  C D; (ii)	
  C r. C; 	
  and	
  (iii)	
   r. D 	
   C; where 
C is a concept name, C	
  a pure conjunction and	
  D a pure disjunction. 

 In [7], algorithms for transforming ALC axioms to this normal form are available. 

2.2  Translation Rules for the normalization 

With all axioms in the normal form defined just above, it is easy to map them to 
matrix form, by applying the rules given in Table 1. Table 2 brings the mapping 
treatment of recursive sub-cases of existential and universal restrictions, when they 
occur inside any of the the normal form C D,. An improvement of the approach is, 
as the usual DL notation, variables are not needed, since all relations are binary and 
dash lines make for disambiguation, as soon will be seen.  

Some important remarks must be stated at this point for the sake of clarity.  
The first is that the whole knowledge base KB is negated during this 

transformation. This is due to the fact that in order to prove the validity of KB  (  
being a subsumption axiom) using a direct method, ¬KB 	
     must be proven a 
tautology (coming from KB , according to the Deduction Theorem [3]).  
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Table 1. Translation rules to map ALC  into FOL positive NNF and matrices. 

Axiom type FOL Positive NNF 
mapping Matrix 

C r. C	
  , where 

C = A  

with A 	
    (pure conjunction) 

(C(x)  ¬r(x,f(x)))   
(C(x) 	
  ¬ (f(x)))  

...  
(C(x) 	
  ¬ (f(x))) 

 
 

1 n

C CC

A Ar

 

r. D 	
   C, where 

D = A  

with 	
    (pure disjunction) 

(¬r(x,f(x)) 	
  ¬C(x))   
(¬ ((f(x)) 	
  ¬C(x))  

...  
 (¬ ((f(x)) 	
  ¬C(x)) 

 

1' 'mr A A

C C C
 

C D, where  

C = A 	
  ,	
  	
  	
   D = A  

with A 	
    (pure conjunction) 
and A 	
    (pure disjunction) 

 
(x) 	
  ... 	
   (x) 

 
¬ (x) ... ¬ (x) 

 

1

1'

'

n

n

A

A
A

A

 

Table 2. Recursive sub-cases of restrictions for axioms of type C D,. 

Axiom type FOL Positive 
NNF mapping Matrix 

A is an existential 
restriction: 

…	
   r.A	
   ... , 
with A 	
    (pure conjunction) 

...  
r(x,y)  
A(y)  
... 

r

A
 

A’ is an universal 
restriction: 

… 	
   r.A’	
   	
  …,	
  
with A’ 	
    (pure disjunction) 

…  
r(x,y)  
¬A’(y)  

… 
'

r

A
 

The first consequence of that is that subsumption axioms of the form C	
   	
  D, which 
are usually logically translated as C	
   	
  D,	
  because negated (¬(C	
   	
  D), indeed), are	
  
now translated to	
  C	
   	
  ¬D,	
  instead of	
  	
  ¬C	
   	
  D.	
  Moreover, to establish a uniform set of 
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rules applicable over ALC formulae, ¬  is dealt with, instead of	
   , so as to consider 
ALC axioms as ¬  …  ¬    (coming from ¬  …  ¬  ¬¬ ), where T  
(axioms in the TBox). The translation rules are then applied over ¬  and all . 
 Another remark regards implicit skolemization. In the original CM, once the whole 
KB should be negated, universal quantifiers ( ) are skolemized instead of existential, 
and all variables in the resulting DNF are then (implicitly) existentially quantified. 
Aiming at keeping a close correspondence with the original CM, only the cases in 
which ALC axioms, when translated to FOL, contain Skolem functions need to solved. 
For instance, the axiom C r. B, negated, translates to FOL Skolem DNF as x(A(x) 

 ¬r(x,f(x)))  (A(x)  ¬B(f(x))) (coming from the skolemization of y in x (A(x)  
( y (¬r(x,y)  ¬B(y)))).	
  In such cases, vertical and horizontal dash lines are employed 
to stand for the relations in the matrix. Vertical dash lines represent existential 
restrictions ( r.C), which are not skolemized, while horizontal dash lines represent 
universal restrictions ( r. C), in which the qualifier concept corresponds to a 
skolemized concept. An example should makes things clearer. 

Example 2 (Positive normal form, skolemization, clause, matrix). The query 
Animal	
   	
   hasPart.Bone	
  	
   	
  Vertebrate	
  	
  
Bird	
   	
  Animal	
   hasPart.Bone	
  	
   hasPart.Feather	
  	
  	
  	
  	
  	
  	
  	
  
reads in FOL as ( w(Animal(w)  ( z (hasPart(w,z)  Bone(z))   Vertebrate(w)))	
  
( y(hasPart(x,y) Bone(y)) v(hasPart(x,v)  Feather(v)))	
  	
    
      

where the variables y and t were respectively skolemized by the function f(x) and the 
constant c. In positive matrix clausal form, the formula is represented by   

{{Bird(x) ,¬Animal(x)}, {Bird(x) ,¬hasPart(x,f(x))}, {Bird(x) ,¬Bone(f(x))}, {Bird(x) 
,¬hasPart(x,g(x))}, {Bird(x) ,¬Feather(g(x))}, {Animal(w), hasPart(w,z), Bone(z), 
¬Vertebrate(w)}, {¬Bird(c)}, {Vertebrate(c))}}. Figure 1 shows it as a matrix. 

( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c
Animal hasPart Bone hasPart Feather hasPart

Bone
Vertebrate  

Figure 1. An ALC formula and query in disjunctive clausal form represented as a matrix. 

The vertical line connecting the symbols hasPart	
  and	
  Bone in the antepenultimate 
column has the function of denoting that the concept Bone has implicitly in FOL as 
argument the variable that is the 2nd argument of the relation hasPart (coming from the 
FOL translation x y hasPart(x,y) Bone(y) that arose from the axiom 
hasPart.Bone	
   	
   	
  Vertebrate. On its turn, the horizontal dash line connecting the 

symbols ¬hasPart and ¬Feather represents the ALC expression hasPart.Feather	
  
in	
   the	
   original	
   axiom	
   Bird	
   	
   hasPart.Feather.	
   This	
   expression,	
   negated,	
  
corresponds in FOL Skolem NF to x ¬hasPart(x,f(x)) ¬Feather(f(x)). Thus, during 
reasoning, skolemized predicates such as the last ones can only be unified with 
variables, and not with concrete individuals or other with distinct Skolem functions. 

Bird	
   	
  Vertebrate 
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Dash lines can superpose other dash lines, for instance to represent the axiom 
A r . ( r . B). In this normal form they cannot cross, although this would not 
consist in a problem for the ALC method. 

A last remark regards memory usage. By using this normal form, the number of 
newly introduced symbols (and also the number of axioms) grows linearly with the 
number of impurities. It is in most cases a gain compared with other normalizations 
(e.g., EL [4] and resolution [6]), whose number of new axioms grows linearly to the 
axioms’ length, although in the worst case they are equal. See [7] for more examples 
and further discussion regarding this topic. 

3  An ALC Connection Method 

The connection method (CM) [3] was created by W. Bibel in the 70s, and earned 
good reputation in the field of automated theorem proving in the 80s and 90s. Apart 
from needing less memory than other first-order logic inference systems, it offers the 
same advantages, according to its author, since any reductions, compressions, 
optimizations and improvements that fit to resolution or tableaux in can also be 
properly applied to it (see [3], 4.4). As a result, it is probably feasible to finding ways 
to implement typical DL tableaux optimizations to the ALC connection method under 
development, although such issues are out of the scope of the current paper.  

Such distinctive features naturally led to the idea of proposing a connection 
method especially tailored to infer over description logic Semantic Web ontologies. 
The core of the paper, the ALC connection calculus, is explained next. 

3.1 An ALC Connection Sequent and Matrix Calculus 

Definition 7 (Path, connection, unifier, substitution). A path is a set of literals from 
a matrix in which every clause (or column) contributes with one literal. A connection 
is a pair of complementary literals from different clauses, like { , ¬ }, where ( ) 
(or	
   ( ))  is the most general unifier (mgu) between predicates 	
  and	
  ¬ .  is the 
set of substitutions, which are mappings from variables to terms. All occurrences of 
the variable contained in a substitution would be replaced by the term indicated in .  

Example 4 (Path, connection, unifier, substitution). Some paths of the matrix of 
Figure 1 are: {Bird(x), ¬Bone(f(x)), Animal(w) ,¬Bird(c), Vertebrate(c)} and 
{¬Animal(w), Bird(x), ¬Bone(f(x)), Animal(w) ,¬Bird(c), Vertebrate(c)}. Some 
connections from the matrix are {Bird(x), ¬Bird(c)}, {¬hasPart(x,f(x)), hasPart(w,z)}, 
and is the whole matrix’ mgu. 

Lemma 1 (Validity, active path, set of concepts). An ALC formula represented as a 
matrix M is valid when every path contains a connection { , ¬ },	
  provided 
that	
   ( ) = (¬ ). This is due to the fact that a connection represents the 
tautology 	
  ¬ 	
    in DNF. As a result, the connection method aims at finding a 
connection in each path, together with a unifier for the whole matrix. During the 
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proof, the current path is called active path and denoted by .	
  The set of concepts 	
  of 
a variable or instance x during a proof is defined by ( ) { | ( ) } [9]. 

Definition 8 (ALC connection calculus in sequent style). Figure 2 brings the ALC 
connection calculus rules in sequent style of the, adapted from [10]. The basic 
structure is the tuple {C,M,Path}, where the clause C is the open sub-goal, M is the 
matrix corresponding to the query KB , and Path is the active path. 

	
  ( )	
  {	
  }, ,  

 

	
   	
  ( )	
   , , {}
, ,  

	
   	
   	
   	
   	
   , 	
   	
   	
   	
   	
   	
    
 

	
   	
  ( )	
   , , { }
{ }, , { }
	
   ( ) = ( )

 

 

	
   	
  ( )	
   \{ }, , { }	
  	
  	
  	
  	
  	
   , ,
{ }, ,  

	
  	
   	
   	
   	
   	
   , , ( ) = ( ), 
 

	
   	
  ( )	
   { }, { }, { }
{ }, , { }  

	
   , + 1, 	
   
	
   	
   ( ) 	
   	
   ( ) = ( )	
  ( 	
   ) 

Figure 2. The ALC connection sequent calculus rules (adapted from [10]). 

Rules are applied bottom-up. To start, the matrix M representing  is put in 
the bottom of the St rule, and a clause  is chosen as the first clause. Then, the 
three last rules are applied. The key rule for the calculus is the Extension	
  rule, once it 
finds connections of the form { ( ), ¬ ( )}, ({C,¬C} in the notation used here) or 
{r(x,y),¬r(z,w)}and the proper unifier  for it (In the first case ={x/y} and in the 
second ={x/z, y/w}). Besides this slight change in the Start	
  rule	
  ( ), a blocking 
mechanism was included as a new rule, the Copy	
  rule. If the current literal can only 
connect a clause already in the active path, this clause is copied to the matrix, and the 
indexing function	
   : , that assigns the number of copies of each clause, is 
incremented. The use of this function avoids ordering of individuals, as done in the 
original CM. An important remark about the rule is that the copy is virtual, in the 
sense that only an index 	
  is created. CM requires only one copy of the matrix in 
memory. This is one of its main advantages. Its use of memory may be better than 
tableaux in cases the proof demands many derivations, like with cyclic ontologies.  

Blocking didn’t occur in the original CM due to FOL semi-decidability, but it 
consists in a common practice in DL to guarantee termination. The first action to be 
accomplished is incrementing . Then, before making a copy of clause  (this copy 
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will be named ), it is necessary to check whether the set of concepts 	
  associated to 
the variable	
    (i.e., if the new  was unified) of the new literal  from  being 
created by the Cop rule is not contained in the set of concepts of the original variable 
x ( ( )), from ( ) of   [9].  

Examples of the ALC CM calculus’ application can be found at [7]. 

Theorem 1 (Soundness and completeness) An ALC formula in positive matrix form 
is valid iff there is a connection proof for “ , , ”, i.e. the application of the rules 
makes the Axiom	
  rule	
  (Ax) applicable to all leaves of the generated tree. 

Proof  The introduced changes in rules do not lose the soundness of the original CM 
(whose proof is available at [3], III.3.9 and 3.10), because such changes made the new 
rules only more restrictive, so as to making them fire in less cases than in the original 
CM. They also do not affect completeness, viz: (i) The original Start	
  rule allows any 
clause to start the method. By restricting it to begin just with a literal from the 
consequent to be proven ( ), proofs departing from possibly inconsistent matrices are 
avoided, from which any axiom can be summoned. In other words, it ensures the 
participation of  in the proof. If the axiom  holds, then a proof starting by one of its 
literals is found by the original CM as well. (ii) The blocking conditions hold only 
when: (a) a new clause is being created from a variable (thus, it is not an instance, as 
stated by the first blocking condition ), and, (b) the variable being copied is 
already a copy of another variable attached to the same concepts (as stated by the 
conditions	
   ( ) ( )18T). Therefore it prevents infinite applications of the Copy	
  
rule that would not help proving 18T, and thus, such condition does not interfere 
in the original CM’s completeness.                                                    

Theorem 2 (Termination). ALC CM always terminates. 

Proof  Having the mindset that the Copy	
  rule	
   is the only source of non-termination, 
the proof has three subcases: (i) When KB contains no cycle, the calculus finishes in a 
finite number of steps because the number of choices arising from the finite number 
of clauses and possible connections is also finite. Since the Copy	
  rule	
  is never fired, 
and there are no loops, ALC CM always terminates. (ii) When KB contains cycles and 

, the system always terminates, because ALC CM behaves exactly equal the 
original CM, whose termination proof can be found at [3]), except for the blocking 
conditions. However, blocking only plays the role of a termination condition, since it 
prevents the Copy	
  rule	
  to be fired, thus assuring termination; (iii) The case when KB 
contains cycles and  is the only aspect not covered by the original CM, given 
FOL’s semi-decidability. Nevertheless, ALC CM always terminates for this case, due 
to the fact that the Copy	
  rule obliges the set of concepts of the newly created instance 
of literal 	
  not to be a subset of any of the sets of concepts of other introduced 
instances of the literal. Once every set of concepts is a subset of  and  is finite, 
the number of distinct sets is limited to 2| |. So, the number of copies for literals is 
finite. Thus ALC CM always terminates in all three cases.          
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y 

The system can also be expressed in an easier way using matrices to build proofs. 
Figure 5 portraits an example using matrices. An ALC CM calculus’ algorithm of the 
system was adapted [7] from the one described in [3], III.7.2.  

Example 5 (ALC  connection calculus). Figure 3 deploys the proof of the query 
stated in example 1. In the figure, literals of the active path are in boxes and arcs 
denote connections. For building a proof, firstly a clause from the consequent (Start	
  
rule) is chosen, say, the clause {¬Bird(c)} and a literal from it (¬Bird(c)). 
 

( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c
Animal hasPart Bone hasPart Feather hasPart

Bone
Vertebrate

 

 
( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

 

 
( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

 

 
( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

 

 
( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

 

 
( ) ( )Bird Bird Bird Bird Bird Animal Bird c Vertebrate c

Animal hasPart Bone hasPart Feather hasPart
Bone

Vertebrate

 

 
Figure 3. The connection proof example in matrix form. 

 Step 1 connects this clause with the first matrix clause. An instance or variable - 
representing a fictitious individual that is being predicating about -, appears in each 
arc; in this connection, the instance c. The arrow points to literals still to be checked 
in the clause (only the literal ¬Animal in Step 1), that should be checked afterwards. 
After step 2, the connection {¬Animal,	
   Animal} is not enough to prove all paths 
stemming from the other clause (the one with literal ¬Animal). In order to assure that, 
the remaining literals from that clause, viz hasPart,	
  Bone	
  and	
  ¬Vertebrate, have still 
to be connected. Then, in step 3, when the predicate hasPart is connected, instance c	
  

(c,y) 
 

c 

c 

c 

c 

c 

(c,y) 
 

(c,y) 
 

(c,y) 
 

y 

c 

1. 

2.

 
     

3. 

4. 

5. 

6 &7. 

c 

507



 10 

being	
  dealt	
  with	
  any more, but a relation between it and another variable or fictitious 
individual, say y	
  (indicated  by (c,y)).  
 Until that moment, only the Extension	
  rule was applied. However, in step 4, the 
Reduction	
   rule is used, triggered by its two enabling conditions: (i) there is a 
connection for the current literal already in the proof; and (ii) unification can take 
place. Unification would not be possible between different individuals and/or 
skolemized functions (in ALC, equality among individuals is not necessary).  
 Next, a connection for the literal Bone was needed. That time, the variable (or 
fictitious individual) y	
  is	
  being	
  referred, for the reason that it stands for a part of the 
individual c	
  (hasPart(c,y)).	
  
 In case the system is able to summon the query, the processing finishes when all 
paths are exhausted and have their connections found. In case a proof cannot be 
entailed, the system would have tried all available options of connections, unifiers and 
clause copies, having backtracked to the available options in case of failure. 
 In [7], the interested reader could also find how the system deals with cycles and 
blocking, the DL services it is able to perform (such as a new way for inconsistency 
checking) and the reductions to subsumption and unsatisfiability. 

4  Discussion 

While planning the ALC CM, i.e. adapting the original CM to ALC, the notation was 
designed in order to avoid any ambiguities to arise from the lack of variables in the 
representation – that was the rationale of dashlines replacing the quantifiers, so as to 
eliminate possible ambiguities with skolemization for the connections. This notation 
can be changed even further, since assertions are better stored outside the matrices, 
bringing two benefits: matrix size can be dramatically shrunk and powerful indexing 
mechanisms for retrieving assertions, such as relational databases, can be employed. 
However, even sticking only to TBoxes, matrices can be sparse, a memory waste. A 
simple solution for this consists in storing matrices as arrays of arrays. 
 Concerning reasoning, the first aspect to be taken into account resides in the 
strong similarity between CM and tableaux [10]. For that reason, reductions and 
optimizations designed over the latter are very likely to be incorporated to the former. 
Additionally, connection calculi are more goal-oriented than tableau calculi; 
therefore, they tend to be more efficient. As a support from this belief, this fact could 
be empirically observed in a comparison between a connection prover (leanCoP) and 
a tableaux connection prover (leanTAP) [8], although proving this requires more 
formal work and experiments Departing from such premises, in case the DL tableaux 
optimizations fit to ALC CM, a performance at least comparable to other leading DL 
tableaux approaches is expected to an ALC leanCoP , which is under development, 
given that CM itself usually displays a quite competitive performance (it already won 
a CASC competition once [11]). Of course, a deeper investigation on the cases in 
which could be advantageous to rely on tableaux or ALC CM is on the research 
agenda of this work. 
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5  Conclusions and Future Work 

A connection method to take on the DL ALC was formalized in this work, by adapting 
the CM calculus formalized in sequent style from [10] and including a new rule. 
Notational improvements were also introduced, the key one being the representation 
without variables. Of course, this work is planned to continue in many research 
directions, such as implementations, other DLs, Semantic Web, etc.  
 First, the work presented here shall be extended to more complex description logic 
languages in a near future. Particularly, formalizations and implementations for the 
DLs EL++, SHIQ and SROIQ will be practically useful for applications related to the 
Semantic Web provided that good solutions for dealing with equality are available, 
like eq-connections [3].  
 Another potential reasoning advantage to be pursued could be the memory 
required for ALC CM. Despite the fact that, given a connection proof, the size of an 
equivalent tableau proof is not significantly bigger (perhaps a quadratic increase in 
size); the proof search might indeed take up much more space, as the search is 
essentially saturation-based and many parts of a problem maybe not be required for 
the proof. However, these statements demand additional research to be proven true.  

Last but not least, lean implementations written in Prolog, in the flavor of 
leanCop [8], that demand small memory space, can serve applications that are 
constrained in memory, such as stream reasoning in mobile applications, for instance. 
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Abstract.  An  overall  goal  of  the  INCOSE  MBSE  initiative  is  to  provide  SysML  
with   a   formal   semantics   and   to   integrate   reasoning   services   as  part   of   system  
engineering.   UML   class   diagrams   have   been   encoded   as   Knowledge   Bases  
(KB)   within   the   Description   Logic   (DL),   ALCQI.   The   encoding   provides   a  
formal  semantics  for  class  diagrams  which  accords  with  the  informal  semantics.  
The  encoding  applies  to  SysML  which  is  a  profile  of  UML.  The  SysML  block  
definition   and   internal   block   diagrams   are   not   covered   by   the   class   diagram  
encoding.   These   diagrams   are   essential   for   representing   composite   structure  
such   as   manufactured   products   and   molecular   structures.   The   class   diagram  
encoding   is  extended  to  composite  structure  diagrams  in   the  DL  ALCQIbid.  A  
composite   structure   diagram   describes   structures   in   terms   of   part  
decompositions   and   connections   between   objects.   A   SysML   composite  
structure   diagram   can   be   encoded   in   the   language   of   OWL2,   but   is   not   an  
OWL2  axiom  set,  as  the  diagrams  contain  property  equations  which  violate  the  
regularity  ordering  constraints  for  complex  property  inclusions.  Conditions  are  
given  for  an  ALCQIbid  KB  which  are  sufficient  to  encode  a  SysML  composite  
structure   diagram.   Further   conditions   are   given   for   a   KB,   called   a   template,  
which   ensure   that   within   an   interpretation   all   realizations   of   the   composite  
structure  have  the  same  graph  structure.      
  
Keywords:   Description   Logic,   Ontology,   OWL,   SysML,   UML,   structural  
modeling,  molecular  chemistry,  human  anatomy.  

1      Introduction  

Many  engineering   tasks   involve   reasoning  on  a  description   (a  model   in  engineering  
terminology)   to  determine  consistency  and   to  derive   implicit  knowledge.  An  overall  
goal   of   the   INCOSE   MBSE   initiative   [4]   is   to   provide   the   system   engineering  
modeling  language  SysML  [10],  a  dialect  of  UML  [11]  with  a  formal  semantics  and  
to   integrate   reasoning  services  as  part  of  system  engineering.  SysML  lacks  a   formal  
logic-­based  semantics,  but  has  a  well-­developed  informal  semantics.  For  reasoning  to  
give   correct   results,   the   formal   semantics   must   be   in   accord   with   the   informal  
semantics   of   SysML.   To   provide   a   formal   semantics,   one   may   axiomatize   SysML  
directly   [7]   or   encode  SysML   in   a   language  which   has   a   formal   semantics   such   as  
OWL2   [12].   The   OWL2   semantics   is   based   on   the   Description   Logic   (DL)[1],  
SHOIQ  [8].    
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UML  class   diagrams   have   been   encoded   as   a  Knowledge  Base   (KB)  within   the  
DL,  ALCQI  [2],  a  sublogic  of  SHOIQ.  In  this  encoding,  UML  classes  are  encoded  as  
concepts   and   UML   associations   are   encoded   as   roles;;   to   encode   the   additional  
information  contained  in  class  diagrams,  other  KB  assertions  are  needed.    The  result  
is   that   an   encoding  of   a  UML  class  diagram   is   as   a  KB.     The   encoding  provides   a  
formal  semantics  for  class  diagrams  which  conforms  to  their  informal  semantics;;  the  
encoding  is  further  validated  by  comparison  of  first  order  logic  (FOL)  axiomatizations  
of   the   UML   constructions   with   the   FOL   representation   of   description   logic.   A  
consequence   of   the   encoding   for   integration   with   reasoning   is   that   a   class   diagram  
(class   model)   corresponds   to   a   knowledge   base   within   a   DL.   The   results   of   DL  
consistency   checking   and   derived   classes   and   class   inclusions   can   be   reinterpreted  
within  UML.  
The  DL  encoding  for  UML  and  its  results  carry  over  to  SysML.  In  SysML,  blocks  

are  a  stereotype  of  class  and  SysML  uses  associations  as  does  UML.  SysML  is  well  
suited  for  representing  descriptions  of  composite  structure  [5].  The  SysML  diagrams  
(models)   used   to   represent   composite   structure   are   not   fully   covered   by   the   UML  
encoding.      A   composite   structure   consists   of   objects   and   part   objects   linked   by  
connectors.   A   structural   description   is   a   collection   of   classes   and   properties   which  
describe  a  structure.  A  structure  which  satisfies  the  description  is  called  a  realization  
of   the   structure.   A   composite   structure   is   represented   in   SysML   with   a   Block  
Definition   Diagram   (BDD)   and   an   Internal   Block   Diagram   (IBD).   A   variety   of  
specializations   of   associations   are   used   to   represent   part   properties   and   structural  
connections.   Both   part   properties   and   connections   are   binary   properties.   A   BDD  
describes   a   part   decomposition   structure.   An   IBD   is   a   BDD   with   connection  
properties   and   property   equations.   An   IBD   can   be   used   for   representing   structures  
which   have,   for   example,   multiple   objects   of   the   same   class,   which   play   different  
roles   in   the   description.   For   example,   an   automobile   description   may   specify   four  
wheels  with   two   front  wheels  which   are   driven   by   the   engine   and   two   rear  wheels  
which  are  not  driven.  A  SysML  IBD  model  of  the  human  heart  accords  well  with  the  
informal   semantics   and   elucidates   the   distinction   between   the   different   kinds   of  
properties  (parts  and  connections)  used  to  describe  a  heart.    
Finding   an   appropriate   Description   Logic   to   represent   the   class   of   composite  

structure   diagrams   which   is   sufficiently   expressive   and   for   which   reasoning   is  
decidable   and   computationally   tractable   is   challenging.   A   SysML   IBD   can   be  
encoded   in   the   language   of   SROIQ,   but   in   the   direct   encoding   it   is   not   an  OWL2  
axiom   set,   as   the   connection   property   equations   of   an   IBD   violate   the   regularity  
ordering   constraints   on   SROIQ   axioms   [8].  While   it   is   possible   to   represent   these  
diagrams  within   SROIQ  with   a   description   graph   extension   [9],   there   are   questions  
regarding   whether   the   description   graphs   correctly   capture   the   intended   semantics.  
For   a   DG   extension   of   OWL2,   the   FOL   suggested   semantics   for   the   human   heart  
example  in  [9]  is  different  from  the  DL  semantics  of  a  SysML  IBD  which  appears  to  
capture  the  informal  semantics  faithfully.  
The  role  equations  needed  to  represent  the  constructions  in  a  SysML  IBD  are  very  

restricted,   even   though   they   do   not   satisfy   the   regularity   conditions   of  OWL2.  The  
roles  which  represent  part  properties  are  all  atomic  with  specified  domain  and  range  
classes   which   are   also   atomic.   The   conditions   satisfied   by   the   part   properties   of   a  
SysML  IBD  ensure  that  the  part  role  paths  [3]  are  finite  and  are  unique.  For  each  part  
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role  path,  a  new  atom  can  be  introduced  to  represent  the  path.  Using  these  atomic  path  
roles,  simple  role  hierarchy  assertions  are  sufficient  to  represent  the  equalities  found  
in  an  IBD.  
The  UML  class  diagram  encoding   and   its  extension   for  conceptual  modeling   for  

data   integration   [3]   is   used   to   encode   SysML  Block  Definition   and   Internal   Block  
Diagrams  using  the  description  logic  ALCQIbid  .  A  part  structure  for  a  KB  is  defined  
which   encodes   the   essential   features   of   a   BDD.   Conditions   are   given   on   a   KB   to  
encode   the   property   equation   features   of   an   IBD.      Additional   meta   conditions   are  
given  for  an  IBD  KB,  called  a  template,  which  ensure  that  within  an  interpretation,  all  
realizations  of   the  KB  have   the  same  graph  structure.  The  conditions   for  a   template  
are   easily   checked.   A   template   is   illustrated   with   a   SysML   model   of   the   water  
molecule.  For  a  template,  results  computed  from  the  structure  of  the  KB  are  valid  in  
any  realization.  For  example  the  weight  of  a  structure  can  be  computed  from  the  IBD  
as  all  realizations  will  have  the  same  number  of  parts.    

2      The  Description  Logic  ALCQIbid  

The   specific   description   logic   used   to   encode   SysML   Internal   Block   Diagrams   is  
ALCQIbid  [3].    ALCQIbid  is  an  expressive  DL  that  extends  the  basic  DL  language  AL  
(attributive  language)  with  negation  of  arbitrary  concepts  (indicated  by  the  letter  C),  
qualified  number  restrictions  (indicated  by  the  letter  Q),  inverse  of  roles  (indicated  by  
the   letter   I),   boolean   combinations   of   roles   (indicated   by   the   letter   b),   and  
identification   assertions   (indicated   by   the   subscript   id).   Concepts   and   roles   in  
ALCQIbid  are  formed  according  to  the  following  syntactic  rules  [3]  

U  C'  |     R.C  |   R.C  |   Q.C   (1)  

-­   U  R'    |    R    \    R'     (2)  

where  A   denotes  an  atomic  concept,  P   an  atomic   role,   the   inverse  of  an  atomic  
role,  C  an  arbitrary  concept,  and  R   arbitrary  roles.  Furthermore,  ¬C,  C      ,  C  U  
C',   R.C,  and   R.C  denote  negation  of  concepts,  concept  intersection,  concept  union,  
value   restriction,   and   qualified   existential   quantification   on   roles,   respectively.  We  
then  use  Q  to  denote  basic  roles,  which  are  those  roles  that  may  occur  in  expressions  
of  the  form     n  Q.C  and   .  A  basic  role  can  be  an  atomic  role  or  its  inverse,  or  
a  role  obtained  combining  basic  roles  through  set  theoretic  operators,  i.e.,  intersection  

U \   
to  atomic  roles  and  their  inverses.    
Abbreviations   are   introduced   for   terms   and   assertions.   Thing   denotes   the   top  

concept  which   can   be   defined   as  C  U¬C   for   a   concept  C,   and  Nothing   the   bottom  
concept.  The  concept  kQ.C  is  an  abbreviation  of     kQ.C.  The  empty  denotes  
the   role   p\p   for   a   role   p.   The   notation   (funct   p)   is   used   for   the   assertion   that   p   is  
functional,  i.e.,  as  an  abbreviation  for  Thing       1  p.Thing.  The  notation  p:(A,B)  is  an  
abbreviation  for  the  assertions    

A     p.B  and  B p-­.A   (3)  
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which   capture   the   property   that   A   is   the   domain   and   B   is   the   range   of   p.   For   a  
functional  role  with  p:(A,B),  we  have  A     1p.B.  For  a  role  p:(A,B)  that  is  functional,  
we  use  the  notation  p:(A,B)[1].  A  typed  role  p  with  p:(A,A)  is  irreflexive  if  

Dom(p)     range(p)  =  Nothing   (4)  

Two  roles  p  and  q  are  disjoint      

p   q      (5)  

  
A  path  is  given  by  the  production  rule  

1,   2 S|  D?  |   1.   2   (6)  

where  S  denotes  an  atomic  role  or  the  inverse  of  an  atomic  role,  D  denotes  a  concept,  
and     denotes  the  composition  of  paths     and   .  The  expression  D?  is  called  a  
test  role,  it  denotes  the  identity  relation  on  instances  of  the  concept  D.  If     is  a  path,  
the  length  of   ,  denoted  length( ),  is  0  if     has  the  form  C?,  is  1  if     has  the  form  S,  
and  is  length( 1)  +  length( 2)  if     has  the  form   1. 2.    
An  ALCQIbid  knowledge  base  (KB)  is  a  pair       TBox  and  A  is  

an   ABox.   A   TBox   is   a   finite   set   of   assertions   of   the   form      with   C   and   C'  
arbitrary   concepts,   or   of   with   arbitrary   roles   R   and   R',   or   an  
identification  constraint.  An  identification  constraint  is  an  assertion  of  the  form  (id  C  
1,   .   .   .   ,   n)   where  C   is   a   concept,   n      1,   and   1,   .   .   .   ,   n   are   paths   (called   the  
components   of   the   identifier)   such   that   length( i)      1   for   all   i      {1,   .   .   .   ,   n}   and  
length( i)  =  1  for  at  least  one  i     {1,  .  .  .  ,  n}.  Intuitively,  an  identification  constraint  
asserts  that  for  any  two  different  instances  o,  o'  of  C,  there  is  at  least  one   i  such  that  o  
and   o'   differ   in   the   set   of   their   i-­fillers.   An   ABox   is   a   finite   set   of   membership  
assertions  of  the  form  A(a),  P(a,  b),  and   ,  with  A  and  P   respectively  an  atomic  
concept  and  an  atomic  role  occurring  in  T,  and  a,  b  constants.  The  condition  for  role  
inclusions  is  weaker  than  the  standard  condition  for  a  KB  in  ALCQIbid.  
The  semantics  of  ALCQIbid  concepts  and  roles  is  given  in  terms  of  interpretations,  

where  an  interpretation  is  defined  as  a  correspondence  of   the  KB  concepts  and  roles  
[3]   with   classes   and   properties   in   a   domain   for   which   all   of   the  KB   assertions   are  
satisfied.   The   semantics   of   a   path      is   defined   in   terms   of   the   reverse   of   the  
composition  of  the  roles  occurring  in  the  path.  This  device  allows  us  to  express  well-­
formed  path  equations  as  role  assertions  within  an  ALCQIbid  KB.  
The  semantics  of  an  ALCQIbid  KB  K = <T , A >  is  the  set  of  models  of  K,  i.e.,  the  

set  of   interpretations   satisfying  all   assertions   in  T  and  A.  As  noted   in   [3],   checking  
whether   an   assertion   holds   in   every   model   of   a   KB,   is   decidable   in   deterministic  
exponential  time.    
While  ALCQIbid  works   for  encoding  SysML  block  diagrams   it   seems   likely   that  

some   new   variant   could   be   devised   which   could   be   tailored   more   precisely   for  
representing  composite  structure  models.    
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3      Encoding  SysML  Block  diagrams  in  a  DL  

We  review  the  principles  of  encoding  class  diagrams  established  in  [2]  as  applied  to  
SysML  block  diagrams.  We   use   a   simple   illustration  of   a  water  molecule  model   to  
show   how   role   equations   naturally   occur   in   a   composite   structure   diagram.   For   the  
water  example  we  show  that  all  realizations  have  the  same  structure.  The  next  section  
will   generalize   the   concept   of   a   KB  which   abstracts   the   properties   of   a   composite  
structure  and  show  that  a  kind  of  KB  called  a  template  enjoyes  the  properties  that  all  
of  its  realizations  are  isomorphic.    
The  SysML  language  uses  blocks  which  are  classes  and  associations  with  several  

predefined  kinds  of  specializations.    The  molecular  unit  of  SysML  is  called  a  model.  
A   SysML   model   is   a   collection   of   declarations   which   introduce   constants   of   a  
signature  and  specify   typing   relations.  A  SysML  model  may  contain   subclasses  and  
limited  kinds  of   role  assertions  and  may  be  composed  and  presented  using  multiple  
visual  diagrams.  However,   all  of   the  diagrams   that  constitute  a  model  use   the   same  
block  and  property  symbols.    
A  class  diagram   in  UML   is  a   restricted  kind  of  SysML  model.  The  encoding  of  

UML  class  diagrams  [2]  carries  over  to  SysML  which  is  a  UML  profile  developed  for  
systems  engineering.  The  Description  Logic  ALCQI  is  used  to  provide  the  encoding.  
This  encoding  accords  with  the  informal  semantics  of  UML.  Classes  (SysML  Blocks)  
and  associations  are  translated  into  DL  concepts  and  roles  [2].       The  translation  of  a  
class  diagram  is  as  a  role  assertion.    However,  SysML  models  are  not  covered  by  the  
encoding   in   [2].   In   particular,   a   SysML  Block  Definition   Diagram   and   an   Internal  
Block  Diagram  are  not  covered.  An  undirected  association  p  is  identified  with  a  role  
p.    The  diagram  of  boxes  labeled  A  and  B  connected  by  a  line  becomes   the  assertion  
p:(A,B).   An   aggregation   property   p   from   A   to   B   with   cardinality   restriction   1   is  
represented  in  DL  this  becomes  A         ( p).  A  property  p  with  p:(A,B)  is  mandatory  if  
A      k  p.  B.  for  an  atomic  functional  role  p  with  domain  A  and  range  B  we  use  the  
abbreviation  p:(A,B)[1].  
This   encoding   of   a   SysML   model   as   a   KB   is   illustrated   with   a   SysML   water  

molecule   model.   The   water   molecule   is   represented   as   a   SysML  model   using   two  
kinds  of  diagrams,  a  Block  Definition  Diagram  (BDD)  to  represent  the  decomposition  
structure  and  an  Internal  Block  Diagram  (IBD)   to  represent   relationships  among  the  
parts   within   the   structure.   The   language   elements   in   both   diagrams   are   part   of   the  
same  SysML  model.   In  Figure  1,   the  top  half  shows  the  decomposition  structure  for  
water.  The  BDD  shows   that  water  has   three  part  properties  whose  range  classes  are  
oxygen  and  hydrogen.  The  shared  Association  (open  diamond  headed  arrow)  is  a  part  
property   in   SysML.   There   are   two   kinds   of   part   properties   in   SysML.   The   shared  
Association  property   is   used  because   the   atoms  can  be   a   part   of   any  molecule.  The  
two   arrows   pointing   at   hydrogen   mean   that   there   are   two   parts   of   type   hydrogen  
within  water.  The  diamond  arrow  pointing  to  oxygen  shows  that   there  is  one  part  of  
type   oxygen   within   a   water   molecule.   The   numbers   on   the   arrows   in   this   diagram  
represent  the  cardinality  restriction  on  the  number  of  parts  that  a  water  molecule  can  
have.  In  this  case,  the  numbers  are  all  1,  which  says  that  an  individual  water  molecule  
has  exactly  one  oxygen  and  two  hydrogen  atoms  as  parts.  
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Fig.  1.  SysML  model  for  water  molecule  
  
The   bottom   diagram,   called   an   Internal   Block   Diagram,   shows   the   bonding  
relationships  between  the  part  properties.  The  arrows  from  the  BDD  are  represented  
as   rectangles  with  dashed   lines.   In   this   diagram,   the   rectangles   are   not   blocks;;   they  
represent  part  properties  of  Water.  The  rectangle  is  labeled  with  the  name  of  the  part  
property  and  the  range  type  of  the  property,  as  well  as  the  cardinality  restriction  of  the  
properties.  The  diagram  shows  the  oxygen  part  has  a  covalent  bond  with  each  of  the  
hydrogen   parts.   The   diagram   title   box   signifies   that   the   IBD   is  within   the   scope   of  
water.  
The   informal   semantics   of   the   water   model   is   that   any   realization   of   a   water  

molecule  has  exactly  three  atoms:  two  hydrogen  atoms  and  one  oxygen  atom.  Further,  
we   expect   that   the   covalent   bonds   from   oxygen   atom   are   connected   to   distinct  
hydrogen  atoms.    This  fact  will  follow  from  the  declaring  the  covalentBond  property  
to   be   functional   and   declaring   that   the   hasHydrogenAtom1   and  hasHydrogenAtom2  
are  disjoint.  Informally,  a  realization  of  a  water  molecule  in  this  theory  is  a  tree  with  a  
root  w1  corresponding  to  the  water  molecule  and  three  other  nodes,  an  oxygen  atom  
o1,   and   two   hydrogen   atoms   h1,   h2.      The   tree   has   edges   {   <w1,o1>,   <w1,h1>,  
<w1,h2>,  <o1,h1>,<o1,h2>  }.  The  first  three  edges  correspond  to  the  part  properties  
and  the  last  two  correspond  to  the  bond  properties.  
For  a  KB  used  to  encode  a  SysML  composite  diagram  a  realization  of  a  KB  is  a  

collection  of  ABox  assertions  of  the  form  objects  Cj(ai)  where  the  Cj  are  atomic  and  
for  any  atomic  concept  C  in  the  KB  there  is  at  least  one  ai  with  C(ai).  Also,  for  any  
atomic  role  p  in  the  KB  there  is  a  pair  <ai,aj>  with  p(ai,aj).  There  may  be  multiple  ai  
with  C(ai).  A  realization  is  an  internal  model  of  the  KB.  In  general,  a  realization  may  
not  be  finite.  With   the  restrictions  that  will  be  used  on  a  KB  to  encode  an  IBD,  one  

515



can  construct  realizations  of  the  KB  by  adding  individuals.  A  template  KB  has  finite  
realizations.  Also,  a  model  may  contain  multiple  realizations.  
In   the   first  order   logic   representation  of  a  DL  we  replace  an  existential  assertion  

p:(A,B)[1]  with  a  Skolem  function  and  use  the  symbol  p  for  the  Skolem  function  as  
well  as  the  role.  We  use  the  notation  a.p  for  the  value  of  the  Skolem  function  p.  This  
notation   allows   us   to   write   p(a,   p(a))   as   p(a,a.p).   More   generally   for   p1   and   p2  
functional   atomic   roles   then   from   the   composition   semantics   for   roles   one   has  
a.(p1.p2)  =  (a.p1).p2.    
The  KB  encoding   the  SysML  water  molecule  model  has  as  atomic   roles,  Water,  

Oxygen,   and   Hydrogen   and   as   atomic   roles,   hasOxygen,   hasHydrogen1,  
hasHydrogen2,   covalentBond1,   covalentBond2.   Using   the   abbreviations   the   KB  
contains  the  assertions:    

hasOxygen:(Water,  Oxygen)[1]   (4)  

hasHydrogen1:(Water,  Hydrogen)[1]   (5)  

hasHydrogen2:(Water,  Hydrogen)[1]   (6)  

covalentBond1:(Oxygen,  Hydrogen)[1]   (7)  

covalentBond2:(Oxygen,  Hydrogen)[1]   (8)  

the  equational  role  equations    

hasOxygen.covalentBond1  =  hasHydrogen1   (9)  

hasOxygen.covalentBond2  =  hasHydrogen2     (10)  

  
and  the  disjointness  assertions  

Oxygen   Hydrogen     (11)  

hasHydrogen1   hasHydrogen2   (12)  

covalentBond1   covalentBond2   (13)  

  
It  is  easy  to  show  that  any  realization  of  the  water  KB  has  the  same  structure.    For  any  
ABox  w  with  w.Water,  we  iterate  the  constructions  to  obtain  the  set    
   {w,  w.hasOxygen,  w.hasHydrogen1,  w.hasHydrogen,    
      w.  hasOxygen.covalentBond1,  w.hasOxygen.covalentBond2  }.    
However,    

om2   (14)  

  
by  axiom  (12).  By  axiom  (9)    

w.  hasOxygen.covalentBond2=  w.  hasOxygen.covalentBond2   (15)  
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The   structure  only   contains   the   root   and  part   instances.  We  can  verify   that   the   role  
instance   relations   hold.   This   KB   implies   that   any   realization   of   Water   has   the  
expected  component  parts  with  the  expected  connections  between  them.  The  next  task  
is   to   identify   the   properties   of   part   roles   which   enable   these   arguments   to   be  
generalized.    

4      Block  Definition  Diagrams  and  Internal  Block  Diagrams  

The  KBs  which  are  used  to  encode  SysML  BDDs  and  IBDs  are  described  below.  An  
abstract  Block  Definition  Diagram  (ABDD)  is  a  KB  with  a  subset  of  the  KB  signature  
pi   :   i {    called   part   roles.   Part   roles   satisfy   the   constraints   that   each   pi   is  
declared  with  a  domain  and  range   type  with  a  numeric  multiplicity,   the  domain  and  
range  concepts  of  the  part  roles  are  in  the  KB  signature  and  are  atomic.  There  may  be  
multiple   part   properties   with   the   same   domain   and   range   types.   For   the   following  
discussion,   we   restrict   part   properties   to   be   functional.   We   use   the   abbreviation  
p:Part(A,B)   for  a  part   role  p  with  p(A,B).  The  concepts   that  occur  as   the  domain  or  
range  of  a  part   role  are  called  Part  concepts.  A  part  concept  which   is  not   the  range  
concept  of  any  part  property   is  a   root.  We  assume  that   the  part  class  has  a   root  and  
that  it  is  unique.    
  
(P0)   Root(A),  for  some  atomic  class  A  and  the  class  is  unique.  
    
(P1)   If  p:Part(A,B)  then  Irreflexive(p)  
  
(P2)   If  p:Part(A,B)  and  p2:Part(B,C)  then  Irreflexive  (p1.p2)  
  
(P3)   If  p:Part(A,B)  and  p2:Part(C,B)  then  p1     p2  
  
(P4)   PartClass(A)  IFF  Root(A)  or  p:Part(B,A)  and  PartClass(B)  
     
A  part   path   is   a  well-­formed   composition   of   part   properties     were   the  
range(pi)  =  domain  (pi+1)  for  all  i.  (P0)  identifies  a  concept  as  the  root.  (P1)  and  (P2)  
ensure   that  part  paths  do  not  contain  multiple  occurrences  of  a  part  properly  and  so  
have  finite  length.  (P3)  states  that  any  two  part  roles  with  the  same  range  are  disjoint.  
The   (P4)   implies   that   all   part   concepts   are   connected   the   root   by   a   part   path.   The  
meta-­properties  (P0)  through  (P4)  are  easily  in  a  KB.    
For   an   ABDD,   the   directed   graph   whose   nodes   are   the   root   together   with   the  

expressions  p:A,  for  a  part  property  p  with  A  =  Range(p)  and  whose  edges  are  the  part  
roles  is  a  tree.  As  there  may  be  multiple  parts  with  the  same  range,  class  labeling  the  
class   with   the   part   role   using   the   expressions   of   the   form   p:A   makes   the   nodes  
distinct.  Each  part  concept  is  reachable  by  a  part  path     where  pn  =  p  from  the  
root  by  (P4).  For  any   two  property  paths     and     which   terminate  at   the  
node  p:A,  then  the  domain  of  pn  and  qk  are  equal.  By  (P3),  the  part  roles  pn  and  qk  
are   disjoint   and   so   the   two   paths   cannot   be   equal.   Thus,   the   part   property   path   is  
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unique.  The  ABBD  is  used  to  encode  a  SysML  BDD.    The  conditions  used  to  define  
an  ABDD  are  enforced  in  a  BDD.    
An  Abstract   IBD  (AIBD)   is  an  ABDD  together  with  a   finite  set  of   function  role  

(connections)  whose  domain  and  range  are  part  concepts,  and  a  set  of  path  equations  
of  the  form  

   (16)  

where  the  pi  and  qj  are  part  paths  and  c  is  in  {c1,..,ck}.  The  connection  roles  encode  
the  arrows  between  the  boxes  of  an  IBD.    Conversely  an  AIBD  can  be  displayed  as  a  
graph.  A  new  atomic  role  p.c  is  introduced  for  any  part  path  followed  by  a  connection  
role.  Note   that   where  domain(p1)  =  A  and  range(pn)  =  B.  We  extend  
this  notation  to     for  a  connection  role  c.    
A  path     of  atomic  roles  p1 n  is  well-­formed  if  range(pi)  =  domain(pi+1)  for  all  i  
{1,  .  .  .  ,  n}.  For  each  well-­formed  path,   ,  of  atomic  roles,  we  introduce  a  new  role  
atom   .  For  any  path  of  length  1,  the  new  role  is  identified  with  the  atomic  role  that  
formed  the  path.  As  there  is  a  finite  number  of  part  paths,  we  define  a  new  atomic  role  
for  each  part  path   .  Recall   that  when   the  atoms   in   a  path  are   functional,  we  
write   a.p   for   the   unique   individual   b   with   p(a,b).   This   notation   simplifies   the  
application  of  a  path  p  applied  to  a.  We  also  use  the  notation  p:Path(A,B)  for  a  path  
with  domain  A  and  range  B.  
While  the  DL  ALCQIbid  does  not  permit  composition  directly  in  the  role  inclusion  

assertions,  we   simulate   composition  with   the   atomic  path   roles.  For   any   connection  
equation         in   the  IBD,  we  replace  it  with  role  inclusion  assertion  

      .  However,   for  any  a,b   ,  q.c(a,b)   implies  p(a,b).  However,   if  a.A  
then  as  p  is  functional,  a.p  =  a.c.b.  Thus,  q.c  =  p.  So  the  inequalities  in  an  AIBD  are  
actually  equalities.  A  template  is  a  AIBD  where    
  
(P5)     p1:Part(A,B)  and  p2:Part(A,C)  then  p     q  or  p  =  q  
  
The   template   axiom   says   that   no  parts   can  be   reused   in   a   part   decomposition.   This  
statement  can  be  made  precise  in  the  first  order  logic  theory  of  the  KB.    
To  prove  properties  about  the  models  of  an  AIBD  KB  we  use  the  full   first  order  

representation  of  the  DL.  In  the   theory  generated  by  the  KB  existential  assertions  of  
the  form  p:(A,B)[1]  are  replaced  by  a  first  order  Skolem  function.  Properties  that  hold  
in  this  theory  will  hold  in  any  model  of  the  KB.  Note  that  the  part  path  roles  become  
functions.  Thus,  the  notation  a.p1..pn  is  meaningful  and  we  have  the  associativity  law  
a.(p.q)  =  (a.p).q.    
  
Definition.  For  a  template  KB  with  root  A,  a:A,  and  t:B  for  a  part  class  B,  let  

Partof    (17)  

for  a  part  path.    
  
Lemma.  For  a  template  with  root  A,  and  a:A:  If  t:B  for  a  part  class  B  and  t  is  a  part  of  
a,  then  the  part  decomposition  is  unique.      
If   t   is  a  part  of  a,   then   t  has  a  decomposition  of  the  form     for  some  
,pk.  If  t  =  a.p  and  t  =  a.q,  for  two  part  properties,  then  by  the  template  property  

518



p   disjoint   q   or   they   are   equal,   and   so   a.p   =   a.q.   The   argument   is   repeated   for   the  
successive   individuals   .  With   the   first   order   logic  of   the  KB  extended  
with  an  abstraction  construction  which  allows  terms  of  the  form  

{  t  :  P(t)}   (18)  

constructed   from   a   predicate   where   the   predicate   is   restricted   to   equalities   with  
Boolean   connectives,   then   we   can   define   the   notion   of   a   realization   of   a   template  
within   the   extended   theory   of   the   axiom   set.   The   axioms   for   the   abstraction  
construction  include    

P(a)  IFF  a:{  b  :  P(b)}   (19)  

with  usual  rules  for  variables.  Using  the  extended  logic,  a  realization  of  a  template  is  
an   abstraction   type  G  =   {t   :   Partof(a,t)   }   for  a:Root.   From   the   axioms   for   the   part  
property  declarations,  a  realization  of  a  root  instance  has  a  unique  part  decomposition.  
A  tree  structure  can  be  defined  with  the  individuals  in  G  as  the  nodes  and  <t,t.p>  for  
a  part  property.  Connection  edges  can  be  added  similarly.  A  graph  isomorphism  can  
be  inductively  defined  between  any  two  realizations.    
  
Theorem.  For  a  template,  the  instances  of  the  type  G  =  {t  :  Partof(a,t)}  for  a:Root  are  
the  nodes  of  a  tree  with  root  a.  The  edges  <t,  t.p>  where  range(t)  =  domain(p).  The  
correspondence   defined   by   mapping   a   to   the   root   and   a   node   of   the   form   t.p   to  
p:Range(p)   corresponds   the  nodes  of   the  parts   structure  with   the  nodes  of   the  BDD  
together  with   the  mapping  of   an   edge  <t,t.p>   to   the   edge  p   in   the  BDD  defines   an  
isomorphism  of  the  parts  structure  with  the  BDD.  Any  parts  tree  has  the  same  number  
of  parts.  
  
The   axioms  given  do  not   prohibit   a   structure   from   sharing   individuals  with   another  
structure.  This  property  can  be  added  with  the  axiom:  
  
(P6)   p:Part(A,B)  implies  p.p*=id(A)  
  
An   interpretation   of   an   axiomatic   SysML   theory   is   a   mapping   of   the   individuals,  
pairs,  classes,  and  properties,  and  other   types  which  preserves   the  sort  structure,   the  
logical  axioms,  and  the  declarations.  In  particular,  classes  are  mapped  to  subclasses  of  
the   mapping   of   Thing   and   individuals   are   instances   of   Thing.   In   any   valid  
interpretation  of  the  theory  of  a  model,  the  unique  decomposition  will  hold.      

5  Conclusion  

The  encoding  of  a  UML  class  diagram  as  an  ALCQI  KB  gives  an  encoding  of  Class  
diagrams  into  OWL2.  This  encoding  is  extended  to  an  encoding  of  a  SysML  Internal  
Block  Diagram  as  a  KB  within  the  OWL2  language,  but  not  as  an  OWL2  KB.  Each  
atomic  property  in  the  Block  Diagram  is  an  atomic  role  and  the  well-­formed  property  
paths   are   finite.      The   encoding   correctly   captures   the   part   decomposition   which  
ensures   that   the  models  are   tree   like.      SysML  model  development   tools  enforce   the  
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axioms  that  define  a  part  structure.  Conversely,  the  correspondence  between  the  block  
diagrams   and   the   DL   language   constructions   provides   a   graphical   syntax   for   DL.  
SysML   dos   not   have   individuals,   i.e.,   ABoxes.   The   Encoding   makes   clear   how  
individuals   can   be   added   to   SysML.   With   the   encoding   all   derivations   of  
inconsistency  and  concept  inclusions  can  be  exported  back  into  SysML.    
It   is   easily   to   check   whether   the   additional   axioms   for   a   template   are   present.  

These  axioms  correspond  to  manufacturing  assumptions   that  ensure  implementations  
of   a   design   have   the   same   parts   and   connection   structure.   For   example,   water   is   a  
subclass  of  molecules  which  have  an  oxygen  part.  However,  Oxygen  is  not  a  subclass  
of  the  things  bonded  to  hydrogen,  only  the  oxygen  molecules  which  are  parts  of  water  
have   this   property.   The   use   of   a   template   KB   enables   the   development   of   SysML  
models  for  which  all  realizations  are  isomorphic.  This  is  very  useful  as  computations  
of  the  model  hold  for  all  of  its  realizations.   It  seems  likely  that  graph  defined  for  an  
abstract  IBD,  is  a  Description  Graph  in  the  sense  of  [9].    
The  axioms  given  for  the  water  model  provide  only  structural  information  and  are  

incomplete   in   terms   of   constraints   on   the   bonds   needed   to   determine   a   3D  
visualization  of  a  water  molecule  and  do  not  address  the  dynamic  behavior  of  water  
such   as   how   it   changes  when   it   freezes.  Much  more   complete   axiomatic  models  of  
water   can   be   given   which   address   these   properties.   These   SysML   models   require  
further  extensions  to  DL  to  be  addressed.  
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Integrity Constraints for Linked Data

Alan Jeffrey and Peter F. Patel–Schneider

Alcatel–Lucent Bell Labs

Abstract. Linked Data makes one central addition to the Semantic
Web principles: all entity URIs should be dereferenceable to provide an
authoritative RDF representation. URIs in a linked dataset can be par-
titioned into the exported URIs for which the dataset is authoritative
versus the imported URIs the dataset is linking against. This partition-
ing has an impact on integrity constraints, as a Closed World Assumption
applies to the exported URIs, while a Open World Assumption applies
to the imported URIs. We provide a definition of integrity constraint
satisfaction in the presence of partitioning, and show that it leads to a
formal interpretation of dependency graphs which describe the hyper-
linking relations between datasets. We prove that datasets with integrity
constraints form a symmetric monoidal category, from which the sound-
ness of acyclic dependency graphs follows.

1 Introduction

Motivation. In the Semantic Web, entities are named by URIs, and are de-
scribed by RDF documents. Linked Data [5] adds the constraint that entity
URIs should be dereferenceable (HTTP URIs which accept GET requests), and
dereferencing an entity URI returns an RDF representation of that entity. The
W3C web architecture [8] calls such representations authoritative.

The RDF triples contained in an entity representation will generally refer
to entities for which the representation is not authoritative. Such hyperlinks
between datasets are often visualized as a dependency graph, such as the popular
Linking Open Data cloud diagram [6] shown in Figure 1.

Linked Data puts a new spin on the open world stance of the Semantic Web:
from the point of view of a given URI owner, the world is partitioned into local
entities, for which the owner is authoritative, and imported entities, for which
the owner is not authoritative. In this paper, we provide a formal model of this
partitioning which includes:

– a partitioning of entities into imported and exported nodes, in addition to
the familiar blank nodes,

– a definition of what it means for a dataset to satisfy its integrity constraints,
based on the minimal models of Motik et al. [13], but adapted to partitioning,

– a model of acyclic dependency graphs, which can be built compositionally,
and where integrity constraint satisfaction can be performed locally, and

– a proof that graphical reasoning for datasets is sound, by showing that
datasets form a symmetric monoidal category.
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2 Alan Jeffrey and Peter F. Patel–Schneider

Fig. 1. Linking Open Data cloud diagram (detail)

This paper gives the first formal treatment of authoritative resource, integrity
constraints for linked data, dependency graphs, and the categorical structure of
semantic data. In this introduction, we provide informal examples to motivate
our model, which are made precise in Sections 4 and 5.

Authoritative representations, imports and exports. The W3C web ar-
chitecture [8] recommends as good practice that a URI owner “should provide
authoritative representations of the resource it identifies”. Typically, these are
HTTP URIs, which respond to GET requests. Linked Data [5] applies this prac-
tice to the Semantic Web: URI owners provide authoritative representations of
their URIs in RDF (for datasets) or OWL (for ontologies).

Semantic reasoners can make deductions from Linked Data. For example,
consider a URI bob: (in examples, we will use URI prefixes such as alice: and
bob:) which dereferences to the Turtle [4] representation:

bob: foaf:primaryTopic bob:me .
bob:me foaf:knows [ foaf:homepage alice: ] .

Now, if alice: dereferences to:

alice: foaf:primaryTopic alice:me .

then a reasoner can deduce (using the FOAF [2] specification’s definitions):

bob:me foaf:knows alice:me .

In Linked Data, the entities in a dataset can be partitioned into:

– exported nodes (enodes): local entities, which the representation is authori-
tative for, with a publicly defined name that other datasets may link against,

– blank nodes (bnodes): local entities, which the representation is authoritative
for, but without a publicly defined name, and

– imported nodes (inodes): all other entities.

For example, the RDF representation of bob: given above contains inode alice:,
enodes bob: and bob:me, and an anonymous bnode (called _:anon below).
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Integrity Constraints for Linked Data 3

Ontologies and integrity constraints. A consumer of Linked Data may
wish to assume a notion of correctness of the data it is consuming. Rather than
considering integrity constraints to be given in a separate formalism such as a
rules engine [14] or epistemic logic [15], we will use ontologies to express both
deductive reasoning (the standard ontology), and the correctness criteria (the
constraint ontology). A similar approach was taken by Motik et al. [13] and Tao
et al. [17]. For example, consider the standard ontology:

homepage
.
= primaryTopic−

PersonalHomePage � Document

Document � ≤1 primaryTopic

and the constraint ontology:

PersonalHomePage � ∃primaryTopic . Person

Person � ∀knows . Person

The above example is correct with respect to the exported interface:

Person(bob:me) PersonalHomePage(bob:)

under the assumption of the imported interface:

PersonalHomePage(alice:)

We reason informally as follows (this will be made formal in later sections).

– The constraint PersonalHomePage � ∃primaryTopic . Person is satisfied be-
cause the only new PersonalHomePage entity is bob:, and we have a witness
bob:me for the role primaryTopic.

– The constraint Person � ∀knows . Person is satisfied because the only new
Person entity is bob:me, and the only entity which bob:me knows is _:anon.
Now, in any world where PersonalHomePage(alice:), there must be some
individual i such that primaryTopic(alice:, i) and Person(i). We can then
reason using the standard ontology that i = _:anon and so Person(_:anon).

This example, shows the use of two different styles of reasoning.

– When reasoning about exported or blank nodes, we can assume that the
only properties are ones which can be deduced from information we have
asserted, using the standard ontology. For example, this form of reasoning is
used in “because the only new PersonalHomePage entity is bob:” and “the
only entity in a knows role with bob:me is _:anon.”

– We reason differently about imported nodes. All we know about the imported
world is that it satisfies the imported interface, the standard ontology and
the constraint ontology. For example, this form of reasoning is used in “in
any world where PersonalHomePage(alice:), there must be some individual
i such that primaryTopic(alice:, i) and Person(i).”

More succinctly, we use a Closed World Assumption for blank and exported
nodes, and an Open World Assumption for imported nodes.
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4 Alan Jeffrey and Peter F. Patel–Schneider

Dependency graphs. Dependency graphs such as Figure 1 are a common way
of visualizing linked data, but have, until now, remained informal. We propose a
formalization of such graphs as directed graphs where nodes are datasets such as
ALICE (the authoritative representation of alice:) and BOB (the authoritative
representation of bob:), and edges indicate the existence of hyperlinks between
datasets. These edges are labeled by interfaces to make the contract between
datasets explicit, for example:

ALICE BOB
PersonalHomePage(alice:)

Dependency graphs can be regarded as datasets, given by taking the union of all
their constituent datasets (with a bit of bookkeeping to rename nodes to ensure
no name clashes). Since dependency graphs form datasets, they can be nested,
for example a GROUP which includes ALICE and BOB might be built:

GROUP

ALICE BOB

Ensuring correctness should be compositional, for example knowing that ALICE
and BOB are correct should ensure correctness of GROUP. Moreover, nested
graphs should respect equivalence of datasets: if ALICE is replaced by an equiva-
lent ALICE�, then GROUP should be equivalent to GROUP�. Finally, isomorphic
graphs should be equivalent, irrespective of how they are composed, for example:

DEPT CHARLIE

GROUP

ALICE BOB

≡

DEPT GROUP

CHARLIE

ALICE BOB

Symmetric monoidal categories. Our goals for dependency graphs are:

– Nodes describe datasets, edges describe hyperlink relationships.
– Graphs can be built compositionally, with local checking of correctness.
– Graph construction respects equivalence of datasets.
– Isomorphism of dependency graphs implies equivalence of datasets.

Proving these properties directly would be difficult, but fortunately there is
an existing structure which guarantees these properties: a symmetric monoidal
category. Category theory forms a foundational framework for mathematics, but
our need of it is quite pragmatic: the equational theory of a symmetric monoidal
category is precisely that of direct acyclic graphs (shown by Joyal and Street [10],
see, for example, Selinger [16]). Figure 2 sketches how directed acyclic graphs
form a symmetric monoidal category:
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... F ...
...

...

...
...

... F ... G ...
... G ...

...
...

1 F ;G σF ⊗G

Fig. 2. Directed acyclic graphs form a (strict) symmetric monoidal category.

– The identity graph 1 just connects its source and target edges.
– The composition F ;G of graphs takes the disjoint union of F and G, and

unifies the target edges of F with the source edges of G.
– The tensor F ⊗G of graphs takes the disjoint union of F and G.
– The symmetry graph σ just permutes its source and target edges.

Since the equational theory of a symmetric monoidal category is precisely that
of directed acyclic graphs, we can replace our goals for dependency graphs by
the goal of showing that datasets form a symmetric monoidal category. This is a
matter of proving a handful of equations, which is a easier than proving directly
that graph isomorphism implies dataset equivalence.

Summary. The remainder of this paper will make this motivational section
precise. We will define a notion of integrity constraint suitable for partitioning,
and show that datasets with integrity constraints form a symmetric monoidal
category, and hence can be formalized by dependency graphs. This is the first
such investigation of integrity constraints for Linked Data. All results presented
in this paper have been mechanically verified, using the Agda [1] mechanical
proof assistant; all proofs are publicly available [9].

2 Preliminaries

In this paper, we consider a Description Logic SHIN
+
1 , which includes role

hierarchies, role inverses, disjoint, reflexive, irreflexive and transitive roles, and
singleton cardinality restrictions. We expect the results to apply to other descrip-
tion logics. Spelling this out, roles and concepts are defined by the grammars
(where r and c are drawn from sets of atomic role names and concept names):

R ::= r | r−

C ::= c | ¬c | ⊥ | � | C1 � C2 | C1 � C2 | ∀R . C | ∃R . C | ≤1R | >1R

A TBox is a finite set of axioms of the form:

C1 � C2 or R1 � R2 or Dis(R1, R2) or Ref(R) or Irr(R) or Tra(R)
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6 Alan Jeffrey and Peter F. Patel–Schneider

Following Motik et al. [13], we assume ambient TBoxes S (the standard TBox)
and T (the constraint TBox). For any finite set X, an ABox over X is a finite
set of assertions of the form:

c(x) or r(x, y) or x ≈ y where x, y ∈ X

Note that ABoxes are restricted to contain only positive statements, and so have
a monotone semantics. In many cases, this does not impact expressivity, as S
can give names for arbitrary concepts, and T can introduce an irreflexive role
differentFrom used in place of �≈ assertions. In practice, RDF is limited to positive
atomic statements.

An interpretation I over X consists of a set ∆I , together with cI ⊆ ∆I for
each concept name c, rI ⊆ ∆I ×∆I for each role name r, and xI ∈ ∆I for each
x ∈ X. The satisfaction relations I � A (for an ABox A over X) and I � T (for
a TBox T ) are standard. Note that if I is an interpretation over X ⊇ Y , then I

can be regarded as an interpretation over Y .
In the following, we will write X � Y for the disjoint union of X and Y : for

simplicity, we will assume that X and Y are disjoint, and so X ⊆ X � Y ⊇ Y .
In the mechanized proofs [9], we use explicit tagging to ensure disjointness.

3 Initial interpretations

Consider ABoxes A over X, B over Y , and F over (X � V � Y ). We can think
of A as the imported interface (where X is the set of inodes), B as the exported
interface (where Y is the set of enodes) and F as the dataset (where V is the
set of bnodes). Now, what does it mean for F to import A and export B, in the
presence of ambient TBoxes S and T?

F can be thought of as a recipe for adding new assertions to an existing
interpretation. Given any interpretation I over X which satisfies (S, T,A), we
require there to be a canonical interpretation J over (X �V �Y ) which extends
I with (S, F ), and we require J to satisfy (T,B).

Motik et al. [13] use a similar notion of constraint satisfaction, although they
consider all minimal J , rather than a canonical J , with respect to subset or-
der on Herbrand models of Skolemized formulae. As they note, Skolemization
has an impact on the notion of equivalence of TBoxes, for example (c � ∃r . d)
is not equivalent to (c � ∃r . d, c � ∃r . d) because they Skolemize differently
(each existential quantifier introduces a new Skolem function, which may be in-
terpreted differently). We avoid Skolemization by considering initial interpreta-
tions (relative to homomorphisms between interpretations) rather than minimal
interpretations (relative to subset order).

Tao et al. [17] also consider minimal models, with respect to a partial or-
der ≺= which preserves concept membership, role membership and equality of
named individuals. They avoid Skolemization by an alternate semantics, where
quantification only ranges over named individuals.
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A homomorphism between interpretations I and J over X is a function
h : ∆I → ∆J such that, for all x, i and j:

h(xI) = xJ (i ∈ cI) ⇒ (h(i) ∈ cJ ) ((i, j) ∈ rI) ⇒ ((h(i), h(j)) ∈ rJ )

We will write I � J whenever there is a homomorphism from I to J . Consider
an interpretation I, and a family of interpretations Ji with a chosen family
of homomorphisms hi : I → Ji. An initial Ji is one with a unique family
of homomorphisms: gj : Ji → Jj such that gj ◦ hi = hj . Note that initial
interpretations do not always exist, but that when they do they are unique up
to isomorphism.

Definition 1. For any interpretation I over X and ABox F over Z ⊇ X, let
I ⊕ (S, F ) be the initial interpretation J over Z such that I � J and J � S, F .

Note that I ⊕ (S, F ) does not always exist, as S may contain existentials or
disjunctions which do not have canonical witnesses. For example there is no
initial extension of ∅ by:

Bool � True � False True � False � Bool Bool(x)

since there are two incomparable extensions, one with True(x) and one with
False(x). However, there is a syntactic restriction which guarantees the existence
of initial interpretations. Let S be minimizable whenever any axiom C � D has
C built from atoms, ⊥, �, �, � and ∃, and D built from atoms, �, �, ∀ and ≤.

Proposition 1. If S is minimizable, then I ⊕ (S, F ) exists.

4 Integrity constraints

Having defined initiality, we can now define constraint satisfaction. This is a
variant of Motik et al.’s definition: rather than considering all minimal interpre-
tations, we require a canonical initial interpretation to exist, and for it to satisfy
the integrity constraints.

Definition 2. For ABoxes A over X, B over Y and F over (X�V �Y ), define
F : A ⇒ B whenever, for any interpretation I over X such that I � S, T,A, we
have I ⊕ (S, F ) � T,B.

For example, in the example from Section 1 we have that in any I which satisfies
the ambient TBoxes and PersonalHomePage(alice:), there must be some i such
that (alice:I , i) ∈ primaryTopicI , so we can pick fresh j and k and define J as
the smallest extension of I where:

bob:J = j bob:meJ = k :anonJ = alice:I

j ∈ PersonalHomePageJ j ∈ DocumentJ k ∈ PersonJ

(j, k) ∈ primaryTopicJ (k, j) ∈ homepageJ (k, i) ∈ knowsJ
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8 Alan Jeffrey and Peter F. Patel–Schneider

and so we have:




PersonalHomePage(bob:),
Person(bob:me),
primaryTopic(bob:, bob:me),
knows(bob:me, :anon),
homepage( :anon, alice:)




: (PersonalHomePage(alice:)) ⇒

�
PersonalHomePage(bob:),
Person(bob:me)

�

5 Symmetric monoidal category

Having defined our notion of integrity constraints for Linked Data, we give our
main result, which is that ABoxes with integrity constraints form a symmetric
monoidal category, and hence (as shown by Joyal and Street [10] and surveyed,
for example, by Selinger [16]) can be modeled formally by directed acyclic graphs.

A symmetric monoidal category C consists of:

– A collection Obj(C) of objects, including:
• a chosen object I, and
• for each pair of objects A and B, an object A⊗B.

– For each pair of objects, A and B, a collection of morphisms C[A,B], in-
cluding (where we write f : A → B whenever f is in C[A,B]):
• for each f : A → B and g : B → C, a morphism (f ; g) : A → C,
• for each f : A → C and g : B → D, a morphism (f ⊗ g) : (A ⊗ B) →
(C ⊗D), and

• chosen families of morphisms:

1A : A → A σAB : (A⊗B) → (B ⊗A)

αABC : ((A⊗B)⊗ C) → (A⊗ (B ⊗ C)) λA : (A⊗ I) → A

α−1
ABC : (A⊗ (B ⊗ C)) → ((A⊗B)⊗ C) λ−1

A : A → (A⊗ I)

satisfying certain equations (see, for example Mac Lane [12] for details).

The objects of our symmetric monoidal category ABox will be ABoxes, which
we will think of as interfaces.

– Obj(ABox) is the collection of all ABoxes.
– The chosen object I is the empty ABox.
– Given two ABoxes A over X and B over Y , the object (A⊗B) is the ABox

(A,B) over (X � Y ).

The morphisms of the category ABox will also be ABoxes, this time thought of
as datasets satisfying integrity constraints.

– ABox[A,B] is the collection of all ABoxes F such that F : A ⇒ B.
– Given two ABoxes F over (X�V �Y ) and G over (Y �W �Z), the morphism

(F ;G) is the ABox (F,G) over (X � (V � Y �W ) � Z).
– Given two ABoxes F1 over (X1 � V1 � Y1) and F2 over (X2 � V2 � Y2), the

morphism (F1⊗F2) is the ABox (F1, F2) over ((X1�X2)�(V1�V2)�(Y1�Y2)).
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To verify that this definition is well-formed, we have to verify that checking
integrity constraints is compositional, that is we only have to check integrity
locally, and know it is preserved by composition and tensor.

Proposition 2.

1. If F : A ⇒ B and G : B ⇒ C, then (F ;G) : A ⇒ C.
2. If F1 : A1 ⇒ B1 and F2 : A2 ⇒ B2, then (F1⊗F2) : (A1⊗A2) ⇒ (B1⊗B2).

Note that the composition (F ;G) may introduce bnodes, since the intermediate
names which are exported by F and imported by G become bnodes (indeed, this
is why bnodes are present in this model). For example:

(knows(alice:me, bob:me)); (knows(bob:me; charlie:me))

≡ (knows(alice:me, :anon), knows( :anon, charlie:me))

As well as composition of ABoxes, we have to provide the “wiring” combinators
for identity, symmetry, unit and associativity. These are all constructed in the
same way: given any function f : Y → X on finite sets, we define the ABox
wiring(f) over (X �Y ) as containing f(y) ≈ y for each y ∈ Y . We can then show
that wiring(f) respects renaming of ABoxes. Given any ABox A over Y , let f [A]
be the ABox over X given by replacing any individual y in A by f(y).

Proposition 3. If f : Y → X and B ⊆ f [A], then wiring(f) : A ⇒ B.

This suffices to define the combinators of a symmetric monoidal category, for
example 1A : A ⇒ A is given by wiring the identity function.

Finally, we have to prove the equations of a symmetric monoidal category.
These equations are not true up to syntactic equality of ABoxes, due to intro-
duction of bnodes, for example a counter-example to 1;F = F is:

(alice:me ≈ alice:me�); (knows(alice:me�, bob:me))

≡ (alice:me ≈ :anon, knows( :anon, bob:me))

�= (knows(alice:me, bob:me))

The equations are true when we consider ABoxes up to equivalence (in the
presence of S, T and A), that is:

F ≡ G : A ⇒ B whenever S, T,A, F � G and S, T,A,G � F

We therefore consider the morphisms of ABox up to equivalence, which requires
us to show that composition and tensor respect equivalence:

Proposition 4.

1. If F ≡ F � : A ⇒ B and G ≡ G� : B ⇒ C then (F ;G) ≡ (F �;G�) : A ⇒ C.
2. If F1 ≡ F �

1 : A1 ⇒ B1 and F2 ≡ F �
2 : A2 ⇒ B2

then (F1 ⊗ F2) ≡ (F �
1 ⊗ F �

2) : (A1 ⊗A2) ⇒ (B1 ⊗B2).
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10 Alan Jeffrey and Peter F. Patel–Schneider

Fig. 3. Example of Agda proof mechanization

The proofs that ABoxes satisfy the equations of a symmetric monoidal category
are then direct. The coherence properties (which only involve compositions of
wiring morphisms) follow because wiring respects composition and tensor:

wiring(f);wiring(g) ≡ wiring(f ◦ g) wiring(f)⊗ wiring(g) ≡ wiring(f � g)

Theorem 1. ABox forms a symmetric monoidal category.

The proof of this theorem, including the definitions it relies on, is approximately
3,000 lines of Agda code [9]. An example lemma is shown in Figure 3.

6 Conclusions and further work

We have presented the first treatment of integrity constraints for Linked Data
which makes use of a partition between local entities, for which a dataset is
authoritative, and imported entities, where complete information is not known.
We have given the first categorical presentation of datasets, and as a consequence,
we have the first formal treatment of acyclic dependency graphs.

There are open questions raised by this model, of which the most important
is its algorithmic properties: is integrity constraint satisfaction decidable, and if
so, what is its complexity, and can it be reduced to existing decision problems?

Our model only treats acyclic dependency graphs, via symmetric monoidal
categories. A categorical treatment of cyclic graphs uses traced monoidal cate-
gories (introduced by Joyal, Street and Verity [11], and discussed by Selinger [16]).
Cyclic graphs require the existence of fixed points which unfortunately do not re-
spect integrity constraint satisfaction, for example the fixed point of the identity
morphism is equivalent to an empty dataset, which will not satisfy existential
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or disjunctive integrity constraints. The situation is similar to that of complete
metric spaces: not all functions have fixed points, but contraction maps do.

Our model assumes the existence of ambient TBoxes S and T , which must
be agreed upon by all datasets. This requirement is quite strong, and the model
would be improved by allowing authoritative ontologies as well as datasets. This
is related to the notion of modularity of ontologies [7].

The mechanized proofs of our model [9] are given in Agda [1], which as well
as a proof assistant is a programming language which compiles to Haskell [3].
We hope to extend our proofs to a Semantic Web library, which will support the
development of provably correct programs to process Linked Data.
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Abstract. A combination of open and closed-world reasoning (usually
called local closed world reasoning) is a desirable capability of knowledge
representation formalisms for Semantic Web applications. However, none
of the proposals made to date for extending description logics with local
closed world capabilities has had any significant impact on applications.
We believe that one of the key reasons for this is that current proposals
fail to provide approaches which are intuitively accessible for applica-
tion developers and at the same time are applicable, as extensions, to
expressive description logics such as SROIQ, which underlies the Web
Ontology Language OWL.
In this paper we propose a new approach which overcomes key limitations
of other major proposals made to date. It is based on an adaptation of cir-
cumscriptive description logics which, in contrast to previously reported
circumscription proposals, is applicable to SROIQ without rendering
reasoning over the resulting language undecidable.

Keywords: description logic, closed world, circumscription, decidability

1 Introduction

The semantics of the Web Ontology Language OWL [16] (which is based on the
description logic SROIQ [17]) adheres to the Open World Assumption (OWA).
This means that statements which are not logical consequences of a given knowl-
edge base are not necessarily considered false. The OWA is reasonable in a World
Wide Web context (and thus for Semantic Web applications), however situations
naturally arise where it would be preferable to use the Closed World Assumption
(CWA), that statements which are not logical consequences of a given knowl-
edge base are always considered false. The CWA is applicable, e.g., when data is
being retrieved from a database, or if data can otherwise be considered complete
with respect to the application at hand (see, e.g., [14, 34]).

As a consequence, efforts have been made to combine OWA and CWA mod-
eling for the Semantic Web (see Section 4), and knowledge representation lan-
guages which have both OWA and CWA modeling features are said to adhere to
the Local Closed World Assumption (LCWA). Most of these combinations are
derived from non-monotonic logics which have been studied in logic program-
ming [18] or on first-order predicate logic [28, 29, 35]. Furthermore, many of them
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have a hybrid character, meaning that they achieve the LCWA by combining,
e.g. description logics with (logic programming) rules.

Of the approaches which provide a seamless (non-hybrid) integration of OWA
and CWA, there are not that many, and each of them has its drawbacks. This
is despite the fact that the modeling task, from the perspective of the applica-
tion developer, seems rather simple: Users would want to specify, simply, that
individuals in the extension of a predicate should be exactly those which are
necessarily required to be in the extension, i.e., extensions should be minimized.
Thus, what is needed for applications is a simple, intuitive approach to closed
world modeling, which can be easily picked up by application developers.

Among the primary approaches to non-monotonic reasoning, there is exactly
one approach which employs the minimization idea in a very straightforward
and intuitively simple manner, namely circumscription [28]. However, a naive
transfer of the circumscription approach to description logics, which was done
in [4, 5, 15], appears to have three primary drawbacks.

1. The approach is undedicable for expressive description logics (e.g., for the
description logic SROIQ) unless awkward restrictions are put in place. More
precisely, it is not possible to have non-empty TBoxes plus minimization of
roles if decidability is to be retained.

2. Extensions of minimized prediates can still contain elements which are not
named individuals (or pairs of such, for roles) in the knowledge base, which
is not intuitive for modeling (see also [14]).

3. Complexity of the approach is very high.

The undecidability issue (point 1) hinges, in a sense, also on point 2 above.
In this paper, we provide a modified approach to circumscription for description
logics, which we call grounded circumscription, which remedies both of points 1
and 2. We are not yet addressing the complexity issue; this will be done in future
work. Our idea is simple yet effective: we modify the circumscription approach
from [4, 5, 15] by adding the additional requirement that extensions of minimized
predicates may only contain named individuals (or pairs of such, for roles). In a
sense, this can be understood as porting a desirable feature from (hybrid) MNKF
description logics [9, 20, 21, 32] to the circumscription approach. In another (but
related) sense, it can also be understood as employing the idea of DL-safety [33],
respectively of DL-safe variables [24] or nominal schemas [22, 23].

Note that we do not claim that our approach is the only road to take—we
rather view it as one step on the quest of designing suitable LCWA languages for
the Semantic Web. Indeed, we mainly intend to highlight that there is a plethora
of methods how to obtain local closed world versions of description logics (and
thus of OWL), see e.g. [25, 26], and all of them are potential alternatives to the
big three (circumscription [28], autoepistemic logic [29], and default logic [35]).
The Semantic Web community needs a systematic investigation of options for
modeling local closed world aspects, which are not ideologically bound to ap-
proaches which have been developed for different purposes in the KR community.

The paper is structured as follows. In Section 2 we introduce the semantics
of grounded circumscription. In Section 3 we show that the resulting language is
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decidable. In Section 4 we discuss related work, and conclude with a discussion
of further work in Section 5.

2 Grounded Circumscription

We now describe a very simple way for ontology designers to model local closed
world aspects in their ontologies: simply use a description logic (DL) knowledge
base (KB) as usual, and augment it with meta-information which states that
some predicates (concept names or role names) are closed. Semantically, those
predicates are considered minimized, i.e. their extensions contain only what is
absolutely required, and furthermore only contain known (or named) individ-
uals, i.e., individuals which are explicitly mentioned in the KB. In the case of
concept names, the idea of restricting their extensions only to known individuals
is similar to the notion of nominal schema [23] (and thus, DL-safe rules [24, 33])
and also the notion of DBox [38], while the minimization idea is borrowed from
circumscription [28], one of the primary approaches to non-monotonic reasoning.

In the earlier efforts to carry over circumscription to DLs [4, 5, 14, 15], circum-
scription is realized by the notion of circumscription pattern. A circumscription
pattern consists of three disjoint sets of predicates (i.e., concept names and role
names) which are called minimized, fixed and varying predicates, and a prefer-
ence relation on interpretations. The preference relation allows us to pick min-
imal models as the preferred models with respect to inclusion of the extension
of the minimized predicates.

Our formalism simplifies the circumscription approach by restricting our at-
tention to models in which the extension of the minimized predicates may only
contain known individuals from the KB. Moreover, we divide predicates in the
KB only into two disjoint sets of minimized and non-minimized predicates.1

The non-minimized predicates would be viewed as varying in the more general
circumscription formalism mentioned above.

Let NC , Nr, and NI be disjoint, countably infinite sets of concept names,
role names, and individual names, resp. Let L be a standard description logic
whose concepts and roles are formed based on the signature that consists of NC ,
NR, and NI , together with a set of standard DL (concept and role) constructors
[2]. The only non-standard DL constructor that is needed in this paper is the
role constructor concept product, written C ×D with C,D concepts in L, which
allows a role to be constructed from the Cartesian product of two concepts [23,
37]. In addition, we define an L-KB as a set of concept inclusion axioms C � D
where C,D ∈ NC , role inclusion axioms r � s where r, s ∈ Nr, and assertions of
the form C(a) and r(a, b) where C ∈ NC , r ∈ Nr and a, b ∈ NI .

The semantics for L is defined in terms of interpretations I = (∆I , ·I) where
∆I is a non-empty set called the domain and ·I is an interpretation function

1 Fixed predicates can be simulated in the original circumscriptive DL approach if
negation is available, i.e., for fixed class names, class negation is required, while for
fixed role names, role negation is required. The latter can be added to expressive
DLs without jeopardizing decidability [23, 40].
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that maps each concept name to a subset of ∆I , each role name to a subset of
∆I ×∆I and each individual name to an element of ∆I . An interpretation I is
extended to complex concepts and roles in the usual way for L, and for concept
products, (C × D)I = {(x, y) | x ∈ CI , y ∈ DI}. We say that I satisfies (is a
model of ): a concept inclusion axiom C � D if CI ⊆ DI ; a role inclusion axiom
r � s if rI ⊆ sI ; a concept assertion C(a) if aI ∈ CI ; and a role assertion r(a, b)
if (aI , bI) ∈ rI . We also say that I satisfies (is a model of ) an L-KB K if it
satisfies every axioms in K.

The non-monotonic feature of the formalism is given by restricting models
of an L-KB such that the extension of closed predicates may only contain in-
dividuals (or pairs of them) which are explicitly occurring in the KB, plus a
minimization of the extensions of these predicates. We define a function Ind that
maps each L-KB to the set of individual names it contains, i.e., given an L-KB
K, Ind(K) = {b ∈ NI | b occurs in K}. Among all possible models of K that are
obtained by the aforementioned restriction to Ind(K), we then select a model
that is minimal w.r.t. concept inclusion or role inclusion.

Definition 1. A GC-L-knowledge base (KB)—GC stands for grounded cir-
cumscription—is a pair (K,M) where K is an L-KB and M ⊆ {A ∈ NC |

A occurs in K} ∪ {r ∈ Nr | r occurs in K}. For every concept name and role
name W ∈ M , we say that W is closed with respect to K. For any two models
I and J of K, we furthermore say that I is smaller than J w.r.t. M , written
I ≺M J , iff all of the following hold: (i) ∆I = ∆J and aI = aJ for every
aI ∈ ∆J ; (ii) W I ⊆ WJ for every W ∈ M ; and (iii) there exists a W ∈ M
such that W I ⊂ WJ

We now define models of GC-L-KBs as follows.

Definition 2. An interpretation I is a GC-model of a GC-L-KB (K,M) if all
of the following hold: (i) I is a model of K; (ii) for each concept name A ∈ M ,
AI ⊆ {bI | b ∈ Ind(K)}; (iii) for each role name r ∈ M , rI ⊆ {bI | b ∈

Ind(K)} × {bI | b ∈ Ind(K)}; and (iv) I is minimal w.r.t. M , i.e., there is no
model J of K such that J ≺M I.

The notion of logical consequence is defined as usual: An axiom α is a logical
consequence (a GC-inference) of a given GC-L-KB (K,M) if and only if α is
true in all GC-models of (K,B).

Our formalism here is inspired by one of the approaches described by Makin-
son in [26], namely restricting the set of valuations to get more logical conse-
quences than what we can get as classical consequences. Intuitively, this approach
is a simpler version of the circumscription formalism for DLs as presented in [5,
15] in the sense that concept names and role names are either varying or min-
imized, i.e., no predicate is considered fixed. Indeed, every GC-model of a KB
is also a circumscriptive model,2 hence every circumscriptive inference is also a
valid GC-inference.

2 This can be seen, e.g., by a straightforward proof by contradiction.
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To give an example, consider the knowledge base K consisting of the axioms

hasAuthor(paper1, author1) hasAuthor(paper1, author2)

hasAuthor(paper2, author3) � � ∀hasAuthor.Author.

Then (≤2 hasAuthor.Author)(paper1) is not a logical consequence of K under
the classical description logic semantics. However, if we assume that we have
complete information on authorships relevant to the application under consid-
eration, then it would be reasonable to close parts of the knowledge base in the
sense of the LCWA. In the original approach to circumscriptive DLs, we could
close the class name Author, but to no avail. But if we close hasAuthor, we ob-
tain (≤2 hasAuthor.Author)(paper1) as a logical consequence. However, closure
of roles in the original circumscriptive DL approach leads to undecidability [5].
The GC-semantics, in contrast, is decidable even under role closure (see Section
3 below), and also yields the desired inferences.

Are there inferences which hold with respect to the GC-semantics but not
with respect to the original circumscriptive DL approach? There are, but it seems
difficult to find a convincing example which might indicate practical relevance.
If this is indeed the case, then we could argue that the original circumscriptive
approach is too sceptical with respect to application requirements, in addition
to the decidability issue already noted.

The following is an academic example, adapted from [15], which shows the
different inferencing capabilities of the GC-semantics versus the original cir-
cumscriptive DL semantics. Consider the knowledge base K1 consisting of the
following axioms, where EndangeredSpecies is a minimized class name.

Bear(polarBear)

∃isHabitatFor.(Bear � EndangeredSpecies)(arcticSea)

In the original circumscriptive DL approach, there is a model in which the
extensions of both Bear and EndangeredSpecies share a common element dis-
tinct from polarBear, hence it cannot be concluded that polarBear is an
EndangeredSpecies. Under the GC-semantics, however, this can be concluded.
This is due to the fact that there are no individuals other than polarBear in
the knowledge base. Indeed, if we assume that there is another individual, say,
blueWhale, then the conclusion no longer holds even under the GC-semantics.

Is the conclusion under the GC-semantics desirable, that polarBear is an
EndangeredSpecies? We believe so, because we are essentially restricting our
world to one individual. I.e., if we would like to reject the conclusion, we should
rather question the adequacy of our modeling, than of the semantics. However,
this discussion seems to be quite academic, since the situation above is not that
of a realistic knowledge base, where we could reasonably assume the presence of
other individuals, such as blueWhale, such that the arguable inference no longer
holds even with respect to the GC-semantics.3 And indeed it should not hold

3 The situation might be different with respect to knowledge bases under development,
but this would rather be an interface issue.
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in this case under an intuitive reading of the knowledge base: If there is also a
second individual blueWhale, then we have no reason to assume that it must
be polarBear which is an EndangeredSpecies (unless, of course, we also state
that blueWhale must not be a Bear).

3 Decidability Considerations

As noted earlier, circumscription in many expressive DLs is undecidable [5].
Undecidability even extends to the basic DL ALC when non-empty TBoxes are
considered and roles are allowed as minimized predicates. Such a bleak outlook
would greatly discourage useful application of circumscription, despite the fact
that there is a clear need of such a formalism to model LCWA.

Our formalism aims to fill this gap by offering a simpler approach to cir-
cumscription in DLs that is decidable provided that the underlying DL is also
decidable. The decidability result is obtained due to the imposed restriction of
minimized predicates to known individuals in the KB as specified in Definition 2.
Let L be any standard DL. We consider the following reasoning task of GC-KB
satisfiability : “given a GC-L-KB (K,M), does (K,M) have a GC-model?” and
show in the following that this is decidable. Note that other basic reasoning tasks
can usually be reduced to this task [5, 15].

Assume that L is any (standard) DL, e.g., ALCOB(×), featuring nominals,
concept disjunction, concept products and role disjunctions.4 We show that GC-
KB satisfiability in L is decidable if satisfiability in L is decidable.

Let (K,M) be a GC-L-KB. We assume that M = MA ∪ Mr where MA =
{A1, . . . , An} is the set of minimized concept names and Mr = {r1, . . . , rm} is
the set of minimized role names. Now define a family of (n+m)-tuples as

G(K,M) = {(X1, . . . , Xn, Y1, . . . , Ym) | Xi ⊆ Ind(K), Yj ⊆ Ind(K)× Ind(K)}

with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Note that there are
�
2|Ind(K)|

�n
·

�
2Ind(K)2

�m
= 2n·|Ind(K)|+m·|Ind(K)|2 (1)

of such tuples; in particular note that G(K,M) is a finite set.
Now, given (K,M) and some G = (X1, . . . , Xn, Y1, . . . , Ym) ∈ G(K,M), let

KG be the L-KB consisting of all axioms in K together with all of the following
axioms, where the Ai and rj are all the predicates in M—note that we require
role disjunction and concept products for this.

Ai ≡

�
{a} for every a ∈ Xi and i = 1, . . . , n

rj ≡
�

({a} × {b}) for every pair (a, b) ∈ Yj and j = 1, . . . ,m

Then the following result clearly holds.

4 For concept products, see [23]—they can be eliminated if role constructors are avail-
able. For role disjunctions, see [40], where it is shown, amongst other things, that
ALCQIOB is decidable.
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Lemma 1. Let (K,M) be a GC-L-KB. If (K,M) has a GC-model I, then there
exists G ∈ G(K,M) such that KG has a (classical) model J which coincides with
I on all minimized predicates. Likewise, if there exists G ∈ G(K,M) such that KG

has a (classical) model J , then (K,M) has a GC-model I which coincides with
J on all minimized predicates.

Observe that class disjunction, nominals, concept products, and role dis-
junction are needed to obtain Lemma 1. From [40] we know that adding role
disjunction to ALCQIO retains decidability. Now consider the set

G
�
(K,M) = {G ∈ G(K,M) | KG has a (classical) model},

and note that this set is finite and computable in finite time since G(K,M) is
finite and L is decidable. Furthermore, consider G�

(K,M) to be ordered by the
pointwise ordering ≺ induced by ⊆. Note that the pointwise ordering of the
finite set G�

(K,M) is also computable in finite time.

Lemma 2. Let (K,M) be a GC-L-KB and let

G
��
(K,M) = {G ∈ G

�
(K,M) | G is minimal in (G�

(K,M),≺)}.

Then (K,M) has a GC-model if and only if G��
(K,M) is non-empty.

Proof. This follows immediately from Lemma 1 together with the following ob-
servation: Whenever K has two GC models I and J such that I is smaller than
J , then there exist GI , GJ ∈ G�

(K,M) with GI ≺ GJ such that KGI and KGJ

have (classical) models I � and J �, respectively, which coincide with I, respec-
tively, J , on the minimized predicates.

Theorem 1. GC-KB-satisfiability is decidable.

Proof. This follows from Lemma 2 since the set G��
(K,M), for any given GC-KB

(K,M), can be computed in finite time, i.e., it can be decided in finite time
whether G��

(K,M) is empty.

Some remarks on complexity are as follows. Assume that the problem of
deciding KB satisfiability in L is in the complexity class C. Observe from equa-
tion (1) that there are exponentially many possible choices of the (n+m)-tuples
in G(K,M) (in the size of the input knowledge base). Computation of G�

(K,M) is

thus in ExpC, and subsequent computation of G��
(K,M) is also in Exp. We thus

obtain the following upper bound.

Proposition 1. GC-KB satisfiability is in ExpC , where C is the complexity
class of the DL under consideration.

Observe that the decidability proof gives rise to a straightforward imple-
mentation procedure, however this is certainly not a smart algorithm. As future
work, it should be possible to adjust the tableaux algorithm from [15], which
may also give rise to a sharpening of the upper bound on complexity.
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4 Related Work

In this paper we have presented a new approach to DL reasoning under the Local
Closed World Assumption (LCWA). There are several approaches described in
the literature for LCWA which combine the OWA and CWA semantics, and in
the following we briefly discuss some of the most important proposals.

Autoepistemic Logic [29, 30] is an approach followed by a number of authors.
The semantics of autoepistemic logic have been defined using an autoepistemic
operator K [7, 8] and has been studied for ALC and also for more expressive
DLs. [7, 9] further provide an epistemic operator A related to negation-as-failure
which allows for the modeling of default rules and integrity constraints.

Circumscription [28] is another approach taken to develop LCWA exten-
tions of DLs [5, 14, 15]. [5] evaluates the complexities of reasoning problems in
variations of DLs with circumscription. [14] provides examples to stress the im-
portance of LCWA to provide an intuitive notion of matchmaking of resources
in the context of Semantic Web Services. [15] provides an algorithmization for
circumscriptive ALCO by introducing a preferential tableaux calculus, based on
previous work on circumscription [4]. [19] proves a method to eliminate fixed
predicates in circumscription patterns by adding negation of fixed predicates to
the minimized set of predicates.

Some significant proposals involve the use of hybrid MKNF knowledge bases
[32] which are based on an adaptation of the Stable Model Semantics [12] to
knowledge bases consisting of ontology axioms and rules, thereby combining
both open world and closed world semantics. A variant of this approach using
the well-founded semantics, i.e., with a lower complexity, has also be presented
[20, 21], and algorithms and implementations have been developed [1, 13].

[10] takes a hybrid approach to combine ontologies and rules by keeping the
semantics of both parts separate, but also at the same time allowing for building
rules on top of ontologies and vice versa with some limitations, again following
the Stable Model Semantics. [11] provides a related well-founded semantics.

Some of the work related to LCWA also involves the use of integrity con-
straints (ICs) and of the Unique Name Assumption (UNA). An approach ex-
tending OWL ontologies to add ICs such that it adds non-montonicity to the
DL is [31]. [39] provides semantics for OWL axioms to allow for IC and UNA to
achieve local closed world reasoning.

In [38], the notion of DBox is introduced. A DBox consists of a set of (atomic)
assertions such that the extension of a DBox predicate under any interpretation
is exactly as defined by this set of assertions. In a sense, grounded circumscrip-
tion encompasses this expressive feature but goes beyond it, while, as expected,
loosing some of the desirable features of the more specialized DBox approach.

There are a number of other approaches which have been attempted in the
past, but without follow-up work, e.g. [3, 6, 27, 36]. For some further pointers to
the literature, please refer to [22].
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5 Conclusion and Outlook

We have provided a new approach for incorporating the LCWA into description
logics. Our approach, grounded circumscription, is a variant of circumscriptive
description logics which avoids two major issues of the original approach: Ex-
tensions of minimized predicates can only contain named individuals, and we
retain decidability even for very expressive description logics while we can allow
for the minimization of roles.

A primary theoretical task is to investigate the complexity of our approach,
but it can be expected that it is not going to be worse than the previous cir-
cumscription proposal. In fact, lower complexities should result in some cases,
which may yield to tractable or data-tractable fragments.

Likewise, it should be possible to adapt the tableaux algorithm for circum-
scriptive description logics from [15] to our setting, and there may even be more
efficient procedures.

From a more general perspective, it should be worthwhile to investigate fur-
ther alternatives for incorporating closed world modeling into description logics.
Preferably, one would like to obtain a language which is intuitively very simple,
appeals to ontology engineers, and is computationally effective. Whether such a
language exists, however, is an open question.
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Abstract. This paper examines a new technique based on tableau, that
allows one to introduce composition of roles from the right hand side
of complex role inclusion axioms (RIAs). Our motivation comes from
modeling product models in manufacturing systems. The series of papers,
so far, have studied the extension of tableau algorithm for Description
Logics (DLs) to capture complex RIAs. However, such RIAs permit only
the left hand side of the composition of roles. To illustrate the technique,
we extend RIQ DL with one RIA of the form R�̇Q ◦ P .

Keywords: Description Logic, Manufacturing system,Tableau.

1 Introduction

Description Logics [1] are a well-established branch of logics for knowledge rep-
resentation and reasoning about it. Recent research in DLs has usually focused
on the logics of the so-called SH family as basis for the standard Web Ontol-
ogy Languages (OWL) [10]. In particular, the DL SHIQ [8] is closely related
to OWL-Lite and extends the basic ALC [1](the minimal propositionally closed
DL) with inverse roles and number restrictions, as well as with role inclusions
and transitive roles. The DL known as SHOIQ [7], underlying OWL-DL, further
extends SHIQ with nominals. Logics, SHIQ and SHOIQ were enhanced with
regular role hierarchies in which the composition of a chain of roles may imply
another role. These and other features were included in their extensions known
as SRIQ [9] and SROIQ [5] respectively; the latter underlies the new OWL 2
[4] standard. For reasoning in them, the adaptations of the tableaux algorithms
were proposed [9, 5]. In a pre-processing stage, the implications between roles,
given by the role hierarchy, are captured in a set of non-deterministic finite state
automata (NFA). The complexity of these logics is studied in [11]. Also, there
exists another extensions of the logics with description graphs [14] and stratified
ontologies [12]. Motivation for our research is based on modeling product models
in manufacturing systems (see UML model on Figure 1) [3]. For example, when
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an individual crankshaft in individual engine in an individual car, powers indi-
vidual hubs in individual wheels in the same car, and not the hubs in the wheels
in the other cars [13]. Such modeling example can be represented as RIAs with
more then one role on the right hand side of role composition [13]. The aim of this
paper is to show a technique that can allow the extension of RIQ DL [6] with a
RIA of the form R�̇Q ◦P . The RIQ DL [6], is the fragment of SRIQ (without
Abox, as well as, reflexive, symmetric, transitive, and irreflexive roles, disjoint
roles, and the construct ∃R.Self) [9]. To avoid analysis of restrictions that roles
must satisfy in new RIAs, we consider only one RIA of the form R�̇Q◦P . Main
idea is to define a new role (P−

, x) that remembers in which object is related to
the role. We define new constructor which will deal with these roles.
The paper is organized as follows. Next section gives short overview of RIQ DL
and its role hierarchy. Section (3) explains simple reduction problem and gives
general idea. Section (4), outlines the extension of RIQ tableau, while section
(5) gives formal proof of the correctness and termination of tableau algorithm.
Finaly we give some remarks and explane future work.

2 Preliminaries

This section, in brief, outlines syntax and semantics of RIQ DL and regular role
hierarchy. The alphabet of RIQ DL consists of set of concept names NC , set of
role names NR and finally, set of simple role names NS ⊂ NR. The set of roles
is NR ∪ {R−|R ∈ NR}. According to [6], syntax and semantics of the RIQ DL
concepts are given in definitions 1 and 2.

Definition 1. Set of RIQ concepts is a smallest set such that

– every concept name and �, ⊥ are concepts, and,
– if C and D are concept and R is a role, S is simple role, n is non-negative

integer, then ¬C, C � D, C � D, ∀R.C, ∃R.C, (≤ nS.C), (≥ nS.C) are
concepts. ��

The semantics of the RIQ DL is defined by using interpretation. An interpre-
tation is a pair I = (∆I

, ·I), where ∆
I is a non-empty set, called the domain

of the interpretation. A valuation ·I associates: every concept name C with a
subset CI ⊆ ∆

I ; every role name R with a binary relation R
I ⊆ ∆

I ×∆
I [6].

Definition 2. An interpretation I extends to RIQ complex concepts and roles
according to the following semantic rules:

– If R is a role name, then (R−)I = {�x, y� : �y, x� ∈ R
I},

– If R1, R2,. . . , Rn are roles then (R1R2 . . . Rn)I = (R1)I ◦(R2)I ◦· · ·◦(Rn)I ,
where sign ◦ is a composition of binary relations,

– If C and D are concepts, R is a role, S is a simple role and n is a non-
negative integer, then 3

3 �M denotes cardinality of set M .
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�I = ∆
I
,⊥I = ∅, (¬C)I = ∆

I\CI
,

(C �D)I = C
I ∩D

I
, (C �D)I = C

I ∪D
I
,

(∃R.C)I = {x : ∃y. �x, y� ∈ R
I ∧ y ∈ C

I},
(∀R.C)I = {x : ∀y. �x, y� ∈ R

I ⇒ y ∈ C
I},

(≥ nS.C)I = {x : �{y : �x, y� ∈ S
I ∧ y ∈ C

I} ≥ n},
(≤ nS.C)I = {x : �{y : �x, y� ∈ S

I ∧ y ∈ C
I} ≤ n}.

Number restrictions (≥ nS.C) and (≤ nS.C), are restricted to simple roles, in
order to have RIQ decidability. ��

Strict partial order ≺ (irreflexive, transitive, and antisymmetric), on the set
of roles, provides acyclicity [6]. Allowed RIAs in RIQ DL with respect to ≺, are
expressions of the form w�̇R, where [6]:

1. R is a simple role name, w = S and S ≺ R is a simple role,
2. R ∈ NR\NS is a role name and

(a) w = RR, or
(b) w = R

−, or
(c) w = S1 · · ·Sn and Si ≺ R, for 1 ≤ i ≤ n, or
(d) w = RS1 · · ·Sn and Si ≺ R, for 1 ≤ i ≤ n, or
(e) w = S1 · · ·SnR and Si ≺ R, for 1 ≤ i ≤ n.

Note that the notion of simple role has the same meaning as defined in [5]. So,
we use the simple role S carefully in allowed RIAs to avoid R1 ◦R2 � S.

A RIQ RBox (role hierarchy) is a finite set R of RIAs. A role hierarchy R is
regular if there exists strict partial order ≺ such that each RIA in R is regular
[6]. An interpretation I satisfies a RIA S1 · · ·Sn�̇R, if SI

1 ◦ · · · ◦SI
n⊆R

I . A RIQ
concept C is satisfiable w.r.t. RBox R if there is an interpretation I such that
C

I �= ∅ and I satisfies all RIA in R [6, 11]. In this paper we extend regular
RIQ-RBox with one RIA of the form

w�̇Q ◦ P (1)

where w = S1 ◦ S2 · · ·Sn, Si ≺ Q, P ≺ Q and there is no i, such that P ≺ Si.
An interpretation I satisfies a RIA of the form w�̇Q ◦ P , if wI ⊆ Q

I ◦ P I . In
the rest of the paper we check satisfiability of concept C0 w.r.t. defined RBox R
and define RC0 = {R|R is role that occurs in C0 or R}.

3 The simple reduction and general idea

Tableau algorithm in [6] tries to construct a tableau for RIQ-concept C. In pre-
processing step the role hierarchy is translated into NFA, that are used, both,
in the definition of a tableau and in the tableau algorithm. Intuitively, an au-
tomaton is used to memorize path between an object x that has to satisfy a
concept of the form ∀R.C and other objects, and then to determine which of
these objects must satisfy C [6]. Similar idea can be used in extension RIQ with
a RIA of the form w�̇Q ◦ P . If an object x should satisfies concept ∀Q.C then
we should define structure that will remember path w ◦P− from the object x to
objects that must satisfy concept C. If we extend RIQ DL with Fun [11], then
the next lemma holds:

545



Lemma 1. Let C0 be RIQ concepts and R regular RBox with a RIA of the
form w�̇QP , where Fun(P−) holds. Let U be a new role name. We define

C1 := ∀U.(∀w.(∃P−
.�)) � ∀w.(∃P−

.�),

and set

R1 := R\{w�̇QP} ∪ {UU�̇U,U
−�̇U} ∪ {R�̇U |R ∈ RC0} ∪ {wP−�̇Q}.

Then, RIQ concept C0 is satisfiable w.r.t. RBox R iff concept C0 � C1 is
satisfiable w.r.t. Rbox R1.

Proof. The proof is based on transformation from one interpretation to another
one. ��

Without restriction Fun(P−), lemma (1) do not holds. It is illustrated in exam-
ple (1).

Example 1. The UML4 model of a car, shown on Figure (1a), describes Car with
following parts: Engine, Wheel, Crankshaft and Hub. Role name powers is
part-part relation [13, 2], but role names engineInCar, wheelInCar, hubInWhe-
el and crankshaftInEngine are part-of relations [2]. The model corresponds to
next RIA of the form [13]:

engineInCar◦crankshaftInEngine◦powers�̇wheelInCar◦hubInWheel (2)

Let I be an interpretation, shown on Figure (1b), of the RIA of the form (2).
The interpretation I satisfies RIA of the form w�̇wheelInCar ◦ hubInWheel,
but it does not satisfy RIA of the form w ◦ hubInWheel

−�̇wheelInCar, where
w = engineInCar ◦ crankshaftInEngine ◦ powers. ��

(a)

x1 z0 y1

x0 y0

hubInWheel

wheelInCar

hubInWheel

w
wheelInCarw

1

(b)

Fig. 1. (a) An UML product model (updated from [13]). (b) An interpretation I of
RIA of the form (2).

4 The Unified Modeling Language (http://www.uml.org/)
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According to the Figure (1b), one can conclude that the restriction problems
for reduction of RIAs is caused by the role hubInWheel

−. The role is not
”unambiguously” determined. On the other side, by using the interpretation
shown on the Figure (1b), it is obvious �z0, y1� ∈ (hubInWheel

−)I corresponds
to object y0, while �z0, x1� ∈ (hubInWheel

−)I corresponds to object x0. In the
other words, the condition of existence unambiguously role is connected to an
object. To stressed which particular object corresponds to the role name, a new
role (R, x) is defined. The role satisfies

(R, x)�̇R. (3)

For example, in case of the interpretation, shown on Figure (1b), one can de-
fine new roles, as follows: (hubInWheel

−
, x0), (hubInWheel

−
, y0), which satisfy

�z0, x1� ∈ (hubInWheel
−
, x0)I , �z0, y1� ∈ (hubInWheel

−
, y0)I , but �z0, x1� /∈

(hubInWheel
−
, y0)I . Now, one can define new tableau concept (constructor) de-

noted as ∃
∀ (hubInWheel

−
, x).D. This constructor is used in the label of nodes

of the tableau (see definition 3). Intuitively, the constructor serves to write the
set of sub-concepts of the concept C0 which have to hold in some node, i.e. if
Z = {D|∃∀ (hubInWheel

−
, x0).D ∈ L(z0)} = {D|∀wheelInCar.D ∈ L(x0)} �= ∅

then there exists x1 such that �z0, x1� ∈ E((hubInWheel
−
, x0)) and Z ⊆ L(x1).

4 The extension of RIQ tableau

This section examines how to extend tableau for the RIQ DL with the new
constructor. We denote, as defined in [6], BR as NFA that corresponds to role
R. We use a special automaton for word w, denoted with Bw. For B an NFA
and q a state of B, Bq denotes the NFA obtained from B by making q the (only)
initial state of B [5]. The language recognized by NFA B is denoted by L(B).
The clos(C0) is the smallest set of concepts in negation normal form (NNF)
which contains C0, that is closed under ¬̇ and sub-concepts [6]. For a set S the
fclos(C0,R) and efc(C0,R, S) can be defined as follows:

fclos(C0,R) = clos(C0)∪{∀Bq
R.D|∀R.D ∈ clos(C0) and q is a state in BR},

efc(C0,R, S) = fclos(C0,R)∪{ ∀Bq
w.

∃
∀ (P

−
, s).D|s ∈ S, ∀Q.D ∈ clos(C0)} ∪

{∃
∀ (P

−
, s).D|s ∈ S, ∀Q.D ∈ clos(C0)}.

Let’s denote

PL(Bw) =
�
�w�

, q� |q is a state in Bw, (∀w�� ∈ L(Bq
w))

�
w

�
w

�� ∈ L(Bw)
��

.

Definition 3. T=(S, L, E) is tableau for concept C0 w.r.t. R iff5

– S is non-empty set,
– L : S → 2efc(C0,R,S),
– E : RC0 ∪ {(P−

, s)|s ∈ S} → 2S×S

– C0 ∈ L(s) for some s ∈ S

5 w, Q and P refer to the RIA axiom of the form w�̇Q ◦ P.
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Next, s, t ∈ S;C,C1, C2 ∈ fclos(C0,R);R,S ∈ RC0 and S
T (s, C) [5] satisfies

rules (P1a), (P1b), (P2), (P3), (P4a), (P4b), (P5), (P6), (P7), (P8), (P9),
(P10), (P13) defined in [5], and satisfies new rules:

– (P6b) If ∀Q.C ∈ L(s), then ∀Bw.
∃
∀ (P

−
, s).C ∈ L(s).

– (P15a) ∀Q.� ∈ L(s) for all s ∈ S.
– (P15b) If ∃

∀ (P
−
, s).C1 ∈ L(v), then there exists t with �v, t� ∈ E(P−

, s) and
C1 ∈ L(t). Also, for all C2 ∈ fclos(C0), if

∃
∀ (P

−
, s).C2

∈ L(v) then C2 ∈ L(t).
– (P15c) If �v, t� ∈ E(P−

, s), then �v, t� ∈ E(P−). ��

Theorem 1. Concept C0 is satisfiable w.r.t. R iff there exists tableau for C0

w.r.t. R.

Proof. For the if direction let T = (S,L, E) be a tableau for C0 w.r.t R. We
define interpretation I = (∆I

, ·I), with: ∆
I = S, C

I = {s|C ∈ L(s)}, for
concept names C in clos(C0), and for roles names R �= Q and Q, we set
R

I = {�s0, sn� ∈ ∆
I ×∆

I | there are s1, . . . , sn−1 with �si, si+1� ∈ E(Si+1) for
0 ≤ i ≤ n− 1 and S1 · · ·Sn ∈ L(BR)},
Q

I = {�s0, sn� | there are s1, . . . , sn−1 with �si, si+1� ∈ E(Si+1) for 0 ≤ i ≤ n−1
and S1 · · ·Sn ∈ L(BQ)} ∪{� x, y� |(∃z)(�x, z� ∈ w

I and �z, y� ∈ E((P−
, x)))}.

Let’s prove that I is model for C0 and R.
I is model for R. Let’s consider RIA of the form w�̇Q ◦ P . If �x, y� ∈ w

I .
According to (P15a) and (P6b) then ∀Bw.

∃
∀ (P

−
, x).� ∈ L(x) holds. Accord-

ing to (P4a), (P15b), (P15c) and definition of Q
I
, P

I we have (∃t) �y, t� ∈
E((P−

, x)), �y, t� ∈ E(P−) and �x, t� ∈ Q
I , and finally implies �x, y� ∈ (Q ◦P )I .

I is model for C0. It is enough to prove that C ∈ L(s) implies s ∈ C
I for all

s ∈ S and C ∈ clos(C0). Let’s consider C ≡ ∀Q.D. For other cases the proof is
the same as proof in [6].

Let ∀Q.D ∈ L(s) and (s, t) ∈ Q
I . If ∃S1 · · ·Sn−1 ∈ L(BQ), so �si, si+1� ∈

E(Si+1), i = 0, . . . , n−1, s0 = s, sn = t, then the proof is the same as proof in [6].
In case of (∃z) �s, z� ∈ w

I and �z, t� ∈ E(P−
, s). Based on the definition of ωI

and (P6b) we have ∃
∀ (P

−
, s).D ∈ L(z). According to (P15b), we have D ∈ L(t).

By induction t ∈ D
I , so we have s ∈ (∀Q.D)I .

For the converse, suppose that I = (∆I
, ·I) is model for C0 w.r.t. R. Let’s define

tableau T = (S,L, E), as follows: S = ∆
I , E(R) = R

I , E((P−
, x)) = {�y, z� ∈

S
2| �x, y� ∈ w

I
, �x, z� ∈ Q

I
, �z, y� ∈ P

I}, and
L(s) = {C ∈ clos(C0)|s ∈ C

I}∪{∀BR.C|∀R.C ∈ clos(C0) and s ∈ (∀R.C)I}∪
{∀Bq

R.C ∈ fclos(C0,R)| for all S1 · · ·Sn ∈ L(Bq
R), s ∈ (∀S1.

∀S2 · · · ∀Sn.C)I , and if ε ∈ L(Bq
R) then s ∈ C

I} ∪{∀Q.�} ∪{ ∀Bw.
∃
∀ (P

−

, s).C|s ∈ (∀Q.C)I} ∪{ ∀Bq
w.

∃
∀ (P

−
, t).C|(∃w�) �w�

, q� ∈ PL(Bw) and �t, s� ∈
(w�)I and t ∈ (∀Q.C)I} ∪ {∃

∀ (P
−
, t).C| �t, s� ∈ w

I and t ∈ (∀Q.C)I}.
Let’s prove that T is tableau for C0 w.r.t. R. We consider only new rules

(see definition 3). From definition E(P−
, x) and E(P ) we prove (P15c). From

the definition of L(s) we have that (P15a) and (P6b) holds. Let’s prove rule
(P15b). Suppose that ∃

∀ (P
−
, s).C1 ∈ L(v). From the definition of L(v) follows
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�s, v� ∈ w
I and s ∈ (∀Q.C)I . Because of I |= w�̇Q ◦ P we have that there

exists z such that �s, z� ∈ Q
I and �z, v� ∈ P

I i.e. �v, z� ∈ E((P−
, s)). On the

other hand, from s ∈ (∀Q.C)I and �s, z� ∈ Q
I follows z ∈ C

I
1 , so C1 ∈ L(z). If

∃
∀ (P

−
, s).C2 ∈ L(v) then s ∈ (∀Q.C2)I , so z ∈ C

I
2 , i.e. C2 ∈ L(z). ��

5 Tableau algorithm

The tableau algorithm generates completion tree.

Definition 4. (Completion tree) Completion tree for C0 w.r.t R is labelled
tree G = (V,E,L, ˙�=) where each node x ∈ V is labelled with a set L(x) ⊆
efc(C0,R, V ) ∪{≤ mR.C| ≤ nR.C ∈ clos(C0),m ≤ n}. Each edge �x, y� ∈ E

is labelled with a set L �x, y� ⊆ RC0 ∪ {(P−
, s)|s ∈ V }. Additionally, we care of

inequalities between nodes in V , of the tree G, with a symmetric binary relation
˙�=.
If �x, y� ∈ E, then y is called successor of the x, but x is called predecessor
of y. Ancestor is the transitive closure of predecessor, and descendant is the
transitive closure of successor. A node y is called an R-successor of a node x

if, for some R
� with R

� �∗ R, R� ∈ L(�x, y�). A node y is called a neighbour
(R-neighbour) of a node x if y is a successor (R-successor) of x or if x is a
successor (Inv(R)-successor) of y. For S ∈ RC0 , x ∈ V , C ∈ clos(C0) we define
set SG(x,C) = {y|y is S − neighbour of x and C ∈ L(y)} ��

Definition 5. A tree G is said to contain a clash if there is a node x such that:

– ⊥ ∈ L(x), or
– for a concept name A, {A,¬A} ⊆ L(x), or
– there exists a concept (≤ nS.C) ∈ L(x) and {y0, . . . , yn} ∈ S

G(x,C) with
yi

˙�=yj for all 0 ≤ i < j ≤ n. ��

In order to provide termination of the algorithm, in [6] blocking techniques are
used, and fact that the set of nodes’ labels is finite. In our tableau definition (3),
if S is infinite set then efc(C0,R, S) is also infinite. So, number of different L(s)
is infinite. Also, sets L(s) can be infinite. To ensure that sets L(s) are finite,
we define additional restriction on the set of RIA of the form w�̇Q ◦ P . Let’s
suppose that language L(Bw) is finite.

If ∀Bq
w.

∃
∀ (P

−
, s).C ∈ L(t) then there exists (w�

, q) ∈ PL(Bw) and (s, t) ∈
E(w�). If n = �fclos(C0,R), l = max{len(w�)|(∃q)(w�

, q) ∈ PL(Bw)} and
number of successors is less than m (different than P − neighbours), then 6:
�L(t) ≤ n·ml· �PL(Bw). To illustrate the technique in an understandable way,
we consider only special case, when L(Bw) = {R}.

Definition 6. Let G = (V,E,L, ˙�=) be completion tree and f : V → V is a
function.

1. We say that L(x) f −match with L(y), denoted as L(x) ∼f L(y), if
6 Because of L(Bw) is finite, then l, �PL(Bw) are also finite.
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– f(x) = y,
– L(x) ∩ fclos(C0,R) = L(y) ∩ fclos(C0,R),
– R ∈ L(�z, x�) ⇔ R ∈ L(�f(z), y�),
– ∃

∀ (P
−
, z).C ∈ L(x) ⇔ ∃

∀ (P
−
, f(z)).C ∈ L(y).

2. We say that L(�x, y�) f −match with L(�u, v�), denoted with L(�x, y�) ∼f

L(�u, v�), if
– L(�x, y�) ∩RC0 = L(�u, v�) ∩RC0 ,
– (∀s ∈ V )((P−

, s) ∈ L(�x, y�) ⇔ (P−
, f(s)) ∈ L(�u, v�)). ��

Definition 7. (Blocking) A node x is label blocked if there is a function f :
V → V and there are predecessors x

�
, y, y

� of the node x, such that

– x
� �= y,

– x is successor of x� and y is successor of y�,
– L(x) ∼f L(y), L(x�) ∼f L(y�),
– L(�x, x��) ∼f L(�y, y��).

In this case we say that y blocks x. ��

A node is blocked if it is label blocked or its predecessor is blocked. If the pre-
decessor of a node x is blocked, then we say that x is indirectly blocked [5].
There is an algorithm that checks whether a node y blocks node x. It is enough
to consider nodes x, y and their predecessors x

� and y
� and (finite number of)

R-neighbours of these four nodes. For the nodes, function f can be nondeter-
ministically defined and check the rules in the definition (7). It is also possible
to check the rules algorithmically, because the rules use only finite sets.

The non-deterministic tableau algorithm can be described as follows:

– Input: Concept C0 and RBox R,
– Output: ”Yes” if concept C0 is satisfiable w.r.t. RBox R, otherwise ”No”
– Method:

1. step: Construct tree G = (V,E,L, ˙�=), where V = {x0}, E = ∅, L(x0) =
{C0}. Go to step 2.

2. step: Apply an expansion rule (see table 1) to the tree G, while it is
possible. Otherwise, go to step 3.

3. step: If the tree does not contain clash return ”Yes”, otherwise return
”No”.

Theorem 2. 1. Tableau algorithm terminates when started with C0 and R,
2. Tableau algorithm returns answer ”Yes” iff there exists tableau of the concept

C0 w.r.t R.

Proof. (a) ∃-rule and ≥-rule generate finite number of successors of node x. So,
the set L(x) is finite and the number of (P−

, y)-successors of node x is finite.
There is limited number the possible labels of pairs (x�

, x) ∈ E that will lead
the blocking of tree nodes. It means, the tree generated by the algorithm is
finite. According to [6], the rule which generates node y and remove rule ≤,
will not be applied, again. This means that the algorithm can applied only
finite number of expansion rules.
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�-rule: If C1 � C2 ∈ L(x), x is not indirectly blocked,
and {C1, C2} � L(x),

then L(x) → L(x) ∪ {C1, C2}
�-rule: If C1 � C2 ∈ L(x), x is not indirectly blocked,

and {C1, C2} ∩ L(x) = ∅,
then L(x) → L(x) ∪ {E}, for some E ∈ {C1, C2}

∃-rule: If ∃S.C ∈ L(x), x is not blocked,
and x has no S-negihbour y where C ∈ L(y)

then create new node y where L(�x, y�) := {S} and L(y) := {C}
∀1-rule: If ∀S.C ∈ L(x), x is not indirectly blocked,

and ∀BS .C /∈ L(x)
then L(x) → L(x) ∪ {∀ BS .C}

∀2-rule: If ∀Bp.C ∈ L(x), x is not indirectly blocked, p
S→ q ∈ Bp

and there is an S-neighbour y of x with ∀Bq.C /∈ L(y)
then L(y) → L(y) ∪ {∀ Bq.C}

∀3-rule: If ∀B.C ∈ L(x), x is not indirectly blocked,
ε ∈ L(B) and C /∈ L(x)

then L(x) → L(x) ∪ {C}
∀4-rule: If ∀Q.C ∈ L(x), x is not indirectly blocked, and

∀Bw.∃∀ (P
−, x).C /∈ L(x)

then L(x) → L(x) ∪ {∀ Bw.∃∀ (P
−, x).C}

∀5-rule: If ∀Q.� /∈ L(x), x is not indirectly blocked
then L(x) → L(x) ∪ { ∀Q.�}

(∃∀ )1-rule: If ∃
∀ (P

−, x).C ∈ L(y), y is not blocked and
there is no z with (P−, x) ∈ L(�y, z�)

then create new node z with (P−, x) ∈ L(�y, z�), P− ∈ L(�y, z�)
(∃∀ )2-rule: If ∃

∀ (P
−, x).C ∈ L(y), y is not blocked,

there is z with (P−, x) ∈ L(�y, z�) and C /∈ L(z)
then L(z) → L(z) ∪ {C}

choose-rule: If (≤ nS.C) ∈ L(x), x is not indirectly blocked,
and there is an S-neighbour y of x {C, ¬̇C} ∩ L(y) = ∅

then L(y) → L(y) ∪ {E}, for some E ∈ {C, ¬̇C}
≥-rule: If (1) (≥ nS.C) ∈ L(x), x is not blocked, and

(2) there are not n S-neighbours y1, . . . , yn of x with
C ∈ L(yi) and yi ˙�=yj for 1 ≤ i < j ≤ n,

then create n new nodes y1, . . . yn with L(�x, yi�) = {S},
L(yi) = {C} and yi ˙�=yj for 1 ≤ i < j ≤ n

≤-rule: If (1) (≤ nS.C) ∈ L(x), x is not indirectly blocked
(2) �SG(x,C) > n and there are y, z ∈ SG(x,C) with not y ˙�=z and
y is not root node nor an ancestor of z

then (1) L(z) → L(z) ∪ L(y)
(2) if z is an ancestor of x,
then L(�z, x�) → L(�z, x�) ∪ Inv(L(�x, y�))
else L(�x, z�) → L(�x, z�) ∪ L(�x, y�)
(3) set u ˙�=z, for all u with u ˙�=y
(4) remove y and sub-tree below y from G

Table 1. Expansion rules for a tableau algorithm (updated from [5])
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(b) For the if direction, suppose that the algorithm returns ”Yes”. It means that
the algorithm generated tree G = (V,E,L, ˙�=) without clash and there are
no expansion rules (see table 1) that can be applied.
A path [5, 8] is a sequence of pairs of nodes of G of the form

p = �(x0, x
�
0), . . . , (xn, x

�
n)� . (4)

For such a path, we define Tail(p) = xn and Tail
�(p) = x

�
n. We denote the

path �
(x0, x

�
0), (x1, x

�
1), . . . , (xn, x

�
n), (xn+1, x

�
n+1)

�
. (5)

with
�
p, (xn+1, x

�
n+1)

�
. If node x is label blocked then corresponding function

f is denoted with fx. The node x is blocked with node fx(x). We use function:
G(x, z) = z, if x is not blocked, or G(x, z) = fx(z), if x is blocked.
The set Paths(G) is defined inductively, as follows:
– If x0 ∈ V is the root of tree then �x0, x0� ∈ Paths(G),
– If p ∈ Paths(G) and z ∈ V and z is not indirectly blocked, such that

�Tail(p), z� ∈ E, then �p, (G(z, z), z)� ∈ Paths(G).
Let’s define structure T = {S,L�

, E} as follows:
S = Paths(G),
E(S) = {�p, q� ∈ Paths(G)×Paths(G)|q = �p, (G(z, z), z)� and S ∈ L(�Tail(p), z�)
or p = �q, (G(z, z), z)� and Inv(S) ∈ L(�Tail(q), z�)}, for S ∈ RC0 ,
E(P−

, r) = {�p, q� ∈ E(P−)| �r, p� ∈ E(R) and (P−
, G(Tail�(p), Tail�(r)))

∈ L(G(Tail�(p), Tail�(p)), Tail�(q))},
L�(p) = L(Tail(p)) ∩ fclos(C0,R) ∪{∀ R.

∃
∀ (P

−
, p).C|∀Q.C ∈ L(Tail(p))} ∪

{∃
∀ (P

−
, r).C| �r, p� ∈ E(R) and ∃

∀ (P
−
, Tail

�(r)).C ∈ L(Tail�(p))}.
Let’s prove that T is tableau for C0 w.r.t R. We consider only (P15b) prop-

erty, and avoid already defined properties in [6]. New properties (P6b), (P15a),
(P15c) imply from ∀4, ∀5 and (∃∀ )1.

Suppose ∃
∀ (P

−
, r).C ∈ L�(p) then �r, p� ∈ E(R) and ∃

∀ (P
−
, Tail

�(r)).C ∈
L(Tail�(p)). Because of �r, p� ∈ E(R), four cases are possible:

1. p = �r, (G(z, z), z)� and G(z, z) = z

2. p = �r, (G(z, z), z)� and G(z, z) �= z

3. r = �p, (G(z, z), z)� and G(z, z) = z

4. r = �p, (G(z, z), z)� and G(z, z) �= z

The subcases above are analyzing on the similar way and we consider the
most complex of them i.e. case (2). The Tail

�(r) is not blocked, so Tail
�(r) =

Tail(r), while z is blocked by G(z, z). From �r, p� ∈ E(R) blocking definition
we have R ∈ L(�Tail(r), z�) and R ∈ L(G(z, Tail(r)), G(z, z)), while, from
∃
∀ (P

−
, Tail

�(r)).C ∈ L(z) we have ∃
∀ (P

−
, G(z, Tail(r)).C ∈ L(G(z, z)). Ac-

cording to the rule (∃∀ )1, we have that there exists node y such that
P

−
, (P−

, G(z, Tail(r)) ∈ L(�G(z, z), y�). Let q = �p, (G(y, y), y)� then �p, q� ∈
E(P−) and (P−

, G(Tail�(p), Tail�(r))) ∈ L(G(Tail�(p), Tail�(p)), Tail�(q)), so
�p, q� ∈ E(P−

, r). Having regard to the rule (∃∀ )2 we conclude that property
(P15b) holds.

For the only-if direction, the proof is the same as proof in [6] (i.e., we take a
tableau and use it to steer the application of the non-deterministic rules). ��
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6 Conclusions and future works

This paper shortly examines how to handle complex RIAs with more than one
role from the right hand side of the composition of roles in RIQ DL. Although
the proof was conducted for RIA of the formR�̇Q◦P , we can apply the technique
to RIA of the form S1S2 · · ·Sn�̇R1R2 · · ·Rm, with restriction that corresponding
languages are finite. Our future work will be focused on the problem which
conditions should satisfy role if we have more than one RIAs, to be mention
technique could be applied. Also, we will do research on RIA of the form w�̇QP

when the language L(Bw) is infinite.
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Abstract. We introduce an algorithm for MinA extraction in EL based
on bidirectional reachability. We obtain a significant reduction in the size
of modules extracted at almost no additional cost to that of extracting
standard reachability-based modules. Bidirectional modules are related
to nested locality modules, but are aimed specifically at MinA extraction
and are generally smaller. For acyclic EL TBoxes consisting of only prim-
itive concept inclusions, all MinAs can be extracted without the need for
subsumption testing.

1 Introduction

Module extraction plays an important role in the design, reuse and maintenance
of ontologies as well as aiding in the optimization of reasoning services [9]. When
used to optimize reasoning services such as subsumption testing and MinA ex-
traction, reachability-based modules have been criticized for only considering the
subsumee of a subsumption entailment during the module extraction process [2],
thus not sufficiently reducing the size of modules.

In this paper we address this shortcoming of reachability-based modules,
with the aim of improving MinA extraction, as follows: We introduce a top-
down heuristic which considers only the subsumer of an entailment and then
combine it with standard reachability-based modules to form a bidirectional
version of reachability. This new bidirectional version of the heuristic thus con-
siders both the subsumee and subsumer in a subsumption entailment between
concept names. For relatively sparse graphs this significantly reduces the size of
modules extracted with almost no additional cost to that of extracting standard
reachability-based modules.

Given a subsumption statement between single concept names, we show that
every MinA is in fact a bidirectional reachability-based module in terms of itself.
Using this property we implement very fast algorithms to extract all MinAs
for acyclic EL TBoxes consisting of only primitive concept inclusions without
performing a single subsumption test, thereby significantly reducing the runtime
complexity of MinA extraction for these TBoxes.

In Section 2 we give a brief introduction to description logics and the nota-
tions as used in this paper. Section 3 introduces reachability-based modules
[9], the new top-down reachability heuristic and finally defines bidirectional
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reachability-based modules. Then in Section 4 we investigate the relationship
between MinAs and the inexpressive Horn DL HL and extend the findings to
EL TBoxes consisting of primitive concept inclusions. Lastly in Section 5 we
provide empirical results of the various algorithms presented as tested on three
generally large real world biomedical ontologies.

2 Preliminaries

In the standard set-theoretic semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as binary relations over
this domain. An interpretation I consists of a non-empty set ∆I (the domain of
I) and a function ·I (the interpretation function of I) which maps each atomic
concept A to a subset AI of ∆I , and each atomic role r to a subset rI of
∆I ×∆I . The interpretation function is extended to arbitrary concept and role
descriptions, with the specifics depending on the particular description logic
under consideration.

A DL knowledge base consists of a TBox which contains terminological ax-
ioms and an ABox which contains assertions ; for the purposes of this paper
we concern ourselves only with Tbox statements, or general concept inclusions
(GCIs) of the form C " D, where C and D are (possibly complex) concept
descriptions. Here C is referred to as the subsumee and D as the subsumer. An
interpretation I satisfies C " D, written I ! C " D, iff CI ⊆ DI . In this paper,
when the left hand side of a GCI consists of only a single concept name, the
statement is referred to as a primitive concept inclusion.

An interpretation I satisfies a DL TBox T iff it satisfies every statement in T .
A TBox T entails a DL statement φ, written as T |= φ, iff every interpretation
that satisfies T also satisfies φ.

Roughly speaking, DLs are defined by the constructors they provide. In this
paper we consider the DLs HL and EL. The constructors allowed for EL are
conjunction ($) and existential restriction (∃), with semantics defined as follows:
(C $ D)I = CI ∩ DI ; (∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}.
The only concept constructor allowed for HL is conjunction, with semantics
as for EL. Both HL and EL also have the distinguished top concept ) with
semantics )I = ∆I . Normalization for HL only allows GCIs of the form A " B
and A1 $ A2 " B. For EL, GCIs of the form A " ∃r.B and ∃r.A " B are also
allowed. Given any concept description or subsumption statement α, Sig(α) is
defined as the union of all concept and role names occurring in α.

Definition 1. (Module) Let L be an arbitrary description language, O an L
ontology, and σ a statement formulated in L. Then, O′ ⊆ O is a module for σ
in O(a σ-module in O) whenever: O |= σ if and only if O′ |= σ. We say that O′

is a module for a signature S in O (an S-module in O) if, for every L statement
σ with Sig(σ) ⊆ S, O′ is a σ-module in O. Given the statement σ, if there is no
O′′ ⊂ O′ such that O′′ |= σ then O′ is a minimal σ-module.
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Given a subsumption statement σ = A " B, a MinA is defined as a minimal
set of axioms O′ such that O′ |= A " B. Though these are not usually referred
to as modules in the literature, MinAs are by definition minimal modules for a
specific statement of interest.

3 Bidirectional Reachability-based Modules for EL

Extracting modules aims to preserve both subsumption and non-subsumption
relationships in a subset of an ontology. This can be understood as the reacha-
bility problem in a directed graph [1], considering concept names as nodes and
explicit subsumption relationships as edges in the graph, where each inclusion
axiom αL " αR ∈ O essentially specifies a collection of hyperedges from the
connected node Sig(αL) to each of the symbols in Sig(αR).

Definition 2. (Bottom-up reachability-based modules [9])1 Let O be an
EL ontology and S ⊆ Sig(O) a signature. The set of S-reachable names in O is
defined inductively as follows: (i) x is S-reachable in O, for every x ∈ S; and
(ii) for all inclusion axioms αL " αR, if x is S-reachable in O for every x ∈
Sig(αL), then y is S-reachable in O for every y ∈ Sig(αR). We call an axiom
αL " αR S-reachable in O if every element of Sig(αL) is S-reachable in O. The
bottom-up reachability-based module for S in O, denoted by Oreach

S , consists of
all S-reachable axioms in O.

When S is the single concept A, we write A-reachable and Oreach
A . For EL,

axioms of the form ) " αR are such that Sig()) = ∅, thus they will form
part of every reachability-based module extracted. Bottom-up reachability-based
modules are in fact equivalent to ⊥-locality based modules [4, 8].

A criticism that may be raised against these bottom-up reachability-based
modules is that they contain many irrelevant axioms and in some cases do not
reduce the size of the ontology at all [2]. This stems from the fact that Oreach

A

considers only the subsumee A in O |= A " B; the subsumer B is never used to
eliminate unwanted axioms. For example:

Example 1. Given the ontology O = {A " ∃r.D, ∃r.D " B,E " B,A " F}, as
well as the entailment O |= A " B, Oreach

A consists of axioms {A " ∃r.D, ∃r.D "
B,A " F}. A " F is irrelevant in terms of O |= A " B, yet it is included in
Oreach

A .

For large ontologies many such irrelevant axioms may be included in a bottom-
up reachability-based module. We introduce modules based on the subsumer of
an entailment namely top-down reachability-based modules. Formally:

1 The original definition by Suntisrivaraporn does not have the qualifier ‘bottom-
up’, but because we introduce ‘top-down’ reachability-based modules later on in
Definition 3, the qualifier is used to avoid confusion.
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Definition 3. (Top-down reachability-based module) Let O be an EL on-
tology and S ⊆ Sig(O) a signature. The set of ←S -reachable names in O is de-
fined inductively as follows: (i) x is ←S -reachable in O, for every x ∈ S; and
(ii) for all inclusion axioms αL " αR, if x is ←S -reachable in O for some x ∈
Sig(αR), then y is ←S -reachable in O for every y ∈ Sig(αL). We call an axiom
αL " αR

←S -reachable in O if some element of Sig(αR) is ←S -reachable. The
top-down reachability-based module for S in O, denoted by Oreach

←
S

, consists of all
←S -reachable axioms from O.

Algorithm 1 extracts a top-down reachability based module, given an EL
TBox O and a signature S as input. active-axioms(x) are all those, and only
those axioms (αL " αR) ∈ O such that x ∈ Sig(αR), thus every such axiom is also
by definition top-down reachable. For a signature S we define active-axioms
(S) :=

⋃
x∈Sactive-axioms(x).

Algorithm 1 (Extract top-down reachability-based module)
Procedure extract-top-down-module(O, S)
Input: O - EL ontology; S - signature
Output: OS: top-down reachability-based module for S in O
1: OS := ∅; queue := active-axioms(S)
3: while not empty(queue) do
4: (αL " αR) := fetch(queue)
5: OS := OS ∪ {αL " αR}
6: queue := queue ∪ (active-axioms(Sig(αL)) \OS)
7: return OS

Theorem 1. [5] Let O be an EL ontology, n the number of axioms in O, and
S ⊆ Sig(O) a signature. Algorithm 1 terminates after O(n) steps and returns
the top-down reachability-based module for S in O.

It is easy to show that top-down reachability-based modules are equivalent to
a subset of )-locality modules [4, 8]. These modules can be criticized in a similar
manner to bottom-up reachability-based modules, in that they include many
irrelevant axioms. Combining ⊥-locality modules with )-locality based modules
allows us to extract so called nested locality modules denoted by )⊥ or ⊥) [8].
We introduce a slightly different form of module called bidirectional reachability-
based modules, aimed towards finding small modules preserving subsumption
relationships between single concept names.

Definition 4. (Bidirectional reachability-based module [6]) The bi-direc-
tional reachability-based module, denoted Oreach

A↔B , for the statement A " B in
terms of O, is defined as the set of all axioms αL " αR ∈ O such that: for
every xi ∈ Sig(αL), xi is A-reachable in terms of O, and αR is ←B-reachable in

terms of O. Any non-empty subset O′ ⊆ Oreach
A↔B such that O′reach

A↔B = O′ is called
a bidirectional reachability-based sub-module of O for the statement A " B.
O′reach

A↔B is minimal if there exists no O′′ ⊂ O′ such that O′′reach
A↔B = O′′.
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These modules differ from nested locality modules as follows: Given a sub-
sumption statement A " B, and the ⊥) module O′, then O′ will contain all
axioms for the signature S = {A,B}, thus it will include all the axioms for the
entailments O′ |= A " B and O′ |= B " A. A bidirectional reachability-based
module O′′, however, only contains axioms for the entailment O′′ |= A " B. Us-
ing the notation that ⊥{A,B} represents the ⊥ locality module for the signature
{A,B} the relationship between these modules can be illustrated as follows:

Oreach
A↔B ⊆ ⊥ {A}){B} ⊆ ⊥ {A}){B} ∪ ⊥ {B}){A} ⊆ ⊥) {A,B} ⊆ ⊥ {A,B}

The following example shows the relationship between a bidirectional reach-
ability-based module, bidirectional reachability-based sub-modules and minimal
bidirectional reachability-based modules.

Example 2. Given the ontology O consisting of the set of axioms: {α1 : A " C1,
α2 : A " D, α3 : D " C3, α4 : C1 " ∃R.C2, α5 : C2 " C3, α6 : C3 $ C4 " B,
α7 : ∃r.C3 " C4, α8C3 " B, α9 : C2 " E, α10 : E " F}, as well as the statement
O |= A " B, we have that:

– Oreach
A = O,

– (Oreach
A )reach←

B
= Oreach

A↔B consist of axioms: {α1, α2, α3, α4, α5, α6, α7, α8}
– Given that the sets O0, O1, O2 and O3 are defined as follows:

O0 = {α1, α4, α5, α6, α7}, O1 = {α2, α3, α8}, O2 = {α1, α4, α5, α8}, O3 =
{α1, α2, α3, α4, α5, α6, α7}, then
• O0, O1, O2 and O3 are bidirectional reachability-based sub-modules
Oi ⊆ Oreach

A↔B , that is, Oi = Oi
reach
A↔B .

• O1 and O2 are both minimal bidirectional reachability-based modules
with O1 being the only one of these sets that is both a minimal bidirec-
tional reachability-based module and a MinA for the statement A " B
such that O1 |= A " B.

• O3 is a MinA for the statement A " B such that O3 |= A " B but O3

is not a minimal bidirectional reachability-based module.

The algorithms for both bottom-up and top-down reachability based modules
extraction methods may now be applied in any order and in sequence to extract
bidirectional reachability-based modules. Since Oreach

←
B

is in general very large,
we prefer to extract (Oreach

A )reach←B .
An interesting property of bidirectional reachability-based modules for EL

is that every MinA for a subsumption statement is a bidirectional reachability-
based module in terms of itself. Formally:

Theorem 2. [5] Given an EL TBox T and the statement A " B such that T |=
A " B. Let M1 ⊆ T be a MinA such that M1 |= A " B, then M1

reach
A↔B = M1.

4 MinA extraction

By Theorem 2 every MinA is a bidirectional reachability-based module. In this
section we show that for the DL HL every MinA is a minimal bidirectional
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reachability-based module and that this property can be extended to acyclic
EL TBoxes consisting of only primitive concept definitions. We also provide
algorithms to compute and extract all MinAs for the given TBoxes.

Every MinA in HL is a minimal bidirectional reachability-based module in
terms of itself. This is quite a subtle point, because MinAs are already mini-
mal. Note, however, that MinAs are minimal with respect to the property of
entailing a given statement of interest, whereas bidirectional reachability-based
sub-modules are minimal with respect to the syntactic requirement for both
bottom-up reachability and top-down reachability.

Theorem 3. [5] Given a acyclic HL TBox T in normal form, the statement
A " B and a MinA M1 such that M1 |= A " B, then M1 is a minimal bidirec-
tional reachability-based module M1

reach
A↔B in terms of M1.

Next we show that every minimal bidirectional reachability-based module in
HL for a statement A " B corresponds to a MinA.

Theorem 4. [5] Given an acyclic HL TBox T in normal form, the statement
A " B and a minimal bidirectional reachability-based module M1

reach
A↔B, then

M1 |= A " B.

Theorems 3 and 4 allows us to conclude that there is a one-to-one correspon-
dence between minimal bidirectional reachability-based modules and MinAs in
HL.

Corollary 1. There is a one-to-one correspondence between MinAs and mini-
mal bidirectional reachability-based modules in HL.

In order to extract all minimal bidirectional reachability-based modules we
propose an algorithm originally inspired by the Earley [3] algorithm for parsing
Context Free Grammars (CFG). Given a string to parse and a CFG the algorithm
computes all possible parse trees in polynomial time. We employ a variation of
the algorithm in order to compute a representation of all possible bidirectional
reachability-based modules in HL. A CFG consists of a set of CFG production
rules formally defined as:

Definition 5. (CFG production rules) Let X represent a single non-terminal,
the symbol ’a’ represents a single terminal and α and σ represent mixed strings
of terminals and non-terminals, including the null string. CFG production rules
have the form X → ασ or X → a.

Any HL TBox can be transformed to an equivalent CFG by step by step
transformation process [6, 5], with the reachability preserving CFG for an HL
TBox is defined as:

Definition 6. Reachability preserving CFG for a HL TBox.
Let T be an HL TBox in normal form and A " B a statement such that T |=
A " B, then the reachability preserving CFG, denoted CFGT , is a minimal set
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of CFG production rules such that for each axiom αL " αR ∈ T : if Sig(αL) =
∅ the rule xi → A ∈ CFGT for each xi ∈ Sig(αR); for all other axioms the rule
xi → Sig(αL) ∈ CFGT ; where the symbol A represents the only terminal symbol
and the set Sig(T )\A represents the set of non-terminals.

The conversion process may be illustrated by the following example:

Example 3. Given the acyclic HL TBox T in normal form: T = {A " B1,
A " B2, B1 " C1, B1 " D, B2 $C1 " D, ) " B2}. Then CFGT is given by:
{ B1 → A, B2 → A, C1 → B1, D → B1, D → B2C1}

Once the TBox has been converted to a CFG, we employ a parallel breadth-
first algorithm, adapted from the Earley [3] algorithm, further optimized and
improved from an algorithm earlier presented in [6]. The algorithm computes
and indexes a representation of all bi-direction sub-modules in polynomial time.

Algorithm 2 (Sub-module computation) [5] The algorithm consists of two
sub-parts, the predictor and completer. For each state in CHART, the state
(X → αβ) is evaluated and the appropriate sub-part executed:
Input: Reachability preserving CFG for an HL TBox;
Output: Reference table CHART capturing a representation of all HL sub-
modules.

1. Predictor: Given the state (X → Y1 . . . Yn), for all Yi such that (Yi → σ)
/∈ CHART, add all rules (Yi → σ) to CHART.

2. Completer: If state = (X → Z1 . . . Zm) with all Zi terminals, then
– add a pointer to this state in the completion table for X,and
– if X is not a terminal symbol, then mark it a terminal symbol, and
– if X is a new terminal symbol, then call the completer for each rule

(Y → . . . X . . .) ∈CHART such that all symbols on the right hand side
of the rule are terminal symbols.

The algorithm executes all states iteratively in a top-down manner until no new
states are available for processing. Given the statement A " B, the production
rule S → B is used to initialize CHART.

Theorem 5. Given a acyclic HL TBox T in normal form and the statement of
interest such that T |= A " B, with CFGT the context free grammar associated
with T . If n is the number of production rules in CFGT , then Algorithm 2
computes a representation of all possible bidirectional reachability-based modules
in O(n2) worst case running time.

Once Algorithm 2 terminates, the chart returned contains a representation of
all possible bidirectional reachability-based modules, and hence a representation
of all MinAs. This set is essentially an indexed bidirectionally reachable module.

In order to obtain all individual MinAs from the CHART returned by Algo-
rithm 2, we introduce an algorithm to extract all minimal bidirectional reachability-
based modules from it. Due to the space limitations of this paper we do not give
an implementation of the algorithm but refer the interested reader to [5].
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Theorem 6. Given the indexed bidirectional reachability-based HL CFG for the
statement A " B, CFGO and the reference table CHART returned by Algorithm
2, the algorithm to extract all individual MinAs will extract all MinAs Mi such
that Mi |= A " B. Each Mi will be extracted in O(m2) worst case running time,
where m = |Sig(CFGO)|.

The algorithm introduced may be extended to extract all MinAs for acyclic
EL TBoxes consisting of only primitive concept definitions. However, we show
that though all MinAs for these TBoxes are minimal bidirectional reachability-
based modules, the converse does not hold.

Example 4. Let T be an acyclic EL TBox consisting of only primitive concept
definitions. Further, let M1 be a minimal bidirectional reachability-based module
for the statement A " B consisting of the axioms A " ∃r.C and C " B. Then
M1

reach
A↔B = M1 and M1 is minimal, but M1 0|= A " B unless M1 |= B " ⊥.

Hence M1 is not a MinA for T |= A " B.

Theorem 7. Let T be an EL TBox consisting of only primitive concept defini-
tions in normal form, and let A " B be a statement such that T |= A " B.
Then for every minimal bidirectional reachability-based module Ni such that
αL " ∃r.C ∈ Ni we have that Ni 0|= A " B. Further, for every minimal bidi-
rectional reachability-based module Mi such that αL " ∃r.C 0∈ Mi we have that
Mi |= A " B.

Consequently, the algorithms presented may be used in order to extract all
minimal modules and thus MinAs for acyclic EL TBoxes consisting of only prim-
itive concept definitions. When a minimal module includes axioms containing ex-
istential restrictions this module may simply be discarded as not being a MinA.
The algorithm is complete in that it will extract all MinAs. However, since not
all minimal modules extracted are MinAs, it is no longer sound. Soundness may
however be obtained by simply making the test for the inclusion of existential
restrictions part of the algorithm. When extending the problem of finding Mi-
nAs to general EL TBoxes, a staight forward extraction process is no longer
possible and every possible matching between symbols needs to be calculated by
the algorithm. Thus a simple iteration of all minimal bi-directional reachability
based modules in order to find a single MinA results in an algorithm that runs
in exponential worst case time.

Theorem 8. Let T be an acyclic general EL TBox in normal form and A " B a
statement of interest. Let CHART represent the resultant reference set returned
by Algorithm 2. Let M1 be a MinA such that M1 |= A " B and P1 represent
the set of production rules for M1. Now let mi be the number of times a symbol
Ci occurs on the right hand side of all production rules in P1 and let ki be the
number of entries in CHART[Ci]. Then for the n possible symbols in P1 there

are a total of
∏n

i=1

∑j=mi≤ki

j=1 C(ki

j ) bidirectional reachability-based modules.

Though we believe that this theoretical worst case complexity will not pose
a problem for real world EL medical ontologies, subsumption testing will be
required once each minimal module have been extracted.

561



5 Empirical Results

In this section we test the algorithms presented in this paper and evaluate their
performance in terms of three real world biomedical ontologies2: OSnomed - The
Systematized Nomenclature of Medicine, Clinical Terms; ONci - The Thesaurus
of the US National Cancer Institute and OGo - The Gene Ontology.

The algorithms presented were all implemented in Java as part of a plugin
for the Protégé 4.1 (beta) ontology editor. All single threaded algorithms were
tested on a Intel Quad Core based computer, with 6 Gig of RAM, running on
Microsoft Windows 7 x64 and hosted in a 64 bit Java virtual machine. We did
not implement nor utilise an optimized subsumption testing algorithm for inex-
pressive DLs. Subsumption testing were done by the standard HerMit3 reasoner
where neccesary.

Table 1 show the results of all bidirectional reachability-based modules ex-
tracted. The columns in the table are organised as follows: Ontology – the ontol-
ogy for which the modules are being extracted; | Oreach

A | – the number of axioms
in the reachability-based modules for all concepts A ∈Sig(O); T(Oreach

A ) – the
average time, in seconds, required by the algorithm to extract all reachability-
based modules; | Oreach

A↔B | – the average number of axioms for all bidirectional
reachability-based modules; T(Oreach

A↔B ) – the additional time, in seconds, re-
quired to extract the bidirectional reachability-based modules, i.e. Total time
= T(Oreach

A ) + T(Oreach
A↔B).

Average Values
Ontology | Oreach

A | T(Oreach

A ) | Oreach

A↔B | T(Oreach

A↔B )
OGo 13.16 0.000032 4.48 0.000006
ONci 25.68 0.000048 5.59 0.000006
OSnomed 27.70 0.040725 18.40 0.000175

Maximum Values
Ontology | Oreach

A | T(Oreach

A ) | Oreach

A↔B | T(Oreach

A↔B )
OGo 68 0.000417 20.15 0.000666
ONci 398 0.001916 55.00 0.000569
OSnomed 254 0.217781 222.06 0.004843

Median Values
Ontology | Oreach

A | T(Oreach

A ) | Oreach

A↔B | T(Oreach

A↔B )
OGo 10 0.000026 3.86 0.000005
ONci 11 0.000026 4.37 0.000005
OSnomed 16 0.001800 6.66 0.000008

Table 1. Bidirectional reachability-based module extraction

From the table we see that bidirectional reachability-based modules are be-
tween 30% and 80% smaller than standard reachability-based modules and may

2 http://lat.inf.tu-dresden.de/systems/cel/
3 http://hermit-reasoner.com/
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be extracted at the additional cost of between 0.4% and 19.0% in the running
time of the algorithm. The average runtime increases for the GO and NCI ontolo-
gies tested may seem excessively high. However, we note that the running times
are measured in the low microsecond range. At these extremely small intervals
the accuracy of our measuring tools is very low and the true runtime performance
of the algorithms only becomes evident in relatively large ontologies. Therefore,
the runtime performance of the algorithms for the SNOMED ontology gives
a more accurate measure of the true performance of the algorithms. In terms
of median values extracting bidirectional reachability-based modules results in
very stable performance across all ontologies tested, with an approximate 59%
decrease in the size of all modules extracted.

The MinA extraction algorithms were tested as follows: for every concept
name A ∈ in Sig(O) we extracted Oreach

A , then Algorithm 2 was called for each
concept name B ∈Sig(Oreach

A ) in order to extract Oreach
A↔B . For each of these in-

dexed bidirectional reachability-based modules we then extracted all possible
minimal bidirectional reachability-based modules Mi. The standard HerMit rea-
soner was then called to test if Mi |= A " B. This subsumption test is irrelevant
and is only included for the sake of interest.

The columns in Table 2 are organised as follows: Ontology – the ontology for
which the MinAs are being extracted; | Oreach

A↔B | – the average number of axioms
for all bidirectional reachability-based modules; | Min(Oreach

A↔B) | – the average
number of minimal bidirectional reachability-based modules; T(Min(Oreach

A↔B))
– the additional time, in seconds, required to extract all minimal bidirectional
reachability-based modules; %MinAs – the percentage of minimal bidirectional
reachability-based modules that are MinAs; |MinA| – the average size of each
MinA and T(MinA) – the additional time required to test subsumption for all
minimal modules, i.e. to calculate the total time to extract all MinAs from the
ontology = T(Min(Oreach

A↔B)) + T(MinA).

Average Values
Ontology | Oreach

A↔B | | Min(Oreach

A↔B ) | T(Min(Oreach

A↔B )) %MinAs |MinA| T(MinA)
OGo 13 2.720188 0.000023 89.18% 3.298866 0.005472
ONci 26 2.180851 0.000014 91.47% 3.721915 0.002842

Median Values
Ontology | Oreach

A↔B | | Min(Oreach

A↔B ) | T(Min(Oreach

A↔B )) %MinAs |MinA| T(MinA)
OGo 10 1.500000 0.000013 100.00% 3.000000 0.002327
ONci 11 1.000000 0.000010 100.00% 3.500000 0.001452

Table 2. MinA extraction

On average there are between 2 and 3 minimal bidirectional reachability-
based modules for each possible subsumption statement. From these, about 90%
are MinAs, each of which contains between 3 and 4 axioms on average. The total
additional time required to extract all minimal bidirectional reachability-based
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modules, and thus MinAs, is in the low microsecond range. The most expensive
costs incurred was subsumption testing, with a total running time for testing
all minimal modules in the low to mid millisecond range. This testing however
is unnecessary and is only included to illustrate the costs involved in testing all
minimal modules for subsumption.

Once a bottom-up reachability-based module has been extracted, the ad-
ditional runtime costs incurred to extract a bidirectional reachability module
together with all minimal bidirectional reachability-based modules, and thus
MinAs, is less that 1% of the cost of performing a subsumption test on a single
MinA. This makes MinA extraction, for acyclic EL TBoxes consisting of only
primitive concept definitions, negligible. The average reduction of 59% in the
number of axioms for bidirectional reachability-based modules tested here, over
that of standard reachability-based modules, indicates that for more expressive
DLs in the EL family, bidirectional reachability-based modules may yield a sig-
nificant improvement during MinA extraction to standard black-box algorithms.

Extension of the techniques presented here to more expressive DLs using
hypergraph grammars, and relating it to the techniques and complexity results
presented in [7], are topics of further research. We thank the anonymous review-
ers for their comments on related and further work.
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Abstract. For a number of problems, such as ontology learning or image label-
ing, we need to handle uncertainty and inconsistencies in an appropriate way.
Fuzzy and Probabilistic Description Logics are the two major approaches for
performing reasoning with uncertainty in Description Logics, but modeling prob-
lems such as image labeling still remains difficult and handling inconsistencies
is only supported to a limited extent. In this paper, we propose Max-DL-SAT
and Weighted Max-DL-SAT as new reasoning services for Description Logics
knowledge bases, which applies the idea behind Weighted Max-SAT to Descrip-
tion Logics and leads to a more intuitive representation of certain problems. It
supports handling of uncertainty and inconsistencies. The contribution of this
paper is threefold: We define a novel reasoning service on Description Logics
knowledge bases, introduce an algorithm for solving such problems, and show
the application of it to the problem of image labeling.

1 Introduction

Solutions to a number of real world problems are often subject to a set of potentially
contradicting constraints, for which a completely satisfying solution does not exist, e.g.,
in Computer Aided Design or information extraction from text. In Max-SAT, these
problem are modeled as a boolean a formula for which one seeks an assignment of
truth values that satisfies a maximal number of clauses. In Weighted Max-SAT clauses
are associated with weights that model the importance or reliability of certain clauses
and the goal is to maximize the accumulated weight of the satisfied clauses in a solution.
However, Max-SAT and Weighted Max-SAT are both limited to propositional logic and
finding an appropriate problem representation is often hardly intuitive. Ontologies, on
the other hand, allow for modeling domains in a more intuitive manner. Description
Logics have widely been adopted to model ontologies and to provide reasoning ser-
vices in a variety of domains. In problems like image labeling [13, 2], we encounter
assertions that are associated with a degree and we have to cope with many, potentially
contradicting assertions produced by automatic and not fully reliable methods. In order
to apply ontological reasoning to such problems, we require new reasoning services.
State of the art extensions to Description Logics, such as Fuzzy [15] or Probabilistic
Description Logics [8] cover most of these aspects, but other problems still need to
be solved. Reasoning on Probabilistic Description Logics still has difficulties regarding
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the efficiency of the reasoning process. Fuzzy Description Logics can be reasoned about
efficiently under min/max co-norm.

In this paper, we introduce a novel reasoning service for handling uncertainty and
inconsistencies in Description Logic knowledge bases, called Weighted Max-DL-SAT.
We consider Description Logic knowledge bases containing a set of weighted and po-
tentially contradicting axioms. Based on this, we compute a set of consistent axioms
with a maximal, accumulated weight. Weighted Max-DL-SAT allows for the almost di-
rect reuse of existing ontologies and provides a very intuitive way of modeling problems
that have a Max-SAT like structure, e.g., the aforementioned image labeling problem.
In summary, the paper provides a threefold contribution:

1. We define a novel type of reasoning problem, called Weighted Max-DL-SAT.
2. We introduce an algorithm for solving Weighted Max-DL-SAT problems based on

the Hitting Set Tree algorithm [12, 6].
3. We apply Weighted Max-DL-SAT to the problem of image labeling.

The rest of the paper is structured as follows: In the next section we give a for-
mal introduction to the Description Logic ALC and extend its definition to weighted

ontologies. Then, we introduce the problem of Weighted Max-DL-SAT. Based on this
formalizations, we introduce our approach to solve Weighted Max-DL-SAT problems.
Afterwards, we introduce an example where we applied Weighted Max-DL-SAT to the
domain of spatial reasoning in the context of image labeling, and finally discuss the
related work and conclude the paper.

2 Knowledge Representation Using Description Logics

Description Logics constitutes a class of knowledge representation languages that allow
for expressing complex concepts in terms of a set of basic constructors. In this section,
we specifically introduce the Description Logic ALC, the Attributive Concept Lan-
guage with Complements. Let NC and NR be two disjoint sets of symbols, called the
set of concept and role names, respectively. We will write A,B for concept names, and
R for role names. � and ⊥ are special concepts, called Top and Bottom, respectively. A
concept description C in ALC is syntactically defined by the following abstract syntax
rule:

C → �|⊥ |A|∀R.C|∃R.C|C �D|C �D|¬C}. (1)

The semantics of a concept description is given by an interpretation I = (∆I , ·I),
where ∆I = {ai, . . . , an} is called the domain of I and ·I is called the interpretation
function. The interpretation function maps each concept name A to a set AI ⊆ ∆I , and
each role name to a binary relation RI ⊆ ∆I ×∆I .

The semantics of the constructors are defined as follows.

– �I = ∆I

– ⊥I = ∅
– (C �D)I = CI ∩DI

– (C �D)I = CI ∪DI

– (¬C)I = ∆I \ CI

– (∀R.C)I = {x ∈ ∆I |∀y ∈ ∆I : (x, y) ∈ RI → y ∈ CI}
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– (∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}

Furthermore, we define a T-Box T as a set of terminological axioms of the form
C � D, whereby C and D are concepts. We say that D subsumes C, and an interpre-
tation I satisfies an axiom C � D iff CI ⊆ DI . We define a disjointness between
two axioms C and D as C||D = C � ¬D. The A-Box A is defined as a set of con-
cept assertions a : C, where a is an individual name and C a concept description, and
role assertions (a, b) : R with a, b individual names and R a role name. Both concept
and role assertions area also called assertional axioms. A Description Logics ontology
O = T ∪ Aconsists of a T -Box T and an A-Box A.

We extend this definition of an ontology to a weighted ontology:

Definition 1 (Weighted ontology). A weighted ontology is an ontology O :=
{α1, . . . , αn} such that for every T -Box or A-Box axiom α ∈ O an associated weight

wα ∈ R+
exists. In case of concrete axioms, we specify the weight in square brackets,

i.e., C � D[w] for T -Box axioms, a : C[w] for concept assertions, and (a, b) : R[w]
for role assertions.

We can now define the reasoning problem Weighted Max-DL-SAT. Our basis is a
weighted Description Logic ontology O = T ∪ A. Each axiom in O is associated with
a weight, which represents the importance or reliability of this axiom to be satisfied.

The problem is to find a consistent subset of the ontology with a maximal summed
weight. Formally, we define the Weighted Max-DL-SAT problem as an optimization
problem as follows:

argmaxS⊆O s.t. S consistent(
�

α∈S

wα) (2)

The result is Or = Tr ∪Ar, a maximal consistent sub-ontology, such that Or ⊆ O, Or

is consistent, and the accumulated weight of all axioms αi ∈ Or is maximal. In Or we
call Ar the consistent Sub-A-Box and Tr the consistent Sub-T -Box.

3 Solving Weighted Max-DL-SAT Problems

In order to obtain a consistent sub-ontology, we need to resolve all inconsistencies in O.
To do so, we have to calculate the weight-minimal set of axioms O−, such that Or =
O \ O− is consistent. This problem has strong relations to axiom-pinpointing [14],
which identifies and eliminates inconsistencies in ontologies. Axiom-pinpointing algo-
rithms compute a minimal set of axioms causing a single inconsistency in an ontology
O. Such a set, we call a minimal inconsistent sub-ontology [3] M and it is defined as
follows:

Definition 2 (Minimal Inconsistent Sub-Ontology). A Minimal Inconsistent Sub-

Ontology (M ) of an ontology O, is defined as a subset M ⊆ O, such that M is in-

consistent and ∀α ∈ M : M \ {α} is consistent.

Every M causes a single inconsistency in a particular O. If we remove one axiom of
such a M from O, we eliminate this cause of inconsistency in O.
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We can formulate this problem as a Weighted Hitting Set Problem. We first give the
definition of this set of problems and then explain how Weighted Max-DL-SAT maps
to a Weighted Hitting Set Problem:

Definition 3 (Weighted Hitting Set Problem [12]). Given a set G and a set of subsets

M1,M2, ...,Mn ⊆ G Each element in G has a positive weight wa, a ∈ G We are

looking for a hitting set H ⊆ G such that

– H ∩Mi �= ∅, i = 1, ..., n
–
�

a∈H wa is minimal

Now let O be our ground set, M1,M2, ...,Mn the set of all minimal inconsistent sub-
ontologies, and the hitting set H the set O− of axioms to be removed from O. Obviously
Or is weight maximal, when O− is weight minimal.

To calculate O− for inconsistent ontologies, we propose an adaptation of the Hitting
Set Tree (HST) algorithm. The HST algorithm produces a tree T starting with our O as
root node N1. It calculates a minimal inconsistent Sub-Ontology (MISO) Mj for every
node Nj ∈ T . For every axiom αi in Mj of Nj the algorithm introduces a new sub-
node Nji ∈ T . The edge to Nji is labeled with αi and wαi and the current ontology
for a node Nji is Oj \ {αi}. To solve our Weighted Max-DL-SAT problem, we have to
calculate the cheapest path w.r.t the accumulated weights from the root to a leaf in T .
The accumulated axioms of this path represent O−.

Algorithm 1 Weighted Hitting Set Tree algorithm for computing a solution to Weighted
Max-DL-SAT problems.
1: O

−
← ∅ � initialize result with empty set

2: wO− ← ∞ � set upper bound to infinity
3: function WHST(O, P )
4: wP ←

�
α∈P wP � accumulate path weight

5: if wP < wO− then � check upper bound
6: M ← calcSingleMISO(O) � calculate M for current ontology
7: if M �= ∅ then
8: M

�
← M

9: � ∀α ∈ M in decreasing order call WHST
10: � for O \ {α}, P ∪ {α}

11: while M
�
�= ∅ do

12: Select α ∈ M
� s.t. ∀α�

∈ M
�
→ wα� > wα

13: M
�
← M

�
\ {α}

14: WHST(O \ {α}, P ∪ {α})
15: end while
16: else � if current path weight < upper bound
17: O

−
← P � set result to path

18: wO− ← wP � set upper bound to path weight
19: end if
20: end if
21: end function
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In [6] Kalyanpur et. al have shown the completeness of the Hitting Set Tree algo-
rithm regarding the calculation of all justifications for an ontology. Algorithm 1 depicts
the concrete WHST algorithm used in our implementation. To increase efficiency, we
use a branch & bound like strategy to prune subtrees where no further improvements of
the results could be achieved. We use the accumulated weight of an already calculated
root-to-leaf path as upper bound, line 19. Initially this bound is set to infinity, line 2.
With this lower bound, we can prune any branch of the subtree that could not contain a
smaller total path weight. Only if the weight of the current path is lower than this upper
bound, a branch has to be considered, line 5.

Algorithm 2 depicts the minimal inconsistent sub-ontology (MISO) calculation [3].
It iteratively adds the axioms α with the smallest weight wα to the intermediate on-
tology O until it becomes inconsistent, lines 3 − 6. Then, we shrink O by iteratively
removing the axioms α with the biggest weight wα if this does not turn O consistent
again, lines 8− 14. Thus, we are guaranteed to end up with an M , a small, still incon-
sistent set of axioms in O.

Algorithm 2 Black-box algorithm for computing a minimal inconsistent sub-ontology
for O.
1: function CALCSINGLEMISO(O)
2: O ← ∅ � initialize intermediate ontology
3: while O is consistent do � grow intermediate ontology until inconsistency
4: Select axiom α ∈ O \O s.t. ∀α�

∈ O \O → wα� ≥ wα

5: O ← O ∪ {α}

6: end while
7: O

�
← O

8: while O
�
�= ∅ do � shrink intermediate ontology to minimal inconsistent set

9: Select axiom α ∈ O
� s.t. ∀α�

∈ O
�
→ wα� ≤ wα

10: O
�
← O

�
\ {α}

11: if O \ {α} is inconsistent then
12: O ← O \ {α}

13: end if
14: end while
15: return O

16: end function

4 Applying Weighted Max-DL-SAT to Automatic Image Labeling

As an example, we present the application of Weighted Max-DL-SAT to the interesting
problem of automatically assigning labels to image regions. Typically, these labels refer
to ”semantic” concepts and provide the means to index regions within an image based
on terms understandable for humans. Determining the right labels for a given region
is a hard problem, since there is no direct mapping of computable low-level features
to the meaning of a region. Automatic methods model regions within images using a
set of features and then usually apply machine learning methods in order to learn and
subsequently detect a set of possible semantic concepts.
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These methods exploit only low-level features extracted from regions of the image,
but do not take any context, e.g., spatial context, into account. However, context and
background knowledge play a crucial role in automatic image labeling [13, 2]. In our
experiments, we utilize spatial relations between image regions as background knowl-
edge to validate the semantic concepts given for specific region.

Figure 1 shows an example of an image (a) and the associated regions with simpli-
fied, but still ambiguous hypotheses (b) produced by a classifier. The output of the
machine-learning-based classification is used as input to our reasoning process. As
background knowledge, we consider knowledge about feasible spatial relations between
the semantic concepts, such as above, below, left, right. For example, a valid relation
might be that sea is never depicted above sky.

(a) input image (b) output from ML-based classification

Fig. 1. Input to the reasoning process

4.1 Data Set

The data set consists of 922 images depicting outdoor scenes and was split into 400
training and 522 test images. These images have been segmented using an automatic
segmentation algorithm and manually assigned a label from the set of concepts: Sky,
Sea, Sand, Road, Building, Foliage, Person, Boat, Mountain, Snow. This dataset has
been published1 and used in previous experiments [13, 10] for the task of spatial reason-
ing. In addition, the data set also contains different low-level features for each region,
different hypotheses generated based on the training data using different classification
methods, and a set of extracted fuzzy spatial relations. For our experiment, we used the
labels produced by the maximum-likelihood classifier as input to our reasoner.

4.2 Representing Image Labeling with Weighted Max-DL-SAT

The background knowledge is depicted as a T -Box. For each label, we create an
atomic concept L. Furthermore, we make all label concepts disjoint and add an axiom
L1|| . . . ||Ln[wn].

The background knowledge about spatial relations has been modeled as a set of
binary constraints defining for each label L to which other labels L�

1, . . . , L
�
n it might

be related by the spatial relation S. To present such knowledge about spatial relations
1 http://mklab.iti.gr/project/scef
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in a Description Logic T -Box, we use universal quantification, like L � ∀S.(L�
1 �

. . .�L�
n)[wn]. Thus, for the two labels Sky and Sea used in figure 1, we would add two

axioms sky � ∀above.(sea�sky�sand� . . .)[wm] and sea � ∀above.(sea�sand�
. . .)[wm]. These axioms assure, that sea might only be depicted above other sea regions,
while sky might be depicted above sky or sea regions. They are all associated with an
very high weight, since we consider the background knowledge as crisp, and therefore
do not accept any solutions where any of these axioms is removed. Obviously, this
requires that the T -Box is consistent, which is the case in our experiments. Furthermore,
the axioms are learned following the approach presented in [13].

Each image i is modeled in a separate A-Box. To generate the A-Box, we use the
hypothesis generated by the machine-learning classification process. For each region,
we create a single individual ri. Now, let wi,l be the degree of confidence in the dataset
for region ri labeled with label l. Then we add the concept assertion ri : L[wi,l] to
the knowledge base for each label produced by the classifier for the region. For the
two regions region1 and region2 depicted in figure 1 this will result in: region1 :
sky[wregion1,sky], region1 : sea[wregion1,sea], region2 : sky[wregion2,sky] and
region2 : sea[wregion2,sea]. Additionally to the hypothesis about associated seman-
tic concepts the classification process also generates knowledge about spatial relations
between the single regions. To present the spatial knowledge in our ontology, we add
for all known relations role assertions like (ri, rj) : S[wm] to the knowledge base.
We set the weight of such assertions to very high value, because we do not the accept
a solution where one of the spatial relations was removed in order to find a solution.
For the regions region1 and region2 from figure 1, this will lead to the two role as-
sertion (region1, region2) : above[wm] and (region2, region1) : below[wm]. To-
gether with the T -Box depicting the background knowledge, this A-Box results in an
individual ontology Oi for each image i. As we can see this ontology contains contra-
dicting statements with: sea � ∀above.(sea)[wm], (region1, region2) : above[wm],
region1 : sea[wregion1,sea] and region2 : sky[wregion2,sky]. Such an inconsistent
ontology Oi is the input to our reasoning process.

4.3 Results

In Table 4.3, we have summarized the accuracy of the classifier, Weighted Max-DL-
SAT, and the binary integer programming approach presented in [13]. Using Weighted
Max-DL-SAT, we can significantly improve the classification rate as provided by the
classifier based solely on low-level features. However, we also see that a more spe-
cialized method performs clearly better. The latter observation was expected. The BIP
approach can employ a more specialized objective function that incorporate the degree
of confidence provided with the fuzzy spatial relations, and it employ all fuzzy spatial
relations available, not only the one with the highest degree. This information is not
used in our modeling of the problem.

Nevertheless, the experiments show that a generic approach based on Description
Logics can be applied to a problem like spatial reasoning and leads to a clear improve-
ment. Furthermore, the difference between the specialized method and Weighted Max-
DL-SAT is not very large. Specifically, the parameters used for the knowledge extrac-
tion have not been optimized in our experiments for Weighted Max-DL-SAT, while
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Classifier Max-DL-SAT BIPs
building 0.92 0.90 0.96
foliage 0.70 0.85 0.90
mountain 0.74 0.92 0.91
person 0.58 0.77 0.84
road 0.75 0.56 0.92
sailing-boat 0.49 0.47 0.93
sand 0.67 0.69 0.63
sea 0.71 0.78 0.75
sky 0.17 0.52 0.51
snow 0.71 0.81 0.85
overall 0.62 0.75 0.79

Table 1. Per concept and overall accuracy of the classifier, Weighted Max-DL-SAT, and the
Binary Integer Programming approach [13].

in [13] experiments with optimized parameters were reported. The gained generality of
the approach comes at the cost of a loss in accuracy.

The figures in 2 show the system performance results from our experiment. In each
figure, we compare two different values (left and right y-axies) per image (x-axis). We
sorted the images in increasing order by the first value (left). In figure 2 (a), we show the
relation between the over all calculation time per image and the number of nodes per
image. In our Experiments, we limited the calculation time per image to 300sec. We can
observe only a weak relationship between calculation time and the number of visited
nodes, a tendency towards the more nodes are visited the longer the calculation takes.
We can observe multiple outliers especially images with a relative small number of
visited sodes compared to the calculation time. Due to the heuristic character of Branch
& Bound and because of the calculation of an NP-complete problem like the Weighted
Hitting Set Tree, we have to expect such outliers. Figure 2 (b) shows the number of
A-Box axioms per image in increasing oder and over all calculation time. Again we
can observe multiple outlier but the relation seems to be stronger. Images with more
axioms in the A-Box more often tend to exceed the calculation time cap. In figure 2
(c), we show the relation between the over all system performance per image and the
time consumption for MISO calculation per image. The MISO calculation time seems
to represent a relatively large proportion of the over all system performance. This could
be a interesting point for further optimizations. The system could benefit from more
detailed studies to increase the efficiency of the MISO calculation. The last figure, 2
d shows the relation between the time consumption for MISO calculation per image
and the number of MISOs per image. Here we can also observe an clear relationship.
This observation also indicates that where is a potential for further optimizations of the
MISO calculation.

All these behavior result give clear hints about further optimizations of the systems
performance. A promising starting point for further optimizations seems to be the MISO
calculation. The MISO calculation takes an important part of the over all calculation
time and the calculation time for all MISO increases similar to the number of MISOs.

5 Related Work

The issues of integrating uncertainty into Description Logics and reasoning with such
uncertainty in Description Logics have already been addressed in different ways by
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Fig. 2. System performance

several researchers. [5, 8, 7] present probabilistic extensions to OWL or investigations
on reasoning services for such extension. Some of these approaches allow only for ter-
minological knowledge like [5] others for terminological as well as assertional knowl-
edge [8]. The approaches also differ in the underlying probabilistic reasoning formal-
ism. Two reasoning formalisms could be found in these publications, a formalism based
on reasoning in probabilistic logics [5, 8] and a formalism based on inferencing in
Bayesian networks [7]. But unfortunately all of these approaches suffer from serve
problems regarding the efficiency of reasoning on such knowledge bases. Another ap-
proach to uncertainty extension to Description Logics is the use of fuzzy set theory to
express the uncertainty. In [16, 15] Straccia presents a general approach to a fuzzy ver-
sion of SHOIN (D), the underlying Description Logic of OWL−DL. He shows the
representation and reasoning capabilities of fuzzy SHOIN (D). As mentioned in the
introduction, reasoning on fuzzy Description Logics can be performed quite efficiently.
However, the fuzzy semantics are often mislead by single axioms with a high or low
weight, repsectively. In general, both approaches are able to handle degrees associated
with axioms, but they are not suitable for handling inconsistencies in every respect.
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Reasoning under inconsistency plays a role in the field of ontology learning [4]
and ontology debugging [3]. One important method, about finding explanations for a
given consequence, e.g., a minimal subset of an ontology that has a particular incon-
sistency in that ontology as consequence, is axiom pinpointing. Generally, we can dis-
tinguish axiom pinpointing methods into two different categories glass-box approaches
and black-box approaches. In [1] Baader et al. introduce a glassbox approach for axiom
pinpointing. In this paper, we focus on a black-box approach inspired by the work of
Kalyanpur et. al. [6].

Interpreting images and extraction of deep-level semantics, can not be done suffi-
ciently only on low-level features. Images often show scenes illustrating abstract con-
cepts like events. To perceive such an event concept, additional background knowledge
about the whole scene is required. In [11] Möller et .al introduced abduction as a new
inferencing service on Description Logic A-Boxes that enables able to reason from
effects (observations/features) to causes (explanations/semantics). In contrast to the ap-
proach of Möller where new knowledge is extracted through abduction, our approach
focuses on verification of knowledge against a specific model. The approach presented
in [2] aims to enhance the semantic image description with the use of fuzzy Description
Logics. Based on fuzzy Description Logic knowledge bases specialized reasoning ser-
vices are used to, e.g. solve inconsistencies resulting from the classification process or
extract implicit semantics but all these approaches suffer from the particularities coming
with the use of fuzzy Description Logics.

6 Conclusions

We have introduced Weighted Max-DL-SAT as a service for modeling and solving
problems with inconsistencies and uncertainty using Description Logics. A core fea-
ture of our approach is the ability to handle uncertainty similar to fuzzy or probabilistic
Description Logics whereas inconsistency is handled like in a crisp Description Logics
manner. This combination of features is useful to many different problems, like ontol-
ogy learning, semantic information extraction or image labeling. The evaluation on im-
age labeling indicates that we achieve a slightly improvement of the results compared to
a classifier based solely on low-level features. Compared to a highly specialized method
Weighted Max-DL-SAT looses a bit of accuracy but this was the expected price for the
gain of generality of the method. With optimized parameters used for the knowledge
extraction and a adjusted modeling, we expect further improvements.

In our future work, we will concentrate on the improvement of the performance of
maximal consistent sub-ontology calculation. Our experience has shown that it could
be promising to improve the MISO calcualtions in this context. The multiple outlier
observed in our results showed us that it might be useful to consider approaches other
than out WHST based black box method. On this account, we work on an glass box
approach to be able to compare it to our black box method. Some of our results also
indicate that the consistency checking in approach is a large cost factor, so the integra-
tion of Description Logic approximation techniques, like in [9] could be promising. In
the next implementations, we will focus on these three promising optimization strate-
gies for Weighted Max-DL-SAT. In addition, we will apply Weighted Max-DL-SAT to
different other interesting problems.
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Abstract. We present a framework for logic-based matchmaking on ALN ABoxes
stored in a relational database. The proposed approach allows both non-standard
reasoning and subsumption check be performed only via standard SQL queries.
Main contribution is in the SQL implementation of the following features: (i)
compliance with four match classes (i.e., exact, full, partial and potential); (ii)
rank computation for each matching outcome and (iii) preferences management
in the user query. Performance evaluation carried out on a PostgreSQL 8.4 engine
reports reasonable results in terms of scalability and turnaround times for large
scale data sets.

1 Introduction

Benefits introduced by semantic technologies are well-known in a number of frame-
works where simplistic keyword-based searches are not enough. Inference services,
both standard and non-standard [11], allow to match requests and resources based on
the actual meaning of their descriptions and –more interesting– to provide classification
and logic-based ranking. Beyond obviously good matches, such as exact or full ones, we
deem so called potential or intersection matches (where requests and supplied resources
have something in common and no conflicting characteristics) as more interesting and
useful from the user perspective. Partial or disjoint matches (where requests and sup-
plies have some conflicting features) can also be considered worthwhile in all scenarios
when nothing better exists. In those cases, one can be interested in understanding the
conflict degree between perspective matching descriptions. What usually prevents a
widespread usage of semantic approaches is that they require heavy computational ca-
pabilities, and response times are often unacceptable in common applications as soon
as real (or realistic) data sets have to be faced. Furthermore, current systems usually al-
low a requester only to express her mandatory requirements and there is no possibility
to grade user preferences in a more fine grained way. The problem of finding efficient
reasoning strategies has been widely studied (see [8, 20, 14] among others). Basically,
Knowledge Compilation [7] has been employed for making computationally accept-
able the reasoning, splitting query answering in two phases: (i) KB is pre-processed,
thus parsing it in a proper data structure (off-line reasoning); (ii) the query is answered
exploiting the structure coming from the first phase (on-line reasoning).
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This paper presents an automated matchmaking framework, which exploits Knowl-
edge Representation (KR) and reasoning techniques as well as Description Logics
(DLs) formalisms, to retrieve the best supplied resources w.r.t. a user request, ranked
according to the semantic distance from the request itself. Knowledge Bases (KBs)
–stored in a relational database– are used, so that inferences are performed via stan-
dard SQL queries. The proposed matchmaker leverages KB pre-processing to reduce
on-line reasoning overhead. Relevant provided features include: (i) it copes with sev-
eral match classes; (ii) it allows to assign a relevance degree to each feature in the
user query and (iii) it is able to return a logic-based explanation of the ranking results.
The paper presents both the modeling approach allowing to translate a given KB into
the reference relational database and the incremental building of SQL sub-queries al-
lowing to matchmake and rank results. An experimental evaluation –using PostgreSQL
8.4 DBMS– has been carried out, showing the effectiveness of the proposal and its
scalability. Matchmaker performances have been compared with the ones provided by
MaMaS-tng

3 reasoner with reference to the same set of non-standard inference services
[10].

The remainder of the paper is organized as follows. In the next section, a survey
of most significant related work is presented; subsequently, Section 3 introduces the
proposed framework and approach and Section 4 reports on a performance evaluation of
the implemented approach. Conclusions and future research directions close the paper.

2 Background

Several systems and approaches have been presented in literature, where database tech-
nology is used to both persistently store knowledge and make scalable queries on it [5,
18]. They are mainly classified according to the language (i.e., RDF(S) 4 or OWL 5)
they adopt for defining ontologies. In what follows, most relevant frameworks will be
surveyed to allow a comparison with the approach we propose here.

Oracle Spatial 11g
6 is the first enterprise-oriented, scalable and reliable data man-

agement platform for RDF-based applications. It supports query answering for RDF(S)
and OWLPrime. Based on a graph data model, RDF triples are made persistent, indexed
and queried, similarly to other object/relational data types. Owlgres

7 is a DL-Lite [9]
reasoner implementation for PostgreSQL. A distinguishing feature is that, along with
standard inferences (e.g., subsumption), it supports conjunctive query answering over
ABoxes in a secondary storage (typically an RDBMS) so coping with large datasets. A
comparable system using RDBMS to deal with large sets of data is QuOnto

8, a DL-Lite
reasoner providing consistency check and conjunctive query replying services. Neither
QuOnto nor OWLgres return a ranked list of results. Further ontology storage sys-
tems –such as DLDB [19] and Sesame on PostgreSQL [6]– adopt binary tables, one

3 http://sisinflab.poliba.it/MAMAS-tng/
4 http://www.w3.org/TR/rdf-primer/
5 http://www.w3.org/TR/owl2-overview/
6 http://www.oracle.com/technology/tech/semantic technologies/index.html
7 http://pellet.owldl.com/owlgres/
8 http://www.dis.uniroma1.it/q̃uonto/
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for each class in the TBox; whereas SOR (Scalable Ontology Repository) [17] exploits
four kinds of tables for managing OWL-Lite constructs: atomic tables (for primitive
concepts and properties), TBox axiom tables, ABox fact tables and class constructor
tables. But the most popular and recent OWL storage is OWLIM [15]. It is a Sesame
plug-in able to add a robust support for the semantics of RDFS, OWL Horst and OWL2
RL. A possible optimization is obtained by caching the classification hierarchy in the
database as it is implemented in Instance Store (iS) [4], an engine for reasoning over
OWL KBs specifically adopted in biomedical-informatics. A highly-scalable OWL rea-
soner is SHER (Scalable Highly Expressive Reasoner) [13] enabling conjunctive query
answering. It supports a subset of OWL-DL excluding nominals, and it relies on an
indexing technique of ABox instances in the database. SHER embeds Pellet to infer
implicit information from indexed data and to obtain explanations for inconsistencies.
PelletDB9 provides an OWL 2 reasoning system specifically built for enterprise seman-
tic applications. It combines Pellet’s OWL capabilities and scalable native reasoning of
Oracle Database 11g so ensuring performance improvements w.r.t. to the use of such
technologies separately. Differently from the previous approaches, the most widespread
DL-reasoner, i.e., KAON210, does not implement the tableaux calculus, but it reduces
a SHIQ(D) knowledge base to a disjunctive datalog program. An inference engine for
answering conjunctive queries has been so developed applying well-known deductive
database techniques.

All the cited systems, although often allow an expressiveness greater than the one
enabled by the engine proposed here, are only able to return either exact matches (i.e.,
instance retrieval) or query answering. On the contrary, we use an enriched relational
schema to provide a logic-based ranked list of results and the possibility to implement
a semantic explanation of outcomes.

3 Proposed Approach

Description Logics are the reference formalisms we adopt in this paper. In particular, we
refer to (a syntactic variant of) ALN , whose allowed constructs are: conjunction C�D,
universal quantification ∀R.C, and unqualified number restriction (≥ nR), (≤ nR).
A simple terminology T is hypothesized which contains inclusion axioms A � C,
concept definitions A = C, and disjointness axioms A � B � ⊥. If both the requested
and the supplied resources are expressed in ALN w.r.t. an ontology T , it is possible to
exploit their formal semantics during the classification and matching processes. Recall
that (see [12, 16] for further details) given a TBox T , a match degree between a request
D and a supplied resource C (both expressed w.r.t. T ) can be evaluated as:
– Exact. All the features requested in D are exactly provided by C, and vice versa—in
formulae, T |= D ⇔ C.
– Full-Subsumption. All the features requested in D are contained in C—in formulae,
T |= C ⇒ D.
– Potential-Intersection. There is a nonempty intersection among the features offered
in C and the ones requested in D—in formulae, T�| = ¬(D � C).

9 http://clarkparsia.com/pelletdb/
10 http://kaon2.semanticweb.org/
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– Partial-Disjoint. Some features requested in C are conflicting with some other ones
offered in D—in formulae, T |= ¬(D � C).

The proposed approach implements all the above match types. However, it is pos-
sible to add further user-oriented match classes via the incremental building of match re-
quests by means of SQL sub-queries. Concepts are normalized according to the Concept-

Centered Normal Form (CCNF), [1, Ch.2], through the recursive application of the for-
mulas in Figure 1, until no rule is applicable at every nesting level.

TBox reduction Concept reduction ⊥-reduction

A → A � C

if A � C ∈ T
A → C

if A = C ∈ T

∀ρ.(D � E) → ∀ρ.D � ∀ρ.E
(≥ nR) � (≥ mR) → (≥ nR)

if n > m

(≤ nR) � (≤ mR) → (≤ nR)
if n < m

∀R.⊥ → ≤ 0R

∀ρ.(≥ nR) � ∀ρ.(≤ mR) → ∀ρ.⊥
if n > m

∀ρ.(∀R.⊥) � ∀ρ.(≥ nR) → ∀ρ.⊥
∀ρ.A � ∀ρ.B → ∀ρ.⊥

where A and B are disjoint concept names,
i.e., A � B � ⊥ ∈ T .

Fig. 1. Rules for CCNF. The symbol ρ is a sequence of role names ρ = R1 · · ·Rn, so that ∀ρ.C,
means ∀R1.(. . . .(∀Rn.C) . . .). We include the case ρ = ε (empty sequence), when ∀ρ.C is just
C.

The proposed classification is based on a role-free ABox, where each assertion
C(a) means that supply a offers features C. Of course, each individual a is involved
in one assertion only, while the same features C could be offered by more than one
supply. To store a supply C(a) in a database, we divide a C in four groups of conjuncts
Cn � C� � C∀.n � C∀.�, being Cn the concept names, C� the number restrictions, C∀.n
the conjuncts of the form ∀R1.(. . . .(∀Rn.A) . . .) and C∀.� the conjuncts of the form
∀R1.(. . . .(∀Rn.D) . . .) where D is a number restriction.

A proper design of the Entity-Relationship (E-R) model is a fundamental prereq-
uisite to correctly store both ABox instances and all the TBox T axioms to be used in
the further reasoning stages. In the provided model: (i) entities are chosen in a way to
describe all the basic information elements used in the matchmaking process; (ii) nu-
merical features (e.g., price or quantity) could be very useful in several scenarios (e.g.,
e-commerce) but they are not closely related to the semantic description of a resource;
anyway as such resource information are structured by definition, they will be more
easily managed directly by the DBMS. They are named structured conditions. Once a
concept C has been put in CCNF, the assertions C(a) will be stored in the database, by
assigning identifiers to given elements of the syntactic tree of C, and then linking such
identifiers by suitable database relations. The logic model for the database storing con-
juncts of the normalized form is reported in Figure 2. As an example, Table RESOURCE
stores data related to a given resource whereas Table DL ASSERTION stores the indi-
vidual describing a resource along with data expressing both cardinality and type of
normalized elements. Tables CONCEPT NAME, NUMBER RESTRICTION, UNIV NAME
and UNIV NUMBER respectively store the conjuncts Cn, C�, C∀.n and C∀.� of C. A
nesting level will be assigned based on how many ∀-quantifiers have a given concept C
in their scope. For example, ∀R.C has a nesting level 1, ∀R.∀S.A has nesting level 2,
and so on. The attribute level of both Table UNIV NAME and Table UNIV NUMBER,
refers to the assigned nesting degree. Moreover, the attribute r type allows to dis-
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CONCEPT NAME(id name, name)

DISJOINT (id name, id name disj)

NUMBER RESTRICTION(id number, role, r type)

UNIV NAME(id univ name, role list, id name, level)

UNIV NUMBER(id univ number, role list, id number, level)

RESOURCE(id resource, · · · structured conditions · · ·)
DL ASSERTION(id assert, owl, n name, n number, n univ name, n univ number, id resource)

ASSERT CONCEPT NAME(id assert, id name)

ASSERT NUMBER RESTRICTION(id assert, id number, value)

ASSERT UNIV NAME(id assert, id univ name)

ASSERT UNIV NUMBER(id assert, id univ number, value)

Fig. 2. DataBase logic model

concept name

id name name

1 A
2 B
... ...

number restriction

id number role r type

1 R min
2 R max
3 T min
4 T max
... ... ...

univ name

id univ name role list id name level

1 R.S 2 2
... ... ... ...

univ number

id univ number role list id number level

1 R 4 1
... ... ... ...

assert concept name

id assert id name

100 1
... ...

assert number restriction

id assert id number value

100 1 3
... ... ...

assert univ name

id assert id univ name

100 1
... ...

assert univ restriction

id assert id univ number value

100 1 6
... ... ...

Fig. 3. Tables filled to store C(a) with id assert = 100

tinguish numeric restriction cardinalities: r type = max (resp. r type = min) states
a ≤ n R (resp. ≥ n R) restriction. Finally, actual data in individual descriptions are
also stored in tables (whose name starts with ASSERT). They link the assertion identi-
fier to its atomic conjuncts storing also numeric values of restrictions for elements in
the form C� and C∀.�. Hence, if the system assigns to C(a) identifier the value 100
and the normalized concept C contains the following conjuncts: A, ≥ 3 R, ∀R.∀S.B
and ∀R. ≤ 6 T , then the system fills the tables in Figure 3. The presented modeling ap-
proach translates an assertion C(a) of size n into c ·n database tuples, so it increases the
storage size, almost linearly. Nevertheless, such a drawback is largely repaid in terms
of flexible match classes management, quick logic-based ranking and explanation of
results through enumeration of additional, missing and fulfilled features11.

3.1 Match classes and ranking function

This subsection reports on queries needed for extracting resources C1, C2, . . . in an
exact/full/partial/potential correspondence with a user request D. Queries are incre-
mentally built, according to both number and type of atomic elements composing the

11 The extraction of conflicting characteristics has not been implemented yet because we do not
cache partial matches, exploiting them just as intermediate results.
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disj(A,B) (1)
∀R. . . . ∀S.∀T.A (2)
∀R. . . . ∀S.∀T.B (3)
∀R. . . . ∀S.∃T (4)
∀R. . . . ∃S (5)
. . . (6)
∃R (7)

Fig. 4. The unsatisfiability pattern in ALN .

description as well as on user constraints. In what follows, we assume that requests D
are already in CCNF.

An Exact match happens when request and supplied resources are logically equiv-
alent, hence both the so-called structured conditions and all the atomic elements have
to correspond, while n name, n number, n univ name and n univ number at-
tributes must be equal. In fact, in order to detect an exact match the supply must have
exactly the same features of the request and nothing else. As Full Match queries sim-
ply aim to detect subsumption relationships, we do not deal with them here. On the
contrary, we will focus on Partial and Potential Match, which are strictly related. Ac-
tually, a Potential Match is simply a not Partial one. A resource C is a Potential Match

for a given request D if they do not have conflicting features (i.e., C �D �=⊥). In case
of conflicts, the subset containing not allowed features is the Partial Match outcome.
The Potential Match results can be obtained by retrieving all the stored supplies exclud-
ing Partial Matches. A Partial Match between a resource C and a request D amounts
to check whether C � D is unsatisfiable and why, and such a test in ALN amounts
to check the presence in C � D of the pattern outlined in Figure 4. There disj(A,B)
denotes either two disjoint names, or two incompatible number restrictions, and ∃R de-
notes a concept in the form (≥ n R) for some n > 0. For roles S, T ans so on the same
conditions hold. However, in the proposed approach, such a pattern is split between the
database tuples representing C(a), and the SQL query QD representing D. Intuitively,
for every subconcept of D in the form (2), QD looks in the DB for tuples representing
those subconcepts of C in the form (3)–(7) which are not already in D. Since the se-
lection of the correct pattern to search is leaded by D, the worst case is represented by
a request D containing a subconcept C in the form (2) with a role depth n whereas no
other subconcept in the form (3)–(7) belonging to the same C pattern is in D. In this
case, the n + 1 missing subconcepts, required to determine an unsatisfiability pattern
for C, have to be looked up in the DB. In particular, one SQL WHERE condition is built
in QD for each subconcept to search.

To better clarify user request translation into the SQL standard query, a toy example
of worst case search, is briefly reported, in accordance with the pattern in Figure 4. Let
us suppose a normalized request D - ∀R.∀S.A (n = 2) and two normalized supplies:
C1 - ∀R.∀S.B �∀R.(≥ 1 S)� (≥ 1 S), C2 - (≥ 1 S). In order to retrieve a potential
match, we have to detect the partial matches i.e., instances represented by tuples in the
form (3)–(7), and to discard them from the final results set. As above mentioned, three
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WHERE conditions are needed. The SQL query retrieving partial matches w.r.t. D is
reported hereafter:
SELECT id_assert
FROM assert_univ_name A NATURAL JOIN univ_name
WHERE (level=2 AND role=’R.S’ AND id_name IN (SELECT id_name_disj

FROM disjoint NATURAL JOIN concept_name
WHERE name=’A’))

AND (EXISTS(SELECT *
FROM (assert_univ_number NATURAL JOIN univ_number)
NATURAL JOIN number_restriction

WHERE id_assert=A.id_assert
AND role_list=’R’ AND role=’S’ AND r_type=’min’ AND value>=1))

AND (EXISTS(SELECT *
FROM assert_number_restriction NATURAL JOIN number_restriction
WHERE id_assert=A.id_assert
AND role=’R’ AND r_type=’min’ AND value>=1))

Since the previous query returns the supply C1, the potential matches set is only
composed by supply C2. Moreover, C2 has ∀R.∀S.A as missing features (explana-

tion process) and a rank equal to 0 as explained in the following (ranking process).
For the Potential Match results, the logic-based ranking is obtained implementing the
ranking function in [10] by aggregating tables with match results. The basic idea is
to compute the semantic distance between the normalized forms of both the user re-
quest D and the retrieved supply C. To this purpose we introduce 4 tables named CON-
CEPT NAME SCORE, NUMBER RESTRICTION SCORE, UNIV NAME SCORE and UNIV
NUMBER SCORE corresponding to the structure of tables CONCEPT NAME, NUMBER
RESTRICTION, UNIV NAME and UNIV NUMBER respectively, enhanced by the attribute
score. In fact, they store D features with the related user preference (a value between
1 and 5) and, if the user does not set scores for requested features, the matchmaker con-
siders the default value 1. In particular, the results ranking is calculated via the formula
(1) rank=(no. fulfilled features of C)/(no. features of D) in case no scores have been set
and, as preliminary investigation, via the formula (2) rank=(score sum for fulfilled C
features)/(scores sum for D features) otherwise.

4 System and Performance Evaluation

The proposed matchmaker acts as a Java application. A prototypical testing GUI has
been developed in order to enable users: 1) to edit/import the request directly in OWL
or in DIG [3] (which is more compact); 2) to weigh each normalized concept in the
request; 3) to choose the match class to search for and 4) to show the ranked list of
results. Experiments have been carried out exploiting an Intel Core i3 PC, equipped
with 4 GB RAM. System evaluation goals were: (i) approach outcome and scalability

–even if existing OWL benchmarks allow a comprehensive evaluation of most com-
mon reasoner capabilities [22, 21], unfortunately none is able to execute non-standard
services we refer here. Hence, in order to evaluate both matchmaker correctness and
performance, only a strict comparison with MaMas-tng results can be carried out; (ii)
data complexity –a given query is chosen and the system behavior has been evaluated
as a function of dataset size; (iii) expression complexity –a given dataset is chosen and
the system behavior has been evaluated as a function of the execution time of arbitrarily
selected queries.
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Dataset. In accordance with the goals and assumptions in Section 3, we will use
two different domain ontologies: 1) the “Clothing” one (composed by 157 classes and
18 roles) and 2) the “Hotel” one (composed by 68 classes and 12 roles). The former
has many concept names whereas the latter has many concept descriptions. Following
the “Hotel” ontology structure, it is possible to define individuals with roles nesting
level generally higher than the ones of the “Clothing” ontology. Moreover, we have
implemented a synthetic KB instances generator, able to automatically build satisfiable
instances referred to a given ontology. In this way, we can build data sets having dif-
ferent size, ranging from 100 to 10000 individuals, and instances with a given structure
(i.e., number of concept names, number of restrictions, etc.). Finally, several queries
have been defined for each knowledge domain. Due to lack of space, we only report on
the retrieval times for two queries of average expressiveness respectively referred to the
“Clothing” and the “Hotel” ontology:
Q1 - ”I’m looking for a medium size bluejeans with five pockets and a casual style

suitable for spring climate, for both young and adult people” classified as n name=5,
n number=18 and n univ name=10 in its normalized form;
Q2 - ”I’m looking for a twin bed room with some included options (specifically, air con-

ditioning and high speed Internet connection) in a four star hotel near Termini Station

in Rome” classified as n name=1, n number=3, n univ name=10 and n univ
number=4 in its normalized form.

Data and expression complexity. The application has been tested by means of sev-
eral queries with different expressiveness applied to several data sets in order to obtain
a comprehensive evaluation of the approach. Our tests measure the retrieval time calcu-
lated as average time over ten repetitions. Tests have been performed composing both
requests with few generic features and requests including more features with an higher
specificity (e.g., similar to the previous ones). Results show that retrieval times moder-
ately increase addressing to the system more complex queries. For this reason, Figure 5
only reports on retrieval times for the requests Q1 and Q2. Times have been computed
also considering the request normalization process. From the performance comparison
standpoint, MaMaS-tng reached via its DIG interface based on HTTP Post has been
compared with our relational knowledge based matchmaker running on a remote Post-
greSQL server. All tests are reported in Figure 5. Note that the retrieval time difference
–given the same instance number for the ontologies– is due to the different complexity
of them, as said before.

Moreover, tests have proved that retrieval time of Potential Match (with and with-
out ranking) are higher than the ones of the other match classes (as expected) whereas
Exact Match and Full Match have comparable retrieval times. In fact, Potential Match
requires a more complex structure of SQL sub-queries and it deals with a higher num-
ber of intermediate results (i.e., tuples). Retrieval times for “Clothing” dataset of 10000
instances are justified by the presence of potential matches only by construction. Basi-
cally, it can be concluded that retrieval times linearly increase with the data size, in case
of up to 5000 individuals more or less. Such outcomes are justified by the higher num-
ber of returned instances when datasets increase and –on the other hand– they suggest
a proper table partition of the database is needed. The approach scalability is proved by
the comparison with retrieval times produced by MaMaS-tng reasoner. In particular, our
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Fig. 5. Proposed system retrieval times (in ms) - [E,F,P]M=[Exact, Full, Potential] Match

higher retrieval time (i.e., Ranked Potential Match - PM+R) as been used as baseline
for the further comparison with MaMaS-tng.

Approach outcome. As said, MaMas-tng has been used as comparison term to eval-
uate output correctness. Results show that the matchmaker proposed here retrieves the
same ranked list of results for each match class. The ranking assigned to each potential
result has been computed both by MaMaS-tng (using rankPotential [12] algorithm)
and by the proposed system (using the default values for the request features weights).
Best results for MaMaS-tng have a semantic distance w.r.t. the request equal to 0. So
for a significant comparison, we have re-computed the previous ranking formula as:
rank value = numD−numC , where numD refers to request features whereas numC

sums supply features matching the requested ones. Table 1 reports on MaMaS-tng per-
formance on the same datasets and the same queries used for results in Figure 5. Given
a request D and a supplied resource C, MaMaS-tng allows to determine the match type
(matchType(D,C)) –see ask mT (D,C) in Table 1– and to calculate a ranking value
(rank(D,C)) –see ask r(D,C) in Table 1. It does not provide functions to retrieve all
the individuals satisfying a requested match class as implemented in the matchmaker
proposed here. So, in order to compare the matchmakers performance, it has been con-
sidered the ranked potential match computation, which corresponds to the previous two
asks for MaMaS-tng (see Table 1 for details).

Table 1. MaMaS-tng retrieval times (in ms) for both “Clothing” and “Hotel” ontologies

PM+R=Potential Match and Ranking
Clothing 100 500 1000 5000 - Hotel 100 500 1000 5000

PM + R 93 109 137 294 - PM + R 90 107 123 360

r(D,C) 19771 112934 265811 N/A - r(D,C) 11624 54434 106347 1205115
mT(D,C) 20488 115811 269208 N/A - mT(D,C) 23040 101258 219400 2382376
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Basically, a shallow examination of results shows highest loading times obtained
with the proposed matchmaking approach. Nevertheless, it has to be noticed –as men-
tioned in Section 3– that the proposed approach includes a time-consuming pre-processing
phase. So, knowledge bases loading times are obviously higher than in case of MaMaS-
tng (see Table 2 where M − tng column refers to MaMaS-tng and DB one is about our
approach). Anyway, the KB loading is an off-line and una tantum process, performed
once when the system is set and not repeated during reasoning phases. Moreover, if
the TBox has not been modified then it is possible to store incrementally only new in-
stances, drastically reducing load times. It has to be also said that, MaMaS-tng is not
able to load large KBs (i.e., for “Clothing” ontology, previewed 5000 ABox instances
cannot be uploaded).

Table 2. Knowledge bases loading times (in ms) for both “Clothing” and “Hotel” ontologies

Clothing 100 500 1000 5000 – Hotel 100 500 1000 5000

M-tng 995 4057 9599 N/A – M-tng 529 2858 5553 239775
DB 77605 410819 856286 4213688 – DB 52358 333520 601448 3409431

5 Conclusion and Future Work

Motivated by the need to efficiently cope with large datasets in semantic matchmak-
ing, we presented a logic-based framework exploiting a flexible knowledge modeling.
A user request is structured as set of normalized features also weighted according to the
relevance assigned by the user. By exploiting only SQL queries, the system is able to
detect resources falling in several match classes also ranking results. Current implemen-
tation refers to ALN , although as pointed out in [2] renewed interests in light-weight
DLs for large ontologies and non-standard services has been observed, in order to suc-
cessfully use semantic technologies in real-world applications.

Preliminary performance evaluation on various datasets show an efficient behavior
also considering that optimization techniques such as the transitive closure modeling
and the implementation of table partitioning have not been implemented yet. Future
work aims at testing further devised strategies for score calculation along with a full
optimization of the database and at evaluating performance with other existing OWL-
DL storage engines with reference to comparable match classes, i.e., exact and full.
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Henrique Viana�, João Alcântara�� and Ana Teresa Martins� � �

Departamento de Computação, Universidade Federal do Ceará, P.O.Box 12166,
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Abstract. In this paper, we introduce a paraconsistent extension of Rough Des-
cription Logics which allows the representation of incomplete and contradictory
concepts, as well as the lower and upper approximations of these kinds of con-
cepts. Furthermore, we use the notions of approximations, which can be applied
successively, to make restrictions or relaxations in the concept queries with the
objective of decreasing or increasing the number of results of the queries, respec-
tively.

1 Introduction

In many applications of Artificial Intelligence not rarely query tasks result in empty
answers. Similarly, it may happen that a query has too many answers as a result, and it
is not always that all these answers are important. Some approaches, known as query
refinement used to deal with uncertain knowledge, develop methods to settle these pro-
blems. One of these approaches is the Rough Set theory introduced by Z. Pawlak [13].
Rough Set theory may be applied for query refinement by resorting to query restriction
or query relaxation. A query can be restricted in order to obtain only the necessary
results, or it can be relaxed, aiming at increasing the number of its results. In this paper,
we will focus on the definition of a rough set framework in Description Logics (DLs)
fine-tuned to deal with query refinement and incomplete and contradictory information.

Rough Description Logics (RDLs) [5,9,10,14] have introduced a mechanism that
allows modeling uncertain reasoning by means of approximations of concepts. RDLs
extend classical DLs with two operations, the lower and the upper approximation. Both
approximations are based on capturing uncertainty as an indiscernibility relation R, an
equivalence relation (i.e., reflexive, symmetric and transitive). We can formally define
the upper approximation of a concept as the set of individuals that are indiscernible
from at least one that is known to belong to the concept:

C = {a | ∃b (a, b) ∈ R ∧ b ∈ C}.

Similarly, one can define the lower approximation of a concept as the set of indivi-
duals which for all ones that are indiscernible from, it is known that these ones belong
to the concept:

C = {a | ∀b (a, b) ∈ R → b ∈ C}.
� This research is partially supported by CAPES (PROPAG).

�� This research is partially supported by CAPES (PROCAD).
� � � This research is partially supported by CAPES (PROCAD) and CNPq (PQ, Universal 2010).
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Extending the ideas of rough set theory, in order to represent incomplete and contra-
dictory information, the work presented in [16] introduced the notion of paraconsistent
rough sets. Instead of employing approximations to classical sets, it was taken into
consideration four-valued sets, which are intended to represent incomplete and contra-
dictory information. Furthermore, a similarity relation (i.e., a sort of “indiscernibility”
relation that is at least reflexive) is used instead of an equivalence relation, with the aim
of modeling different levels of uncertainty.

In this work, we will adapt the notions of paraconsistent rough sets to DL, introdu-
cing a paraconsistent RDL, called PRALC . This paraconsistent RDL is slightly different
from the well-known paraconsistent DL presented in [11]. Furthermore, we introduce
two similarity relations to deal with approximation of concepts and apply the notion of
contextual approximation [5] in our approach as an alternative form of approximation of
concepts. Finally, we present some reasoning tasks, related to query refinement, which
can be applied with these introduced operations.

The paper is structured as follows. In Section 2, we present the notions of the four-
valued calculus, sets and approximations defined in [16]. In Section 3, we introduce
PRALC , and we apply the contextual approximation to PRALC together with the simi-
larity relations. In Section 4, we present some query tasks that can be used in PRALC ;
in particular, the tight and loose approximations. Finally, in Section 5 we conclude the
paper.

2 Paraconsistent Rough Sets

In order to represent incomplete and contradictory information, it was introduced a
rough set framework taking into account four-valued sets, instead of elementary sets
[16]. In these four-valued sets, an element may belong to a given set, or it may not be-
long to the set, or its membership in the set may be unknown due to incomplete informa-
tion, or even inconsistent due to a contradictory evidence. Under this view, membership
functions, set containment and set operations are also four-valued, where logical values
are t (true), f (false), i (inconsistent) and u (unknown). Moreover, since the knowledge at
hand is incomplete, instead of indiscernibility relations, the authors resort to similarity
relations to group together elements that are close to each other. Consequently, the no-
tions of upper and lower approximations extend the usual definitions of approximations
in the rough set theory.

2.1 Four-valued Semantics

In [16], the language for the four truth values was adapted from Belnap’s Logic [1],
which is grounded on bilattices [6]. As it is known, in bilattices, two orderings of truth
values are considered: truth ordering (≤t) and knowledge ordering (≤k). However,
in [16], the construction of the language is slightly different from that employed by
Belnap. The change is motivated by some results accounted in [12] as counterintuitive
in Belnap’s truth ordering. In order to give more details, let us regard the following
example involving test of cars:
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Example 1 Suppose that we have two cars a and b, belonging to the same man, where
Safe(a) = u and Safe(b) = i. We want to know if all of his cars are safe, i.e., Safe(a) ∧
Safe(b), where ∧ stands for the meet operation with respect to ≤t in Belnap’s Logic.
We have that (u ∧ i) = f. However, in this case we do not know whether both cars are
safe because we do not have any information about the safety of car a. In contrast to the
answer obtained in Belnap’s logic, u seems to be a more intuitive answer to this case.
Similarly, if we want to check if the man has a safe car, i.e., Safe(a)∨ Safe(b), Belnap’s
Logic results in the value t. This differs from our intuition because we know that the
safety of car b is unclear, since the results of the tests are contradictory, and we know
nothing about the safety of car a. In such a case, i seems to be a more intuitive answer.

In [16], in order to overcome these unexpected results, they redefined ≤t as the
smallest reflexive and transitive relation satisfying f ≤t u ≤t i ≤t t. Consequently, the
operations of meet (∧) and join (∨) in the truth ordering are defined as the greatest lower
bound and as the least upper bound in this new ordering, respectively, i.e., (x ∧ y) =
GLBt{x, y} and (x∨y) = LUBt{x, y}. The truth table for the meet and join operations
in ≤t as well as to the negation and implication can be seen in Table 1.

∧ f u i t

f f f f f

u f u u u

i f u i i

t f u i t

∨ f u i t

f f u i t

u u u i t

i i i i t

t t t t t

�→ f u i t

f t t t t

u u u i t

i i i i t

t f u i t

¬
f t

u u

i i

t f

Table 1. Truth tables for ∧,∨, �→ and ¬

The implication �→ naturally extends the usual two-valued implication, which can
be defined as (¬x∨y). Consequently, the implication has the following property: (x �→
y) ≡ (¬y �→ ¬x), but it does not satisfy the Modus Ponens if we assume that {t, i}
is the set of designated values. For instance, (i �→ f) ∧ i does not result in f. A more
detailed explanation of the definition of �→ can be found in [16]. Finally, the semantics
of ∀ and ∃ is given by

∀xP (x) = GLBt

x∈U
{P (x)} and ∃xP (x) = LUBt

x∈U
{P (x)},

where U is the universe set and P (x) denotes that x has the property P , which is
evaluated to one of the four truth values.

2.2 Four-valued Sets

Now, we present the notion of a four-valued set. Given the disjoint sets U and ¬U ,
where ¬U = {¬x | x ∈ U}, a four-valued set A on U is defined as any subset of
U ∪ ¬U . Intuitively, x ∈ A represents that there is an evidence that x is in A, and
(¬x) ∈ A represents that there is an evidence that x is not in A. We assume that ¬(¬x)
is equal to x. In this framework, set membership is four-valued and it extends the usual
two-valued membership.

Set membership, denoted as ∈̄ : U × 2U∪¬U → {t, f, i, u}, is defined by
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x∈̄A =






t, if x ∈ A, (¬x) /∈ A,

f, if x /∈ A, (¬x) ∈ A,

i, if x ∈ A, (¬x) ∈ A,

u, if x /∈ A, (¬x) /∈ A.

The complement ¬A of a four-valued set A is defined by ¬A = {¬x | x ∈ A}, and
the four-valued set inclusion is defined by X � Y = ∀x ∈ U(x∈̄X �→ x∈̄Y ). The
four-valued intersection and union are defined as x∈̄(X � Y ) = (x∈̄X) ∧ (x∈̄Y ) and
x∈̄(X � Y ) = (x∈̄X) ∨ (x∈̄Y ), respectively.

A four-valued extension of rough sets is, then, defined in [16] by four-valued set
approximations as follows. First, the equivalence relation is replaced by a similarity
relation, which is also four-valued. A similarity relation extends the indiscernibility
relation by gathering in the same class objects which are not necessarily indiscernible,
but sufficiently close or similar. In other words, a similarity relation is constructed from
the indiscernibility relation by relaxing the original conditions for indiscernibility. This
relaxation can be performed in many ways, thus giving many possible definitions for
similarity.

Definition 1 (Four-valued Similarity Relation) [16] By a four-valued similarity re-

lation σ we mean any four-valued binary relation on a universe set U satisfying at least

the reflexivity condition, i.e., for any element x of the universe (x, x)∈̄σ = t. By the

neighbourhood of an element x ∈ U w.r.t. σ, we understand the four-valued set σ(x)
such that y∈̄σ(x) = (x, y)∈̄σ.

The membership of an element x in the lower approximation of a four-valued set
A is determined by verifying the set inclusion of its neighbourhood σ(x) in A. The
membership of an element x in the upper approximation is determined by computing the
greatest membership value that an element of the universe may have in the intersection
of σ(x) and A.

Definition 2 (Lower/Upper Approximation) [16] Let A be a four-valued set. Then,

the lower and upper approximations of A w.r.t. the similarity relation σ, denoted by A+
σ

and A⊕
σ , respectively, are defined by

x∈̄A+
σ = σ(x) � A and x∈̄A⊕

σ = ∃y ∈ U [y∈̄(σ(x) �A)].

3 Paraconsistent Rough Description Logic

Rough Description Logics (RDLs) [5,9,10,14] have introduced a complementary me-
chanism that allows modelling uncertain knowledge by means of approximations of
concepts. RDLs extend classical DLs with two modal-like operations, the lower and
the upper approximation. In the spirit of rough set theory, two concepts approximate an
underspecified (uncertain) concept C as particular sub- and super-concepts, describing
which elements are definitely and possibly, respectively, elements of C.

In this section, taking into consideration the approach presented in [16], we extend
the RDLs formalisms to paraconsistent rough sets by introducing a four-valued DL
general enough to encompass two kinds of similarity relations: those explicitly defined
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and those defined in terms of a context. One distinctive aspect of our formalism is that
it permits successive refinements of a query (see Section 4). In the sequel, we introduce
the syntax, the semantics and reasoning tasks for this DL.

3.1 Paraconsistent Rough Description Logic ALC

We introduce a paraconsistent rough extension of the description logic ALC, called
PRALC .

Definition 3 (Alphabet) The PRALC alphabet is composed of the symbols ¬,�,�, ∃,
∀,�,⊥, · , · and three disjoint sets: the set of individuals NI , the set of concept names

NC , the set of role names NR and the set of similarity relations NS .

Definition 4 (Concepts) Concepts in PRALC are defined by the syntax rules below,

where C and D are concepts, A is an atomic concept, R is an atomic role and S is a

similarity relation:

C,D −→ A | � | ⊥ | ¬C | C �D | C �D | ∃R.C | ∀R.C | CS | CS

Definition 5 (Semantics) The semantics of PRALC individuals, atomic concepts, ato-

mic roles and similarity relations is given by an interpretation I = (∆I , ·I ), where

the domain ∆I
is a nonempty set of elements and ·I is a mapping function defined as

follows: each individual a ∈ NI is mapped to aI ∈ ∆I
; each atomic concept name

A ∈ NC is mapped to AI : ∆I → {t, f, i, u}; each atomic role name R ∈ NR is

mapped to RI : ∆I ×∆I → {t, f, i, u}; each similarity relation S ∈ NS is mapped to

SI : ∆I×∆I → {t, f, i, u} satisfying at least the reflexivity condition, i.e., SI(x, x) = t
for any x ∈ ∆I

.

Concepts can be interpreted inductively as follows where, for all x ∈ ∆I ,

Syntax Semantics

� �I(x) = t

⊥ ⊥I(x) = f

¬C (¬C)I(x) = ¬(CI(x))
C �D (C �D)I(x) = (CI(x) ∧DI(x))
C �D (C �D)I(x) = (CI(x) ∨DI(x))
∃R.C (∃R.C)I(x) = LUBt

y∈∆I
(RI(x, y) ∧ C

I(y))

∀R.C (∀R.C)I(x) = GLBt

y∈∆I
(RI(x, y) �→ C

I(y))

C
S

(C
S
)I(x) = LUBt

y∈∆I
(SI(x, y) ∧ C

I(y))

CS (CS)
I(x) = GLBt

y∈∆I
(SI(x, y) �→ C

I(y))

The semantics of concepts is based on semantics of Fuzzy DLs [2], as well as the
lower/upper approximations of a concept, which are related with fuzzy rough sets [4].
The main difference from our approach to others based on fuzzy sets is that we consider
t-norms, t-conorms, implication functions, and negation functions as the operations of
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conjunction (∧), disjunction (∨), implication (�→) and negation (¬), respectively, de-
scribed for the four-valued calculus in [16] (see Table 1). Now, we define the notions of
Terminological Box (TBox), Assertional Box (ABox) and ontology in PRALC .

Definition 6 (TBox) A TBox is a finite set of expressions of the form C � D, the so-

called general concept inclusion, where C and D are concepts in PRALC .

Definition 7 (ABox) An ABox consists of a finite set of assertion axioms of the form

C(a) and R(a, b), where C is a concept, R is a role, and a and b are individuals in

PRALC .

When we want to refer to inclusion and assertion axioms indistinctly, we will just
call them axioms. The semantics of inclusion and assertion axioms is given by the
following table:

Syntax Semantics

C � D i ≤t GLBt

x∈∆I
(CI(x) �→ D

I(x))

C(a) i ≤t C
I(aI)

R(a, b) i ≤t R
I(aI , bI)

Note that the semantics of concept inclusion C � D is derived from the four-valued
calculus presented in [16], i.e., it is described w.r.t. implication �→, which is defined as
(a �→ b) = ¬a ∨ b. We assume that {i, t} is the set of designated values, therefore
C � D holds iff the result of the implication is i or t. For assertion axioms the idea
is similar: C(a) (resp. R(a, b)) holds iff C(a) (resp. R(a, b)) is evaluated to one of the
designated values.

Definition 8 (Ontology) An ontology or knowledge base is a set composed by a TBox

and an ABox.

Definition 9 (Satisfiability) The notion of satisfaction of a set of axioms ε by an inter-

pretation I = (∆I , ·I), denoted I |= ε, is defined as follows: I |= ε iff I satisfies each

element in ε. For an axiom α, if I |= α we say that I is a model of α. I satisfies an

ontology O, denoted by I |= O, iff I is a model of each axiom of ontology O.

Definition 10 (Logical Consequence) An axiom α is a logical consequence of an on-

tology O, denoted by O |= α, iff every model of O satisfies α.

3.2 Contextual Approximation

In [5], it was introduced the notion of contextual indiscernibility relations in RDLs as a
way of defining an equivalence relation based on the indiscernibility criteria. In particu-
lar, the notion of context is introduced, allowing the definition of specific equivalence
relationships to be used for approximations. The main advantage of this approach is
that the reasoning with equivalence classes becomes optimized, since the equivalence
relations are discovered in the process of reasoning, differently from the traditional
RDLs, where the equivalence relation must be explicitly defined.
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In this subsection, we apply the notions of contextual approximation to PRALC , ex-
tending the definitions of lower and upper approximations of a concept. We first present
the notion of a context via a collection of PRALC concepts. We, then, introduce two spe-
cific similarity relations based on such contexts, and finally we define upper and lower
approximations of concepts using these new similarities.

Definition 11 (Context) A context is a finite nonempty set of DL concepts C = {C1,

. . . , Cn}.

Two individuals a and b are indiscernible with respect to the context C = {C1, . . . ,

Cn} iff for all Ci, where i ∈ {1, . . . , n}, CI
i (a) = CI

i (b). This easily induces an equi-
valence relation:

Definition 12 (Indiscernibility Relation) Let C = {C1, . . . , Cn} be a context. The

indiscernibility relation RC induced by C is defined as follows:

RC = {(a, b) ∈ ∆I ×∆I | for all Ci where i ∈ {1, . . . , n}, CI
i (a) = CI

i (b)}.

Since we are dealing with incomplete information, a similarity relation should be
more adequate to model relationships between individuals, because it allows to group
together individuals that are close to each other, but not necessarily indiscernible. Now,
we introduce a specific similarity relation, which is based on the work presented in [8]:

Definition 13 (Similarity Relation - unknown concepts) Let C = {C1, . . . , Cn} be a

context. The similarity relation SC induced by C is defined as follows:

SC = {(a, b) ∈ ∆I ×∆I | for all Ci where i ∈ {1, . . . , n}, CI
i (a) =

CI
i (b) or CI

i (a) = u or CI
i (b) = u}.

The purpose of the similarity relation SC is to approximate incomplete information
by considering the truth value u as similar to t, f or i and vice versa. In SC (the do

not care relation), the relevant information is the only one which is asserted, i.e., to
assure an individual has been evaluated to u in a concept is regarded as non-relevant.
Therefore, an individual a is similar to b in a context C if for all concepts in C, the
interpretation of a and b are equal, or the interpretation of a or b is equal to u.

In order to approximate both contradictory and incomplete information, we intro-
duce a second similarity relation, dubbed PC . In this new similarity relation, the truth
values t and f are similar to i.

Definition 14 (Similarity Relation - unknown and inconsistent concepts) Let C =
{C1, . . . , Cn} be a context. The similarity relation PC induced by C is defined as fo-

llows:

PC = {(a, b) ∈ ∆I ×∆I | for all Ci where i ∈ {1, . . . , n}, CI
i (a) =

CI
i (b) or CI

i (a) = u or CI
i (b) = u or if CI

i (a) = t then CI
i (b) = i or if CI

i (a) =
f then CI

i (b) = i}.
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In PC , whose definition was borrowed from [8], it is assumed that the information
may be partially described because of our incomplete or contradictory knowledge. From
this point of view, an individual a can be considered similar to b if the information
obtained in a is also obtained in b. Hence, for a concept C, where CI(a) = t and
CI(b) = i, the individual a is similar to b since the truth value t is contained in i. Note
the converse is not true: b is not similar to a according to PC .

The contextual lower and upper approximation of a DL concept C w.r.t the con-
text C is denoted by CRC and C

RC , respectively, where R is one of those similarity
relations presented above. It is important to emphasize that, for approximations with
indiscernibility and similarity relations, we have the following result:

Proposition 1 [15] Given the concept C and the context C, it holds that:

CPC � CSC � CRC � C � C
RC � C

SC � C
PC

.

This holds because PC is more general than SC , whilst, SC is more general than RC .

4 Query Refinement

Rough set theory is an interesting candidate as a framework to be employed in query
refinement. By definition, the upper approximation will add an individual to the result
of the query as soon as it is related to one of the concepts already in the query, while
the lower approximation will only retain an individual in the result if all related con-
cepts are in the query. We can imagine a situation in which a query results in an empty
answer; in this case, its upper approximation could be applied to possibly produce at
least individuals related to the query. On the other hand, a query may result in many in-
dividuals, thus a lower approximation could be applied to possibly restrict the number
of individuals in order to obtain those most related to the query.

However, the lower approximation may result in the empty query, being in this case
too strict for query refinement. As for the upper approximation, it corresponds to a well
known approach to query expansion. Nevertheless, it can be too flexible as a query
expansion technique, resulting not only in an explosion of the query, but possibly even
worse, in the addition of non-relevant individuals due to the ambiguous nature of some
of the query concepts.

In this section, we combine the flexibility of the upper approximation with the strict-
ness of the lower approximation by applying them alternately [3,4]. For instance, first
we can expand the query by adding all the individuals that are known to be related to at
least one of the query concepts. Next, we can reduce the expanded query by taking its
lower approximation, thereby pruning away all previously added individuals suspected
to be irrelevant for the query. The pruning strategy targets those individuals that are
strongly related to the query concepts, but that do not belong to the expanded query. All
these strategies of approximations are defined in PRALC in the sequel:

Definition 15 (Tight and Loose Upper/Lower Approximations) Tight and loose up-

per/lower approximations are denoted by C
S
S , C

S
S

, CSS
, and CS

S
, and are defined

as
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Syntax Semantics

C
S
S (C

S
S)

I(x) = GLBt

y∈∆I
(SI(x, y) �→ LUBt

z∈∆I
(SI(y, z) ∧ C

I(z)))

C
S
S

(C
S
S

)I(x) = LUBt

y∈∆I
(SI(x, y) ∧ LUBt

z∈∆I
(SI(y, z) ∧ C

I(z)))

CSS
(CSS

)I(x) = GLBt

y∈∆I
(SI(x, y) �→ GLBt

z∈∆I
(SI(y, z) �→ C

I(z)))

CS
S

(CS
S
)I(x) = LUBt

y∈∆I
(SI(x, y) ∧ GLBt

z∈∆I
(SI(y, z) �→ C

I(z)))

Proposition 2 [4] Given the concept C, a similarity relation S, and the indiscernibility

relation RC , it holds that:

– CSS
� CS � C � C

S � C
S
S

– CS � CS
S � C

S
and CS � C

S
S � C

S

– CRCRC
≡ CRC � C � C

RC ≡ C
RC

RC

– CRC ≡ CRC

RC � C
RC

and CRC � C
RC

RC ≡ C
RC

Note that the application of tight and loose approximations w.r.t. an indiscernibility
relation does not result in new answers to a query. Otherwise Proposition 2 suggests that
if we resort to similarity relations, successive applications of approximations may result
in different answers, making a similarity relation an interesting alternative to query re-
finement. For an application of PRALC to query refinement, let us consider an example
considering similarity relations for incomplete and contradictory information.

Example 2 (Query Relaxation/Restriction) Let x1, x2, x3, x4, x5, x6 and x7 be a set
of individuals representing houses; GoodLocation, Basement, Fireplace, Expensive,
Cheap and Medium be DL concepts; C = {GoodLocation,Basement,Fireplace} be
a context and I = (∆I , ·I) be an interpretation such that

∆I = {x1, x2, x3, x4, x5, x6, x7}, GoodLocation
I = {x1,¬x2, x3,¬x4, x6,¬x7},

Basement
I = {x1, x2,¬x2,¬x3, x4, x6,¬x6, x7},

Fireplace
I = {x1,¬x2,¬x4, x5, x6, x7},

Medium
I = {¬x1,¬x2, x3, x4, x5,¬x6, x7},

Expensive
I = {x1,¬x2,¬x3,¬x4,¬x5, x6,¬x7},

Cheap
I = {¬x1, x2,¬x3,¬x4,¬x5,¬x6,¬x7}.

Now, let us show our first example using query relaxation: suppose that we want to
know what houses are expensive. Making a query with each house, we have that

I |= Expensive(x1), I �|= Expensive(x2), I �|= Expensive(x3), I �|= Expensive(x4) and
I �|= Expensive(x5).

That is, x1 is the only expensive house. But suppose that we want to know which
houses are possibly expensive. Using query relaxation we will have that

I |= Expensive
SC (x1) and I |= Expensive

SC (x5).
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Thus, x1 and x5 are possibly expensive. We can conclude that x5 is similar to x1,
because x1 is the only object which is expensive. If we use query relaxation again (loose
upper approximation) we conclude that

I |= Expensive
SC

SC

(x1), I |= Expensive
SC

SC

(x3) and I |= Expensive
SC

SC

(x5).

We have now that x3 is loosely possibly an expensive object: because x3 is similar
to x5, an object possibly expensive. Another example related to query refinement, but
using query restriction: suppose that we want to know what houses are neither expensive
nor cheap, i.e., medium value. Making a query with each house, we have that

I �|= Medium(x1), I �|= Medium(x2), I |= Medium(x3), I |= Medium(x4) and
I |= Medium(x5).

Using query restriction, we can conclude that
I |= MediumSC

(x3), but I �|= MediumSC
(x4) and I �|= MediumSC

(x5).

That is, x4 and x5 do not have necessarily medium value. If we use query restriction
again (tight lower approximation) we can conclude that

I �|= MediumSCSC
(x3).

Thus x3 surely does not necessarily have medium value (i.e., it is similar to an object
that necessarily does not have medium value). Instead of using tight lower approxima-
tion, if we want to know what houses possibly have necessarily medium value, we may
use loose lower approximation and conclude that

I |= MediumSC

SC
(x3) and I |= MediumSC

SC
(x5).

With this example, we obtain that x5 necessarily does not have medium value, but
possibly necessarily it has medium value (because x5 is similar to x3, which has neces-
sarily medium value).

Focusing on the similarity relation for inconsistent information, we have that I �|=
Cheap(x4) and I �|= Cheap

SC
(x4), but I |= Cheap

PC
(x4). This means that PC can

be used to discover individuals related to contradictions within the context. Know-
ing I �|= Cheap

SC
(x4) and I |= Cheap

PC
(x4), we infer that there is contradictory

information in C, and x4 could be related to it. A similar intuition may be used for
lower approximation to discover those individuals which certainly are not related to
contradictions. For instance, as I |= MediumPC

(x7), the individual x7 is certainly
medium and not related to contradictions. On the other hand, as I |= MediumSC

(x3)
and I �|= MediumPC

(x3), although x3 is certainly medium, it is related to contradic-
tions. As we can see, in PRALC , we can represent very elaborated query refinements.

5 Conclusion

In this paper, we introduced the paraconsistent rough description logic PRALC , suita-
ble to represent and approximate incomplete and contradictory concepts. Besides in-
cluding in its language indiscernibility relations, our proposal permits to reason with
more relaxed notions of similarity relations in order to characterise the upper/lower ap-
proximations of a concept/query. As consequence, many sophisticated kinds of query
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refinements can be represented in PRALC . Owing to the similarity relations, one of its
distinctive aspects is that successive applications of approximations may result in suc-
cessive refinements of a query.

As a future work, we will extend the PRALC to represent and approximate more
sorts of incomplete knowledge, as in [8], where the incomplete information can be di-
vided into several kinds of missing information. Consequently, new similarity relations
can be introduced to model each kind of missing information. Another track to be ex-
plored is to introduce dominance relations [7], which are commonly employed to model
preference between information and individuals.
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