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Preface

Welcome to the 24th International Workshop on Description Logics, DL 2011,
in Barcelona, Spain. The workshop continues the long-standing tradition of in-
ternational workshops devoted to discussing developments and applications of
knowledge representation formalisms and systems based on Description Logics.
The list of the International Workshops on Description Logics can be found at
http://dl.kr.org.

There were 59 papers submitted, each of which was reviewed by at least
three members of the program committee or additional reviewers recruited by
the PC members. Apart from the presentation of the accepted papers, posters,
and demos, the program was further enhanced by the following keynotes:

— Marcelo Arenas (Pontificia Universidad Catélica de Chile),
Ezxchanging More than Complete Data.

— Gert Smolka (Saarland University),
Incremental Decision Procedures for Modal Logic with Nominals and Even-
tualities.

— Heiner Stuckenschmidt (Universitdt Mannheim),
A Little Logic Goes a Long Way — Logical Reasoning in Web Data Integration
and Ontology Learning.

The Best Student Paper Prize (€500) has been awarded to Szymon Klarman
(Vrije Universiteit Amsterdam) and Victor Gutiérrez-Basulto (Universitét Bre-
men) for their paper Two-Dimensional Description Logics of Context.

The organizers of the DL 2011 workshop gratefully acknowledge the logistical
and financial support of Yahoo, Inc. and Yahoo! Research Barcelona, and the
financial support of the Artificial Intelligence Journal. The organization of the
workshop also greatly benefited from the help of Barcelona Media, in particular
Sonia Campdepadros Pérez.

Our thanks go to all the authors for submitting to DL, and to the invited
speakers, PC members, and all additional reviewers who made the technical
program possible. Finally, we would like to acknowledge that the work of the PC
was greatly simplifed by using the EasyChair conference management system
(www.easychair.org) developed by Andrei Voronkov.

Riccardo Rosati, Sebastian Rudolph and Michael Zakharyaschev
DL 2011 Conference and PC chairs

Peter Mika, Estefania Ricart and Natalia Pou
Local organizers
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Exchanging More than Complete Data

Marcelo Arenas

Pontificia Universidad Catélica de Chile
marenas@ing.puc.cl

In the traditional data exchange setting source instances are restricted to be
complete, in the sense that every fact is either true or false in these instances.
Although natural for a typical database translation scenario, this restriction is
gradually becoming an impediment to the development of a wide range of ap-
plications that need to exchange objects that admit several interpretations. In
particular, we are motivated by two specific applications that go beyond the
usual data exchange scenario: exchanging incomplete information and exchang-
ing knowledge bases.

In this talk, we propose a general framework for data exchange that can
deal with these two applications. More specifically, we address the problem of
exchanging information given by representation systems, which are essentially
finite descriptions of (possibly infinite) sets of complete instances, and then we
show the robustness of our proposal by applying it to the problems of exchang-
ing incomplete information and exchanging knowledge bases, which are both
instantiations of the exchanging problem for representation systems.

This is joint work with Jorge Perez and Juan Reutter.



Incremental Decision Procedures for Modal
Logic with Nominals and Eventualities

Gert Smolka

Saarland University
smolka@ps.uni-saarland.de

The talk will discuss different decision procedures for modal logic with nom-
inals and eventualities. This logic has an EXPTIME-complete decision problem
and is not compact. There is a simple and worst-case optimal decision procedure,
which is not practical since it is not incremental. I will discuss two incremental
procedures, one worst-case optimal procedure for the fragment without nomi-
nals, and one not worst-case optimal procedure for the full logic. A main concern
will be the correctness arguments for the procedures.

The talk is based on joint work with Mark Kaminski.



A Little Logic Goes a Long Way — Logical
Reasoning in Web Data Integration and
Ontology Learning

Heiner Stuckenschmidt

Universitat Mannheim
heiner@informatik.uni-mannheim.de

There is an ongoing dispute in the Semantic Web Community about the use-
fulness of (Description) Logic as a basis for describing data on the web. While
researchers in logic argue with the benefits of logic in terms of a clean seman-
tics and richness of the language, criticism against the use of logic normally
focusses on two points: its computational complexity and its inability to rep-
resent soft constraints. In this talk, we will address these criticisms and argue
that if used in the right way description logics are a valuable tool for typical
tasks on the semantic web. We use problem of semantic matchmaking as an
example to show that the use of rather inexpressive logics with good computa-
tional properties already provide significant benefits by eliminating incoherent
matches. In the second part of the talk we address the problem of dealing with
soft constraints and show two solutions to this problem that have proven use-
ful for matchmaking: Approximate subsumption as a purely logical framework
for partial matchmaking and Log-Linear Description Logics as a new combina-
tion of Description Logics with (log-linear) probabilistic models. We show that
purely logical matchmaking achieves results comparable with state of the art
matchmaking systems that rely on similarity functions and present results that
show that log-linear description logics outperform existing matching systems.
We conclude that in the context of semantic web applications expressive power
of the logics used is less important than the integration with other formalisms
and technologies for improving efficiency and the ability to deal with imperfect
knowledge.



Knowledge Base Exchange

Marcelo Arenas', Elena Botoeva?, and Diego Calvanese?

1 Dept. of Computer Science, PUC Chile
marenas@ing.puc.cl
2 KRDB Research Centre, Free Univ. of Bozen-Bolzano, Italy
lastname@inf .unibz.it

Abstract. In this paper, we study the problem of exchanging knowledge between
two knowledge bases (KBs) connected through mappings, with a special interest
in exchanging implicit knowledge, not only data like in the traditional database
exchange setting. As representation formalism we use Description Logics (DL)
that exhibit a reasonable tradeoff between expressive power and complexity of
reasoning. Thus, we assume that the source and target KBs are given as a DL
TBox+ABox, while the mappings have the form of DL TBox assertions. We
study the problem of translating the knowledge in the source KB according to
these mappings. We define a general framework of KB exchange, and specify the
problems of computing and representing different kinds of solutions, i.e., target
KBs with specified properties, given a source KB and a mapping. We then de-
velop first results and techniques and study the complexity of KB exchange for
the case of DL-Litegprs, a DL that corresponds to the FOL fragment of RDFS.

1 Introduction

In data exchange, data structured under one schema (called source schema) must be
restructured and translated into an instance of a different schema (called target schema),
and the way in which this restructuring should occur is specified by means of a mapping
from the source schema to the target schema [5]. Such a problem has been studied
extensively in recent years, under various choices for the languages used to specify the
source and target schema, and the mappings [2]. While incomplete information in this
setting is introduced by the mapping layer (see also [6]), one fundamental assumption
in the works on data exchange is that the source is a (completely specified) database.
In this paper, we go beyond this setting, and consider data exchange in the case
where implicit knowledge is present in the source, by which new data may be inferred.
We follow the line of the work in [1], where a general framework for data exchange
is proposed, in which the source data may be incompletely specified, and thus (possi-
bly infinitely) many source instances are implicitly represented. The framework in [1]
in based on the general notion of representation system, as a mechanism to represent
multiple instances of a data schema, and considers the problem of incomplete data ex-
changes under mappings constituted by a set of tuple generating dependencies (tgds).
We refine that framework to the case where as a representation system we use De-
scription Logics (DL) knowledge bases (KBs) constituted by a TBox and an ABox,
and where mappings are sets of DL inclusions. While in the traditional data exchange
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setting, given a source instance and a mapping specification, (universal) solutions are
target instances derived from the source instance and the mapping, in our case solutions
are target DL KBs, derived from the source KB and the mapping. Besides a notion of
(universal) solution based on the correspondence between models of source and tar-
get KBs, we introduce also the weaker notion of (universal) CQ-solution, based on the
correspondence between answers to conjunctive queries over source and target KBs.

In our setting where we exchange DL KBs, in order to minimize the exchange (and
hence transfer and materialization) of explicit (i.e., ABox) information, we are inter-
ested in computing universal (CQ-)solutions that contain as much implicit knowledge
as possible. This leads us to define a new problem, called representability, whose goal
is to compute from a source TBox and a mapping, a target TBox that leads to a univer-
sal (CQ-)solution when it is combined with a suitable ABox computed from the source
ABox, independently of the actual source ABox.

We then develop first results and techniques for KB exchange and for the repre-
sentability problem in the case of KBs expressed in DL-Litey,s, a DL that corresponds
to the FOL fragment of RDFS. DL-Lite,,, is a fragment of DL-Liter [4] that does not
allow for existential quantification (i.e., concepts of the form 3R) in the right-hand side
of concept inclusions, nor for disjointness assertions.

The paper is organized as follows. In Section 2 we give preliminary notions on DLs
and conjunctive queries (CQs). In Section 3 we define our framework of KB exchange.
In Section 4 we present the techniques for deciding the defined reasoning tasks. Finally,
in Section 5 we draw some conclusions and outline issues for future work.

2 Preliminaries

We introduce here the necessary notions about the description logic (DL) that we use in
this article, and about conjunctive queries, which we adopt as our query formalism.

2.1 DL-Liter Knowledge Bases

The DLs of the DL-Lite family [4] of light-weight description logics are characterized
by the fact that reasoning can be done in polynomial time, and that data complexity of
reasoning and conjunctive query answering is in ACY. We adopt here DL-Liter, and
present now its syntax and semantics.

Let N¢o, Nr, N, be sets of concept, role, and individual names, respectively, and
assume that A € N and P € Ng. In DL-Literz, B and C are used to denote basic
and complex concept descriptions, respectively, and R and () are used to denote basic
and complex roles, respectively. These concept and roles constructs are defined by the
following grammar:

R =P | P~ B := A | 3R
Q = x= B | -B

Il

=

|

=

Q
|

In the following, for a basic role R, we use R~ to denote P~ when R = P, and P
when R = P~.
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A DL-Liter TBox is a finite set of concept inclusions B T C' and role inclusions
R C Q.ADL-Liteg ABox is a finite set of membership assertions of the form A(a) and
P(a,b), where a,b € N,. A DL-Liteg KB K is a pair (T, .A), where T is a DL-Liter
TBox and A is a DL-Liter ABox. As usual, TBoxes represent implicit knowledge,
while ABoxes represent the data.

In the following, we will also make use of a restricted form of DL-Liteg TBoxes.
A DL-Liter TBox is said to be definite if there are only atomic concepts and atomic
roles on the right-hand side of its inclusions. In other words, a definite TBox may not
mention in its right-hand side a concept of the form 3R, and may not contain concept
or role disjointness assertions. We call DL-Lite,;s the fragment of DL-Liter obtained
by considering only definite DL-Liter TBoxes. Intuitively, DL-Litegprs corresponds to
the fragment of RDFS [3] that is embeddable in FOL (and hence in DLs).

The semantics of DL-Liter is defined in the standard way. We just remark that
we use MOD(K) to denote the set of all models of KB K. From now on, we assume
that interpretations satisfy the standard name assumption, that is, we assume given a
fixed infinite set U of individual names, and we assume that for every interpretation
T = (AZ%,.1), it holds that AT C U and a = a for every a € AT. Notice that this
implies the Unique Name Assumption (UNA), i.e., different individuals are interpreted
as different domain elements.

A signature X is a set of concept and role names. An interpretation Z = (A .T) is
said to be an interpretation of X if it is defined exactly on the concept and role names in
Y. Given a KB K, the signature X (K) of K is the alphabet of concept and role names
occurring in C, and K is said to be defined over (or simply, over) a signature X' if
Y(K) C X (and likewise for a TBox 7, an ABox A, a concept inclusions B C C, a
role inclusions R C @, and membership assertions A(a) and R(a,b)).

2.2 Conjunctive Queries and Certain Answers

A conjunctive query (CQ) over a signature 3 is a first-order formula of the form
q(x) = Jy.conj(x,y), where x, y are tuples of variables and conj(x,y) is a con-
junction of atoms of the form: (1) A(t), with A a concept name in X' and ¢ either a
constant from U or a variable from « or y, or (2) P(t1,t2), with P a role name in X
and ¢; (¢+ = 1,2) either a constant from U or a variable from x or y. In a conjunc-
tive query ¢(x) = Jy.conj(x,y), x is the tuple of free variables of g(x). A union of
conjunctive queries (UCQ) is a formula of the form: ¢(x) = /!, Jy;.conj,;(z,y:),
where each conj;(x, y;) is as before. A query ¢ (either a CQ or a UCQ) is said to be a
query over a KB K if ¢ is a query over a signature X' and X' C X'(K).

Let ¢ be a CQ Jy; - - Jyp.conj(x1, ..., Tk, Y1,-..,Ye) Over a signature X and
T = (AT,.T) an interpretation of X. Then the answer of ¢ over Z, denoted by ¢Z,
is defined as the set of tuples (ay, ..., a;) of elements from AZ for which there ex-
ist a tuple (b, ...,be) of elements from AT such that Z satisfies every conjunct in
conj(ar,...,ag,b1,...,be). Moreover, given a UCQ ¢ = /!, ¢;, the answer of ¢
over an interpretation Z, denoted by ¢Z, is defined as Ui, qZ. Finally, given a query ¢
(either a CQ or a UCQ) over a KB K, the answer to g over K, denoted by cert(q, KC),
is defined as cert(q, K) = Nzemon(x) q%. Each tuple in cert(q, K) is called a certain
answer for q over K.
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Certain answers in DL-Litery can be characterized through the notion of chase. We
call a chase a (possibly infinite) set of assertions of the form A(t), P(t,t'), where t, t’
are either individuals, or labeled nulls interpreted as not necessarily distinct domain el-
ements. For DL-Liter KBs, we employ the notion of oblivious chase as defined in [4].
For such a KB (7, .A), the chase of A w.r.t. T, denoted chases(A), is a chase ob-
tained from .4 by adding facts implied by inclusions in 7, and introducing labeled nulls
whenever required by an inclusion with 3R in the right-hand side (see [4] for details).

3 Exchanging Knowledge Bases

In this section, we introduce the knowledge exchange framework used in the paper.
The starting point to define this framework is the notion of mapping, which has been
shown to be of fundamental importance in the context of data exchange [5]. Formally,
a DL-Liter -mapping (or just mapping) is a tuple M = (X, Yo, T12), where X7, X
are disjoint signatures and 715 is a DL-Liteg TBox whose inclusions are of the form:
(1) Cy E Cs, where Cy, Cy are complex concepts over 31 and Y, respectively, and
(2) Q1 C @2, where Q1 and ()5 are complex roles over X'; and X, respectively.

Let M = (X1, X5, T12) be a mapping. Intuitively, mapping M specifies how a
knowledge base over the vocabulary }/; should be translated into a knowledge base
over the vocabulary Y5. This intuition is formalized in terms of the notion of solution,
which is defined as follows. Given an interpretation Z; of Yy and an interpretation
Ty of Xy, pair (Z1,7Z5) satisfies TBox Ti2, denoted by (Z1,Z2) | Tia, if for each
concept inclusion C; E C5 € Tqo, it holds that ClIl - CZIQ, and for each role inclusion
Q1 C Qo € Ty, it holds that Q% 1 C Q?. Moreover, given an interpretation Z of Xy,
SAT A (Z) is defined as the set of interpretations J of X5 such that (Z, J) = 712, and
given a set X' of interpretations of Xy, SAT o((X) is defined as:

SAT (X)) = Uzex SATM(T).

Then the notion of solution under a mapping is defined as follows, by considering this
notion of satisfaction and the knowledge exchange framework proposed in [1].

Definition 1. Let M = (X1, X, T12) be a mapping, K1 a KB over X1, and K2 a KB
over Y. Then KCo is said to be a solution for K1 under M if:

MOD(K2) C SAT o (MOD(K1)).

That is, KCs is a solution for [C; under M if for every model Z, of KCo, there exists a
model Z; of Ky such that (Z1,Z5) | Tia-

Let M = (X1, X, T12). AKB K1 over X; can have an infinite number of solutions
under M. Thus, it is natural to ask what is a good solution for this knowledge base. Next
we introduce the notion of universal solution, which is a simple extension of the concept
of solution introduced in Definition 1, and is based on the notion of universal solution
introduced in [1].

Definition 2. Let M = (X1, X, T12) be a mapping, K1 a KB over X1, and K2 a KB
over Y. Then Ko is said to be a universal solution for K1 under M if:

MOD(K2) = SAT o (MOD(K1)).
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In the preceding definition, KB K5 is considered to be a good solution for KB K under
mapping M as the models of Ky exactly correspond to the valid translations of the
models of [y according to M. We illustrate Definitions 1 and 2 in an example.

Example 1. Let M = (21,2277-12), where Y| = {Al,Bl}, Xy = {AQ,BQ}, and
Ti2 = {A1 C Ay, By C By}. Furthermore, assume that K; = (77,.4;), where
Ti = {B1 C A} and A; = {Bi(a)}. Then the following knowledge bases over X
are solutions for [C; under M:

Ko = (T3, As), where To =70, Az = {Bs(a), Az(a)}
Ky = (T3, A,), where Ty ={ByC Ay}, Ay ={Ba(a)}

Moreover, K5 is a universal solution for K; under M, while K is not. In fact, if Z; is
an interpretation of X, such that: A = {a,b}, A2 = {a}, and B¥* = {a, b}, then
we have that Zo, ¢ MOD(K}) since Z, does not satisfy inclusion By T Ag, but Z, €
SAT A (MOD(K1)) since (Z1,Z2) = Tiz for Z; € MoD(K1) defined as AT = {a},
AT = {a} and BY* = {a}. n

In the previous example, X’ is not a universal solution for C; under M since inclusion
By C Aj cannot be deduced from the information in /C; and M. Or, more formally,
KL is not a universal solution as By T Aj is not implied by (77 U Tq2,.A;). However,
IC’2 can also be considered as a solution of /C; that is desirable to materialize, as the
implicit knowledge in /C5 (i.e., TBox 72) represents the implicit knowledge in K (i.e.,
TBox 771), given the way that concepts A; and B; have to be translated according to
mapping M. In fact, solution K} is as good as solution /Cy in terms of the information
that can be extracted from them by using some specific queries, but with the advantage
that KC/, represents knowledge in a more compact way. In what follows, we introduce a
new class of good solutions that captures this intuition with respect to the widely used
fragment of CQs.

Definition 3. Ler M = (X1, X5, T12) be a mapping, K1 = (T1, A1) a KB over X,
and Ko a KB over Y. Then Ko is said to be a CQ-solution for K1 under M if for every
CQ q over X5, we have that cert(q, (T1 U Ti2, A1) C cert(q, Ka).

Moreover, Ko is said to be a universal CQ-solution for K1 under M if for every CQ
q over X, we have that cert(q, (T1 U Ti2, A1)) = cert(q, K2).

Notably, we have in Example 1 that both KB K and KB K, are universal CQ-solutions
for KB Ky under mapping M.

A natural question at this point is what is the relationship between the notions of
solution presented in this section. The following proposition, which is straightforward
to prove, shows that the notion of (universal) CQ-solution is weaker than the notion of
(universal) solution.

Proposition 1. Let M = (X, Yo, T12) be a mapping, K1 a KB over X1, and Ko a
KB over Xs. If Ko is a (universal) solution for K1 under M, then Ko is a (universal)
CQ-solution for K1 under M.

In this paper, we study several fundamental problems related to the notions of solution
presented here. These problems are formally introduced below.
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3.1 Knowledge Base Exchange: Reasoning Tasks

In the data exchange scenario [5], as well as in the knowledge exchange scenario [1],
the problem of materializing solutions has been identified as the fundamental problem
to solve. Given a class U of mappings (for example, the class of DL-Liter-mappings)
and a DL £ (for example, DL-Liter), the problem of computing solutions is defined as
follows for ¢/ and L:

PROBLEM : ComMPSOL(U, L)

INPUT : A mapping M € U and an L-knowledge base K1 over X

TO DO : Compute an L-knowledge base o over X5 such that /Cs is a solu-
tion for Ky under M

Given a class U of mappings and a DL L, the computation problems
CoMpPUNIVSOL(U, L), CoMPCQSOL(U, L), and COMPUNIVCQSOL(U, £) are de-
fined exactly as above, but considering universal solutions, CQ-solutions, and universal
CQ-solutions instead of solutions, respectively.

In the rest of this paper, we study these problems, and some other fundamental
problems associated to them, for a restriction of the class of mappings introduced in
this section. More precisely, a mapping M = (X1, X5, T12) is said to be definite if T12
is a DL-Liteg,;s TBox (recall the definition of definite TBoxes in Section 2.1). We use
Uget to denote the class of definite mappings. Then, as our first result, we obtained that
the chase can be used to compute universal solutions for definite mappings and DL-
Litey,,rs TBoxes. In what follows, let chaser 5:(A) denote the projection of chases(A)
on the signature 3.

Proposition 2. Let M = (X1, X5, T12) be a definite mapping and K1 = (T1, A1) a
DL-Liteyyss KB over Xy. Then (0, chaser,, s, (chaser,(A1))) is a universal solution
for K1 under M.

Thus, given that for definite mappings and DL-Lite,,,s TBoxes, the sets chaser; (A1)
and chaser,, x,(chaser; (A;)) are always finite and can be computed in polynomial
time [4], we obtain as a corollary of Propositions 1 and 2 that the problems of computing
solutions defined above can be solved in polynomial time for definite mappings and DL-
Liteg,s TBoxes.

Corollary 1. COMPSOL (Uger, DL-Liteyyys), COMPUNIVSOL(Uget, DL-Litegpys),
CoMPCQSOL(Uges, DL-Litey,s), and COMPUNIVCQSOL(Uges, DL-Litey,ys) can all
be solved in polynomial time.

Unfortunately, the solutions obtained by using Proposition 2 are of little interest to us
because the generated target ABoxes can be very large. Hence, we turn our attention to
the case of non-empty target TBoxes and, more specifically, to the problem of comput-
ing universal CQ-solutions that include as much implicit knowledge as possible. This
gives rise to the following separation properties.

Definition 4. Let M = (X, Yo, T12) be a mapping and Ty a TBox over Xy.
— 7T1 is representable in M if there exists a TBox Ta over X5 such that for every
ABox Ay over X, it holds that (Tz, chaser,, 5,(A1)) is a universal CQ-solution
for (T1, A1) under M. Ts is called a representation of Ty in M.
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— Ty is weakly representable in M if there exists a mapping M* = (X1, Yo, T5)
such that Ti2 C %5, T1 U T = Ti%5 and Ty is representable in M*.

The separation problems are interesting to us because a positive answer would mean
that we can construct the TBox of a solution by considering only the input TBox and
the mapping, independently of the input ABox. On the other hand, the ABox of the
solution can be found simply by translating the input ABox according to the rules in the
mapping (and the input TBox). We illustrate the notions just defined in the following
example.

Example 2. Let X1 = {A1,B1}, X5 = {A2,Bo},and Ty = {B1 C A;}. If M =
(21, 22,7-12) with 712 = {Al C AQ, B C BQ}, then we have that 75 = {BQ C AQ}
is a representation of 77 in M.

On the other hand, if M’ = (X, Xy, T{,) with T/, = {A; T As}, then we have
that 7; is not representable in M': let A} = {Bi(a)}, then chase, 5,(A}) = () and
for no TBox Ty, (73, chaser;, s,(A})) is a universal CQ-solution to (71,.A}) under
M. However, if we consider T7% = T/ U {B; C Ay}, we conclude that 7; is weakly
representable in M’ since 7T/, C 715, T1 U T{y | Ti% and Ty is representable in
M* = (X1, X9, T7%) (in fact, () is a representation of 77 in M*). Note, that T/ C T1a.

Now, if M" = (21, X, 1%) with 71% = {A1 [ AQ, B C By, C7 C BQ},
then again we have that 77 is not representable in M": let A = {B;(a), Ci(c)},
then chaser; s,(AY) = {B2(a), B2(c)}. The query g() < Asz(a) evaluates to true
in (71 U T/, AY), hence in order for a TBox 73’ to be a representation of 77 in M",
it must contain the inclusion Bs T As. On the other hand, it implies that the query
q'() + Az(c) evaluates to true in (7', chasers; 5, (AY)), whereas it evaluates to false
in (TyUT/,, A!). However, again if we consider 75" = T{5U{ B C Ay}, we conclude
that 77 is weakly representable in M. |

4 Techniques for Deciding Representability

We address now the problem of deciding (weak) representability of a TBox in a map-
ping, for the case where TBoxes are expressed in DL-Lite,,-; and mappings are definite.
We start by showing some properties that characterize solutions in terms of chases.

In the following for two chases C; and Co, a homomorphism from C; to Cs is a
mapping h from the individuals and labeled nulls in C; to those in Cy such that (1) h is
the identity on the individuals, (2) if A(t) € C; then A(h(t)) € Ca, and (3)if P(¢,t') €
Cy then P(h(t), h(t")) € Co. We write C; — Cs if there is a homomorphism from C; to
CQ, and Cl = CQ 1fC1 — Cg and Cg — Cl.

From now on, we assume X' and Y5 as given, and for a mapping M = (X, X5, T12),
we use simply M to denote also 775. Then we have the following characterizations of
solutions in terms of chases, which are similar to the characterizations in [1].

Proposition 3. Let M be a definite mapping, K1 = (71, A1) a DL-Litey,;s KB over

X1, and Ky = (T2, A2) a DL-Litey,; KB over Xs. If chase . s, (chaser; (A1) —
chaser,(Az), then Ky is a CQ-solution for K1 under M.

10
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Corollary 2. Let M be a definite mapping, K1 = (T, A1) a DL-Litey,,s KB over Xy,
and Ko = (T3, As) a DL-Litey,;s KB over Xs. Then Ko is a universal CQ-solution for
IC1 under M if chase pq 5, (chaser;, (A1)) S chaser; (Az).

4.1 Checking Representability of a TBox in a Mapping

We address now the representability problem, which is to decide, given a TBox 77 over
2’y and a mapping M, whether 7 is representable in M (cf. Definition 4).
We start by considering the decision problem associated with representability:

Given a mapping M, a TBox 77 over X1, and a TBox 7T over X, check whether 75
is a representation of 77 in M, i.e., for each ABox A; over X, (73, chase pm, 53, (A1)
is a universal CQ-solution for (77,.A;) under M.

For definite mappings and DL-Lite,,s TBoxes, the decision problem associated with
representability can be solved in two steps:
1. Check whether for each ABox A; over Xy, (72, chase, s, (A1)) is a CQ-solution
for (71,.A1) under M.
2. Check whether for each ABox A; over X, and for each CQ ¢ over X5, we have
that cert(q, (T2, chasep, s, (A1))) C cert(q, (Ti UM, Ar)).
If both checks succeed, then 75 is a representation of 77 in M, otherwise it is not. We
develop now techniques to perform these two tests.

Step 1: Checking whether for each ABox A; over X1, (Ta, chase . s, (A1)) is a CQ-
solution for (T1, A1) under M.

We introduce now some notions that help us to characterize when a mapping is able to
“translate” the inclusions in 77 to the target TBox.

We use pn(X) to denote A if X is A, and P if X is 3P, 3P~, P, or P~. For X,
Y DL-Litey,s expressions, we say that X is compatible with Y if (i) pn(X) = pn(Y'),
and (ii) if X is AR, then Y is dR, R, or R~ . For a DL-Lite,,, inclusion o = X7 C X5,
we use lhs(a) to denote X1, and rhs(«) to denote Xo. We say that « is left-compatible
(resp., right-compatible) with X, if X is compatible with lhs(a) (resp., rhs(a)).

Let M be a definite mapping, « = N1 T M; a DL-Lite, inclusion over X7,
and p € M left-compatible with M;. Then the translation set of o and p in M,
denoted M(«, pi, M), is the set of DL-Litey, inclusions over X5 such that, if there

Table 1. Definition of M(«, p, M). A;, E; are atomic concepts, R;, .S; are basic roles.

a ) v B

A CEEy E,C B> A C A A C Ey
JR: C Ey E,C E> JR, C A, A C Ey
R C R dR: C E>
R CE S S1 E So R C R Ry C 5
351 C Es dR, T A, A T Ey
R, C Ry dR; C E»
351 C Ey |3dRi™ C Ay A C Ey
RiC Ry |3R; C E,

11
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exists an inclusion v in M left-compatible with Ny, then 8 € M(«, i, M), where j is
uniquely defined by «, p, v as shown in Table 1. When the mapping M is clear from
the context, we write M(c, 11). We say that «v is redundant w.r.t. p = M| T M5 (in M)
if My C My € M(a, 1t). We explain these definitions in an example.

Example 3. Leta =57 C Ry and p = dR; C As.

Letv = S C Sy and v/ = 357 C FEs be in M. Then {35y C Ay, Ex T Ay} C
M(a, p, M). If v = 351 C Ay € M, then « is redundant w.r.t. p.
If none of v, v and v’ is in M, then M(a, 1, M) is empty. |

With these notions in place, we can characterize CQ-solutions in the context of the
representability problem.

Proposition 4. Let M be a definite mapping, T a DL-Lite,.s TBox over X1, and T3 a
DL-Litey,ss TBox over X5. Then for each ABox Ay, the KB (T, chase a5, (A1)) is a
CQ-solution for {T1, A1) under M if and only if for each inclusion o, s.t. Ty = «, and
for each inclusion i € M left-compatible with rhs(a), there exists 5 € M(«, ) such
that Tz |E B.

Step 2: Checking whether for each ABox Ay over X1, and for each CQ q over X5, we
have that cert(q, (Tz, chase s, (A1))) C cert(q, (T1 UM, A1)).

Recall the definition of the translation set. Now, let 3 = Ny T My be a DL-Litey,
inclusion over X5, and v € M right-compatible with N5. Then the reverse-transiation
set of B and v in M, denoted M~ (3, v, M), is the set of DL-Lites inclusions over
2’ such that, if there exists an inclusion p in M right-compatible with Ms, then o €
M~ (8, v, M), where « is uniquely defined by 3, v, and 1 as shown in Table 1.

Proposition 5. Let M be a definite mapping, T1 a DL-Litey,s TBox over X1, and T
a DL-Liteg,.s TBox over Y. Then for each ABox A1 over X1 and for each CQ q over
X, cert(q, (T2, chaser, s, (A1) C cert(q, (T1 UM, Ay)) if and only if for each
inclusion 3, s.t. Ty |= B, and for each inclusion v € M right-compatible with hs(3),
there exists « € M~ (B,v), s.t. T1 = o

With the techniques for Steps 1 and 2 at hand, we are ready to characterize repre-
sentations.

12
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Corollary 3. Let M be a definite mapping, 71 a DL-Litey,.s TBox over X1, and Tz a
DL-Litey,ss TBox over Y. Then for each ABox Ay over X, (T, chase s, (A1) is a
universal CQ-solution for (T1, A1) under M iff
— for each inclusion «, s.t. T1 | «, and for each inclusion p € M left-compatible
with rhs(a), there exists 3 € M(a, p) s.t. Tz = B, and
— for each inclusion B3, s.t. Ta |= B3, and for each inclusion v € M right-compatible
with lhs(3), there exists « € M~ (B,v), s.t. T = o

Now, we can check whether a given 77 is representable in a given M.

Theorem 1. Let M be a definite mapping and Ty a DL-Litey,,s TBox over Xy. Then
we can check whether Ty is representable in M in polynomial time.

4.2 Checking Weak Representability

We can easily solve the weak representability problem for DL-Lite,,,; KBs even if the
mappings are arbitrary tgds, i.e., assertions of the form ¢; — g2, mapping a CQ ¢; over
21 to a CQ g9 over Xy of the same arity as g;. We call such a mapping a tgd-mapping.
Let 77 be a DL-Liteg,rs TBox and M a tgd-mapping. We can enrich M by compiling
knowledge from 77 into it:

— Let g1 — ¢2 be a tgd in M, with ¢; a CQ over X; and g3 a CQ over X5. Let the
UCQ Q; = {qi,...,qF} be the perfect reformulation of ¢; w.r.t. T; (see, e.g., [4]).
Then we extend M with a tgd ¢¢ — ¢3 for each ¢} € Q.

— We perform this for each tgd in M. The resulting mapping is denoted with M*.

Proposition 6. Let M be a tgd-mapping, T1 a DL-Liteg,rs TBox over Xy, and M*
the mapping constructed as described above. Then for each ABox Ay over Xy, the KB
(0, chase pm+ 52, (A1) is a universal CQ-solution for (T, A1) under M.

From this we immediately get:

Theorem 2. Let M be a definite mapping and T; a DL-Litey,rs TBox over X1. Then Ty
is weakly representable in M.

Thus, when the source KB is expressed in DL-Lite,, it is always possible to sepa-
rate data by enriching mappings, even if mappings are tgds. When M is a set of tgds,
the size of M™* might be exponential in the size of M. If M is a DL-Lite,,,s mapping,
the size of M* is always polynomial in the size of M.

5 Conclusions

We have specialized the framework for KB exchange proposed in [1] to the case of
DLs, i.e., the source and target KBs are given as DL KBs and the mappings have the
form of DL TBox assertions. Moreover, we have defined a new reasoning problem: rep-
resentability of a TBox in a mapping, whose goal is to compute from a source TBox
and a mapping, a target TBox that leads to a universal (CQ-)solution when it is com-
bined with a suitable ABox computed from the source ABox, independently of the

13
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actual source ABox. A variation of this problem, called weak representability, allows
for modification of the mapping, so that the source TBox becomes representable.

Then, we have developed first results and techniques for KB exchange and for the
representability problem in the case of mappings and KBs expressed in DL-Litepys
(such mappings are called definite). DL-Litey,,s is a fragment of DL-Liter that does
not allow for existential quantification (i.e., concepts of the form 3 R) in the right-hand
side of concept inclusions, nor for disjointness assertions. It implies, first, that the chase
is always finite in DL-Lite,,, and, second, that KBs are always consistent. We have
shown the following results for definite mappings and DL-Liteg,s KBs: (i) the prob-
lems of computing (universal) (CQ-)solutions can be solved in polynomial time; (ii) the
problem of representability of a TBox in a mapping is decidable in polynomial time;
(iii) every DL-Lite,,;s TBox is weakly representable in a definite mapping.

The main direction for future work is to extend the results to the case of full DL-
Liter . This brings up the problem of labelled nulls in the chase, which becomes infinite
in general. Moreover, due to the possible presence of disjointness assertions in TBoxes,
consistency of the source and target KBs has to be checked.
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1 Introduction

The DL-Lite family of description logics has recently been proposed and investi-
gated in [5-7] and later extended in [1, 8, 3]. The relevance of the DL-Lite family
is witnessed by the fact that it forms the basis of OWL 2 QL, one of the three
profiles of OWL 2 (http://www.w3.org/TR/owl2-profiles/). According to the offi-
cial W3C profiles document, the purpose of OWL 2 QL is to be the language of
choice for applications that use very large amounts of data.

This paper extends the DL-Lite languages of [3] by relaxing the restriction
on the interaction between cardinality constraints (N') and role inclusions (or
hierarchies, ). We also introduce a new family of languages, DL—Litey A,
a € {core, krom, horn, bool}, extending DL-Lite with attributes (A).

The notion of attributes, borrowed from conceptual modeling formalisms,
introduces a distinction between (abstract) objects and application domain val-
ues, and consequently, between concepts (sets of objects) and datatypes (sets of
values), and between roles (relating objects to objects) and attributes (relating
objects to values). The advantage of the presented languages over DL-Lite4 [8]
is that the range restrictions for attributes can be local (and not only global as
in DL-Lite 4). Indeed, DL—Litel"N A has a possibility to express concept inclusion
axioms of the form C C VU.T, for an attribute U and its datatype T'. In this
way, we allow re-use of the very same attribute associated to different concepts
with different range restrictions. For example, we can say that employees’ salary
is of type Integer, researchers’ salary is in the range 35,000-70,000 (enumeration
type) and professors’ salary in the range 55,000-100,000—while both researchers
and professors are employees. Note that local attributes are strictly more expres-
sive than global ones. For example, concept disjointness (or unsatisfiability) can
be inferred just from datatype disjointness for the same (existentially qualified)
attribute. Since DL-Lite languages have been proved useful in capturing concep-
tual data models [8,4,2], the extension with attributes, as presented here, will
generalize their use even further.

We aim at establishing computational complexity of knowledge base satisfi-
ability in these new DLs. In particular we prove the following results:

1. We can relax the restrictions presented in [3] limiting the interaction between
sub-roles and number restrictions without increasing the complexity of rea-
soning as far as the problem is limited to TBox satisfiability checking. As
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for KB satisfiability, the presence of the ABox should be taken into account
if we want to preserve the complexity results.

2. The introduction of local range restrictions for attributes is for free for the
languages DL-Lite).A, DL-Lite)* and DL-LiteA

ol» orn core*

2 The Description Logic DL-Lite?*V4

ebool
The language of DL—LiteZ'ijo\gA contains object names ag,a1,..., value names
V1, Vg, ..., concept names Ag, A1, ..., role names Py, Py,..., attribute names
Up,Us, ..., and datatype names Ty, T1,.... Complex roles R and concepts C

are defined below:

w= P | P,

=T | L | A | 2qR | >qU;
= B | -C' | (71[7 (72,

QW=
|

where ¢ is a positive integer. The concepts of the form B are called basic concepts.
A DL-Lite]"NA TBozx, T, is a finite set of concept, role, attribute and

bool
datatype inclusion axioms of the form:

c,cC,, CCLVUT, RICR,, ULU, TCT, TNT C,
and an ABox, A, is a finite set of assertions of the form:
Ai(a;), —Ag(ai), Prlai,a;), —Pglai,a;), Ug(a;,vj) and Ti(v;).

We standardly abbreviate > 1 R and > 1 U by 3R and 3U, respectively. Absence
of an attribute (i.e., C C VU. L) can be expressed as CM3IU C L.

Together, a TBox T and an ABox A constitute the DL—Litezf)ﬁgA knowledge
base (KB) K = (T,.A). In the following, we denote by role(K) and att(K) the
sets of role and attribute names occurring in IC, respectively; Tolei(lC) denotes
the set { Py, P, | P, € role(K)}.

Semantics. As usual in description logic, an interpretation, T = (AZ,.T), con-
sists of a nonempty domain AT and an interpretation function -Z. The interpre-
tation domain A7 is the union of two non-empty disjoint sets: the domain of
objects A(I) and the domain of values A‘I/. We assume that all interpretations
agree on the semantics assigned to each datatype T;, as well as on each constant
v;. In particular, TZI = val(T;) C A‘I/ is the set of values of datatype T;, and each
v; is interpreted as one specific value, denoted val(v;), i.e., vi = val(v;) € val(T;).
Furthermore, - assigns to each object name a; an element af € A%, to each
concept name Ay a subset A% C A% of the domain of objects, to each role
name P} a binary relation PZ C A% x AZ over the domain of objects, and to
each attribute name Uy a binary relation UkI - A% X A‘I,. We adopt here the
unique name assumption (UNA): af # a7, for all i # j. The role and concept
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constructs are interpreted in Z in the standard way:

(Pk_)z = {(y,z) € AL x AL | (z,y) € PF}, (inverse role)
77 = A%, (domain of objects)
1T =0, (the empty set)
(>qR)T = {.73‘ € AL | #{y | (z,y) € RT} > q}, (at least ¢ R-successors)
(qu)I = {m € Ag | #{v ]| (z,v) € UI} > q}, (at least ¢ U-attributes)
(VU.T)* = {z e AL | Y. (2,0) e UT v € TZ}, (attribute value restriction)
(-C)YF = AL\ 7, (not in C)
(CinC)t = ¢fnct, (both in C; and in C)

where §X is the cardinality of X. The satisfaction relation |= is also standard:

ITe=C,C0, iff ¢fccf, T=R CR, iff RTCRE,
IETCT, iff TE CTY, IEUCU, iff UfCUY,
IETNTCL iff TYNTy =0, Ik Pua,a;) iff (af,af)€ PF,
TE Ap(a;) i fla? € AZ, I = —Pylai,a;) iff (af,a]) & B
T -Ap(a;) 1 fla? ¢ AL, I &= Uklas,vy) iff (af,0]) € U,

IETi(v;) i fo] €T

A KB K = (T, A) is said to be satisfiable (or consistent) if there is an interpre-
tation, Z, satisfying all the members of 7 and .A. In this case we write Z = K
(aswell as Z =T and Z = A) and say that Z is a model of K (of T and A).

2.1 Fragments of DL-LiteZ'éoAlfA

We consider various syntactical restrictions on the language of DL—theZ'é/;gA
along two axes: (i) the Boolean operators (p,0;) on concepts, (ii) the role and
attribute inclusions (H). Similarly to classical logic, we adopt the following def-
initions. A TBox 7 will be called a Krom TBozx' if its concept inclusions are
restricted to:

Bl E BQ7 Bl E _‘BQ and _|Bl E BQ, (KI‘OIH)

(here and below all the B; and B are basic concepts). 7 will be called a Horn
TBozx if its concept inclusions are restricted to:

[]B. C B. (Horn)
k

Finally, we call T a core TBoz if its concept inclusions are restricted to:
B; C By and BBy C L. (core)

! The Krom fragment of first-order logic consists of all formulas in prenex normal form
whose quantifier-free part is a conjunction of binary clauses.

17



As By C =By is equivalent to By N By T 1, core TBoxes can be regarded as
sitting in the intersection of Krom and Horn TBoxes. In this paper we study the
following logics, for o € {core, krom, horn, bool}:

DL-L1tek HNA DI- thehom‘A, DL-Lite™™* are the fragments of DL- L1teﬁ%’4

rom core
with Krom, Horn, and core TBoxes, respectively;

DL-LiteZ:LN is the fragment of DL—LiterN A without attributes and datatypes;

DL-Lite'g/A is the fragment of DL-LiterN A without role and attribute inclu-
sions.

As shown in [3], reasoning in DL—thezLN is already rather costly (EXPTIME-
complete) due to the interaction between role inclusions and number restrictions.
However, both of these constructs turn out to be useful for the purposes of
conceptual modeling. By limiting their interplay one can get languages with
a better computational properties [8,3]. Before presenting such limitations we
need to introduce some notation. For a role R, let inv(R) = P, if R = P, and
inv(R) = Py, if R = P, . Given a TBox 7 we denote by C% the reflexive and
transitive closure of the relation {(R, R’), (inv(R),inv(R')) | RC R' € T}. We
say that R =% R’ iff R C% R’ and R’ C% R. Say that R’ is a proper sub-role
of Rin T if R' C% R and R Z% R'. A proper sub-role R’ of R is said to be a
direct sub-role of R if there is no other proper sub-role R” of R such that R’ is
a proper sub-role of R”; the set of direct sub-roles of R is denoted as dsubr(R).

The language DL-Lite(*V) [3] is the result of imposing the following syntactic
restriction on DL-Lite’*Y TBoxes T

(inter) if R has a proper sub-role in 7 then 7 contains no negative occurrences
of number restrictions > ¢ R or > ¢ inv(R) with ¢ > 2

(an occurrence of a concept on the right-hand (left-hand) side of a concept
inclusion is called negative if it is in the scope of an odd (even) number of
negations —; otherwise it is called positive). We will formulate two alternative
versions of restriction (inter).

Definition 1. Given a TBox T and a role R € rolei(T), we define the following
parameters:

ubound(R,T) = min({oo} U{q— 1] ¢ >2 and > q R occurs negatively in T}),
lbound (R, T) = max({0} U{q | > ¢ R occurs positively in T}),

rank(R,T) = max(lbound (R, T) ), 2o Rredsubr(R) TANK (R, 7)),

rank(R, A) = max({0}U{n | Ri(a,a;) € A, R; TF R, for distinct ay, ..., ay}).

Consider the languages obtained from DL—Litez[N by imposing one of the fol-
lowing two restrictions:

(interl) for every R € role®(T), if R has a proper sub-role in 7 then
ubound(R,T) > rank(R,T);

(inter2) for every R € role*(T), if R has a proper sub-role in 7 then
ubound(R,T) > rank(R,T) + max{1, rank(R, A)}.
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language (inter) [3] (interl) (inter2) non-restrict.
DL-Litelt) | NLOGSPACE [3] NLOGSPACE [Th.1]

DL-Lite]Y, PTIME [3] PTiME [Th.1]

DL-Lite!*Y | NLocSpack [3] |2NF [Th2l\NLocSpack [Th.)| EXPTIME [3]
DL-Litel NP [3] NP [Th.1]
DL-Lite?N AINLoGSPACE [Th.3] NLOGSPACE [Th.3]
DL-Lite}NA|  PTivE [Th.3] PTIME [Th.3]
DL-Lite"NA| NP [Tha]  |ZNP[Th2l]  \p [y ExpTME
DL-Lite]tN4 NP [Th.3] NP [Th.3]

DL-Lite} A NLOGSPACE [Th.3]
DL-LiteN-2, PTIME [Th.3]
DL-LiteNA NA NA NA NP [Th. 4]
DL-Lite) NP [Th.3]

Table 1: Complexity of DL-Lite logics (NA = Non-Applicable).

These new restrictions are in some way weaker than (inter) and, for ex-
ample, allow for the specialization of functional roles: KB K = (T, .A) with
T - {Z 2R E J_, R1 E RQ, RQ E R}, and .A = {R(a,b),Rl(al,bl),Rg(ag,bg)}
does not satisfy (inter), but it satisfies both (interl) and (inter2). Finally,
the above restrictions can also be applied to sub-attributes in the languages
DL—LiterN A Table 1 summarizes the obtained complexity results (with numer-
ical parameters ¢ coded in binary).

3 Reasoning in DL-LiteZ‘N

In this section, we investigate the complexity of deciding KB satisfiability in
languages DL-LiterN under the restrictions (interl) and (inter2), respectively.
We adapt the proof presented in [3], where a DL—LiteZ'éjo\g KB K = (T,A)
is encoded into a sentence K*e in the one-variable first-order logic QL'. We
use a slightly longer but simpler encoding. Every a; € ob(A) is associated to the
individual constant a; of QL!, and every concept name A; to the unary predicate
A;(x). For each concept > ¢ R in K we introduce a fresh unary predicate EqR(z).
For each role name P, € rolei(lC), two individual constants dp; and dp, are
introduced, as representatives of the objects in the domain and range of Py,
respectively. The encoding C* of a concept C is defined inductively:

1* =1,
T* =T,

(Ai)* = Ai(z),
(-C)* = ~C* (),

(= g R)" = E,R(x),
(C1NCy)* = Cf(x) AC5(x).

The QL' sentence encoding the knowledge base K is defined as follows:

KCte V[T (z) A TR(z) A A (er(@) A dr(x))] A A

Rerole*(K)
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Formulas T*(z), the 6z(z), for R € role*(K), and TR (z) encode the TBox T
T'@) = N (Ci) = C5), drl@)= J\ (BEyR(x)— ER()),

7,4 €QR, d'>q
TR@) = A\ (E,R(z) — E.R (x)),

RC% R qeQR

where Qgi contains 1, all ¢ such that > ¢ R occurs in 7 and all Q?, for R' T4 R.
Sentence A'e encodes the ABox A:

Ate = N\ Ag(@) A N ~Akla) A N Eg R A N L
Ag(a;)eA —Ag(a;)EA a,a’ €ob(A) —Py(a;,a;)EA
R'CAHR, R'(a,a’)EA R(a;,a;)€A, RET Py

where ¢, , is the maximum number in Q? such that there are ¢ , many distinct
a; with R;(a,a;) € A and R; T3 R. For each R € Tolei(lC), we also need the
following formula expressing the fact that the range of R is not empty whenever
its domain is non-empty:

er(z) = E1R(z) — inv(EL1R(dr)),
where inv(E1R(dr)) is E1 P, (dp, ) if R = P, and E, Py (dpy) if R = P, .

Lemma 1. A DL—Liter,ﬁg knowledge base under restriction (inter2) is satisfi-
able iff the QL' -sentence Kte is satisfiable.

Proof. (Sketch) The only challenging direction is (<). To prove it, we adapt the
proofs of Theorem 5.2 and Lemma 5.14 in [3]. The idea of the proof is to construct
a DL-Litez'f)ﬁg interpretation Z, from 91, the minimal Herbrand model of K¥e. We
denote the interpretations of unary predicates P and constants a of QL' in I
by P™ and a™, respectively. Let D = ob(A) U {dpx, dp;, | P € role(K)} be the
domain of M. Then Z = (A%, F) is defined inductively: AT = |Jo°_, W,,, such
that Wy is the set Dy = 0b(A), and for every a; € ob(A), al = a. Each set
Wina1, m > 0, is constructed by adding to W, fresh copies of certain elements
from D \ 0b(A). The extensions AZ of concept names Ay are defined by taking

Af = {w e AT | M = A[ep(w)]}, (1)

where ¢p(w) is the element d € D of which w is a copy.

The interpretation for each role Py, is defined inductively as PkI = U::o P,
where P C W,,, x W,,,, along with the construction of AZT. The initial interpre-
tation for each role name P is defined as follows:

P} = {(aém,a;m) € Wo x Wy | R(a;,a) € Aand R C3 P} (2)
For every R € role* (K), the required R-rank r(R, d) of d € D is defined by taking
r(R,d) = max ({0} U {q € Q% | M |= E,R[d]}). The actual R-rank ry,(R,w) of
a point w € AT at step m is

tH{w € Wit | (w,w') € PP, if R = Py,
tH{w' € Wygr | (w',w) € PN, if R= P, .

rm (R, w) = {
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Assume that W, and P;™, m > 0, have been already defined. Let W,,,.1 = () and
Pt = ), for each role name Py. If we had r,,, (R, w) = r(R, cp(w)), for each role
R and w € W,,, then the interpretation we need would be constructed. However,
the actual rank of some points could still be smaller than the required rank. We
cure these defects by adding R-successors for them. Note that the ‘curing’ process
for a given w and R, not only increases the actual R-rank of w, but also all its
R'-ranks, for all R T35 R’. At this point we adapt the construction in [3] to
obtain the interpretation Z we are intending. For each Py € role(K), we consider
two sets of defects in P} A7* = {w € Wy, \ Wit | 7 (Pr, w) < 7(Pg, cp(w))}
and A} ={w € Wy, \ Wim1 | rin (P, w) < (P, ep(w))}.

In each equivalence class [R] = {S | S =% R} we select a single role, a
representative. Let G = (Repr, E) be a directed graph such that RepZ is the
set of representatives and (R, R') € E iff R is a proper sub-role of R’. Clearly, G
is a directed acyclic graph and so, by a topological sort, one can assign to each
representative a unique number smaller than the number of all its descendants in
G. We use the ascending total order induced on G when choosing an element P
in Rep?, and extend in that way W, and P to Wy,;1 and P,?”rl, respectively.

(A7) Let w € A, q = (P, cp(w)) — rm (Pr, w), d = cp(w). There is ¢’ > ¢ > 0
with M = Ey Pyld]. Then, M = E1Py[d] and M = E P, [dp,]. In this
case we take ¢ fresh copies wi,... ,w; of dp, , add them to W,,; and for
each 1 <1 < ¢, set cp(w]) = dp, , add the pairs (w, w;) to each P]mJrl with
P, C% P; and the pairs (wj, w) to each PJerl with P, C% P; (note that by
adding pairs to P;”H we change its the actual rank);

(A7) This rule is the mirror image of (A}"): Py and dp,, are replaced with P
and dpy, respectively.

We need to show that, for all w € AT and all > ¢R in T,

(a1) if > ¢ R occurs positively in 7 then MM = E,R[cp(w)] implies w € (> q R)%;
(a2) if > g R occurs negatively in 7 then we(> ¢ R)T implies M = E, R[cp(w)].

Consider first w € Wy. It should be clear that actual R-rank of w
ro(R,w) < rank(R, A) + 3" prcasupr(r) Tank(R', T)

and so, by (inter2), the total number of R-successors before we cure the de-
fects does not exceed ubound(R,T). If ubound(R,T) = oo then there are no
negative occurrences of > g R with ¢ > 2 and, although may have r,, (R, w) >
r(R,cp(w)) after curing the defects of R, both (a;) and (ag) hold. Otherwise,
we have ubound(R,T) +1 € Q¥ and so, by (inter2), max Q% > rank(R,T) +
rank(R, A), whence ro(R,w) < max Q4. So, as r(R, cp(w)) < lbound(R,T) and
lbound(R, T) < ubound(R,T) < maxQ%, after curing the defect, we will have
rm(R,w) = r(R, cp(w)), for all m > 0, and both (a;) and (ag) hold. The case
with w € Wy, \ Win,—1, for mg > 0 is similar, only now

Tmo (R, w0) < 143 prc dsur(r) Tank(R', T).
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Finally, we show that Z = ¢ for each ¢ € K. For ¢ = Ag(a;), p = = Ag(a;)
the claim is by the definition of AZ. For ¢ = =Py (a;,a;), we have (a;,a;) € PE
iff( a;,a;) € PY iff R(a;,a;) € A and R C% Py. By induction on the structure
of concepts and (a;) and (ag), one can show that Z = Cy; C Cy whenever
M = Ve (Ci(z) — C3(x)), for each ¢ = C; T Cs. Finally, T = ¢ holds by
definition in case p = Ry C Ry € T.

Theorem 1. Under restmctzon (inter2), checking KB satisfiability is NP-
complete in DL- thebool, PTIME complete m DL- L1teh0m and NLOGSPACE-
complete in both DL- thekmm and DL-Lite™\.

core*

We now consider the case where the restriction (interl) is imposed on the
interaction between sub-roles and number restrictions. In presence of an ABox,
(inter2) restricts the number of R-successors in the ABox, which appears to be
a strong constraint on the instances of the ABox. On the other hand, the less
restrictive condition (interl), which does not impose any bound on R-successors
in the ABox, does not come for free, as shown by the following theorem:

Theorem 2. Under restriction (interl), checking KB satisfiability is NP-hard
even in DL-Lite!N

core*

Proof. We show that graph 3-colorability can be reduced to KB satisfiability.
Let G = (V, E) be a graph with vertices V' and edges F and {r,g,b} be three
colors. Consider the following KB K = (7,.A) with role names v; and w and
object names o, r, g,b and the z;, for each vertex v; € V:

T={>(V|+4)wC L}U{v;, Cw, By C3v;, BoM3Iv;, CL|v;eV}U
{31}; |_|3”U; C L | (Ui,’l}j) S E},
A :{Bl(o)7w(07r)aw(O,g)aw(O,b)} U {’U)(O, mz)vB2(xZ) | v € V}

It can be shown that /C is satisfiable iff G is 3-colorable.

4 Reasoning with Attributes

In this section we study the effect of extending DL-Lite with attributes. In par-
ticular, we show that for the Bool, Horn and core cases the addition of attributes
does not change the complexity of KB satisfiability.

Theorem 3. KB satisfiability is NP-complete in DL—L11:e/\£
in DL- L1teN and NLOGSPACE-complete in DL-Lit

horn core*

Under restriction (inter2), checking KB satisfiability is NP-complete in
DL-Lite]t HNA  PTIME-complete in DL- theifomA and NLOGSPACE-complete in
DL Lite/ XA,

core °

PTIME-complete

bool»

Proof. (Sketch) We encode a DL-LiteN* KB K = (T, A) in a QL' sentence
K*e in a way similar to the translation used in Lemma 1. Denote by val(.A) the
set of all value names that occur in 4. Similarly to roles, we define the sets Q%
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of natural numbers for all occurrences of > qU (including sub-attributes). We
need a unary predicate E,U(z), for each attribute name U and ¢ € Qg—, denoting
the set of objects with at least ¢ values of attribute U. We also need, for each
attribute name U and each datatype T, a unary predicates UT(x), denoting all
objects that may have attribute U values only of datatype T. Following this
intuition, we extend -* by the following two statements:

(>qU)" = EU(x) and ~VUT)  =UT(z).
The QL! sentence encoding the KB K is defined as follows:

Kl = Kl A Vz [T (z) A /\ (6u(2) Aag (z) Aad (2)] A Al A AL
U€catt(K)

where KCte is as before, TH(z), 0y (x) and A*e are similar to 7™ (z), 6g(z) and
Ate| but rephrased for attributes and their inclusions. The new types of ABox
assertions require the following formula:

A=A A (UT@)—Tv) A A Tu,

Uk(ai,vj)€A datatype T' T(vj)EA

where T'v; is a propositional variable for each datatype T and each v; € val(A).
The two additional formulas, al;(x) and o (z), capturing datatype inclusions
and disjointness constraints are:

ay(r) = /\ (UT(z) = UT'(z)),
TCT' eT

ap(z) = N [(UT@)AUT (2) AExU(z) - L) A N\ (ToAT'v— 1)].
TNT'CLeT vEval(A)

We would like to note here that the formula a?](a:) for disjoint datatypes demon-
strates a subtle interaction between attribute range constraints VU.T and mini-
mal cardinality constraints JU.

We show that K is satisfiable iff the QL£'-sentence Kt= is satisfiable. For (<),
let M = K¥=. We construct a model Z = (A5 U AL, -T) of K similarly to the way
we proved Lemma 1 but this time datatypes will have to be taken into account:
let AL be defined inductively as before and A% = val(A) U V. The set V will
be constructed starting from wval(A) in order to ‘cure’ the attribute successors
as follows. For each datatype T and each attribute U, let

T° = {v € val(A) | M |z Tv} and U°® = {(a,v) | U(a,v) € A}.

For every attribute U € at#(KC), we can define the required U-rank r(U,d) of
d € D and the actual U-rank ro(R,w) of w € AL as before, treating U as a role
name (the only difference is that there will be only one step, and so, the actual
rank is needed only for step 0). We can also consider the equivalence relation
induced by the sub-attribute relation in 7, then we can choose representatives

23



and a linear order on them respecting the sub-attribute relation of 7. We can
start from the smaller attributes and ‘cure’ their defects. Let w € AL and
q = (U, ep(w)) — ro(U,w) > 0. Take ¢ fresh elements vy, ...,v,, add those
fresh values to V, add pairs (w,v1), ..., (w,v,) to U® and add vy,...,v, to T°
for each datatype T with 9 = UT[cp(w)]. Let UZ and T? be the resulting
relations. Now, it can be shown that if 90t = K*a then Z |= ¢ for every ¢ € K.
We only note here that fresh values v; cannot be added to two disjoint datatypes
T and T” because of formula o (z).

Now, given a KB with a Bool or Horn TBox, K= is a universal one-variable
formula or a universal one-variable Horn formula, respectively, which immedi-
ately gives the NP and PTIME upper complexity bounds for the Bool and Horn
fragments. The NLOGSPACE upper bound for KBs with core TBoxes is not so
straightforward because o (z) is not a binary clause. In this case we note that
JC*= is still a universal one-variable Horn formula and therefore, C*= is satisfiable
iff it is true in the ‘minimal’ model. The minimal model can be constructed in the
bottom-to-top fashion by using only positive clauses of K*a (i.e., clauses of the
form Va (B1(z) A--- A Bg(z) = H(z))) and then checking whether the negative
clauses of K= (i.e., clauses of he form Vz (By(z) A--- A Bg(x) — 1)) hold in the
constructed model. By inspection of the structure of C*a, one can see that all
its positive clauses are in fact binary, and therefore, whether an atom is true in
its minimal model or not can be checked in NLOGSPACE.

It is of interest to note that the complexity of KB satisfiability increases in
the case of Krom TBoxes:

Theorem 4. KB satisfiability is NP-complete in DL—Lite/,xfm, and so, in
DL-Lite]NA even under (inter) and (inter2).

Proof. (Sketch) The proof exploits the ternary disjointness formula o (z) in
JC*a. In fact, if TMT' T L € T then the following concept inclusion, although
not in the syntax of DL—Litej,x;Am, is a logical consequence of T (cf. a% (z)):

VUTvYU.T' m3u C L.

Using such ternary intersections one can encode 3SAT. Let ¢ = A", C; be a
3CNF, where the C; are ternary clauses over variables p1, ..., p,. Now, suppose
pjr V iz Vpjs is the ith clause of ¢. It is equivalent to it Apjz A —pys — L
and so, can be encoded as follows:

TINTPC L,  -Ap CVULT!,  Ap CVULT?,  —Ap AU,

where the Ai,..., A, are concept names for the variables p1,...,pn, and Uj; is
an attribute and T} and T? are datatypes for the ith clause (note that Krom
concept inclusions of the form =B C B’ are required, which is not allowed in
the core TBoxes). Let T consist of all such inclusions for clauses in . It can be
seen that ¢ is satisfiable iff T is satisfiable.
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5 Conclusions

We studied two different extensions of the DL-Lite logics. First, local attributes
allow to use the same attribute associated to different concepts with different
datatype range restrictions. We showed that the extension with attributes is
harmless with the only notable exception of the Krom fragment, where the com-
plexity rises from NLOGSPACE to NP.

Second, we consider weak syntactic restrictions on interaction between cardi-
nality constraints and role inclusions and study their impact on the complexity
of satisfiability. For example, under (inter) [3], roles with sub-roles cannot have
maximum cardinality constraints. We present two alternative restrictions, which
coincide without ABoxes, and show that the complexity of TBox satisfiability
under them coincides with the complexity of TBox satisfiability without role in-
clusions. However, if we want to preserve complexity of KB reasoning, condition
(inter2) imposes a bound on the number R-successors in the ABox. Indeed,
under the weaker condition (interl) complexity of KB satisfiability rises to at
least NP (even for the core fragment).

As a future work, we intend to fill the gaps in Table 1 and, in particular, to
see whether the NP-hardness results have a matching upper bound. We are also
working on query answering in the languages with attributes.
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Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redundan-
cies in ontologies. The inexpressive Description Logic £L is of particular
interest in this context since, on the one hand, several large biomedical
ontologies are defined using ££. On the other hand, unification in ££ has
recently been shown to be NP-complete, and thus of considerably lower
complexity than unification in other DLs of similarly restricted expres-
sive power. However, ££ allows the use of the top concept (T), which
represents the whole interpretation domain, whereas the large medical
ontology SNOMED CT makes no use of this feature. Surprisingly, remov-
ing the top concept from £L makes the unification problem considerably
harder. More precisely, we will show that unification in ££ without the
top concept is PSPACE-complete.

1 Introduction

Unification in DLs has been proposed in [7] as a novel inference service that can,
for example, be used to detect redundancies in ontologies. In this paper, we will
look at unification in ontologies expressed in £L£. For example, assume that one
knowledge engineer defines the concept of female professors as

Person M Female M Jjob.Professor,

whereas another knowledge engineer represent this notion in a somewhat differ-
ent way, e.g., by using the concept term

Woman M Jjob.(Teacher M Researcher).

These two concept terms are not equivalent, but they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by sub-
stituting the concept name Professor in the first term by the concept term
Teacher ' Researcher and the concept name Woman in the second term by the
concept term Person N Female. We call a substitution that makes two concept
terms equivalent a unifier of the two terms. Such a unifier proposes definitions

* Supported by DFG under grant BA 1122/14-1
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for the concept names that are used as variables. In our example, we know that,
if we define Woman as Person " Female and Professor as Teacher 'l Researcher,
then the two concept terms from above are equivalent w.r.t. these definitions.

In [7] it was shown that, for the DL FLy, which differs from £L by offering
value restrictions (Vr.C') in place of existential restrictions, deciding unifiability
is an EXPTIME-complete problem. In [4], we were able to show that unification
in £L is of considerably lower complexity: the decision problem is “only” NP-
complete. The original unification algorithm for ££ introduced in [4] was a brutal
“guess and then test” NP-algorithm, but we have since then also developed
more practical algorithms. On the one hand, in [6] we describe a goal-oriented
unification algorithm for ££, in which non-deterministic decisions are only made
if they are triggered by “unsolved parts” of the unification problem. On the other
hand, in [5], we present an algorithm that is based on a reduction to satisfiability
in propositional logic (SAT), and thus allows us to employ highly optimized
state-of-the-art SAT solvers for implementing an £ L-unification algorithm.

However, the large medical ontology SNOMED CT is not formulated in £L,
but rather in its sub-logic EL™T, which differs from £ in that the use of the
top concept is disallowed. If we employ £ L-unification to detect redundancies in
(extensions of) SNOMED CT, then a unifier may introduce concept terms that
contain the top concept, and thus propose definitions for concept names that are
of a form that is not used in SNOMED CT. Apart from this practical motivation
for investigating unification in £~ ", we also found it interesting to see how such
a small change in the logic influences the unification problem. Surprisingly, it
turned out that the complexity of the problem increases considerably (from NP
to PSPACE). In addition, compared to &£L-unification, quite different methods
had to be developed to actually solve £L~ T -unification problems. In particular,
we will show in this paper, that—similar to the case of FLy-unification—EL™ ' -
unification can be reduced to solving certain language equations. In contrast to
the case of FLy-unification, these language equations can be solved in PSPACE
rather than EXPTIME, which we show by a reduction to the emptiness problem
for alternating automata on finite words.

Complete proofs of the results presented in this paper can be found in [1].
There we also show PSPACE-hardness of ££~ " -unification by a reduction of the
intersection emptiness problem for finite automata [11,8]. An extended version
of this paper will be published as [2].

2 The Description Logics £€ and ££77

In this paper, we deal with the description logic ££ in which concept terms
are built from concept names (N¢) and role names (Ng) using the constructors
conjunction (M), existential restriction (3r.C’) and the top concept (T). In the
restricted description logic ecTT, concept terms may not contain T. As usual,
these concepts are interpreted as sets over some domain [3].

An EL-concept term is called an atom iff it is a concept name A € N¢
or an existential restriction Jr.D. Concept names and existential restrictions
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Ir.D, where D is a concept name or T, are called flat atoms. The set At(C) of
atoms of an EL-concept term C' consists of all the subterms of C' that are atoms.
For example, C' = A M 3r.(B M 3r.T) has the atom set At(C) = {A4,Ir. (BN
Ir.T), B,3r.T}. Obviously, any £L-concept term C' is a conjunction C' = Cy M
...MNC, of atoms and T. We call the atoms among C1,...,C, the top-level
atoms of C. The £L-concept term C is called flat if all its top-level atoms are
flat. Subsumption in ££ and E£7 " can be characterized as follows [6]:

Lemma 1. LetC=A;MN...NA,N3Ir.C1M0...03r,,.Cy, and D =By M...M
B;M3dsy.DyM...M3s,,.D,, be two EL-concept terms, where Ay, ..., Ay, By,..., B
are concept names. Then C C D iff {B1,...,B;} C{A1,...,Ar} and for every
Jj€{l,...,n} there exists an i € {1,...,m} such that r; = s; and C; C Dj.

In particular, this means that C' E D iff for every top-level atom D’ of D there
is a top-level atom C’ of C such that C' E D’.

Modulo equivalence, the subsumption relation is a partial order on concept
terms. In £L, the top concept T is the greatest element w.r.t. this order. In
EL™T, there are many incomparable maximal concept terms. We will see below
that these are exactly the E£7 "-concept terms of the form Jrq.---3r,.A for
n > 0 role names r1,...,r, and a concept name A. We call such concept terms
particles. The set Part(C) of all particles of a given EL™T-concept term C' is
defined as

— Part(C) := {C} if C is a concept name,
— Part(C) :={3r.E | E € Part(D)} if C = 3r.D,
— Part(C) := Part(C1) UPart(Cy) if C = C; 1M Ch.

For example, the particles of C = AM 3r.(AMN Ir.B) are A,3r.A,Ir.3r.B. Such
particles will play an important role in our ££~ '-unification algorithm. The
next lemma states that particles are indeed the maximal concept terms w.r.t. to
subsumption in ££7 ", and that the particles subsuming an £~ " -concept term
C' are exactly the particles of C.

Lemma 2. Let C be an Eﬁf—r—concept term and B a particle.

1. If BC C, then B=C.
2. B € Part(C) iff C C B.

3 Unification in £L and £L£7 T

To define unification in ££ and ££7 " simultaneously, let £ € {££,EL7 "}
When defining unification in £, we assume that the set of concepts names is
partitioned into a set N, of concept variables (which may be replaced by sub-
stitutions) and a set N, of concept constants (which must not be replaced by
substitutions). An L-substitution o is a mapping from N, into the set of all
L-concept terms. This mapping is extended to concept terms in the usual way,
i.e., by replacing all occurrences of variables in the term by their o-images. An
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L-concept term is called ground if it contains no variables, and an L-substitution
o is called ground if the concept terms o(X) are ground for all X € N,,.
Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An L-unification problem is of the form I' = {C4 =" Dy,...,
c, =° D,.}, where C1,Dy,...Cy, D, are L-concept terms. The L-substitution
o is an L-unifier of I' iff it solves all the equations C; =' D; in I, i.e., iff
o(Cy) = o(D;) fori=1,...,n. In this case, I' is called L-unifiable.

In the following, we will use the subsumption C' C° D as an abbreviation for the
equation C' M D =" C. Obviously, o solves this equation iff o(C) C o(D).

Clearly, every ££~ " -unification problem I” is also an € L-unification problem.

Whether I' is L-unifiable or not may depend, however, on whether £ = £L or

= &£ 7. As an example, consider the problem I := {4 C’ X,B C’ X},
where A, B are distinct concept constants and X is a concept variable. Obviously,
the substitution that replaces X by T is an £L-unifier of I". However, I" does not
have an ££~ " -unifier. In fact, for such a unifier o, the Eﬁf—r—concept term o (X)
would need to satisfy A C o(X) and B C o(X). Since A and B are particles,
Lemma 2 would imply A = ¢(X) = B and thus A = B, which is not the case.

It is easy to see that, for both £ = ££ and £ = 8£_T, an L-unification
problem I" has an L-unifier iff it has a ground L-unifier ¢ that uses only concept
and role names occurring in I',% i.e., for all variables X, the £-concept term o (X))
is a ground term that contains only such concept and role names. In addition,
we may without loss of generality restrict our attention to flat L-unification
problems, i.e., unification problems in which the left- and right-hand sides of
equations are flat £-concept terms (see, e.g., [6]).

Given a flat L-unification problem I', we denote by At(I") the set of all atoms
of I, i.e., the union of all sets of atoms of the concept terms occurring in I". By
Var(I") we denote the variables that occur in I', and by NV(I") := At(I")\ Var(I)
the set of all non-variable atoms of I'.

&€ L-unification by guessing acyclic assignments

The NP-algorithm for £L-unification introduced in [4] guesses, for every vari-
able X occurring in I, a set S(X) of non-variable atoms of I'. Given such an
assignment of sets of non-variable atoms to the variables in I', we say that the
variable X directly depends on the variable Y if Y occurs in an atom of S(X).
Let depends on be the transitive closure of directly depends on. If there is no
variable that depends on itself, then we call this assignment acyclic. In case the
guessed assignment is not acyclic, this run of the NP-algorithm returns “fail.”
Otherwise, there exists a strict linear order > on the variables occurring in I
such that X > Y if X depends on Y. One can then define the substitution ~*
induced by the assignment .S along this linear order:

— If X is the least variable w.r.t. >, then v%(X) is the conjunction of the
elements of S(X), where the empty conjunction is T.

3 Without loss of generality, we assume that I" contains at least one concept name.
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— Assume y°(Y) is defined for all variables Y < X. If S(X) = {Dy,..., Dy},
then v¥(X) :=~5(D1) N...M~y%(D,,).

The algorithm then tests whether the substitution 7 computed this way is a
unifier of I'. If this is the case, then this run returns v°; otherwise, it returns
“fail.” In [4] it is shown that I" is unifiable iff there is a run of this algorithm on
input I" that returns a substitution (which is then an £L-unifier of I").

Why this does not work for £E£7 "

The £L-unifiers returned by the £L-unification algorithm sketched above need
not be ££~ "-unifiers since some of the sets S(X) in the guessed assignment
may be empty, in which case v%(X) = T. This suggests the following simple
modification of the above algorithm: require that the guessed assignment is such
that all sets S(X) are nonempty. If such an assignment S is acyclic, then the
induced substitution v° is actually an EE_T—substitution, and thus the substi-
tutions returned by the modified algorithm are indeed EL™ "-unifiers. However,
this modified algorithm does not always detect £~ " -unifiability, i.e., it may
return no substitution although the input problem is L~ T -unifiable.
As an example, consider the ££~ "-unification problem

I''={AnNB="Y, BNC="2 Y C'X, IrnZC’ X},

where X,Y, Z are concept variables and A, B, C are distinct concept constants.
We claim that, up to equivalence, the substitution that maps X to Ir.B, Y to
AN B, and Z to BMNC is the only ££~ "-unifier of I". In fact, any ££~ " -unifier
~ of I' must map Y to AN B and Z to BMC, and thus satisfy 3r.(ANB) C v(X)
and 3r.(BMC) C y(X). Lemma 1 then yields that the only possible top-level
atom of 7(X) is Ir.B. However, there is no non-variable atom D € NV(I") such
that (D) is equivalent to 3r.B. This shows that I" has an £~ " -unifier, but
this unifier cannot be computed by the modified algorithm sketched above.

The main idea underlying the ££~ "-unification algorithm introduced in the
next section is that one starts with an £L-unifier, and then conjoins “appro-
priate” particles to the images of the variables that are replaced by T by this
unifier. It is, however, not so easy to decide which particles can be added this
way without turning the £L-unifier into an EL™ T-substitution that no longer
solves the unification problem.

4 An £L£ "-Unification Algorithm

In the following, let I" be a flat £~ "-unification problem. Without loss of
generality we assume that I' consists of subsumptions of the form C; Mm... M
C,, T’ D for atoms C4,...,Cp, D. Our decision procedure for SE_T—uniﬁability
proceeds in four steps.

Step 1. If S is an acyclic assignment guessed by the £L-unification algorithm
sketched above, then D € S(X) implies that the subsumption v%(X) C v°(D)
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holds for the substitution v induced by S. Instead of guessing just subsumptions
between variables and non-variable atoms, our ££~ " -unification algorithm starts
with guessing subsumptions between arbitrary atoms of I'. To be more precise,
it guesses a mapping 7 : At(I")? — {0, 1}, which specifies which subsumptions
between atoms of I" should hold for the ££~ " -unifier that it tries to generate: if
7(D1, D2) = 1 for Dy, Dy € At(I), then this means that the search for a unifier
is restricted (in this branch of the search tree) to substitutions v satisfying
~v(D1) E v(D3). Obviously, any such mapping 7 also yields an assignment

ST(X):={DeNV(I) | 7(X,D) =1},
and we require that this assignment is acyclic and induces an £L-unifier of I".

Definition 2. The mapping 7 : At(I')? — {0,1} is called a subsumption map-
ping for I' if it satisfies the following three conditions:

1. It respects the properties of subsumption in EL:
(a) 7(D,D) =1 for each D € At(I').
(b) (A1, Az) =0 for distinct concept constants Ay, As € At(I).
(¢) 7(Ir.C1,35.Co) =0 for distinct r,s € Ng with Ir.Cy,3s5.Cy € At(I).
(d) 7(A,3r.C) = 7(3Ir.C, A) = 0 for each constant A € At(I"), role name r
and variable or constant C' with Ir.C' € At(I').
(e) If Ir.Cy,3r.Cy € AL(I"), then 7(Ir.Cy, 3Ir.Cy) = 7(C1, Co).
(f) For all atoms D1, Dy, D3 € At(I'), if 7(D1,D3) = 7(D2, D3) = 1, then
T(Dl, Dg) =1.
2. It induces an EL-substitution, i.e., the assignment S™ is acyclic and thus
induces a substitution v, which we will simply denote by ¥™.
3. It respects the subsumptions of I', i.e., it satisfies the following conditions

for each subsumption C1y1...MC, T° D in I':
(a) If D is a non-variable atom, then there is at least one C; such that

T(CZ‘, D) =1.
(b) If D is a variable and 7(D,C) =1 for a non-variable atom C € NV(I"),
then there is at least one C; with 7(C;,C) = 1.

Though this is not really necessary for the proof of correctness of our E£7 -
unification algorithm, it can be shown that the substitution " induced by a
subsumption mapping 7 for I' is indeed an £L-unifier of I'. It should be noted
that 4™ need not be an & £~ T-unifier of I". In addition, 47 need not agree with 7
on every subsumption between atoms of I". The reason for this is that 7 specifies
subsumptions which should hold in the &€ £~ T-unifier of I' to be constructed. To
turn 47 into such an £~ "-unifier, we may have to add certain particles, and
these additions may invalidate subsumptions that hold for 4”. However, we will
ensure that no subsumption claimed by 7 is invalidated.

Step 2. In this step, we use T to turn I” into a unification problem that has only
variables on the right-hand sides of subsumptions. More precisely, we define
Ar .= AprUA,, where

Ar:={Cyn...NC,C" X € I'| X is a variable of I'},
A, :={CC" X | X is a variable and C an atom of I with 7(C, X) = 1}.
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For an arbitrary E£~ ' -substitution o, we define
S (X):={DeNV({)|o(X)Co(D)},

and write S < 87 if S7(X) C S7(X) for every variable X. The following
lemma states the connection between SE_T—uniﬁability of I' and of A ;, using
the notation that we have just introduced.

Lemma 3. Let I be a flat Eﬁf—r-uniﬁcation problem. Then the following state-
ments are equivalent for any EL™ " -substitution o

1. o is an EL™ " -unifier of I'.
2. There is a subsumption mapping 7 : At(I")? — {0,1} for I' such that o is
an EL™ " -unifier of Ar and ST < 59,

Step 3. In this step, we characterize which particles can be added in order to
turn 47 into an EL~ " -unifier o of A r,r satisfying ST < S7. Recall that particles
are of the form 3ry.---3r,.A for n > 0 role names r1,...,r, and a concept name
A. We write such a particle as Jw.A, where w = ry---r, is viewed as a word
over the alphabet Npg of all role names. If n = 0, then w is the empty word ¢
and Je.A is just A.

Admissible particles are determined by solutions of a system of linear lan-
guage inclusions. These linear inclusions are of the form

X; CLoUL X U...UL, X, (1)

where X7, ..., X, are indeterminates, i € {1,...,n}, and each L; (i € {0,...,n})
is a subset of N U {e}. A solution 6 of such an inclusion assigns sets of words
0(X;) € N}, to the indeterminates X; such that 6(X;) C Lo U L16(X;)U... U
L,0(X,).

The unification problem Ar . induces a finite system Zr » of such inclusions.
The indeterminates of Z ; are of the form X4, where X € N, and A € N.. For
each constant A € N, and each subsumption of the form C; M...MC, C’ X €
Ar -, we add the following inclusion to Zr ,:

X4 C fa(C)U...U fa(Cy), where
{r}fa(C)if C =3r.C’

)Yy if C =Y is a variable
Fa(C) = {e} ifC=A
0 if C e N\ {4}

Since Ap , contains only flat atoms, these inclusion are indeed of the form (1).

We call a solution 6 of Zr ; admissible if, for every variable X € N,, there is
a constant A € N, such that (X 4) is nonempty. This condition will ensure that
we can add enough particles to turn 47 into an EL™ T -substitution. In order to
obtain a substitution at all, only finitely many particles can be added. Thus, we
are interested in finite solutions of Zr ., i.e., solutions 6 such that all the sets
0(X 4) are finite.
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Lemma 4. Let I" be a flat EL™ " -unification problem and T a subsumption map-
ping for I'. Then Ar . has an Eﬁf—r—umﬁera with 8™ < S iff I+ has a finite,
admissible solution.

Proof sketch. Given a ground EL™ T-unifier o of A rr with §7 < §9, we define
for each concept variable X and concept constant A occurring in I

0(Xa):={w e Np | FJw.A € Part(c(X))}.

It can then be shown that ¢ is a solution of Zr .. This solution is finite since any
concept term has only finitely many particles, and it is admissible since o is an
&L~ T-substitution.

Conversely, let 6 be a finite, admissible solution of Z .. We define the sub-
stitution ¢ by induction on the dependency order > induced by S7 as follows.
Let X be a variable of I" and assume that o(Y") has already been defined for all
variables Y with X > Y. Then we set

o(X):= |—| o(D)nM |_| |—| Jw. A.

DeS™(X) AEN. weh(Xa)

Since 6 is finite and admissible, o is a well-defined ££~ " -substitution. It can be
shown that o(X) is indeed an E£~ " -unifier of Ap, with S7 < §7. O

Step 4. In this step we show how to test whether the system Zp , of linear
language inclusions constructed in the previous step has a finite, admissible
solution or not. The main idea is to consider the greatest solution of Z .

To be more precise, given a system of linear language inclusions Z, we can
order the solutions of Z by defining 6; C 05 iff 6;(X) C 02(X) for all indeter-
minates X of Z. Since 6y, which assigns the empty set to each indeterminate of
7, is a solution of Z and solutions are closed under argument-wise union, the
following clearly defines the (unique) greatest solution 6* of Z w.r.t. this order:

(x)=|J ox).

6 solution of T

Lemma 5. Let X be an indeterminate in T and 0* the mazximal solution of T.
If 0*(X) is nonempty, then there is a finite solution 6 of T such that 0(X) is
nonempty.

Proof. Let w € 6*(X). We construct the finite solution 6 of Z by keeping only
the words of length |w/|: for all indeterminates Y occurring in Z we define

O(Y) = {uect*(Y)]||u| <[wl}.

By definition, we have w € 0(X). To show that 6 is indeed a solution of Z,
consider an arbitrary inclusion ¥ C LoU L1 X; U...U L, X, in Z, and assume
that v € 6(Y). We must show that v € Lo U L10(X;1) U...U L,0(X,,). Since
u € 0*(Y) and 0* is a solution of Z, we have (i) u € Lo or (ii) u € L;0*(X;) for
some 1,1 < ¢ < n. In the first case, we are done. In the second case, u = au’
for some o € L; C Nr U {e} and v’ € *(X;). Since |v/| < |u| < |w|, we have
v € 0(X;), and thus u € L;0(X;). O
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Lemma 6. There is a finite, admissible solution of Ir , iff the mazimal solution
0 of Ir . is admissible.

Proof. If Zr . has a finite, admissible solution #, then the maximal solution of
Zr . contains this solution, and is thus also admissible.

Conversely, if * is admissible, then (by Lemma 5) for each X € Var(I") there
is a constant A(X) and a finite solution Ox of Zr . such that Ox (X 4(x)) # 0.
The union of these solutions 6x for X € Var(I") is the desired finite, admissible
solution. a

Given this lemma, it remains to show how we can test admissibility of the max-
imal solution 6* of Zr ,. For this purpose, it is obviously sufficient to be able
to test, for each indeterminate X4 in Zr ., whether 6*(X ) is empty or not.
This can be achieved by representing the languages 0*(X 4) using alternating
finite automata with e-transitions (e-AFA), which are a special case of two-way
alternating finite automata. In fact, as shown in [10], the emptiness problem for
two-way alternating finite automata (and thus also for e-AFA) is in PSPACE.

Lemma 7. For each indeterminate X o in Ip , we can construct in polynomial
time in the size of Ir, an e-AFA A(X,A) such that the language L(A(X, A))
accepted by A(X, A) is equal to 0*(X a), where 8* denotes the mazimal solution
Oprﬂ—,

This finishes the description of our ££~ " -unification algorithm. It remains
to argue why it is a PSPACE decision procedure for ££7 " -unifiability.

Theorem 1. The problem of deciding unifiability in EL™T is PSPACE-complete.

Proof. Here we only show that the problem is in NPSPACE, which is equal to
PSPACE by Savitch’s theorem [13]. PSPACE-hardness is shown in [1,2].

Let I' be a flat ££~ T-unification problem. By Lemma 3, Lemma 4, and
Lemma 6, we know that I" is ££~ " -unifiable iff there is a subsumption mapping
7 for I'" such that the maximal solution 6* of Zr , is admissible.

Thus, we first guess a mapping 7 : At(I")? — {0,1} and test whether 7 is a
subsumption mapping for I'. Guessing 7 can clearly be done in NPSPACE. For
a given mapping 7, the test whether it is a subsumption mapping for I" can be
done in polynomial time.

From 7 we can first construct Ar; and then Zr » in polynomial time. Given
Zr ;. we then construct the (polynomially many) e-AFA A(X, A), and test them
for emptiness. Since the emptiness problem for e-AFA is in PSPACE, this can
be achieved within PSPACE. Given the results of these emptiness tests, we can
then check in polynomial time whether, for each concept variable X of I" there
is a concept constant A of I" such that 6*(X4) = L(A(X, A)) # 0. If this is the
case, then 6* is admissible, and thus I" is ££~ ' -unifiable. O
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5 Conclusion

Unification in ££ was introduced in [4] as an inference service that can sup-
port the detection of redundancies in large biomedical ontologies, which are
frequently written in this DL. Motivated by the fact that the large medical
ontology SNOMED CT actually does not use the top concept available in £L,
we have in this paper investigated unification in EE;'—, which is obtained from
EL by removing the top concept. More precisely, SNOMED CT is a so-called
acyclic € £~ T-TBox,* rather than a collection of ££~ " -concept terms. However,
as shown in [6], acyclic TBoxes can be easily handled by a unification algorithm
for concept terms.

Surprisingly, it has turned out that the complexity of unification in ec’
(PSPACE) is considerably higher than of unification in ££ (NP). From a theo-
retical point of view, this result is interesting since it provides us with a natural
example where reducing the expressiveness of a given DL (in a rather minor way)
increases the complexity of the unifiability problem. Regarding the complexity
of unification in more expressive DLs, not much is known. If we add negation
to £L, then we obtain the well-known DL ALC, which corresponds to the basic
(multi-)modal logic K [14]. Decidability of unification in K is a long-standing
open problem. Recently, undecidability of unification in some extensions of K
(for example, by the universal modality) was shown in [17]. These undecidabil-
ity results also imply undecidability of unification in some expressive DLs (e.g.,

in SHIQ [9]).

Apart from its theoretical interest, the result of this paper also has practical
implications. Whereas practically rather efficient unification algorithm for £L£
can readily be obtained by a translation into SAT [5], it is not so clear how to
turn the PSPACE algorithm for £L~ T -unification introduced in this paper into
a practically useful algorithm. One possibility could be to use a SAT modulo
theories (SMT) approach [12]. The idea is that the SAT solver is used to generate
all possible subsumption mappings for I, and that the theory solver tests the
system Zr , induced by 7 for the existence of a finite, admissible solution. How
well this works will mainly depend on whether we can develop such a theory
solver that satisfies well all the requirements imposed by the SMT approach.

Another topic for future research is how to actually compute ££~ "-unifiers
for a unifiable ££~ "-unification problem. In principle, our decision procedure
is constructive in the sense that, from appropriate successful runs of the e-AFA
A(X, A), one can construct a finite, admissible solution of Z ;, and from this an
L™ T-unifier of I'. However, this needs to be made more explicit, and we need
to investigate what kind of ££~ " -unifiers can be computed this way.

? Note that the right-identity rules in SNOMED CT [15] are actually not expressed
using complex role inclusion axioms, but through the SEP-triplet encoding [16].
Thus, complex role inclusion axioms are not relevant here.
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1 Introduction

Fuzzy variants of Description Logics (DLs) were introduced in order to deal
with applications where not all concepts can be defined in a precise way. A
great variety of fuzzy DLs have been investigated in the literature [12,8]. In fact,
compared to crisp DLs, fuzzy DLs offer an additional degree of freedom when
defining their expressiveness: in addition to deciding which concept constructors
(like conjunction, disjunction, existential restriction) and which TBox formalism
(like no TBox, acyclic TBox, general concept inclusions) to use, one must also
decide how to interpret the concept constructors by appropriate functions on
the domain of fuzzy values [0, 1]. For example, conjunction can be interpreted
by different t-norms (such as Godel, Lukasiewicz, and product) and there are
also different options for how to interpret negation (such as involutive negation
and residual negation). In addition, one can either consider all models or only
so-called witnessed models [10] when defining the semantics of fuzzy DLs.

Decidability of fuzzy DLs is often shown by adapting the tableau-based algo-
rithms for the corresponding crisp DL to the fuzzy case. This was first done for
the case of DLs without general concept inclusion axioms (GCIs) [19,17,14,6],
but then also extended to GCIs [16,15,18,4,5]. Usually, these tableau algorithms
reason w.r.t. witnessed models.! It should be noted, however, that in the pres-
ence of GCIs there are different ways of extending the notion of witnessed models
from [10], depending on whether the witnessed property is required to apply also
to GCIs (in which case we talk about strongly witnessed models) or not (in which
case we talk about witnessed models).

The paper [4] considers the case of reasoning w.r.t. fuzzy GClIs in the set-
ting of a logic with product t-norm and involutive negation. More precisely, the
tableau algorithm introduced in that paper is supposed to check whether an on-
tology consisting of fuzzy GCIs and fuzzy ABox assertions expressed in this DL
has a strongly witnessed model or not.? Actually, the proof of correctness of this
algorithm given in [4] implies that, whenever such an ontology has a strongly
witnessed model, then it has a finite model. However, it was recently shown in [2]

! In fact, witnessed models were introduced in [10] to correct the proof of correctness
for the tableau algorithm presented in [19].

2 Note that the authors of [4] actually use the term “witnessed models” for what we
call “strongly witnessed models.”
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that this is not the case in the presence of general concept inclusion axioms, i.e.,
there is an ontology written in this logic that has a strongly witnessed model,
but does not have a finite model. Of course, this does not automatically imply
that the algorithm itself is wrong. In fact, if one applies the algorithm from [4] to
the ontology used in [2] to demonstrate the failure of the finite model property,
then one obtains the correct answer, and in [2] the authors actually conjecture
that the algorithm is still correct. However, incorrectness of the algorithm has
now independently been shown in [3] and in [1]. Thus, one can ask whether the
fuzzy DL considered in [4] is actually decidable. Though this question is not
answered in [1], the paper gives strong indications that the answer might in fact
be “no.” More precisely, [1] contains a proof of undecidability for a variant of
the fuzzy DL considered in [4], which (i) additionally allows for strict GCls, i.e.,
GClIs whose fuzzy value is required to be strictly greater than a given rational
number; and (ii) where the notion of strongly witnessed models used in [4] is
replaced by the weaker notion of witnessed models.

In this paper, we consider a different fuzzy DL with product t-norm, where
disjunction and involutive negation are replaced by the constructor implication,
which is interpreted as the residuum. In this logic, residual negation can be
expressed, but neither involutive negation nor disjunction. It was introduced in
[10], where decidability of reasoning w.r.t. witnessed models was shown for the
case without GClIs. In [7], an analogous decidability result was shown for the case
of reasoning w.r.t. so-called quasi-witnessed models. Following [7], we call this
logic x- ALE. In the present paper we show that adding GCIs makes reasoning
in *-ALE undecidable w.r.t. several variants of the notion of witnessed models
(including witnessed, quasi-witnessed, and strongly witnessed models).

2 Preliminaries

In this section, we introduce the logic *-ALE and some of the properties that
will be useful throughout the paper.

The syntax of this logic is slightly different from standard description logics,
as it allows for an implication constructor, and no negation or disjunction. *-ALE
concepts are built through the syntactic rule

C:::A|J_‘T‘Cl|—102‘01%CQ‘E|T.C|VT.C

where A is a concept name and r is a role name.

A x-ALE ABox is a finite set of assertion azioms of the form (a : C' > ¢) or
{(a,b) : > q), where C is a *-ALE concept, r € Nz, ¢ is a rational number in
[0,1], a, b are individual names and > is either > or =. A - ALE TBox is a finite
set of concept inclusion azioms of the form (C'C D > q), where C, D are *- ALE
concepts and ¢ is a rational number in [0, 1]. A x-ALE ontology is a tuple (A, T),
where A is a - ALE ABox and T a - ALE TBox. In the following we will often
drop the prefix - ALE, and speak simply of e.g. TBoxes and ontologies.

The semantics of this logic extends the classical DL semantics by interpreting
concepts and roles as fuzzy sets over an interpretation domain. Given a non-
empty domain A, a fuzzy set is a function F' : A — [0, 1], with the intuition that

38



an element 0 € A belongs to F with degree F(§). Here, we focus on the product
t-norm semantics, where logical constructors are interpreted using the product
t-norm ® and its residuum = defined, for every «,8 € [0, 1], as follows:

a®p:=a-p,
a:>5;—{1 ifa <8

B/a  otherwise.

The semantics of *-ALE is based on interpretations. An interpretation is a
tuple Z = (AZ%,-T) where AT is a non-empty set, called the domain, and the
function -Z maps each individual name a to an element of AZ, each concept
name A to a function AZ : AT — [0,1] and each role name r to a function
rf . AT x AT — [0,1]. The interpretation function is extended to arbitrary
x- ALE concepts as follows. For every § € AL,

THO) =1,
11@) =0,
(C111Co)*(6) = CT(6) ® C3(5)
(C1 = Co)*(8) = CF(6) = C5(5)
Fr.C)*(6) = b rt(87) ® C*(9)
(Vr.C)*(8) = inf, r(67) = C* (7).

The interpretation Z = (AZ, -T) satisfies the assertional axiom (a : C 1> q) iff
CT(aT)>q, it satisfies ((a,b) : r > q) iff rZ(a®,b?) > q and it satisfies the concept
inclusion (C'C D > q) iff infsc oz (CF(5) = DZ(5)) > g. This interpretation is
called a model of the ontology O if it satisfies all the axioms in O.

In fuzzy DLs, reasoning is often restricted to witnessed models [10]. An in-
terpretation Z is called witnessed if it satisfies the following two conditions:

(witl) for every 6 € AZ, role r and concept C there exists v € AT such that
(Fr.C)E(6) = rT(6,7) ® CE(v), and

(wit2) for every § € AZ, role r and concept C there exists v € AT such that
(Vr.C)E(8) = r(6,7) = CZ(v).

This model is called weakly witnessed if it satisfies (witl) and quasi-witnessed
if it satisfies (witl) and the condition

(wit2’) for every 6 € AZ, role r and concept C, either (Vr.C)T = 0 or there
exists v € AT such that (vr.C)Z(8) = rZ(8,y) = CL(y).

In the presence of GCIs, witnessed interpretations are sometimes further
restricted [6,2,8] to satisfy

(wit3) for every two concepts C, D, there is a - such that
inf (C*(n) = D*(n)) = C* () = D* ().
neAT
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Witnessed interpretations that satisfy this third restriction (wit3) are called
strongly witnessed interpretations.

We say that an ontology O is consistent (resp. weakly witnessed consistent,
quasi-witnessed consistent, witnessed consistent, strongly witnessed consistent)
if it has a model (resp. a weakly witnessed model, a quasi-witnessed model,
a witnessed model, a strongly witnessed model). Obviously, strongly witnessed
consistency implies witnessed consistency, which implies quasi-witnessed consis-
tency, which itself implies weakly witnessed consistency. The converse implica-
tions, however, need not hold; for instance, a quasi-witnessed consistent - ALE
ontology that has no witnessed models can be derived from the example in |7].

We now describe some properties of t-norms and axioms that will be useful
for the rest of the paper. For every a,8 € [0,1] it holds that « = 8 = 1 iff
a < B. Thus, given two concepts C, D, the axiom (C'C D > 1) expresses that
CZT(5) < DX(0) for all § € AZ. Additionally, 1 = 8 =3 and 0 = 3 = 1 for all
B €[0,1], and @ = 0 =0 for all & € (0, 1].

In the following, we will use the expression (C' ~= D) to abbreviate the axioms
(CCVr.D>1),(3r.DC C >1). To understand this abbreviation, consider an
interpretation Z satisfying (C' ~» D) and let d,y € AT with rZ(d,y) = 1. From
the first axiom it follows that

C*(6) < (vr.D)*(5) = nf, r(8,m) = D*(n)
<1*(6,y) = D*(v) =1 = D*(y) = D*(y).

From the second axiom it follows that

C*(8) > (Ir.D)*(6) = Sp. rF(6m) - D*(n)

> 1" (6) - D (y) = D*(v),

and hence, both axioms together imply that CZ(§) = DZ(v). In other words,
(C ~~ D) expresses that the value of CZ(§) is propagated to the valuation
of the concept D on all r successors with degree 1 of . Conversely, given an
interpretation Z such that 7Z(d,y) € {0,1} for all 6,y € AL, if rZ(6,y) = 1
implies C7(§) = D*(v), then Z is a model of (C' ~+ D).

For a concept C, and a natural number n > 1, the expression C" will denote

i3
the concatenation of C' with itself n times; that is, C" := |_|1 C'. The semantics
Jj=

of M yields (C™)%(8) = (CZ(5))", for every model Z and § € AL,
We will show that consistency of - ALE ontologies w.r.t. the different variants
of witnessed models introduced above is undecidable. We will show this using

a reduction from the Post correspondence problem, which is well-known to be
undecidable [13].

Definition 1 (PCP). Let (v1,w1), ..., (Um, W) be a finite list of pairs of words
over an alphabet X = {1,...,s},s > 1. The Post correspondence problem (PCP)
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asks whether there is a non-empty sequence i1,1%2,...,%, 1 < i; < m such that
Viy Uiy * Vg, = Wi, Wiy, -+ - Wy, . If such a sequence exists, then the word i1ig - - - ik
is called a solution of the problem.

We assume w.l.o.g. that there is no pair v;, w; where both words are empty.
For a word p = iqig---ix € {1,...,m}*, we will denote as v, and w,, the words
Vi, Uiy + - U, and w;, w;, - - - Ww;, , respectively.

The alphabet X' consists of the first s positive integers. We can thus view
every word in X* as a natural number represented in base s+ 1 in which 0 never
occurs. Using this intuition, we will express the empty word as the number 0.

In the following reductions, we will encode the word w in X* using the number
27% € [0, 1]. We will construct an ontology whose models encode the search for
a solution. The interpretation of two designated concept names A and B at a
node will correspond to the words v, w,,, respectively, for € {1,...,m}*.

3 Undecidability w.r.t. Witnessed Models

We will show undecidability of consistency w.r.t. witnessed models by construct-
ing, for a given instance P = ((vi,w1),..., (Um,wn)) of the PCP, an ontology
Op such that for every witnessed model Z of Op and every p € {1,...,m}* there
is an element §,, € AT with AZ(5,) = 27 and B%(§,) = 27*». Additionally,
we will show that this ontology has a witnessed model whose domain has only
these elements. Then, P has a solution iff for every witnessed model Z of Op
there exist a § € AT such that AZ(§) = BZ(J).

Let § € AT encode the words v, w € X*; i.e., AZ(§) =27% and BZ(§) =27%,
and let 4,1 < i < m. Assume additionally that we have concept names V;, W;
with VZ(8§) = 27% and WZ(§) = 27%i. We want to ensure the existence of a
node v that encodes the concatenation of the words v, w with the i-th pair from
P; i.e. vv; and ww;. This is done through the TBox

[vg]

Ti o= {(T T 3. T > 1), (V; AT Zh 4y (W, n Be+D"™ ) I By

Recall that we are viewing words in X* as natural numbers in base s+ 1. Thus,
the concatenation of two words u, u’ corresponds to the operation u-(s-+1)1* 44/
We then have that

(V; mACTY N (5) = VE(5) - (AT (8)HD"™ = 27w,

If 7 is a witnessed model of 7;3, then from the first axiom it follows that
(Ir;. T)E(8) = 1, and according to (witl), there must exist a v € AZ with
rZ(5,y) = 1. The last two axioms then ensure that AZ(y) =27 and BZ(y) =
27 "wWwi: thus, the concept names A and B encode, at node v, the words vv; and
ww;, as desired. If we want to use this construction to recursively construct
all the pairs of concatenated words defined by P, we need to ensure also that
VE(y) =27, Wi(y) = 27* hold for every j,1 < j < m. This can be done
through the axioms

T o= {(V; = Vi) (W = W) [ 1<, j < m).
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It only remains to ensure that there is a node §. where AZ(5.) = B%(6.) =
1 = 29 (that is, where A and B encode the empty word) and ij(ég) = 27",
WJI (6c) = 27" hold for every j,1 < ¢ < m. This condition is easily enforced
through the ABox?

AL :={{a:A=1),{a: B=1)}U
{{a:Vi=27") (a:W; =2""") |1 <i<m}

Finally, we include a concept name H that must be interpreted as 0.5 in
every domain element. This is enforced by the following axioms:

Ao :={{a: H=0.5)},
To:={(H % H)[1<i<m}.

This concept name will later be used to detect whether P has a solution (see
Theorem 3).

Let now Op := (Ap, Tp) where Ap = A% U A and Tp := To UL, T We
define the interpretation Zp := (A7 .Z7) as follows:

— ATP =1{1,... ,m}*,
— ol =g,

for every p € AT7,
— AIP(,LL) =27 %, BIP(,LL) =27Wn, HIP(,LL) = 0.5,
and for all j,1 <j<m

— VP () =27%, WP (u) =2"" , and
— 7P (p, pf) = Land 77 (p, /) = 0 if p/ # pj.

It is easy to see that Zp is in fact a witnessed model of Op, since every node
has exactly one r; successor with degree greater than 0, for every i,1 < i < m.
More interesting, however, is that for every witnessed model Z of Op, there is
an homomorphism from Zp to Z as described in the following lemma.

Lemma 2. Let T be a witnessed model of Op. Then there exists a function
f: AT — AT such that, for every p € AP, CTP(u) = CT(f(u)) holds for
every concept name C and r¥(f(u), f(ui)) = 1 holds for everyi,1 <i < m.

Proof. The function f is built inductively on the length of p. First, as Z is a
model of Ap, there must be a § € A such that a” = §. Notice that Ap fixes
the interpretation of all concept names on ¢ and hence f(g) = § satisfies the
condition of the lemma.

3 Notice that equality is necessary for this construction; since there is no negation
constructor, it is not possible to express (a : X = ¢q) with ¢ < 1 using only axioms
of the form {(a : Y > ¢').
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Let now g be such that f(u) has already been defined. By induction, we
can assume that AZ(f(u)) = 27%, BX(f(u)) = 27“», HX(f(n)) = 0.5, and for
every j, 1 <j <m, ij(f(,u)) = 2_”1,W]-I(f(u)) = 27", Since 7 is a witnessed
model of (T C 3Jr,. T > 1), for all 4,1 < i < m there exists a v € AT with
rZ(f(p),7y) = 1, and as T satisfies all the axioms of the form (C' ~ D) € Tp, it
follows that

Af(y) =270 =270 BE(y) = 270w = 27,

HZ(y) = 0.5 and for all j,1 < j < m, VjI(fy) = 2*”:‘,W],I(»y) = 27" Setting
f(ui) = v thus satisfies the required property. O

From this lemma it follows that, if the PCP P has a solution p for some p €
{1,...,m}T, then every witnessed model Z of Op contains a node § = f(u) such
that AZ(5) = BZ(4); that is, where A and B encode the same word. Conversely,
if every witnessed model contains such a node, then in particular Zp does, and
thus P has a solution. The question is now how to detect whether a node with
this characteristics exists in every model. We will extend Op with axioms that
further restrict Zp to satisfy AZ7 (u) # BI7(u) for every u € {1,...,m}*. This
will ensure that the extended ontology will have a model iff P has no solution.

Suppose for now that, for some p € {1,...,m}*, it holds that

27" = AT () > BT () =27
We then have that v, < w, and hence w, —v,, > 1. It thus follows that
(A — B)TP(p) = 27w j270 = 27 (Wu=v) <971 = 0.5

and thus ((A — B) N (B — A))27(u) < 0.5. Likewise, if AZ7(u) < BT7(u), we
also get ((A — B) M (B — A))27(n) < 0.5. Additionally, if AZ7(u) = B (u),
then it is easy to verify that ((A — B) M (B — A))%?(u) = 1. From all this it

*

follows that, for every p € {1,...,m}*,
AT () £ BT () (A B)N(B— )P () <05 (1)

Thus, the instance P has no solution iff for every p € {1,...,m}* it holds that
(A= B)M(B = A)(u) <0.5.
We define now the ontology O% := (Ap,T}) where

Th = Tp U{(T CVri((A— BYN(B = A)) » H) > 1) |1 <i < m}.

Theorem 3. The instance P of the PCP has a solution iff the ontology O% is
not witnessed consistent.

Proof. Assume first that P has a solution p = iy - - -4 and let u = v, = w, and

p = iyig---ig—1 € {1,...,m}*. Suppose there is a witnessed model Z of O0%.
Since Op C O%, T must also be a model of Op. From Lemma 2 it then follows
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that there are nodes 5,6’ € AT such that AZ(8) = ATP(u) = BT7(u) = BL(6)
and riIk (6’,6) = 1. Then, ((A — B)M (B — A))Z(§) = 1 and hence

(A= B)N(B— A) = H*(0)=1=0.5=0.5.

This then means that (Vr;,.(((A — B) N (B — A)) — H))Z(§") < 0.5, violating
one of the axioms in 7. Hence Z is cannot be a model of O%.

For the converse, assume that 0% is not witnessed consistent. Then Zp is not
a model of (’);3. Since it is a model of Op, there must exist an 7,1 < i < m such
that Zp violates the axiom (T C Vr;.(((A— B)N(B — A)) = H) > 1). This
means that there is some p € {1,...,m}* such that

(Vri. (A = BYN (B — A)) — H)? (1) < 1.

Since riIP (u,p') =0 for all ¢/ # pi and riI? (1, pi) = 1, this implies that (((A —
B)N (B — A)) — H)(ui) < 1, ie. (A — B)N (B — A)*?(ui) > 0.5.
From (1) it follows that A7 (ui) = BZ? (ui) and hence pi is a solution of P. O

Corollary 4. Witnessed consistency of x-ALE ontologies is undecidable.

Notice that in the proofs of Lemma 2 and Theorem 3, the second condition
of the definition of witnessed models was never used. Moreover, the witnessed
interpretation Zp is obviously also weakly witnessed. We thus have the following
corollary.

Corollary 5. Weakly witnessed consistency and quasi-witnessed consistency of
*x-ALE ontologies are undecidable.

4 Undecidability w.r.t. Strongly Witnessed Models

Unfortunately, the model Zp constructed in the previous section is not a strongly
witnessed model of Op since, for instance, infneAzp(TL’ (n) = AT7(n)) = 0,
but there is no § € AT? with AZ7(§) = 0. Thus, the construction of Op does
not yield an undecidability result for strongly witnessed consistency in *- ALE.

Thus, we need a new reduction that proves undecidability of strongly wit-
nessed consistency. This reduction will follow a similar idea to the one used in the
previous section, in which models describe a search for a solution of the PCP P.
However, rather than building the whole search tree, models will describe only
individual branches of this tree. The condition (wit3) will be used to ensure
that at some point in this branch a solution is found.

Before describing the reduction in detail, we recall a property of t-norms.
From a t-norm ® and residuum =, one can express the minimum and maximum
operators as follows [9]:

— min(a,f) = a® (a = f),
— max(a,8) = min(((a = 8) = B),((8 = a) = a)).
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We can thus introduce w.l.o.g. the - ALE concept constructor max with the
obvious semantics. We will use this constructor to simulate the non-deterministic
choices in the search tree as described next.

Given an instance P = ((vy,w1),. .., (Um,wp,)) of the PCP, we define the
ABox A% and the TBox 77 as in the previous section, and for every i,1 < i < m
we construct the TBox

Si= (G T 3. T > 1), (V; AT T8 4y, m B+ 2y pyy,

The only difference between the TBoxes 775 and 7% is in the first axiom. In-
tuitively, the concept names C; encode the choice of the branch in the tree to
be expanded. If CZ(§) = 1, there will be an r; successor with degree 1, and the
i-th branch of the tree will be explored. For this intuition to work, we need to
ensure that at least one of the C;s is interpreted as 1 in every node. On the other
hand, we can stop expanding the tree once a solution has been found. Using this
intuition, we define the ontology 0% := (A%, T;5) where

A% = A% U {a:max(Cy,...,Cp) =1},

7;?::ﬁUOTS%U{((AI‘IB)%J_EJ_z1>}U
i=1
{T CVrimax((A— B)N(B — A),C1,...,Cp) >1) |1 <i<m}.

Theorem 6. The instance P of the PCP has a solution iff the ontology O% is
strongly witnessed consistent.

Proof. Let v = iyia-- i be a solution of P and let pre(r) denote the set of all
prefixes of v. We build the finite interpretation Z7, as follows:

— AP = pre(v),

— atP =,

for all € AP,
— AP (M) = 27", B> (M) =27",

and for all j,1 <j7<m

s " I3 _ o,
= Vi P (p)=27", WP (p)=27"7,

- CJL’ (n) = 1if pj € pre(v) and CJ-I% (1) = 0 otherwise, and
- Tf;’ (1, ) = 1 if pj € pre(v) and TJI” (1, ') = 0if p" € pre(v) and p' # pj.

We show now that Z3 is a model of Of. Since Z3 is finite, it follows imme-
diately that it is also strongly witnessed. Clearly I3, satisfies all axioms in

AY%; additionally, we have that C'iI1 ? (¢) = 1 and thus, Z3 satisfies A%. The
axiom ((AMB) — L C 1 >1) expresses that (A1 B)*?(u) = 0 = 0, and
hence (A M B)%?(u) > 0 for all u € pre(v), which clearly holds. We now
show that the rest of the axioms are also satisfied for every u € pre(v). Let
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p € pre(v) \ {vr}. Then we know that there exists 4,1 < ¢ < m such that
crr (1) =1 and rin (i, pi) = 1; thus I3, satisfies the axioms in ’Tsép. Moreover,

CJI” (n)=0= rjri’ (p, 1) for all j # i and all p’ € pre(v) which means that Z3,
trivially satisfies all axioms in 7—3%’)_

If i = v, then as v is a solution ((A — B)M(B — A))*7 (ui) = 1; otherwise,
there is a j,1 < j < m with uij € pre(v) and thus CJ-I;’ (ui) = 1. This means
that Z7, satisfies the last axioms in 73. Finally, if 4 = v, then rZIP (, ') = 0 and
Ci(p) = 0, for all p € pre(v),1 < i < m, and thus the axioms are all trivially
satisfied.

For the converse, let 7 be a strongly witnessed model of O%. Then, there must
be an element &y € AT with a? = 6. Since Z must satisfy all axioms in A%,
there is an i1, 1 < iy < m such that Cfl (60) = 1. Since it must satisfy the axioms
in S%, there must exist a & € AT with 17 (69, 61) = 1, AL(6;) = 27¥1, and
BX(8,) = 27w, If AZ(§;) = BZ(8y), then i; is a solution of P. Otherwise, from
the last set of axioms in 73, there must exist an iz, 1 < ip < m with CZZ2 (61) = 1.
We can then iterate this same process to generate a sequence i3, i4, . . . of indices
and 6a,93, ... € AT where AZ(§;) = 27Vi1"Vir and BE(y) = 27 Wi Wik,

If there is some k such that AZ(6;) = BZ(y), then iy ---i is a solution
of P. Assume now that no such k exists. We then have an infinite sequence
of indices i1,149,... and since for every i,1 < i < m either v; # 0 or w; # 0,
then at least one of the sequences vy, - - - v, , wy, - - - w;, diverges. Thus, for every
natural number n there is a k such that either v;, ---v;, > n or wy, -+ w;, > n;
equivalently, (A B)Z(8;) < 1/n. This implies that

nienjz(ﬂ(n) = (AN B)*(n)) =0

and since Z is strongly witnessed, there must exist a v € AT with
0=T*(y) = (ANB)*(y) = (AT B)* ().

But from this it follows that (A1 B) — L)Z(y) = 0 = 0, contradicting the
axiom (AN B) — L C L >1) of 7;5. Thus, P has a solution. O

Notice that, if P has no solution, then O% still has witnessed models, but
no strongly witnessed models. It is also relevant to point out that 0% has a
strongly witnessed model iff it has a finite model. In fact, the condition of strongly
witnessed was only used for ensuring finiteness of the model, and hence, that a
solution is indeed found.

Corollary 7. For %-ALE ontologies, strongly witnessed consistency and consis-
tency w.r.t. finite models are undecidable.

5 Conclusions

We have shown that consistency of x-ALE ontologies w.r.t. a wide variety of
models, ranging from finite models to weakly witnessed models, is undecidable if
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the product t-norm semantics are used. Whether consistency in general, that is,
without restricting the class of interpretations used, is also undecidable is still
an open problem. In [11] it was shown that, if only crisp axioms are used, then
consistency is equivalent to quasi-witnessed consistency. However, it is unclear
how to extend this result to the fuzzy axioms used in this paper.

As future work we plan to study whether these undecidability results still hold

if the disjunction and negation constructors are used in place of the implication
considered in this paper. Additionally, we will study the decidability status of
these logics if different t-norms are chosen for the semantics.
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Abstract. We introduce semantic artifacts, which are a mechanism that provides
both a semantically rich representation of the information on the domain of interest
in terms of an ontology, including the underlying data, and a set of actions to
change such information over time. In this paper, the ontology is specified as a
DL-Lite TBox together with an ABox that may contain both (known) constants
and unknown individuals (labeled nulls, represented as Skolem terms). Actions are
specified as sets of conditional effects, where conditions are based on conjunctive
queries over the ontology (TBox and ABox), and effects are expressed in terms of
new ABoxes. In this setting, which is obviously not finite state, we address the
verification of temporal/dynamic properties expressed in p-calculus. Notably, we
show decidability of verification, under a suitable restriction inspired by the notion
of acyclicity in data exchange.

1 Introduction

The artifact-centric approach to service modeling, introduced recently, considers both
data and processes as first-class citizens in service design and analysis. Artifacts are
advocated as a sort of middle ground between a conceptual formalization of a dynamic
system and an actual implementation of the system itself [1]. The verification of temporal
properties in the presence of data represents a significant challenge for the research
community, since the system becomes infinite-state, and hence the usual analysis based
on model checking of finite-state systems [2] is impossible in general. Recently, there
have been some advancements on this issue, considering suitably constrained relational
database settings for the data component (which acts also as a data storage for the
process), see e.g., [3,4].

In this paper, we follow the line of [3], and rely on the work in knowledge representa-
tion to propose a more conceptual treatment of artifacts. We do so by enriching artifacts
with a semantic layer constituted by a full-fledged ontology expressed in description
logics. In particular, our semantic artifacts include an ontology specified in DL-Liter [5],
which is the core of the web ontology language OWL2 QL', and it is particularly well
suited for data management. The TBox of the ontology captures intensional information

* This work has been supported by the EU FP7-ICT Project ACSI (257593).
"http://www.w3.org/TR/owl2-profiles/
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on the domain of interest, similarly to conceptual data models, such as UML class
diagram, though as a software component to be used at runtime. The ABox, which acts
as the artifact state, maintains the data of interest, which are accessed by relying on
query answering through ontologies. As a query language, we use unions of conjunctive
queries, possibly composing their certain answers through full FOL constructs [6]. A
semantic artifact has associated actions whose execution changes the state of the artifact,
i.e., its ABox. Such actions are specified as sets of conditional effects, where conditions
are queries over the ontology and effects are expressed in terms of new ABoxes. To
capture data that are acquired from external users/environments during the execution of
actions, such ABoxes may contain special constants called labeled nulls, represented as
Skolem terms. These represent individuals that the artifact does not know, but on which
it knows some facts. Actions have no pre-condition, instead processes over the semantic
artifact are used to specify which actions can be executed at each step. We model such
processes as condition/action rules, where the condition is again expressed as a query
over the ontology.

In this setting, which is obviously not finite state, we address the verification of
temporal/dynamic properties expressed in p-calculus [7], where atomic formulas are
queries over the ontology that can refer only to known individuals. Unsurprisingly, we
show that even for very simple semantic artifacts and dynamic properties verification
is undecidable. However, we also show that for a very rich class of semantic artifacts,
verification is indeed decidable and reducible to finite-state model checking. To obtain
this result, we rely on recent results on the finiteness of the chase of tuple-generating
dependencies in the data exchange literature [8].

2 Preliminaries

As ontology language, we make use of DL-Lite, a member of the DL-Lite family [5],
and hence a tractable DL particularly suited for dealing with ontologies (or KBs) with
very large ABoxes, which can be managed through relational database technology. DL-
Liter is also the core of the standard web ontology language OWL2 QL. In DL-Liter,
concepts and roles are formed according to the following syntax:

B == N | 3JU U
C B | -B | 3U.B v

P | P
U | -U

N, B, and C respectively denote a concept name, a basic concept, and an arbitrary
concept. P, P~, U, and V respectively denote a role name, an inverse role, a basic role,
and an arbitrary role. A DL-Liter, ontology is a pair (T, A), where T is a TBox, i.e., a
finite set of (concept and role) inclusion assertions of the forms B C C and U C V;
and A is an ABox, i.e., a finite set of facts (also called membership assertions) of the
forms N(c;1) and P(cy,cz), where N and P occur in T', and ¢; and c¢5 are constants.
We denote with C4 the set of constants appearing in A. The semantics of a DL-Liter
ontology is the usual one for DLs, see [5]. Notice that in DL-Liter the unique name
assumption is immaterial, since there is no way of deducing facts about equality. We say
that A is consistent wrt T if (T, A) is satisfiable, i.e., admits at least one model.

A union of conjunctive queries (UCQ) q over a DL-Litegr TBox T and constants C
is a FOL formula of the form Jy;.conj; (x,y1) V - -+ V Jyn.conj,, (x, y,), with free
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variables x, existentially quantified variables y1, ..., y,. Each conj,(x,y;) in ¢ is a
conjunction of atoms of the form N (z), P(z,2), 2 = 2/, where N and P respectively
denote a concept and a role name occurring in 7', and z, 2’ are constants in C or variables
in « or y;, for some i € {1,...,n}. Given constants C (typically C,), the (certain-
Janswers to q over (T, A) wrt C is the set ansc(q, T, A) of substitutions? § of the free
variables of ¢ with constants in C such that ¢f evaluates to true in every model of (T, A).
We also consider an extension of UCQs, called ECQs, which are the range-restricted
queries of the query language EQL-Lite(UCQ) [6], that is, the FOL query language
whose atoms are UCQs evaluated according to the certain answer semantics above.
Formally, an ECQ over T and C is a possibly open formula of the form

Q == q| QAQ | Q| F.Q,

where ¢ denotes a UCQ over T and C, with the proviso that every free variable of a
negative subquery, i.e., of the form —(), must occur in a positive subquery (to guarantee
range-restriction). Given constants C the answer to ) over (T, A) wrt C, is the set
ansc(Q, T, A) of tuples of constants in C obtained by evaluating the FOL formula @ in
the standard way, while considering each UCQ ¢ appearing in it as a primitive predicate
with extension ansc(q, T, A). For the connection with epistemic logic, see [6].

3 Semantic Artifacts

A semantic artifact S = (T, Ay, R) is a stateful device constituted by the information
ontology (7', Ap) and the action specification R.

— T'is a DL-Liter TBox, fixed once and for all, and capturing the intensional knowl-
edge about the domain modeled by the semantic artifact.

— Ay is a DL-Liter, ABox, which expresses extensional information, and constitutes
the initial state of the artifact. We call proper constants the constants C 4, in Ay, and
labeled nulls all new constants introduced by action execution.

— R is a set of actions, which change the state of the semantic artifact, i.e., the
extensional information component.

An action p is constituted by a signature and an effect specification. The action signa-
ture is constituted by a name and a list of individual input parameters. Such parameters
need to be substituted by constants for the execution of the action. Given a substitution 6
for the input parameters, we denote by pf the action with actual parameters.?

The effect specification consists of a set {ey, ..., e, } of effects, which are assumed
to take place simultaneously. Their formalization is inspired by the notion of mappings
in data exchange [8]. Specifically, an effect e; has the form q;r AQ; ~ Al where:

- qj A Q7 isaquery over 1" and C4, with x as free variables, that may include some
of the input parameters as query constants, qj is a UCQ, and ); is an arbitrary
ECQ whose free variables are included in those of qf , namely in . Intuitively, qj
selects the tuples to instantiate the effect, and @); filters aways some of them.

% As customary, we can view each substitution simply as a tuple of constants, assuming some
ordering of the free variables of q.

3 We disregard a specific treatment of the output to the user, and assume instead that the user can
freely pose queries to the ontology and thus extract implicit or explicit information from the
states through which the semantic artifact evolves.
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Fig. 1. A semantic artifact ontology
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- A’i is a set of facts over 7', which include as constants: constants in C 4, parameters,
free variables of q;'“ , and implicitly existentially quantified variables.

Given a state A of S, and a substitution o for the parameters of the action p, the
effect e; extracts from A the set ansc, ((¢;” AQ; )o, T, A) of tuples of constants (proper
constants and labeled nulls), and for each such tuple 6 asserts a set Ao6 of facts obtained
from A/,o by applying the substitution 6 for the free variables of qf . For each existentially
quantified variable z in A}c, a labeled null is introduced having the form f, ., (x)o0,
where f, ., (x) is a Skolem function, depending on the existential variable z and the
effect e;, having as arguments the free variables x of qj . We denote by e;0(A) the overall
set of facts, i.e., e;0(A) = U@GanscA (Qi0.1,A) Aj00. The overall effect of the action p

with parameter substitution o over A is a new state do(po, T, A) = |J; <;<,, €io(A) for
S. Notice that do(po, T, A) may be inconsistent wrt 7'. In this case, the action p with o
over A is not executable.

Let’s make some observations on such actions. The effects of an action are naturally a
form of update of the previous state, and not of belief revision [9]. That is, we never learn
new facts on the state in which an action is executed, but only on the state resulting from
the action execution. We also observe that existentially quantified variables introduced by
actions effects are used as witnesses of values chosen by the external user/environment
when executing the action. We assume that such a choice depends only on the specific
effects and the information retrieved by the query in the premises. We model such a
choice by introducing suitable labeled nulls generated by appropriate Skolem functions.
Finally, we observe that we do not make any persistence (or frame) assumption in our
formalization [10]. In principle at every move we substitute the whole old state, i.e.,
ABox, with a new one. On the other hand, it should be clear that we can easily write
effect specifications that copy big chunks of the old state into the new one. For example,
P(x,y) ~ P(x,y) copies the entire set of assertions involving the role P.

Example 1. Let us consider a semantic artifact S = (T, Ao, R), where T is the DL-Liter
formalization of the UML diagram in Figure 1, which can be described as follows. A bank
considers two specific types of customers: in-debt customers have a loan with the bank, while
gold customers have access to special privileges. In-debt customers may have closed their loan.
A relationship peer(c, p) between two customers denotes that p can vouch for c. The initial state
is Ag = {Gold(john), Cust(ann), peer(mark, john)}. R includes the following actions (we use
brackets to isolate UCQs in ECQs):

GetLoan(c) : { [3p.peer(c,p) A Gold(p)] ~» {owes(c, newl(c))}, CopyAll }

That is, customer c gets a loan provided that s/he has a peer that is “gold”. We use CopyAll as a
shortcut to denote effects that copy all concepts and roles.

CloseAllLoans(c) : { [owes(c, )] ~» {closed(c,1)}, CopyAll }
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That is, customer c closes all his/her loans which are moved to the closed relation.

UpdateDebts : { [owes(x, )] A —[closed(x, )] ~~ {owes(x,{)},
[InDebt(x)] A VI.[owes(z,1)] D [closed(x, )] ~ {Cust(z)},
CopyAllExceptOwesClosedInDebt }
That is, “remove” from owes those tuples that are in closed, and remove in-debt customers whose
loans are all closed from InDebt, keeping them in Cust. CopyAllEzceptOwesClosedInDebt
copies everything except owes, closed, and InDebt. [ |

4 Processes

Notice that semantic artifacts include information and actions to change such information.
However, they do not say anything about how or when to apply a certain action. In
other words, semantic artifact are agnostic to processes that use them. Processes over a
semantic artifact S = (7', Ag, R) are (possibly nondeterministic) programs that use the
state of S (accessed through T') to store their (intermediate and final) computation results,
and the actions in R as atomic instructions. The state A can be arbitrarily queried through
query answering over 7', while it can be updated only through the actions in R. There
are many ways to specify processes over S. Here we adopt a rule-based specification.

A condition/action rule w for a semantic artifact S is an expression of the form
@ — p, where pis an action in R and () is an ECQ over T" and C 4,, whose free variables
are exactly the parameters of p. Such a rule expresses that, for each tuple 6 for which
condition @ holds, the action p with actual parameters 6 can be executed.

A process is a finite set IT = {my,...,m,} of rules. Notice that processes don’t
force the execution of actions but constrain them: the user of the process will be able to
choose any of the actions that the rules forming the process allow. Notice also that our
processes inherit entirely their states from the semantic artifact S, see e.g., [1]. Other
choices are also possible: the process could maintain its own state besides the one of the
semantic artifact. As long as such an additional state is finite, or embeddable into the
semantic artifact itself, the results here would easily extend to such a case.

The execution of a process I1 over a semantic artifact S is defined as follows: we
start from the initial state A of the artifact, and for each rule Q) — p in I, evaluate @,
and for each tuple 6 returned execute pf, obtaining a new state A’ = do(pf, T, Ap) if
A’ is consistent wrt T' (i.e., pf is actually executable), and so on. In this way we build a
transition system V" (II, S) whose states represent possible artifact states and where each
transition represents the execution of an instantiated action that is allowed according
to the process. 1°(I1, S) captures the behavior of the process IT over the artifact S. In
principle we can model-check such a transition system to verify dynamic properties. This
is exactly what we are going to do next. However, one has to consider that in general
such a transition system is infinite, so the classical results on model checking [2], which
are developed for finite transition systems, do not apply.

Example 2. Referring to the example above, a process I1 might include the following rules:

— [Cust(z)] A =[Jy.owes(z, y)] — GetLoan(z), i.e., a customer can get a loan if she does not
have one already;

— Fy.([owes(z, y)] A —[closed(z, y)]) — CloseAllLoans(z), i.e., a customer that owes loans
that are not closed, can close them all at once;

— true — UpdateDebts, i.e., it is always possible to perform UpdateDebts. [ |
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5 Verification Formalism

We turn to the verification formalism to be used to specify dynamic properties of
processes running over semantic artifacts. Several choices are possible. Here we focus
on a variant of y-calculus [7], which is one of the most powerful temporal logics that
subsumes both linear time logics, such as LTL and PSL, and branching time logics such
as CTL and CTL* [2]. In particular, we introduce a variant of p-calculus, called pL that
conforms with the basic assumption of our formalism, namely the use of ECQs to talk
about the semantic information contained in the state of the artifact. Formally, given a
semantic artifact S = (7T, Ay, R), formulas of ;1L over S have the following form:

Pr=Q| P | P APy |Fa.d | OD | O | 2.8 | vZ.D| Z

where () is an ECQ over T" and C 4,, (but not labeled nulls), and Z is a predicate variable.

The symbols p and v can be considered as quantifiers, and we make use of the
notions of scope, bound and free occurrences of variables, closed formulas, etc. The
definitions of these notions are the same as in first-order logic, treating p and v as
quantifiers. In fact, we are interested only in closed formulas as specification of temporal
properties to verify. For formulas of the form 2.9 and vZ. P, we require the syntactic
monotonicity of @ wrt Z: every occurrence of the variable Z in ¢ must be within the
scope of an even number of negation signs. In pu-calculus, given the requirement of
syntactic monotonicity, the least fixpoint ;2.9 and the greatest fixpoint v 7. always
exist. In order to define the meaning of such formulas we resort to transition systems.
Let 2 = 7(I1,S) be the transition system for a process II over a semantic artifact
S = (T, Ap, R). We denote by Xy the states of 2(. Let V be a predicate and individual
variable valuation on %, i.e., a mapping from the predicate variables Z to subsets of the
states Yy, and from individual variables to constants in C 4,. Then, we assign meaning to
p-calculus formulas by associating to 7 (11, S) and V an extension function ()%, which
maps p-calculus formulas to subsets of Xy. The extension function (-)% is defined
inductively as follows:

Q)% — {A c Zg‘ | anscAO (QV7T7 A)}
Z)% =7Zv C Xy
B T @)

A D)3 = (P1)3 N (D2)3
0% =U{(®)T/q | ¢ €Ca}
L e AT S mates it O
Vv = 2 . a A’ implies A" € ()3}
MZ'@)\QJI = ﬂ{5§ Yo ‘ (@)%[Z/g] - 5}

v =UES Zu|EC (D)Fe)}

Here A =g A’ holds iff there exists a rule Q@ ~ p in IT such that there exists a
0 € ansc,(Q,T,A) and A’ = do(ph, T, A"). That is, there exist a rule in II that can
fire on A and produce an instantiated action pf, which applied on A has A’ as effect.
Intuitively, the extension function (-)$ assigns to the various j-calculus constructs
the following meanings. The boolean connectives have the expected meaning, while

quantification is restricted to constants of C 4., which are the only constants that the ECQs
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in the formula can retrieve. We also use the usual FOL abbreviations. The extension of
O consists of the states A such that for some state A’ with A =g A’, we have that @
holds in A’. While the extension of O consists of the states A such that for all states
A’ with A =¢ A’, we have that @ holds in A’. The extension of uZ.P is the smallest
subset £, of 1y such that, assigning to Z the extension &£, the resulting extension of &
is contained in &,,. That is, the extension of uX.® is the least fixpoint of the operator
AE .(@)%[ 7/¢) (here V[Z/&] denotes the predicate valuation obtained from V by forcing
the valuation of Z to be £). Similarly, the extension of v X.® is the greatest subset £,
of Xy such that, assigning to X the extension &,, the resulting extension of @ contains
&,. That is, the extension of v .X.Q is the greatest fixpoint of the operator A\E .(45)%[ X/€)"

When @ is a closed formula, (@)% does not depend on V), and we denote it by o,

The reasoning problem we are interested in is model checking, i.e., verify whether
a uL closed formula @ holds for the process II over the semantic artifact S. Formally,
such a problem is defined as checking whether Ay € &%, that is, whether @ is true in the
root of the initial state A of transition system 1°(II, S).

Example 3. Continuing on our running example, we consider the following simple safety prop-
erty: It is always true that gold customers in A remain so. This property can be written as:

Vx.([Gold(z)] D vZ.([Gold(z)] A OZ)).

This formula is true, since no action (among the ones above) removes individuals from being Gold.
Next, we consider a simple liveness property: It is possible to reach a state in which a gold
customer is also an in-debt customer.

uZ.([Fz.Gold(z) A InDebt(x)] VvV ©2)

This formula is true, because the ontology implies that if x participates to owes then x is an
instance of InDebt; and we can reach a state in which 3z.Gold(z) A owes(z, y) holds by firing
the action GetLoan(john), which is allowed by the process. [ |

6 Homomorphism and Bisimulation

We want to understand when two ABoxes A; and A, over a common DL-Liter TBox
T provide the same answers to all EQL queries. Given two relational structures Z;
and Z, over the same set of relations, and a set C of constants, a C-homomorphism
h from 7; to Z, is a mapping from the domain of 7; to the domain of Z, that
preserves constants in C and relations, i.e., h(cIl) = ¢&2 for each ¢ € C, and if
(dyi,...,d,) € r5, then (h(dy),...,h(d,)) € r*2, for each relation 7. Then, we
say that there is a C-homomorphism from Ay to As wrt T, denoted A, —>% As, iff
there is a C-homomorphism from Z4, to each model of (T, A2), where Zy4, is the
structure whose domain is C4,, whose constants are interpreted as themselves, and
NZai = {¢ | N(c) € A;} for each concept name N, similarly for role names. This
property can be checked by resorting to query answering over ontologies. For the ABox
Aj, let Q 4, be the boolean conjunctive query obtained as the conjunction of all facts in
Aj, in which the constants not in C are treated as existentially quantified variables.

Lemma 1. Given a DL-Liteg TBox T, two ABoxes Ay and As over T, and a set C of
constants, we have that A —>g~ As iff ansc(Qa,, T, A2) = true.
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Proof (sketch). We remind that a DL-Liter; ontology (7', A) has a unique (up to re-
naming of domain elements) canonical-model [5], which is the model that has a C 4-
homomorphism to each model of (7', A). By composing homomorphisms, we have that
Ay —§ Ay iff there is a C-homomorphism from Z 4, to the canonical model of (7', Ay).
The claim then follows by considering that there is a C-homomorphism from Z4, to the
canonical model of (T, As) iff ansc(Qa,, T, A2) = true [11,5]. O

Ay and A, are said C-homomorphically equivalent wrt T if A, —>% As and Ay —>% Ay,

Theorem 1. Let C be a set of constants, and A;, As two ABoxes that are C-
homomorphically equivalent wrt a TBox T. Then, for every ECQ Q over T using
only constants in C, we have that ansc(Q, T, A1) = ansc(Q, T, As).

Next we want to capture when two states of a single transition system or more
generally of two transition systems, possibly obtained by applying different processes to
different semantic artifacts sharing the same TBox and constants in the initial state, can
be considered behaviourally equivalent, in the sense that they satisfy exactly the same
wL formulas. To formally capture such an equivalence, we make use of the notion of
bisimulation [12], suitably extended to deal with query answering over ontologies.

Given two artifact transition systems 2; = 7(I;,S;) (with states Xy, ) and s =
Y (112, Ss) (with states Xy, ) such that S; = (T, A1, R1) and Sy = (T, Ao, Ro) share
the same TBox 71" and the same constants C = C4,, = Ca,,, a bisimulation is a relation
B C Xy, x Xy, such that: (A1, A3) € B implies that:

1. A; and A, are C-homomorphically equivalent wrt 7

2. if Ay =g, A] then there exists A5 such that Ay =g, A5 and (4], A)) € B;

3. if Ay =g, Aj then there exists A} such that A; =g, A) and (4], 45) € B.
We say that two states Ay and As are bisimilar, if there exists a bisimulation B such that
(A1, Ag) € B. Two transition systems 2(; with initial state A;o and 2(, with initial state
Asq are bisimilar if (A107 Ago) € B.

The following theorem states that the formula evaluation in pL is indeed invariant
wrt bisimulation, so we can equivalently check any bisimilar transition systems.

Theorem 2. Let Ay and Ay be two transition systems obtained from two semantic
artifacts sharing the same TBox and constants. Then, for two states A1 of Ay and As of
s (including the initial ones) are bisimilar iff for all uL closed formulas @ over the
two semantic artifacts, we have that Ay € (@)™ iff Ay € (D)2,

Proof. The proof is analogous to the standard proof of bisimulation invariance of j-
calculus [7], though taking into account our specific definition of bisimulation, using
Theorem 1 to guarantee that ECQs are evaluated identically over bisimilar states. O

7 Undecidability and Decidability

We now show that, not surprisingly, verification in the infinite state setting we considered
is undecidable, but that it becomes decidable under some interesting conditions inspired
by the recent literature on data exchange [8]. Our results rely on the possibility of
building special semantic artifacts that we call “inflationary approximates”. For such
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special artifacts there exists a tight correspondence between the application of an action
and a step in the chase of a set of tuple-generating dependencies (TGDs) [13,8]

Given a semantic artifact S = (T', Ao, R), its inflationary approximate is the seman-
tic artifact ST = (T, Ag, R™) defined as follows. Tt is obtained from 7" by dropping
all assertions involving negation on the right-hand side, thus obtaining a TBox formed
by positive inclusions only. R is formed by one action specification p™* for each action
specification p € R, where p™ is obtained from p by:

— removing all input parameters from the signature — note that the variables in qj that
used to be parameters in p, become free variables in p™;

— substituting each effect e; : ¢;” A Q; ~» A/ withe; : g7 ~» A} —note that we need
to preserve the Skolem functions name in the transformation;

— adding effects to copy all concept and role names, namely adding an effect N(x) ~~
N(x) for each concept name N of T, and an effect P(x,y) ~» P(z,y) for each
role name P of T'.

Observe that executing actions in ST can never give rise to an inconsistency, since T
does not contain any negative information [5].

We also consider the generic process 11+, in which all condition/action rules have the
trivially true condition. Hence, I7+ allows for executing every action at every step. With
these notions in place, it is easy to prove that verification in this setting is undecidable.

Theorem 3. pL model checking of processes over semantic artifacts is undecidable.

Proof (sketch). We show that it is already undecidable to check, given a semantic artifact
SJ = (0, Ao, R), of the form of an inflationary approximate of an artifact with an empty
TBox, and the transition system 20 = 7"(I1, Sg ), whether Ag € uZ(qV <©Z)*, where
g is a boolean UCQ. We observe that the set of all actions in ST can be seen as a set
of TGDs, indeed it suffices to consider one TGD for each disjunct in the UCQ on the
left-hand side of an effect specification. So, we can reduce to the above model checking
problem the problem of answering boolean UCQs in a relational database under a set of
TGDs, which is undecidable [14] O

Next, we observe a notable property of the transition system 1°(I1+,S™) generated
by the generic process I+ over the inflationary approximate ST of a semantic artifact
S. Namely, each do(p™, T, -) is a monotonic operator. This implies that by repeatedly
applying such operators starting from the ABox A in ST, we get at the limit (possibly
transfinite) a single ABox A, 4., Which is the least fixpoint of such operators taken col-
lectively [15,16]. Such an ABox contains, every fact generated by repeatedly executing
actions from the inflationary approximate ST, that is every state A™ of 7' (II+,S™) is
such that A™ is contained in A, ... More interestingly, we show next that A,,,, contains
also every A generated by repeatedly executing actions from the original S.

Lemma 2. Let S = (T, Ag, R) be a semantic artifact and II a process over S. Then
every state A of the transition system V' (I1,S) is a subset of A g, defined as above.

Proof (sketch). We can show by induction that, for every sequence of actions
p101, p2bs, . .., pnb, generated by the process II starting from Ay, the resulting state
do(ppbn, T, do(- - do(pab2, T, do(p101,T, Ag)) ---)) is a subset of the corresponding
resulting state do(p;i T+, do(- - - do(pg, T, do(p], T+, Ag))---)) of the inflationary
approx., which is a subset of A, 4. O
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In other words, A,,q, generated by the generic process I1+ running over the infla-
tionary approximate ST of a semantic artifact S, bounds all states A that any process 17
can generate by running on S. Hence if for any reason A, is finite, then the transition
system 1'(11,S) is finite. Hence, being model checking of finite transition system de-
cidable (in fact polynomial in the size of the transition system), we get that also model
checking of 7'(I1,S) is decidable.

To get finiteness guarantees on A,,,,, we take advantage of the correspondence
between action execution and TGDs chase steps, as in the proof of Theorem 3. We build
on this correspondence by further considering that in DL-Liter, every UCQ ¢ over a
TBox can be rewritten as a new UCQ rew(q) over the same alphabet, to be evaluated
over the ABox considered as a relational database [5] (that is dropping the TBox).

In the literature for data exchange, several conditions that guarantee the finiteness
of the chase of TGDs have been considered [17,18]. Here we focus on the original
notion of weakly-acyclic TGDs [17]. Weak-acyclicity is a syntactic notion that involves
the so-called dependency graph of the set of TGDs. Informally, a set D of TGDs is
weakly-acyclic if there are no cycles in the dependency graph of D involving “existential”
relation positions. The key property of weakly-acyclic TGDs is that chasing a relational
database with them (i.e., applying them in all possible ways) generates a set of facts (a
database) that is finite. See [17] for details.

Given a semantic artifact S = (T, Ap, R) and its inflationary approximate ST =
(T*, Ag, R"), we define the set EJ of effect specifications that includes an effect
rew(q;") ~ A; for each effect ¢;” ~» A; of an action p € R™. Notice that the set E;
can be seen as a set of TGDs. We say that a semantic artifact S is weakly-acyclic if the
set Eg seen as a set of TGDs is weakly-acyclic. (Note that the semantic artifact in our
example is trivially weakly-acyclic.)

Lemma 3. Let S = (T, Ao, R) be a weakly-acyclic semantic artifact and S™ its infla-
tionary approximate. Then A, ., computed as above for ST is finite.

Proof (sketch). We have to show that starting from Ay we get to the least fixpoint A4,
of the do(p™, T, -) operator in a finite number of steps. To do so, we follow the line
of the proof of finiteness of chase of weakly-acyclic TGDs in [17], and show that the
number of Skolem terms generated by the effects of actions is bounded by a polynomial
in the size of Ag. Differently from [17], we cannot rely on the notion of homomorphism
to stop firing actions, but have to use membership of the new set of facts in the previous
ones. O

As a direct consequence of Lemma 2 and Lemma 3, for weakly-acyclic semantic
artifacts verification is decidable.

Theorem 4. 1L model checking of processes over weakly-acyclic semantic artifacts is
decidable.

Proof (sketch). The result follows by observing that every state generated by the exe-
cution of any process II over a weakly-acyclic semantic artifact S is a subset of A4,
which by Lemma 3 is finite. Hence, we can apply a model checking procedure for
p-calculus on finite-state systems [7]. O

Note that the proof of Theorem 4 is giving us a single exponential upper bound (in the
size of Ay) for L model checking involving weakly-acyclic semantic artifacts.
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Conclusions

In this paper we have studied verification of processes over semantic artifacts. We obtain
an interesting decidability result by relying on the notion of inflationary approximate,
which allows for a connection with the theory of chase of TGDs in relational databases.
We close by observing that while we fully used the ontology for querying the artifact
state, we use it in a limited way when updating the state, namely only to guarantee
consistency. Ontology update has its own semantic and computational difficulties, see
e.g., [19], which our approach sidesteps. However, if one could introduce a suitable
notion of inflationary approximate in that case, the approach presented here could be
used to devise decidable cases.
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1 Introduction

In recent years, there has been growing interest in ontology-based data access, in which
information in the ontology is used to derive additional answers to queries posed over
instance data. The D L-Lite family of description logics [3, 2]) is considered especially
well-suited for such applications due to the fact that query answering can be performed
by first incorporating the relevant information from the ontology into the query, and
then posing the modified query to the bare data. This property, known as first-order
rewritability, means that query answering over D L-Lite ontologies has very low data
complexity, which is considered key to scalability.

An important problem which arises in ontology-based data access is how to handle
inconsistencies. This problem is especially relevant in an information integration setting
where the data comes from multiple sources and one generally lacks the ability to mod-
ify the data so as to remove the inconsistency. In the database community, the related
problem of querying databases which violate integrity constraints has been extensively
studied (cf. [4] for a survey) under the name of consistent query answering. The stan-
dard approach is based on the notion of a repair, which is a database which satisfies
the integrity constraints and is as similar as possible to the original database. Consistent
answers are defined as those answers which hold in all repairs. A similar strategy can
be used for description logics by replacing the integrity constraints with the ontology.

Consistent query answering for the D L-Lite family of description logics was re-
cently studied in [8, 7]. Unfortunately, the obtained complexity results are rather neg-
ative: consistent query answering is co-NP-hard in data complexity, even for instance
queries and the simplest dialect D L-Lite.,,.. In the database community, negative re-
sults were also encountered, but this spurred a line of research [5, 6, 9] aimed at identi-
fying cases where consistent query answering is feasible, and in particular, can be done
using query rewriting. We propose to carry out a similar investigation for D L-Lite on-
tologies, with the aim of better understanding the cases in which query rewriting can be
profitably used. In this paper, we make some first steps towards this goal. Specifically,
we formulate general conditions which can be used to prove that a consistent rewriting
does or does not exist for a given D L-Lite.,.. TBox and instance query.

The paper is organized as follows. After some preliminaries, we introduce in Sec-
tions 3 and 4 the problem of consistent query answering and some useful notions and
terminology. Our main results are presented in Sections 4, 5, and 6, where we present
general conditions which yield co-NP-hardness, first-order inexpressiblity, or first-order
expressiblity of consistent instance checking in D L-Lite ... Finally, in Section 7, we
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show that query rewriting is always possible if we adopt a previously studied alternative
semantics. Note that proofs have been omitted for lack of space but can be found in [1].

2 Preliminaries

Syntax. D L-Lite.,,. knowledge bases (KBs) are built up from a set N; of constants,
called individuals, a set Nc of unary predicates, called atomic concepts, and a set Ng
binary predicates, called atomic roles. Complex concept and role expressions are con-
structed using the following syntax:

B— A|3R C — B|-B R— P| P~

where A € N¢c and P € Ng. Here B (resp. R) denotes a basic concept (resp. basic
role), and C' denotes a general concept. A TBox is a finite set of inclusions of the form
B C C (with B,C as above). An ABox is a finite set of assertions of the form B(a)
(B € N¢)or R(a,b) (R € Ng) where a,b € N;. A KB consists of a TBox and an ABox.

Notational conventions We use lhs(I") (resp. rhs(I")) to refer to the basic concept ap-
pearing on the left (resp. right) side of an inclusion I, e.g. Ihs(3P C —D) = 3P and
rhs(3P C —D) = D. We sometimes use R~ to mean P~ if R = P € Nr and P if
R = P, and write R(a, b) to mean P(a,b) if R = P and R(b,a) if R=P~.

Semantics An interpretation is T = (AZ,-T), where AT is a non-empty set and -Z
maps each a € Ny to a? € A%, each A € Nc to AZ C A7, and each P € Ny to
PT C AT x AT, The function -Z is straightforwardly extended to general concepts and
roles, e.g. (3S)% = {c| 3d : (c,d) € ST}. T satisfies G C H if GT C H7; it satisfies
A(a) (resp. P(a,b)) if aZ € AT (resp. (a%,b?) € PT). We write T |= « if 7 satisfies
inclusion/assertion . 7 is a model of K = (7, A) if Z satisfies all inclusions in 7" and
assertions in A. A KB K is satisfiable/consistent if it has a model; otherwise it is unsat-
isfiable/inconsistent (K |= L). We say that IC entails o, written K |= «, if every model
of K is a model of «. The closure of T, written cl(7T), consists of all inclusions which
are entailed from 7. Given an ABox A, we denote by Z 4 the interpretation which has
as its domain the individuals in .4 and which makes true precisely the assertions in .A.

Queries A query is a formula of first-order logic with equality (FOL), whose atoms are
of the form A(t), P(t,t’), or t = t’ with ¢,t’ terms, i.e., variables or individuals. Con-
Jjunctive queries are queries which do not contain V, -, or =. Instance queries (1Qs) are
queries consisting of a single atom with no variables (i.e. ABox assertions). A Boolean
query is a query with no free variables. For a Boolean query ¢, we write Z = ¢ when ¢
holds in the interpretation Z, and K |= ¢ when Z |= ¢ for all models Z of K.

3 Consistent query answering

The most commonly used approach to query answering over inconsistent KBs is known
as consistent query answering and relies on the notion of a repair:

Definition 1. A repair of a knowledge base KK = (T, A) is an inclusion-maximal subset
B of A consistent with T. We use Rep(K) to denote the set of repairs of K.
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Consistent query answering consists in performing standard query answering on
each of the repairs and intersecting the answers. For Boolean queries, we have:

Definition 2. A Boolean query q is said to be consistently entailed from K = (7, A),
written K Econs ¢, if T, B |= q for every repair B € Rep(K).

Just as with standard query entailment, we can ask whether consistent query entail-
ment can be tested by rewriting the query and evaluating it over the data.

Definition 3. A first-order query ¢’ is a consistent rewriting of a Boolean query q w.r.t.
a TBox T if for every ABox A, we have T, A |=cons q ifand only if T4 = ¢'.

We illustrate the notion of consistent rewriting on an example.

Example 1. Consider the query ¢ = R(a,b) and the TBox 7 = {3R C -D,3R C
-3S7,3R~ C —B}. We claim ¢ = R(a,b) A =D(a) A = ZS(z,a) A ~B(b) is a
consistent rewriting of ¢ w.r.t. 7. To see why, note that if a repair implies ¢, then it
must contain R(a,b). Moreover, if the ABox A contains any assertion that contradicts
R(a,b) then we can build a repair which does not contain R(a,b). Thus, R(a,b) is
consistently entailed just in the case that R(a,b) € A and there are no assertions in .A
which conflict with R(a, b), which is precisely what ¢ states.

The method used in Example 1 can be generalized to show that a consistent rewrit-
ing exists for all role instance queries'. Unfortunately, the same is not true for concept
1Qs. Indeed, in [7], it was shown that consistent instance checking in DL-Lite .. is
co-NP-hard in data complexity. We present the reduction in the following example.

Example 2. Consider an instance ¢ = c3 A ... A ¢, of UNSAT, where each c¢; is a
propositional clause. Let vy, ..., vy be the propositional variables appearing in ¢. We
define the DL-Lite . knowledge base K = (7, .A) as follows:

7 = {3PC-IN",3IPC~-T~, INC-T,FUC A}

A = {U(a,¢) |1 <i<m} U {P(c,vj)|vj € ¢;} U{N(ci,v5) |, € ¢}
It is not hard to verify that ¢ is unsatisfiable if and only if K |=.ons A(a). The basic idea

is that, because of the inclusion 3P~ C — gV, each repair corresponds to a valuation
of the variables, with v; assigned true if it has an incoming P-edge in the repair.

The focus in this paper will be on distinguishing between hard and easy instances
of the consistent query answering problem. More specifically, we will be interested in
the problem of deciding for a given TBox and IQ whether a consistent rewriting exists.

4 Causes and conflicts

In formulating our results, it will be convenient to introduce some terminology for refer-
ring to assertions which participate in the entailment of another assertion or its negation.

! Obviously this is no longer the case if we consider a logic with role inclusions like D L-Liter.

61



Definition 4. Let o, 3 be assertions and T an inclusion. We say (3 causes (or is a cause
of) o given T, written f3 L q, if {T}, {8} E a. We say 3 conflicts with (or is a

conflict for) « given T, written 3 o« o, if Y = By C =By and 3 = Bi(a) and
a |= Bs(a) for some a. Sometimes we omit T if its identity is not relevant.

The following straightforward proposition characterizes consistent instance check-
ing in terms of causes and conflicts.

Proposition 1. Let K = (7, .A) be a DL-Lite.ore KB and o an instance query. Then
K|/=cons o if and only if there exists a subset A" C A which is consistent with T and
such that for every 3 € A which causes o (given some axiom in cl(7T)), there is vy € A
which conflicts with (3 (given some axiom in cl(7T)).

In other words, consistent instance checking comes down to deciding existence of a
consistent subset of the ABox which contradicts all causes of the instance query.

We now introduce the notion of a cause-conflict chain. The intuition is as follows.
Suppose that we have an assertion fo in the ABox which causes the IQ «. Then to show
Kl/=cons o, Proposition 1 says we must select some assertion py which conflicts with
wo- But if py conflicts with an assertion A\; which is a conflict of another cause p1, then
this forces us to choose a different conflict p; for p; which is consistent with pg. The
presence of p; may in turn attack a conflict of a third cause p3, leading us to select a
conflict p3 for p3, and so on.

Definition 5. A cause-conflict chain (for TBox T and IQ ) is a sequence jiopoAi 101
A2li202 « . . AplhnPrAn+1tin+1 Of distinct assertions, together with a sequence 112
N nNYs... Q000201201101 of inclusions from cl(T), which satisfy:

. e I; Yit1 2;
— forevery i: ji; — Q, fi; & p;, p; —— A\;jy1, and p; e—— \;

— if 7 <'i, then we do not have |1; &— p;
- {po,p1s- .., pn} is consistent with T

Examples of cause-conflict chains can be found in Figure 1a(b) and 2(b). In the follow-
ing sections, we will consider particular types of cause-conflict chains and see how they
are related to the presence of a consistent rewriting.

5 General co-NP-hardness result

In this section, we formulate a general condition which can be used to show co-NP-
hardness of consistent instance checking. We begin by giving a more elaborate reduc-
tion from UNSAT, and then we analyze what is needed to make the proof go through.

Example 3. Consider the following TBox 7:

{ElRO EszlRl EszlRQ EA7EIR3 EA7E|RO E_‘;‘Sazlsi E _‘BlvBl E_'ERl_a
JRy E—-Dy,D1 C B3, B, C~ R, , IR, C-Dy, D, C A, 3T E-~R; }
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A(a)
IR, C A IR;C A
dRC A dRy C A

Ro(a,b) Ri(a,c) Ry(a,c) Rs(a,d)

R\iﬂs m,ﬁay %. C-Di B E/E/RZ\SR C-D; T/ﬂm
2 (

S(b,c) ~— By(c) Di(c) — Ba ) T(d,c)
35 C-B; Dy C By Dy C -3T~

(a) ABox (b) Cause-conflict chain

Fig. 1: ABox and type-1 cause-conflict chain for Example 3.

We show using a reduction from UNSAT that deciding whether 7, A |=cons A(a) is
co-NP-hard in data complexity. Given a propositional CNF ¢ = ¢y A ... A ¢, over
v1, ..., Uk, we define A as follows (see Figure 1(a) for a pictorial representation):
{Ro(a,cj),Rg(a,c;) | I<:< m} U {Rl(avvj)aRQ(aavj) | I1<j< k+m}U
{S(civj) vy € i}y UA{T (e v5) [~y € i} U {S(¢],vkga) [1 < i <mpU
{T(c s vea) [1 < i <m} U A{B1(v;), B2(v)), D1(v), Do(v;) |1 < j < k+m}
We show that ¢ |= L if and only if 7, A |=cons A(a). For the first direction, suppose
we have a satisfying valuation for ¢, and let V' be the set of variables which are affected

to true. We assume without loss of generality that if a variable v; appears only positively
(resp. negatively) in ¢ then v; € V' (resp. v; € V). Define the subset B of A as follows:

{S(cf,v;), D1(vj), Da(vj) € Alv; € V,1 <j<k}U

{T(c; ,vj),B1(v;), B2(vj) € Alv; €V,1 < j < k}U

{T( vkﬂ) 1(Vk44), Ba(vgyi) € A| Fv; € V withvj € ¢;} U
{S(cf, viti), D1 (viti), Da(viti) € A| Yo; €V i vy & ¢}

C;

1
CZ

It is easy to check that B is consistent with 7 and that 7, B|/= A(a). It can also
be verified that adding any additional assertions from A to B leads to a contradic-
tion. In particular, note that either a clause c; has some positive variable v; € V,
in which case S(c;,v;),T(c; ,vk+i) € B, or it contains no such v;, in which case
S(cf,vkt4), T(c; ,v;) € B. Ineither case, both Ro(a,c; ) and R3(a, c; ) conflict with
an assertion in 3. Thus, B is a repair of A w.r.t. 7 Wthh does not entall A(a).

For the other direction, let 55 be a repair with 7, B|/= A(a). It follows that none of
the role assertions in A involving Ry, R1, Re, R3 appear in 5. The absence of R;- and
Rs-assertions and the consistency of B with 7 together imply that for each v;, we have
either B, and B; or both D; and D,. This means each v; has either incoming S-edges
or incoming T'-edges, but not both. We create a valuation in which v; is affected to true
if and only if v; has an incoming S-edge. Clearly if ¢; has a positive literal v; which is
affected to true, then it will be satisfied by this valuation. If instead all of the positive
literals in ¢; are affected to false, then the absence of Ry(a, c;") can only be explained
by the presence in B of the assertion S(c;", vj;). But this implies in turn the absence
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of T'(c; , vikyi) in B. As R3(a,c; ) ¢B , there must be some assertion in 3 of the form
T(c; ,ve) (1 < £ < k). This means v, will be affected to false by our valuation, and
hence the clause will be satisfied. Thus, the formula ¢ is satisfiable.

To understand how the preceding reduction can be generalized, it is helpful to con-
sider the cause-conflict chain pictured in Figure 1(b). This chain contains the essential
structure used in the reduction, with individuals b, ¢, and d playing the roles of cj,
v;, and ¢, . We first notice that at the start and end of the chain, there is a switch of
individuals, which corresponds to moving from ¢, to v; and then back to ¢, - Next
remark that in order to show consistency of the constructed 53, we needed consistency
of the sets of “forward” assertions {S(b, ¢), D1(c), D2(c)} and “backward” assertions
{B1(c), B2(c),T(d,c)}. Also note that in order to use a repair to construct a satisfying
valuation, we had to prove that no v; had both incoming S- and T-edges. This involved
showing that the only way to simultaneously contradict all R; assertions while retaining
consistency was to choose all of the forward (D;) or all of the backward (B;) assertions.
Key to this reasoning was the fact that for each R;(a,v;) assertion, we were forced to
choose either B;(v;) or D;(v;). If we could use some By(v;) or Dy(v;) with £ # j, the
line of reasoning fails. Finally we note that none of the conflicts in the chain involves
the query individual a. This is important because if we used some assertion C'(a) to
contradict R;(a,v;), then we would also contradict R;(a,v,) when ¢ # j, making it
impossible to independently choose truth values for each variable.

The preceding analysis leads us to define the notion of a position (to be able to talk
about switching to a new individual) and the notion of type-1 cause-conflict chains.

Definition 6. Concepts of the forms A or AP (resp. AP ™) are said to have position 1
(resp. 2). An inclusion T begins (resp. concludes) on position p, written bpos(Y) = p
(resp. cpos(Y") = p), if p is the position associated with lhs(T") (resp. rhs(T")).

Definition 7. A cause-conflict chain for T and « defined by the sequence of assertions
HOPOAL UL - - - PrAnt1fint1 and sequence of inclusions Vol g X171 ... Xpi12n+1 041
is said to be of type-1 if it satisfies the following conditions:

(C1) bpos(T;) # bpos(I;) and bpos(Y;) # cpos(§2;) for all i

(C2) cpos(Ip) # bpos(X) (C4 {\1,..., A\ny1} is consistent with T

(C3) cpos(Xy41) # bpos(§2,,41) (C5) if j > 1, then we do not have pi; &— \;

Condition C1 of the definition states that the query individual is not used in the
conflicts, whereas C2 and C3 make sure there is a switch to a new individual at the start
and end of the chain. Condition C4 guarantees consistency of the “backward” conflict
assertions, and C5 ensures that when reading the chain from right to left all causes are
relevant (i.e. not already contradicted by one of the previous choices).

Example 4. If By C — B, were added to the TBox from Example 3, then the chain from
Figure 1(b) would not be type-1, since B1(c) and By (c) would conflict (violating C4).

The next result shows that the presence of a type-1 cause-conflict chain is sufficient
to show co-NP-hardness (and a fortiori, the lack of a consistent rewriting). The proof
generalizes the reduction from Example 3.

Theorem 1. If a type-1 cause-conflict chain for T and « exists, then the problem of
deciding whether T, A |=cons « is co-NP-hard in data complexity.
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Fig.2: ABox and Type-2 cause-conflict chain used in Example 5.

6 General first-order inexpressibility result

In this section, we use Ehrenfeucht-Fraissé games to prove nonexistence of a consis-
tent rewriting. As in the previous section, we start with an illustrative example, before
formulating the general condition.

Example 5. Consider the following D L-Lite.,.. TBox 7
7 = {3JRC A JR C~-F IR C-B,IS  C-B}

We show using Ehrenfeucht-Fraissé games that there is no consistent first-order rewrit-
ing of the query A(a) w.r.t. 7. Consider some k € N, and let m = 2* 4- 1. We construct
two ABoxes A; and Aj as follows (A; is pictured in Figure 2(a)):

A1 = {R(a,b;),R(a,¢;),B(c;),S(ci,civ1) |1 <i<m}uU
{Bb)|2<i<m} U{S(bibit1), |1 <i<m—1}

A\ {B(c1)} U{B(b1)}

We show that 7, A; Fcons A(a) and 7, As }~cons A(a). For the first point, suppose
for a contradiction that there is a repair 55 of A; w.r.t. 7 such that 7, B|/= A(a). Then
there can be no assertions in B of the form R(a, b;), and hence each such assertion must
provoke a contradiction when added to B. In order for BU { R(a, b1 )} to be inconsistent
with 7, we must have S(by,b2) € B, as S(by, bs) is the only assertion in A which
conflicts with R(a, b1). But this means that B(by) ¢B , and hence that S(bs, b3) € B,
or else we could add R(a,bs) to B without provoking a contradiction. Continuing in
this manner, we find that S(b,,—1,b,,) € B, and so B(b,,) ¢B . But in this case,
B U {R(a,by,)} is consistent with 7, which contradicts the maximality of 5. For the
second point, we remark that the set B = {B(b;), S(c;, ciy1) | 1 < i < m} is a repair
of Ay w.r.t. T such that 7, Bl/= A(a).

We now must show that duplicator has a k-round winning strategy in the Ehrenfeucht-
Fraissé game based on interpretations Z 4, and Z 4,. The basic idea is as follows (we
defer the full argument to [1]). Whenever spoiler selects a point which is “closer” to
the side of by, /41 in Z 4, , duplicator responds with the identical point in Z 4,. When
spoiler plays “closer” to the by /¢ side, then duplicator plays c¢; if b; was played, and b;
if ¢; was played. The important thing is to make sure there is sufficient distance between

As
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the indices 7 where duplicator copies spoiler and those where he chooses differently.
This can be done by keeping track of the rightmost point where the choices differ and
the leftmost point where they coincide and ensuring that the distance between these
points is always at least 2°~¢, where i is the the current round of play.

Figure 2(b) presents a cause-conflict chain for the preceding example. Most of the
conditions we identified in the previous section continue to hold for this chain. The only
exception is that we do not have a switch of individuals at the end of the chain. Instead,
we can remark that the initial cause-type is repeated further down the chain and can be
contradicted in the same way, and this is what we use to create the long chain structure
required in the proof. This leads us to define a second class of cause-conflict chains, in
which we replace C3 with a new condition which captures this repetition.

Definition 8. A cause-conflict chain for T and o whose sequence of inclusions is Ty 1 g
2hh T 182041 41 is said to be type-2 if it satisfies C1, C2, C4, C5, and C6:

(C6) Yo=",and Iy =1,

The following theorem states that type-2 cause-conflict chains witness nonexistence
of a consistent rewriting. The proof generalizes the argument outlined in Example 5.

Theorem 2. If there exists a type-2 cause-conflict chain for T and «, then there is no
consistent first-order rewriting for a w.r.t. 7.

We next establish the relationship between type-1 and type-2 chains.

Theorem 3. If there exists a type-1 cause-conflict chain for T and o, then there also
exists a type-2 cause-conflict chain. The converse does not hold (assuming P#NP).

Proof (Sketch). For the first point, the idea to take a second copy of the type-1 chain,
reverse it, and append it to the original. For the second point, we show that consistent
instance checking for the TBox and IQ from Example 5 can be done in polynomial time
by iteratively applying the following rule: if R(a,c) € A and there is no S(c,d) € A,
then delete all incoming S-edges to ¢. We continue until either we find R(a,c) € A
such that neither B(c) nor any S(c, d) belongs to A (in which case A(a) is consistently
entailed), or the rule is no longer applicable (and A(a) is not consistently entailed).

7 Rewriting Procedure

In this section, we develop a procedure which is guaranteed to produce a consistent
rewriting whenever the TBox 7 and query o = A(a) satisfy the following two criteria:

Ordering There exists a total order < on CauseT(A) such that whenever a cause-
conflict chain begins with inclusion B; T A, ends with inclusion By C A, and
satisfies conditions C1 and C3, we have By < Bj.

No loops Every cause-conflict chain for 7, « of length n+1 which satisfies cpos(X;) =
bpos(2;) forevery 1 <i <n+ lissuchthatY; # 7 foralli # j <n+ 1.

where CauseT(A) = {D | D C A € cl(T)} is the set of cause-types of A. We define
the set of conflict-types of A analogously: ConflT(A) ={D | DC A € cl(7)}.
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Algorithm 1 Rewrite

Input: TBox 7,1Q A(a) Output: a first-order query ¢
Initialize ¢ to L and initialize G to the set of all tuples (C, D) which satisfy:
(a) C = {C € CauseT(A) | 3D € D with D € ConflT(C)}
(b) for all D € D, there exists C' € C such that D € ConflT(C)
(c) there do not exist D1, D2 € D with Dy € ConflT(D1)
Forevery (C,D) € G // choose which cause-types to treat globally
LetD = {Bl7 Ce ,Bk,ﬂpl, .. .73P[,3Pe:_1, .. 73Pﬂ:} (B; € N¢, P; € Nr)
S = {Bi(a)}r_y U{P;(a,w;) Y=y U{P;(wi,a)}% s 1 // realize conceptsinD at a
// compute inequalities needed to ensure consistency (treating variables as individuals)
I={vi #vj|vi,v; €{a,w1,...,wmtand T,SU{v; =v;} = L}
U = CauseT(A) \ C // cause-types not yet treated
=9V Jwi.wn Ages BAN,er ¥ N Noey (Vo auxRewrite(T, A(a), C, z, 5))
Output —¢p

Our algorithm Rewrite creates a big disjunction, where each disjunct corresponds
to a choice of a set of cause-types to be conflicted globally, i.e. one single assertion in-
volving the query individual is used to conflict all causes of that type. For each disjunct,
we first fix the assertions which realize these global conflicts, and then invoke subrou-
tine auxRewrite to build one conjunct per untreated cause-type whose purpose is to
see whether for each cause of that type there is an assertion which conflicts with it and
can safely be added to the repair under construction. These conjuncts have a tree-like
structure whose “paths” are cause-conflict chains which satisfy cpos(X;) = bpos(£2;)
for all ¢. Property No Loops can thus be applied to show that the recursion depth of
auxRewrite is no more than |CauseT (A)| + 1, ensuring termination. The difficult step
in the correctness proof is to show Z 4 = Rewrite(7, q) implies 7, A|/=cons q. The
basic idea is to use the way the negation of the formula is satisfied to direct our con-
struction of a repair which conflicts with every cause of ¢. Ordering is used to decide
in which order we should treat the causes. We illustrate this idea on a concrete example:

Example 6. Let ¢ = A(a) and T be the following TBox:
{3IRyCT A, 3Ry C A 3R, C A 3R, T~ 5,357 C-B,B1 C ~ Ry,
R C-Dy,D;C—-A ", B, C—-F,3TC — ERQ_}
It can be verified that the negation of Rewrite (7, ¢) consists of a single disjunct:
Va Ro(a, z) — Fy(S(z,y) A (Ri(a,y) — Di(y)))
A VzRi(a,z) — (Bi(x)V Di(z))
A Vz Ry(a,z) — Jy(T(x,y) A —Ri(a,y))

We show that if this formula is satisfied in Z 4, then we can construct a repair 5 of
A w.r.t. T which does not entail A(a). First we fix an order on CauseT(A) satisfying
the conditions in Ordering: 3Ry < IR, < JR;. This means we start by considering
causes via 3Ry. If Ry(a,b) € A, then the first conjunct allows us to find ¢ such that
S(b,c) € Aand R;(a,c) € Aimplies D1(c) € A. We add S(b, c) to B, and also add
D4 (c) if Ry(a,c) € A. We then move on to the next cause-type in the order, IR,. If
we have Ry(a,b) € A, then we use the third conjunct to find ¢ such that T'(b,c) € A
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Algorithm 2 auxRewrite

Input: TBox 7,1Q A(a), C € CauseT(A), variable z, S set of atoms
Output: a first-order query x
If C' € Nc, output —=C'(a)
Seta« = R(a,z), x = ~a, and B = 3R~ where C = 3R // R basic role
For each D € ConflT(B) // Consider different ways to contradict a on
Set 8 = D(z) if D € Nc and 8 = T'(x, y) [y fresh variable] if D = 3T
If G is necessarily inconsistent with .S given 7, exit the for-loop
Else, let € be the inequalities needed to ensure {3} U S is consistent with 7°
/I Compute untreated causes which are affected by choice of 3
Initialize A to ()
For all 3V € CauseT(A) such that 7, S U {8} U{V (a,z)}|= L and
ConflIT(IV ™) N ConfIT(D) # O
Add (3V,x) to A // need to find conflict for cause V (a, x)
If D = 3T, then for all 3V € CauseT(A) with 7, S U {8} U {V(a,y)}|= L
and ConflIT(AV ") N ConflIT(IT ™) # 0
Add (3V,y) to A // need to find conflict for cause V (a, y)
X =xV (3Y)(BAEAN 4 )en auxReurite(T, A(a), H,v, SU{B}))
Output x

and Ry (a,c) €A, and we add T'(b, ¢) to B. Finally we turn to the final cause-type IRy,
and let R1(a,b) € A. Possibly we have already added D, (b) when dealing with the
first conjunct, in which case we do nothing. Otherwise, because of the second conjunct,
we have either By (b) € A or D1(b) € A, which we can add to 5. The set 5 is still
consistent with 7 after this step, since if T'(e, b) € B then we would have R; (a,b) €A ,
and if S(e, b) € B, then we would have already added a conflict for R;(a,b). We have
thus found a set 5 which is consistent with 7 and contradicts every assertion which
could cause entailment of A(a). By Proposition 1, we have T, A= ons A(a).

Theorem 4. If a TBox T and IQ q satisfy conditions Ordering and No Loops, then
Rewrite(7, q) terminates and outputs a consistent rewriting of q w.r.t. 7.

Theorem 4 can be used to derive simpler sufficient conditions, like the following:

Corollary 1. Rewrite(7, A(a)) terminates with the correct output if there do not exist
basic roles R, S withT =3RC Aand T =3R~ C - 3.

8 Approximating Consistent Query Answering

In order to obtain a more generally applicable positive result, we consider a sound ap-
proximation of consistent query answering, which we term cautious query answering.

Definition 9. A query q is cautiously entailed by a knowledge base K = (T, A), written
K 'Z(;aut q, lfT7 mB€Rep(fC)B ': q.

In [7], cautious conjunctive query answering (there called Intersection ABox Repair
semantics) was shown to be tractable for D L-Liter KBs. The proposed algorithm first
deletes all assertions involved in some conflict, and then queries the resulting ABox. It
was left open whether query rewriting techniques could be used instead. We answer this
question in the affirmative and thus obtain an improved upper bound of AC).
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Theorem 5. Cautious conjunctive query answering is in ACq for D L-Lite oy c.

Proof (Sketch). Given a D L-Lite.or. TBox 7 and a CQ ¢, we first compute (in the
standard manner) a UCQ ¢’ = ¢1 V ... V g, such that for all ABoxes A, we have
T,A | gifand only if Z4 = ¢'. Then to each disjunct we add the negation of each
atomic query which could contradict one of the atoms in the disjunct.

Example 7. If ¢ = 3y B(z) A R(z,y)and 7 = {AC B,AC 3R, BC -D,3R™ C
—357}, standard rewriting yields A(x) V Jy B(x) A R(z,y). We then add ~325(z, y)
to the second disjunct and —D(x) to both to obtain the cautious rewriting.

Theorem 5 is easily extended to other D L-Lite logics enjoying FO-rewritability.

9 Conclusion and Future Work

In this paper, we took a closer look at the problem of consistent instance checking
in DL-Lite and identified some general conditions which can be used to prove the
absence or existence of a consistent rewriting. While our results were formulated for
DL-Lite.,re, we expect they can be easily lifted to more expressive D L-Lite dialects.

The main objective for future work is to strengthen our results so as to be able to
decide for every TBox and instance query whether a consistent rewriting exists. We
conjecture that the absence of a type-2 cause-conflict chain is both a necessary and
sufficient condition for existence of a consistent rewriting. Extending our investigation
to conjunctive queries would be interesting but quite challenging, as it would likely
involve confronting longstanding open problems from the database community, where
a full characterization of rewritable cases remains elusive [9].
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1 Introduction

In some knowledge domains, a correct handling of vagueness and imprecision is
fundamental for adequate knowledge representation and reasoning. For example,
when trying to diagnose a disease, medical experts need to confront symptoms
described by the patient, which are by definition subjective, and hence vague.
Moreover, a single malady may present a diversity of clinical manifestations in
different patients, which leads to imprecise (partial) diagnoses.

Fuzzy logic [15] is a prominent approach for dealing with imprecise knowl-
edge. It is based on the notion of fuzzy sets [25], where elements are assigned
a membership degree from the real interval [0, 1]. So-called t-norms are used
to define the interpretation of the logical connectives. The notion of member-
ship degrees and the operators used can be generalized to lattices, giving rise to
L-fuzzy sets [13] and lattice-based t-norms [26,12].

During the last two decades, several fuzzy DLs have been defined by enriching
classical DLs first with fuzzy set semantics [24,20,19] and then t-norms [16,
7,11]. Attempts have also been made at using L-fuzzy set semantics [21,17].
However, all these approaches either disregard the terminological knowledge, or
allow only for a limited class of TBoxes. In fact, it is still unknown whether
standard reasoning in fuzzy DLs with general TBoxes is decidable [5,3]. To the
best of our knowledge, the only approaches capable of dealing with full fuzzy
TBoxes are based on a finite total order with the Lukasiewicz t-norm [6, 8] or
finite De Morgan lattices with the minimum t-norm [9].

In this paper we introduce the lattice-based fuzzy DL ALC, where L is
a complete De Morgan lattice equipped with a t-norm operator. We show that
satisfiability in this logic is undecidable if L is infinite. Undecidability holds even
if L is a countable, residuated total order. On the other hand, if L is finite, then
satisfiability becomes decidable and, under some conditions on the lattice and
the t-norm, EXPTIME-complete, i.e. not harder than satisfiability in crisp ALC.

Our reasoning procedure is in fact general enough to handle any kind of
truth-functional semantics, as long as the functions defining the connectives are
computable.

2 Lattices

We now give a brief introduction to lattices and t-norms. For a more compre-
hensive description of these notions, see e.g. [14,12].
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Fig. 1. The De Morgan lattice Ly with ~ £, = ¢, and ~ ¢, = {,. This lattice was first
considered by Belnap [4] for reasoning with incomplete and inconsistent knowledge.

A lattice is an algebraic structure (L,V,A) over a carrier set L with two
binary operations supremum V and infimum A that are idempotent, associative,
and commutative and satisfy the absorption laws £V ((Am) =4 =LA ({V m)
for all £,m € L. The order < on L is defined by ¢ < m iff £ Am = ¢ for all
{,m € L. A lattice is distributive if V and A distribute over each other, finite if
L is finite, and bounded if it has a minimum and a mazimum element, denoted
as 0 and 1, respectively. It is complete if suprema and infima of arbitrary subsets
T C L exist; these are denoted by \/,.,t and A, t, respectively. Notice that
every finite lattice is also bounded and complete. Whenever it is clear from the
context, we will simply use the carrier set L to represent the lattice (L, V, A).

A De Morgan lattice is a bounded distributive lattice extended with an in-
volutive and anti-monotonic unary operation ~, called (De Morgan) negation,
satisfying the De Morgan laws ~({Vm) = ~{A~m and ~({ Am) =~V ~m
for all £,m € L. Figure 1 shows a simple De Morgan lattice.

In fuzzy logics, conjunctions and disjunctions are interpreted with the help
of t-norms and t-conorms. Given a De Morgan lattice L, a t-norm on L is an
associative and commutative binary operator ® : L x L — L which has the
unit 1, and is monotonic in both arguments. Given a t-norm ®, its associated
t-conorm @ is constructed using the negation as follows: £@&m := ~(~{® ~m).
For example, the infimum operator f@m := £Am defines a t-norm; its associated
t-conorm is then given by £ & m = £V m.

Another important operator is the residuum, which is used for interpreting
implications in the logic. The residuum of a t-norm ® on a complete lattice L is
the binary operator = defined by £ = m := \/{z | {®z < m}. I {R(£ = m) <m
for all £, m € L (that is, if the supremum in the definition of residuum is always
a maximum), then ® is called residuated and L a residuated lattice.!

In the following we will use two important properties of the residuum: for
every {,m € L, (i) 1 = ¢ =/, and (ii) if £ < m, then ¢ = m = 1. Additionally,
if ® is residuated, then ¢ = m =1 implies that £ < m.

In the next section, we describe the multi-valued description logic ALCy,
whose semantics uses the residuum =- and the De Morgan negation ~. We
emphasize, however, that the reasoning algorithm presented in Section 5 can be
used with any choice of operators, as long as these are computable. In particular
this means that our algorithm could also deal with other variants of multi-valued
semantics, e.g. [9, 21].

! Residua are usually only defined for residuated lattices. However, as £ = m is well-
defined for t-norms on complete De Morgan lattices, we remove this restriction.
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3 The Fuzzy Logic ALCy,

In the following, we will assume that L is a complete De Morgan lattice and ® is
a t-norm on L. The multi-valued description logic ALCy, is a generalization of the
crisp DL ALC that allows the use of the elements of a complete De Morgan lattice
as truth values, instead of just the Boolean values true and false. The syntax
of concept descriptions in ALCy, is the same as in ALC; that is, ALCy, concept
descriptions are built from a set of concept names and role names through the
constructors M, LI, —, T, 1,3 and V.

The semantics of this logic is based on interpretation functions that not
simply describe whether an element of the domain belongs to a concept or not,
but give a lattice value describing the membership degree of the element to this
concept; more formally, the semantics is based on L-fuzzy sets.

Definition 1 (semantics of ALC;). An interpretation is a pair T = (AZ,-T)
where AT is a non-empty (crisp) domain and T is a function that assigns to
every concept name A and every role name r functions AT : AT — L and
rT . AT x AT — L, respectively. The function -~ is extended to ALCy concept
descriptions as follows for every x € AT:

- THx) =1, L*(z) =0,

~ (CN DY (z) = C*(x) ® D¥(z), (CUD)*(z) =C%(z) & D*(x),
= (2O (x) = ~C%(a),

= (30)f(z) = Vyear r(z,y) ® C*(y),

= (Vr.C)*(2) = Nyear ¥ (2,9) = CF(y)-

Notice that, unlike crisp ALC, the existential and universal quantifiers are
not dual to each other, i.e. in general —3r.C' and Vr.—~C have different semantics.
The axioms in a TBox are also associated to a lattice value, allowing for a
general notion of subsumption between concepts that is based on the residuum.

Definition 2 (TBox). A TBox is a finite set of (labeled) general concept in-
clusions (GCIs) of the form (C T D), where C,D are ALCy, concept descrip-
tions and £ € L.

An interpretation T satisfies a GCI (C' C D,0) if N\, c oz C*(x) = D¥ () > .
T is called a model of the TBox T if it satisfies all axioms in T.

We emphasize here that ALC is a special case of ALCy, where the underlying
lattice contains only the elements 0 and 1, which may be interpreted as false
and true, respectively, and the t-norm and t-conorm are just conjunction and
disjunction, respectively. Accordingly, one can think of generalizing the reasoning
problems for ALC to the use of other lattices. We will focus on the problem of
deciding satisfiability of a concept. We are further interested in computing the
highest degree with which an individual may belong to a concept.

Definition 3 (satisfiability). Let C, D be ALC; concept descriptions, T a
TBox and ¢ € L. C is (-satisfiable w.r.t. T if there is a model T of T such that
Vaeaz CF(z) > L. The best satisfiability degree for C' w.r.t. T is the largest {
such that C is (-satisfiable w.r.t. T.
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Notice that if C is ¢-satisfiable and ¢'-satisfiable w.r.t. 7, then C is also £V ¢'-
satisfiable. Hence, the notion of the best satisfiability degree is well defined.

In some cases, however, this definition of satisfiability turns out to be too
weak, since a concept C' may be f-satisfiable even if no element of the domain
may ever belong to C' with a value > ¢. Consider the following example.

Ezample 4. We use the lattice Lo from Figure 1 with t-norm £® ¢ := £ A ¢' and
the TBox 7 = {{T C (AN —-A)U (BN -B),1)}. The concept A is 1-satisfiable
w.r.t. 7 since the interpretation Zop = ({21, 22}, -7°) with

Afo(z1) = BTo(x5) = £, and BTo(x1) = ATo(z5) = 4,

is a model of 7 and ¢, V ¢, = 1. However, since { A ~{ # 1 for every £ € Ly, the
axiom can only be satisfied for any y € AT if {AZ(y), BX(y)} = {{a, 4 }. Thus,
we always have AZ(y) < 1.

For this reason, we consider a stronger notion of satisfiability that requires
at least one element of the domain to satisfy the concept with the given value.
A concept C is strongly £-satisfiable w.r.t. a TBox T if there is a model Z of T
and an x € AT such that C%(z) > £. Obviously, strong (-satisfiability implies
{-satisfiability. As shown in Example 4, the converse does not hold.

Recall that the semantics of the quantifiers require the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. If the lattice is finite, then this is in fact a computation
over a finite set of values, but it may be a costly one. If the lattice is infinite,
then the problem is more pronounced. For that reason, it is customary in fuzzy
description logics to restrict reasoning to witnessed models [16].

Definition 5 (witnessed model). Letn € N. A model Z of a TBox T is called
n-witnessed if for every x € AT and every concept description of the form Ir.C
there are n elements x1,...,x, € AT such that

(3r.C)E (z) = \/ rt(z, z5) @ CF(xy),

and analogously for the universal restrictions Vr.C. In particular, if n = 1, then
the suprema and infima from the semantics of Ir.C' and ¥Yr.C' become mazxima
and minima, respectively. In this case, we simply say that T is witnessed.

As we will show, f-satisfiability, even w.r.t. n-witnessed models, is undecidable
in general. For finite De Morgan lattices, however, this problem is decidable
and belongs to the same complexity class as deciding satisfiability of crisp ALC
concepts, if the lattice operations are easily computable.

4 Undecidability

Consider the lattice L, over the domain ([0,1] N Q) U{ —oo, 0o} with the usual
total order, the De Morgan negation ~¢ =1 — £ if £ € [0,1], ~00 = —o0, and
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~(—00) = 00, and the t-norm ® defined by

max{f{+m — 1,0} if £,m €[0,1] and £+ m # 0,
{®m :=< —oo if £ =m =0, and

min{¢, m} otherwise.

That is, ® is the Lukasiewicz t-norm on the rationals in (0,1] extended with
two extreme elements —oo and co. One can easily confirm that this is in fact a
residuated lattice and its t-conorm @ is given by

min{l +m,1} if {,m € [0,1] and £+ m # 2,
Ldm: =< oo if {=m =1, and

max{¢, m} otherwise.

We will reduce the well-known undecidable Post Correspondence Problem [18]
to decidability of co-satisfiability. Notice that for every T' C Loo, Vet = 0
iff oo € T'. Thus, a concept is co-satisfiable iff it is strongly oo-satisfiable and it
suffices to prove that strong oco-satisfiability is undecidable.

Definition 6 (PCP). Let vy, ...,v, and wy,...,w, be two finite lists of words
over an alphabet X = {1,...,s}. The Post Correspondence Problem (PCP)
asks whether there is a non-empty sequence i1,1a,...,i, 1 < i; < p such that
Viy iy * + Vi = Wiy Wy, + Wy, . Such a sequence, if it exists, is called a solution of
the problem instance.

For a word v = iyig---i € {1,...,p}* we will use v,,w, to denote the words
Vi, Vi, -+ Ui, and wy, wy, - - - Wy, , respectively. Given an instance P of PCP, we will
construct a TBox 7p and a concept name S such that S is strongly co-satisfiable
iff P has no solution. For doing this, we will encode words w from the alphabet
X as rational numbers 0.w in [0, 1] in base s 4 1; exceptionally, the empty word
will be encoded by the number 0. The two concept names V and W will store
the encoding of the concatenated words v, and w,, respectively.

Given two ALC|, concept descriptions C, D and a role name 7, the expression
(C = D) abbreviates the two axioms (C' T D, 00),(D T C, 00) and the expression
(C <5 D) abbreviates the two axioms (C' C Vr.D,00), (~C C Vr.—D,c0). For
an interpretation Z, (C' = D) expresses that CZ(x) = D% (z) for every x € AT,
while (C' ~» D) expresses that, for every z,y € AT such that r%(z,y) = oo,
it holds that CZ(z) = DZ(y). We will also use n - C' as abbrevation for the
n-ary disjunction C' U --- U C, which is interpreted at @ € AT as the value
min{CZ(z) + --- + CT(z),1} = min{n - CZ(z), 1} whenever CZ(x) € [0, 1].

We now define the TBoxes 7% for 0 < i < p as follows:

TR == {(SC V,0),(S C =V, 1), (S T W,0), (S T ~W,1)}U
{(SEV;,0.0:), (ST —Vi, 1 — 0.v5),
(S C Wi, 0w;), (ST =W;,1—0.w;) | 1 <i < p},
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Th = {(T C3r.T,00), (VUV; < V), (WUW; ¥ W)U
{(Vi=(s+ ) Fy), (W = (s + )M Gyy),
(Fij <5 Vi) (G > Wy) | 1< j < p}.

Intuitively, 7'79 initializes a search tree for a solution of P, by setting both V" and
W to the empty word, and describing each pair (v;,w;) by the concepts V; and
W;. Each TBox T} then extends the search tree by concatenating each pair of
words v, w produced so far with v; and w;, respectively. More formally, consider
the interpretation Zp = (A7, .Z7) where

- AIP = {L (R 7p}*7
= VP (0) = 00, W (v) = 0wy, V77 (v) = (588r, WiP (V) = 551

(s+1)lvwls "1 = (s+1)lwrl
— 12 (v, vi) = 0o and 777 (vv') = —o0 if ¥/ # vi, and
— S77(¢) = .
It is easy to see that Zp is in fact a model of the TBox Ty := |J}_, T;. More

interesting, however, is that every model of this TBox where S is co-satisfiable
must include Zp, as stated in the following lemma.

Lemma 7. Let T be a model of To such that ST(z) = co for some x € AZ.
There exists a function f : AT? — AT such that CT7(v) = CT(f(v)) holds for
every concept name C occurring in Ty and v € AP,

Proof (Sketch). The function f is constructed by induction on the length of v.
We can define f(g) := z since S (x) = oo and Z is a model of 7. Let now v be
such that f(v) is already defined. The axioms (T C 3r;.T,00) ensure that, for
every i,1 < i < p there is a v € AT such that r(f(v),7) = co. The definition
f(vi) := ~ satisfies the required property. O

This lemma shows that every model of 7y must include a search tree for
a solution of P. Thus, in order to know whether a solution exists, we need to
decide if there is a node of this tree where the concept names V and W are
interpreted by the same value. Notice that, for any two values ¢,m € [0,1],
L£miff( ~£Em)R(Ld~m) < 1. Moreover, £ < 1ifl{@® L <1 or, equivalently,
~{®~L > 0. Thus, as Zp always interprets the concept names V' and W in the
interval [0, 1], it is a model of the TBox

T ={(E=(-AUB)N(AU-B)}U{(T CVr,.~(EUE),0)|1<i<p}
iff AZ7(v)# BZ7(v) holds for every v € {1,...,p} ™.

Theorem 8. The instance P of the PCP has a solution iff S is not co-satisfiable
w.r.t. Tp:i=ToUT' .

Notice that the interpretation Zp is witnessed, which means that undecid-
ability holds even if we restrict reasoning to n-witnessed models, for any n € N.

Corollary 9. (Strong) satisfiability is undecidable, even if the lattice is a count-
able, residuated total order and reasoning is restricted to n-witnessed models, with
n € N.
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5 Deciding Strong Satisfiability

In the previous section, we have shown that satisfiability is undecidable in gen-
eral. We now show that if we consider only finite De Morgan lattices L, then
satisfiability in ALC, can be effectively decided. As the following lemmata show,
in this case we can restrict to strong ¢-satisfiability w.r.t. n-witnessed models.

Lemma 10. The best satisfiability degree for C w.r.t. T is the supremum of all
¢ such that C is strongly £-satisfiable.

Proof (Sketch). If C is strongly f-satisfiable and strongly ¢'-satisfiable, there are
two models Z,Z’ of T and x € A, 2’ € A’ with C%(z) > ¢ and C* (2') > ¢'. The
disjoint union of Z and Z’ gives a model J where \/ . 1 CT(y)>eve. O

We can then find out whether C is f-satisfiable by comparing ¢ to the best
satisfiability degree of C'. We will thus focus on finding all the lattice elements
that witness the strong f-satisfiability of a given concept.

Lemma 11. If L has width n € N, i.e. the cardinality of the largest antichain
of L is n, then ALCy, has the n-witnessed model property.

To simplify the description, we consider = 1 only. The algorithm and the
proofs of correctness can be easily adapted for any other n € N.

Our approach reduces strong f-satisfiability to the emptiness problem of an
automaton on infinite trees. Before giving the details of this reduction, we present
a brief introduction to these automata. The automata work over the infinite k-
ary tree K* for K := {1,...,k} with k € N. The positions of the nodes in this
tree are represented through words in K*: the empty word ¢ represents the root
node, and wui represents the i-th successor of the node u.

Definition 12 (looping automaton). A looping automaton (LA) is a tuple
A=(Q,1,A) consisting of a finite set Q) of states, a set I C @ of initial states,
and a transition relation A C Q x Q*. A run of A is a mapping r : K* — Q
assigning states to each node of K* such that (i) r(e) € I and (ii) for every
u € K* we have (r(u),r(ul),...,r(uk)) € A. The emptiness problem for LA is
to decide whether a given LA has a run.

The emptiness problem for LA can be solved in polynomial time [23]. It is
worth to point out that this procedure not only decides emptiness, but actually
computes all the states that can be used as initial states to accept a non-empty
language. We will later exploit this for computing the best satisfiability degree.

The following automata-based algorithm uses the fact that a concept is
strongly f-satisfiable iff it has a well-structured tree model, called a Hintikka
tree. Intuitively, Hintikka trees are abstract representations of tree models that
explicitly express the membership value of all “relevant” concept descriptions.
The automaton we construct will have exactly these Hintikka trees as its runs.
Strong {(-satisfiability is hence reduced to an emptiness test of this automaton.
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We denote as sub(C,T) the set of all subconcepts of C' and of the concept
descriptions D and E for all (D C E,¢) € T. The states of the automaton will be
so-called Hintikka sets. These are L-fuzzy sets over the domain sub(C,T) U {p},
where p is an arbitrary new element.

Definition 13 (Hintikka set). A function H : sub(C,T)U{p} — L is called
a (fuzzy) Hintikka set for C,T if the following four conditions are satisfied:

(i) HIDNE)=H(D)® H(E) for every DM E € sub(C,T),
(i) HDUFE) = H(D)® H(E) for every D UE € sub(C,T),
(i11) H(—=D) = ~ H(D) for every =D € sub(C,T), and
(iv) H(D) = H(E) > { for every GCI (DT E£) inT.

The arity k of our automaton is determined by the number of existential
and universal restrictions, i.e. concept descriptions of the form 3r.D or Vr.D,
contained in sub(C, 7). Intuitively, each successor will act as the witness for one
of these restrictions. The additional domain element p will be used to express
the degree with which the role relation to the parent node holds. Since we need
to know which successor in the tree corresponds to which restriction, we fix an
arbitrary bijection ¢ : {E | E € sub(C,T) is of the form 3r.D or Vr.D} — K.
The following conditions define the transitions of our automaton.

Definition 14 (Hintikka condition). The tuple (Hy, Hy, ..., Hy) of Hintikka
sets for C,T satisfies the Hintikka condition if:

(i) Ho(Ir.D) = Hyr.py(p) ® Hyarpy(D) for every existential restriction
Ir.D € sub(C,T), and additionally Ho(3r.D) > H,p)(p) @ Hypy (D) for
every restriction F € sub(C,T) of the form 3r.E or Vr.E,

(ii) Ho(Vr.D) = Hyr.p)(p) = Hyewr.p)(D) for every universal restriction
Vr.D € sub(C,T), and additionally Hy(Vr.D) < Hypy(p) = Hypy (D) for
every restriction F' € sub(C,T) of the form 3r.E or Vr.E.

A Hintikka tree for C,T is an infinite k-ary tree T labeled with Hintikka sets
where, for every node u € K*, the tuple (T(u), T(ul),..., T(uk)) satisfies the
Hintikka condition. The definition of Hintikka sets ensures that all axioms are
satisfied at any node of the Hintikka tree, while the Hintikka condition makes
sure that the tree is in fact a witnessed model.

The proof of the following theorem uses arguments similar to those in [2]. The
main difference is that one also has to find witnesses for the universal restrictions.

Theorem 15. Let C be a concept description and T a TBox. Then C' is strongly
L-satisfiable w.r.t. T (in a witnessed model) iff there is a Hintikka tree T for C, T
such that T(e)(C) > ¢.

Proof (Sketch). A Hintikka tree can be seen as a witnessed model with do-
main K* and interpretation function given by the Hintikka sets. The conditions
satisfied by the Hintikka sets and the Hintikka condition ensure that this in-
terpretation is well-defined. Thus, if there is a Hintikka tree T for C,7T with
T(e)(C) > ¢, then C is strongly f-satisfiable w.r.t. 7.
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On the other hand, every witnessed model Z with a domain element 2 € A
for which CZ(x) > ¢ holds can be unraveled into a Hintikka tree T for C,T
as follows. We start by labeling the root node by the Hintikka set that records
the membership values of = for each concept from sub(C, 7). We then create
successors of the root by considering every element of sub(C,7T) of the form
3r.D or Vr.D and finding the witness y € AZ for this restriction. We create a
new node for y which is an r-successor of the root node with degree 7% (z,y).
By continuing this process, we construct a Hintikka tree T for C,7T for which
T(e)(C) > ¢ holds. O

Thus, strong ¢-satisfiability w.r.t. witnessed models is equivalent to the non-
emptiness of the following automaton.

Definition 16 (Hintikka automaton). Let C be an ALCy concept descrip-
tion, T a TBox, and { € L. The Hintikka automaton for C,7T,{ is the LA
Ac1.0=(Q,1,A) where Q is the set of all Hintikka sets for C, T, I contains all
Hintikka sets H with H(C) > £, and A is the set of all (k+1)-tuples of Hintikka
sets that satisfy the Hintikka condition.

The runs of Ac 7 ¢ are exactly the Hintikka trees T having T(e)(C) > L.
Thus, C is strongly f-satisfiable w.r.t. 7 iff Ac 7, is not empty.

The size of the automaton Ac 1 ¢ is exponential in C, T and polynomial in L.
Hence, the emptiness test for this automaton uses time exponential in C,7 and
polynomial in the complexity of the lattice operations on L. Notice however
that in general the encoding enc(L) of a lattice L may be much smaller than the
whole lattice L. For this reason we need to consider the complexity of the lattice
operations w.r.t. this encoding.

Theorem 17. If|L| is at most exponential in lenc(L)| and the lattice operations
are in a complexity class C w.r.t. the size of enc(L),? then strong (-satisfiability

(w.r.t. witnessed models) is in EXPTIME.

Furthermore, the emptiness test of Ac, 7 ¢ can be used to compute the set of
all Hintikka sets that may appear at the root of a Hintikka tree. From this set
we can extract the set of all values ¢ such that T(e)(C') > ¢ for some Hintikka

tree T. From the presented results it follows that the best satisfiability degree
can also be computed in ExPTIME®.

Corollary 18. If L is fized or of size polynomial in |enc(L)| and ~, ® can be
computed in time polynomial in |L|, then (strong) £-satisfiability (w.r.t. witnessed
models) is EXPTIME-complete.

Proof. ExXpTiME-hardness follows from EXPTIME-hardness of concept satisfia-
bility in crisp ALC [1]. By assumption, all lattice operations can be computed
in at most polynomial time by several nested iterations over L. Applying Theo-
rem 17 yields inclusion in EXpTIME" ™" = EXPTIME. O

2 More formally, deciding ¢ < m, £ ® m = n, etc. for given £,m,n € L is in C.
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Notice that the definitions of Hintikka sets and Hintikka trees are independent
of the operators used. One could have chosen the residual negation 6/ :=/¢ =0
to interpret the constructor —, or the Kleene-Dienes implication £ = m := ~{Vm
instead of the residuum. The only restrictions are that the semantics must be
truth functional, i.e. the value of a formula must depend only on the values of
its direct subformulas, and the underlying operators must be computable.

As a last remark, we want to point out that the algorithm can be modified
for reasoning w.r.t. n-witnessed models with n > 1. One needs only extend the
arity of the Hintikka trees to account for n witnesses for each quantified formula
in sub(C, T). The emptiness test of the automaton, and hence also satisfiability
w.r.t. n-witnessed models, is exponential in 7.

6 Conclusions

We have introduced the fuzzy DL ALCy whose semantics is based on arbitrary
complete De Morgan lattices and t-norms. To the best of our knowledge, all
previously existing approaches for fuzzy ALC, either based on total orders or on
lattices, are special cases of ALCy,.

We showed that reasoning in this logic is undecidable, even if restricted to a
very simple infinite lattice and t-norm. This result suggests, but does not prove,
that reasoning with the Lukasiewicz t-norm over the interval [0, 1] may, contrary
to previous claims [22], be undecidable.

For the special case of finite lattices, we showed decidability by presenting
an automata-based decision procedure that runs in exponential time, assuming
a polynomial-time oracle for computing the lattice and t-norm operations. An
advantage of our decision procedure is that it can easily be adapted to deal with
different kinds of truth-functional semantics, and hence is useful for different
applications. Given the promising first steps towards an automata-based imple-
mentation of ALC reasoning shown in [10], we believe that our algorithm not
only yields an interesting theoretical result, but may be useful for a future im-
plementation. We intend to further study this possibility by developing adequate
optimizations and analyzing low-complexity instances of lattice operators.

There are three issues that we will pursue in future work. The first is to
explore the limits of undecidability: are there classes of infinite lattices and t-
norms in which reasoning is decidable? As said before, it is still unknown whether
reasoning in fuzzy ALC with continuous t-norms over [0, 1] is decidable.

The second issue is to explore the expressivity of DLs. We believe that our
approach can easily be adapted to fuzzy SZ. Additionally, if we restrict to acyclic
TBoxes, we may be able to obtain a PSPACE upper bound as in [2].

Finally, we want to develop an algorithm for deciding ¢-subsumption. Notice
that the residuum cannot, in general, be expressed using the t-norm, t-conorm
and negation. Thus, the usual idea of reducing subsumption to satisfiability by
constructing an equivalent concept cannot be applied.

79



References

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2nd edition, 2007.

. F. Baader, J. Hladik, and R. Penaloza. Automata can show PSPACE results for

description logics. Inform. Comput., 206(9-10):1045-1056, 2008.

F. Baader and R. Penaloza. Are fuzzy description logics with general concept
inclusion axioms decidable? In Proc. FuzzIEEE’11, 2011. To appear.

N. D. Belnap. A useful four-valued logic. In G. Epstein and J. M. Dunn, editors,
Modern Uses of Multiple-Valued Logic, pages 7-37. Reidel Publishing Company,
Boston, 1977.

F. Bobillo, F. Bou, and U. Straccia. On the failure of the finite model property in
some fuzzy description logics. Fuzzy Set. Syst., 172(1):1-12, 2011.

F. Bobillo and U. Straccia. Towards a crisp representation of fuzzy description
logics under Lukasiewicz semantics. In Proc. ISMIS’08, volume 4994 of LNCS,
pages 309-318. Springer, 2008.

F. Bobillo and U. Straccia. Fuzzy description logics with general t-norms and
datatypes. Fuzzy Set. Syst., 160(23):3382-3402, 2009.

F. Bobillo and U. Straccia. Reasoning with the finitely many-valued Lukasiewicz
fuzzy description logic SROZQ. Inf. Sci., 181(4):758-778, 2011.

S. Borgwardt and R. Penaloza. Description logics over lattices with multi-valued
ontologies. In Proc. IJCAI’11, 2011. To appear.

D. Calvanese, D. Carbotta, and M. Ortiz. A practical automata-based technique
for reasoning in expressive description logics. In Proc. IJCAI’11, 2011. To appear.
M. Cerami, F. Esteva, and F. Bou. Decidability of a description logic over infinite-
valued product logic. In Proc. KR 2010, pages 203—-213. AAAT Press, 2010.

G. De Cooman and E. E. Kerre. Order norms on bounded partially ordered sets.
J. Fuzzy Math, 2:281-310, 1993.

J. A. Goguen. L-fuzzy sets. J. Math. Anal. Appl., 18(1):145-174, 1967.

G. Grétzer. General Lattice Theory, Second Edition. Birkhauser Verlag, 2003.

P. Héjek. Metamathematics of Fuzzy Logic (Trends in Logic). Springer, 2001.

P. H4jek. Making fuzzy description logic more general. Fuzzy Set. Syst., 154(1):1-
15, 2005.

Y. Jiang, Y. Tang, J. Wang, P. Deng, and S. Tang. Expressive fuzzy description
logics over lattices. Knowl.-Based Syst., 23(2):150-161, 2010.

E. Post. A variant of a recursively unsolvable problem. Bulletin of the AMS,
52:264-268, 1946.

G. Stoilos, U. Straccia, G. Stamou, and J. Pan. General concept inclusions in fuzzy
description logics. In Proc. ECAI’06, pages 457-461. 10S Press, 2006.

U. Straccia. Reasoning within fuzzy description logics. JAIR, 14:137-166, 2001.
U. Straccia. Description logics over lattices. Int. J. Unc. Fuzz., 14(1):1-16, 2006.
U. Straccia and F. Bobillo. Mixed integer programming, general concept inclusions
and fuzzy description logics. Mathware € Soft Computing, 14(3):247-259, 2007.
M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. J. Comput. Syst. Sci., 32(2):183-221, 1986.

J. Yen. Generalizing term subsumption languages to fuzzy logic. In Proc. IJCAI’91,
pages 472-477, 1991.

L. A. Zadeh. Fuzzy sets. Inform. Control, 8(3):338-353, 1965.

M. Zherui and W. Wangming. Logical operators on complete lattices. Inform.
Sciences, 55(1-3):77-97, 1991.

80



The Complexity of Conjunctive Query Abduction in
DL-Lite*

Diego Calvanese!, Magdalena Ortiz?, MantasSimkus 2, and Giorgio Stefanoni'?
1 KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy
calvanese@inf.unibz.it, giorgio.stefanoni@gmail.com
2 Institute of Information Systems
Vienna University of Technology, Austria
ortiz@kr.tuwien.ac.at, simkus@dbai.tuwien.ac.at

Abstract. In order to meet usability requirements, most logic-based applications
provide explanation facilities for reasoning services. This holds also for DLs,
where research focused on the explanation of both TBox reasoning and, more
recently, query answering. Besides explaining the presence of a tuple in a query
answer, it is important to explain also why a given tuple is missing. We address
this latter problem for (conjunctive) query answering over DL-Lite ontologies,
by adopting abductive reasoning, that is, we look for additions to the ABox that
force a given tuple to be in the result. As reasoning tasks, we consider existence
and recognition of an explanation, and relevance and necessity of a certain asser-
tion for an explanation. We characterize the computational complexity of these
problems for subset minimal and cardinality minimal solutions.

1 Introduction

Query answering over ontologies formulated in Description Logics (DLs) has received
considerable attention both in research and industry. Given an ontology, users typically
pose queries over the conceptual schema and get answers that take into account the con-
straints specified at the conceptual level. Many efforts have concentrated on lightweight
description logics. For instance, DL-Lite 4 has been tailored for query answering over
large data sets [7]. For this reason, expressive power is traded in favor of a better com-
putational behavior in terms of data-complexity. In fact, conjunctive query answering in
DL-Lite 4 enjoys FOL-rewritability, i.e., it can be reduced to the problem of evaluating
a suitably constructed FOL query over a database instance.

In order to meet usability requirements set by domain users, most logic-based ap-
plications provide explanation algorithms for reasoning services. This holds also for
DLs, where research focused on the explanation of both TBox reasoning [12,6,14,3]
and, more recently, query answering [5]. In addition, the latter paper advocates the
importance of tackling the problem of explaining the absence of a tuple in the an-
swers to a query over an ontology. This problem stems from the database community,
where it has been solved in the context of databases extended with provenance infor-
mation [9]. We address this problem by considering explanations for the absence of a

* This work was partially supported by the Austrian Science Fund (FWF) grant P20840.
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tuple in the context of query answering over DL-Lite 4 ontologies. We adopt abductive
reasoning [10,11], that is, we consider which additions need to be made to the ABox to
force the given tuple to be in the result. More precisely, given a TBox 7, an ABox A,
and a query ¢, an explanation for a given tuple ¢ is a new ABox U/ such that the answer
to g over (T, AUU ) contains t. An important aspect in explanations is to provide the
user with solutions that are simple to understand and free of redundancy, hence as small
as possible. To address this requirement, we study various restrictions on solutions, in
particular, we focus on subset minimal and cardinality minimal ones. We consider stan-
dard decision problems associated to logic-based abduction: (i) existence of an expla-
nation, (ii) recognition of a given ABox as being an explanation, and (iii) relevance and
(iv) necessity of an ABox assertion, i.e., whether it occurs in some or all explanations.
After motivating such problems and formalizing them, we provide algorithms to solve
them and a precise characterization of their computational complexity for DL-Lite 4.
The complexity results for the various reasoning tasks are summarized in Table 1.

2 Preliminaries

DL-Lite o. DL-Lite 4 is a member of the DL-Lite family of DLs [7], which have been
designed for dealing efficiently with large amounts of extensional information. In DL-
Lite 4, concept expressions C, denoting sets of objects, and role expressions R, denoting
binary relations between objects, are formed as follows:

C — A 3R, R — P | P .

where A denotes an atomic concept and P an atomic role’. In a DL-Lite 4 ontology
O = (T, A), the TBox T consists of axioms of the form

C1 C Cy, Ry C Ry,

C1 E (s, Ry € =Ry, (funct &),
and the ABox A consists of assertions of the form A(c) and R(c, '), where ¢, ¢’ are
constants (or, individuals) from a countably infinite set C. An interpretation is a pair
T = (AZ,.T), where AT is a non-empty domain, and the interpretation function - is
defined as usual. We adopt here the unique name assumption (UNA), i.e., cf # c& for
all ¢1, co € C with ¢; # ¢o. We refer to [7] for more details.

Conjunctive Queries. Let V be a countably infinite set of variables. Expressions A(t)
and P(t,t') are called atoms, where ¢,t' € V U C. A conjunctive query (CQ) q is
an expression q(x1,...,T,) < ai,...,amn, where each a;, 1 < ¢ < m, is an atom.
Let V(q) denote the set of variables occurring in ¢, C(g) the set of constants in g,
and let at(q) = U;<;<m{ai}. A match for ¢ in an interpretation 7 is a mapping 7 :
V(q) UC(q) — A7 such that 7 is the identity on constants, 7(t) € AZ for each

* We ignore here the distinction between data values and objects, since it is immaterial for our
results. As a consequence, we do not consider value domains and attributes, which are present
in DL-Lite 4.
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A(t) € at(q), and (n(t),n(t')) € PZ for each P(t,t') € at(q). The tuple (x1,...,x,)
is the tuple of answer variables of q. The answer to g over Z, denoted ans(q,Z), is the
set of all n-tuples (dy, ..., d,) € C" such that (d7, ..., d%) = (x(xy),...,7(x,)) for
some match 7 for ¢ in Z. A union of conjunctive queries (UCQ) is a set of CQs with
the same answer variable tuple. For a UCQ g, we let ans(q,Z) = (J,,, ans(¢’, Z). The
certain answer to a CQ or a UCQ ¢ over O is defined as cert(q,0) = {c € C" | c €
ans(q, Z) for each model Z of O}.

3 Explaining Negative Query Answers

We now define the problem considered in this paper:

Definition 1. Let O = (T, A) be an ontology, ¢ a UCQ, and c a tuple of constants. We
call P = (O, q, ¢) a query abduction problem (QAP). A solution fo P (or an explana-
tion for P) is any ABox U such that the ontology O' = (T, AUU) is consistent and
c € cert(q, 0"). The set of all explanations for P is denoted expl (P).

If ¢ ¢ cert(q, ©O), then we call ¢ a negative answer to q over O. Note that a query
over the ontology can have a negative answer only if the ontology is satisfiable. Dif-
ferently, if the ontology is unsatisfiable then the QAP P does not have any solution.
In the following, we will examine various restrictions to expl(P) to reduce redundancy
in explanations. This is achieved by the introduction of a preference relation among
explanations. This relation is reflexive and transitive, i.e., we have a pre-order among
solutions.

Definition 2. Assume a QAP P. Let < denote a pre-order on the set expl(P) of solu-
tions. We write U < U' ifU < U and U’ £ U. The preferred explanations expl - (P) of
a QAP P under the pre-order < are defined as follows: expl L (P) = {U€E expl(P) |
there is no U’ € expl(P) s.t. U' < U}, i.e., explL(P) contains all the <-explanations
that are minimal under <. -

Two preference orders are considered here: the subset-minimality order, denoted by
C, and the minimum explanation size order, denoted by <. The latter order is defined
by U < U iff || <|U’|. Observe that expl - (P) C expl-(P).
We define now four decision problems related to (minimal) explanations, which are
parametric w.r.t. the chosen preference order <. Given a QAP P:
— =-EXISTENCE: Does there exist a <-explanation for P?
— =X-RECOGNITION: Is a set I/ of ABox assertions a <-explanation for P?
— =-RELEVANCE: Does an assertion o occur in some =<-explanation for P?
— =-NECESSITY: Does an assertion « occur in all <-explanations for P?
In the following, whenever no preference is applied (i.e., when =< is the identity) we
omit to write =< in front of the problem’s names. We provide an example, in which we
highlight the consequences of choosing among the various orderings.
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Table 1: Summary of main complexity results (completeness)

< | X-EXISTENCE | <-RECOGNITION | =<-RELEVANCE | =<-NECESSITY
none | PTIME (4.1) NP PTIME (4.3) PTIME (4.2)

< PTIME DP P)" PP (4.2)

- PTIME DP 22" 4.3) PTIME (4.2)

Example 1. Let O = (T ,.A) be an ontology describing a university domain, where 7
is

PostGrad C Student, Tutor C Professor,  Advanced T Course,
UnderGrad C Student, JhasTutor T PartTime, dteaches T Professor,
UnderGrad C —PostGrad, 3FJhasTutor™ T Tutor, dteaches™ T Course,

PartTime T UnderGrad.

That is, there are two different kinds of students, PostGrad and UnderGrad. More-
over, PartTime students are tutored by Tutors, who are particular professors. Addi-
tionally, the university offers some Advanced courses. Let the ABox A consist of the
assertions teaches(rob, SWT), hasTutor(peter, rob). Now, assume that a user is in-
terested in finding all those who both teach an advanced course and tutor a student.
Then, she would write the query

q(z) < teaches(x,y), Advanced(y), hasTutor(z, x).

Moreover, she may expect rob to be part of the result, i.e., 70b € cert(q,O),
but this is not the case. Intuitively, rob satisfies all the constraints imposed by the
query, except that the SWT course is not known to be Advanced. One can easily
see that {teaches(rob, TOC), Advanced(TOC), hasTutor(john, rob)} is an expla-
nation, {teaches(rob, ALG), Advanced(ALG)} is a C-minimal explanation, while
{Advanced(SWT)} is a <-minimal explanation. ]

In the next section, the complexity of the four main problems is studied in the light
of the different preference relations.

4 Complexity of Explanations

Table 1 provides an overview of our complexity results. Recall that the class X% is
a member of the Polynomial Hierarchy [13]; it is the class of all decision problems
solvable in non-deterministic polynomial time using an NP oracle. Moreover, the class
PNP contains all the decision problems that can be solved in polynomial time with an
NP oracle, where all oracle calls must be first prepared and then issued in parallel. The
class DP contains all problems that, considered as languages, can be characterized as
the intersection of a language in NP and a language in CONP [13]. Note that: PTIME C
NP C DP C Pn'P - ES is believed to be a strict hierarchy of inclusions and here we
make such an assumption.
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Our results can be explained as follows. We show in the next section that EX-
ISTENCE can be reduced to the PTIME-complete satisfiability problem for DL-Lite 4
without the UNA [1], which justifies our PTIME upper bound. This result can then be
used to characterize the complexity of RELEVANCE, NECESSITY, and C-NECESSITY.
<-RELEVANCE and <-NECESSITY are harder. The reason being that in order to solve
these problems one has to compute first the minimal size of a solution and, then, inspect
all the solutions of that size. Additionally, there is another increase in complexity when
dealing with C-RELEVANCE. The intuition is that there is an exponential number of
candidate solutions to examine and for each of them one has to check that none of its
subsets is itself a solution, which requires a CONP computation. Due to space limita-
tions, the results on <-RECOGNITION are not detailed in this paper (see [8] for more
details). The intuition for the NP bound for RECOGNITION is that one needs simply to
check consistency and perform query evaluation to solve the problem. In case a prefer-
ence order is in place, one has to check minimality as well, which is a CONP check for
C- and <-minimal explanations that leads to completeness for DP.

4.1 Complexity of <-EXISTENCE

For <-EXISTENCE note first that the existence of an explanation for P implies the
existence of an explanation under the C and < orderings. Thus, we only consider EX-
ISTENCE. Our first task is to show that we can restrict ourselves to explanations built
from the original signature of the input QAP plus a small number of fresh constants.

Proposition 1. If P = (O, q,¢) has a solution, then P has a solution U’ with con-
cepts, roles, and attributes only from O and at most m = mawxg,cqlat(q;)| fresh ABox
individuals.

Proof. Assume an arbitrary solution{ to P. Given the consistency of O’ = (T, AUU ),
it follows that there exists a model Z of O under the UNA. W.l.o.g. we assume that
AT = C with ¢ = cfor each ¢ € C. Additionally, the interpretation Z admits a match
7 for some ¢;(x) € ¢, such that () = ¢. LetU’ = {A(0) | A(t) € at(¢;) and 7(t) =
o} U{R(0,0") | R(t,t') € at(q;) and w(t) = oandw(¢t') = o'}. Observe that U’
has no more individuals than g; has variables. It remains to see that /' is a solution.
Clearly the original match 7 witnesses also ¢ € ans(g;, A U U"). It remains to see that
O" = (T, AUU') is consistent. But this follows from the fact that Z is a model of O’
and that the atoms in &/’ hold in Z a

The above restriction allows us to consider canonical explanations, i.e., explana-
tions resulting from suitable instantiations of the bodies of CQs ¢; € ¢. Keeping in
mind that CQs, seen as FOL formulae, are always satisfiable, an explanation does not
exist only if the structure of the query is not compliant with the constraints expressed in
the ontology. That is, for all the interpretations 7 of ¢ with ans(q, J) # , there is no
model Z of O, such that ZU J |= O. To check whether a UCQ is compliant with the
ontological constraints, a naive method is to iteratively go through all the CQs in ¢ and
instantiate them in the ABox. If for none of the CQs we obtain a consistent ontology,
then the query violates some of the constraints imposed at the conceptual level.
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Proposition 2. For DL-Lite 4 ontologies, EXISTENCE is PTIME-complete.

Proof. (MEMBERSHIP) Note that P = (O, q, c), with ¢ a UCQ, has a solution iff P, =
(O, ¢, ¢) has a solution for some ¢’ € ¢. Hence, it suffices to show the upper bound
for CQs. To this end, we provide a logspace reduction from EXISTENCE to consistency
in DL-Lite o without UNA, which in turn is PTIME-complete [1]. Assume a QAP P =
(0, q,c), where q is a CQ and O = (T,.A). We argue that P has a solution iff O’ =
(TUT ', AUU, U A’) is consistent, where O’ is an ontology obtained from O and
g(c) as follows. The ABox U, is obtained from at(¢(c)) by replacing each variable
x with a fresh individual name a,. The ABox A’ consists of assertions A, (o) for all
constants o occurring in 7, A and U, where each A, is a fresh concept name. The
TBox T~ consists of axioms A, C — A, for all pairs o # o’ of constants occurring in A
and ¢(c). We now show that P has a solution iff O’ is consistent.

Assume that P has a solution ¢/. Then, due to consistency of 0" = (T, AUU),
there is a model Z of O under the UNA. Additionally, Z admits a match 7 for ¢(c). Let
T’ be the extension of Z that additionally interprets (i) constants in U, as al = 7(x)
for all variables  in ¢, and (ii) AZ = {o”} for all freshly introduced A,. It remains
to show that Z’ is a model of ’. Observe that since Z is under the UNA, we have that
Af/ N Af,/ = () for all constant pairs o # o’. Thus 7’ satisfies all the disjointness axioms
A, C =A, in T'. The assertions in A’ are satisfied due to (ii), while the assertions in
U, due to (i) above.

The other direction of the proof is obvious and we omit it here.

(HARDNESS) Let us reduce consistency in DL-Lite 4 without UNA to EXISTENCE.
Given O = (T, A), we create QAP P = (O, ¢(), ()) simply by encoding the ABox .A
in the CQ ¢ by replacing each constant a € A by a distinct variable name x,, in ¢, while
the ontology O’ consists only of the TBox 7. ]

xT

4.2 Complexity of (<X-)NECESSITY

The existence of an explanation is most of the times not very informative to the user.
In fact, given a negative answer to a query, it is important to delineate the fundamental
reasons leading to the absence of the expected tuple. That is, users would like to know
which assertions occur in all the solutions to a QAP P.

Proposition 3. For DL-Lite 4 ontologies, the NECESSITY and C-NECESSITY problems
are PTIME-complete.

Proof. (MEMBERSHIP) We assume a QAP P = (O, ¢, ¢) with O = (T, A), an asser-
tion o(t) and consider NECESSITY first. This problem can be reduced to non-EXISTENCE,
which was shown to be in PTIME in the previous section. We build O’ = (77, A’) such
that (t) occurs in all explanations for P iff P’ = (O’, ¢, ¢) has no explanation. We
define O’ by setting A’ = AU {@(t)} and T = T U {p C —p}, where @ is a fresh
predicate name. It is easy to see that if P’ has no explanation, then either P has no ex-
planation as well, or, all the explanations for P must contain (). For C-NECESSITY,
observe that () occurs in all explanation for P iff ¢ () occurs in all C-minimal ex-
planations for P. Thus C-NECESSITY can be decided in polynomial time using our
algorithm for NECESSITY.
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(HARDNESS) The lower-bound can be proved through a logspace reduction from
EXISTENCE to non-NECESSITY, that is, deciding whether there exists a solution to a
QAP that does not contain the given assertion. Let P = (O, ¢, ¢) be a QAP with ¢
a CQ, we build (P, «) such that P has a solution iff (P, ) is a negative instance to
NECESSITY. Let & = A(0), for some fresh concept A and constant o not occurring
in P. Now, assume P has a solution U/. By Proposition 1, we know that there exists a
solution ¢’ to P containing only concept and role names from O. Hence, A(o) ¢U ',
since concept name A is not in the ontology. Therefore, one can conclude that A(o) is
not a necessary assertion to P.

The other direction is straightforward. O

Let us now show the complexity of necessity under the < preference order.

Theorem 1. For DL-Lite 4 ontologies, <-NECESSITY is Pwp—complete.

Proof. (MEMBERSHIP only, HARDNESS in [8]) Let’s assume a QAP P = (O, g, ¢) and
an assertion a.. By the use of canonical explanations, we know that the size m of the
largest solution to P corresponds to the size of the largest CQ in g. Observe that (P, «)
is a negative instance of <-NECESSITY iff there is an 0 < ¢ < m such that (a) P has
an explanation & with |U/| = 7 and o €U , and (b) U is <-minimal. Thus, we use an
auxiliary problem SIZE-OUT, which is to decide given a tuple (P’, o/, n’), where P’ is
a QAP, o’ is an assertion, and n’ is an integer, whether there exists an explanation I/’
for P’ such that |i/'| = n’ and o €U ’. Furthermore, the problem NO-SMALLER is to
decide given a tuple (P’,n’) of a QAP and an integer whether there is no explanation
U’ for P’ such that |/'| < n'. Observe that SIZE-OUT is in NP, while NO-SMALLER
is in CONP. Take the tuple S = (Ao, By, ..., Am, Bn), where (a) A; = (P, 1),
forall 0 < ¢ < m, and (b) B; = (P,i), for all 0 < i < m. Due to the above
observation, v occurs in all <-minimal explanations ¢/ for P iff for all 0 < i < m, one
of the following holds: (i) A; is a negative instance of SIZE-OUT, or (ii) B; is a negative
instance of NO-SMALLER. Note that S can be built in polynomial time in the size of the
input, while the positivity of the instances in S can be decided by making 2m parallel
calls to an NP oracle. Thus we obtain membership in PWP. O

4.3 Complexity of <-RELEVANCE

A domain user faced with a negative answer to a query may ask herself whether, the
absence of a certain ABox assertion « in the ontology is related with the lack of the tuple
in the results. That is, she would like to know whether v occurs in some explanation to
QAP P.

Proposition 4. For DL-Lite 4 ontologies, RELEVANCE is PTIME-complete.

Proof. (MEMBERSHIP) We assume a QAP P = (O, q,¢) with O = (T, A) and an
assertion ¢(t). We now provide a reduction from RELEVANCE to EXISTENCE. We con-
struct O' = (T, A'), where A’ = AUg(¢). Then, P has an explanation ¢/ with ¢(t) € U
iff there exists an explanation to P’ = (O’ q,c). This is because, any explanation to
P’ can be extended by adding ¢(t). It is simple to see that any such explanation is an
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explanation to P, as well. Finally, if P’ does not admit explanations, then ¢(t) is a
source of inconsistency in P.

(HARDNESS) Hardness can again be proved with a reduction from EXISTENCE in a
similar way as done in Section 4.2. O

Let us now tackle the problem of C-RELEVANCE, for which we recall the FOL-
rewritability of query answering in DL-Lite 4. Given an ABox A, let D B(.A) be the fol-
lowing interpretation: (i) ADPB(A) s the set of constants occurring in A, (ii) APB(A) —
{o € APBA) | A(0) € A}, for each atomic concept A, and (iii) PPB(A) = {(0,0') €
APBA) | P(o,0') € A}, for each atomic role P.

Proposition 5 ([7]). Let PerfectRef(q,T) be the perfect reformulation of g w.r.t. T,
which is a UCQ obtained by applying the rewrite rules given in [7]. Then, cert(q, Q) =

UTEPCT‘f@CtRCf(QvT) ans(r, DB(A))

In other words, the certain answers to a UCQ can be computed by rewriting the query
into a FOL query to be evaluated over the ABox.

Theorem 2. For DL-Lite 4 ontologies, C-RELEVANCE is Z'QP -complete.

Proof. (MEMBERSHIP) The membership in X¥ is clear from Algorithm 1, which works
as follows. An explanation U containing ¢(t) is non-deterministically computed by
guessing an instantiation of a subquery in PerfectRef(q(c), T ), where Anon is a set of
fresh ABox individuals (see Proposition 1). Let HAS-SUBEXPL solve the problem of
deciding whether a solution U/ has a subset which is itself an explanation. The prob-
lem can be easily proved to be in NP. Then, the algorithm checks the complement
of HAS-SUBEXPL in order to assure that none of the subsets of ¢/ is itself an expla-
nation, from which it follows that ¢(t) is C-relevant. Checking the complement of
HAS-SUBEXPL requires the power of a CONP machine. For this reason, the algorithm
is solvable in non-deterministic polynomial time by a TM with an NP oracle.
(HARDNESS) We prove it by a reduction from the X§ -complete problem co-CERT3COL

[15] (see also [4]). An instance of co-CERT3COL is given by a graph G = (V, E) with
vertices V' = {0,...,n — 1} such that every edge is labeled with a disjunction of
two literals over the Boolean variables {p; ;) | i,j < n}. G is a positive instance if
there is a truth value assignment ¢ to the Boolean variables such that the graph ¢(G)

Algorithm 1

INPUT: QAP P = (q, O, ¢) and ABox assertion ¢(t)

OUTPUT: yes iff ¢(t) is relevant to P

: Guess ¢; € {q1,...,qn} =¢

: Guess the derivation of one rewriting r(c) in PerfectRef(qi(c), T)

Guess a set of atoms U C at(r)

Guess a mapping 7 from V(g) to constants in DB(.A) and Anon

: Check that (7, AUU) ~= L, where U is the instantiation of U through 7.
: Check that ¢(t) € U and 7 is a match for r(c) over DB(AUU)

: Check that HAS-SUBEXPL (P, U) = no.
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obtained from G by including only those edges whose label evaluates to true under ¢
is not 3-colorable. Assume an instance G' of co-CERT3COL. We show how to build in
polynomial time a QAP Ps = ((7¢, Ac), qc, cc) and an ABox assertion aig such
that: G is a positive instance of co-CERT3COL iff ag is C-relevant for Pg. We use
an empty TBox and a Boolean query, thus 7¢ = 0 and ¢ = (). The query g¢ is
aUCQ gg = e, U -+~ Uge, U, where {e1,...,ex} = E, each ¢, is an atomic
query ge, () « We,(z,y), and ¢ is defined as follows. Assume B = {¢, f} to be the
set of truth values. The query ¢’ has the following atoms for each edge e = (7, j) in E:
(a) B(xi), Re(wi, ye), Re(ye, x;), B(x;), and (b) P(ye, zp,), Ap, (2p,), W, (2p,: 2,)
where p; € {p1,p2} and p1, ps are the first and the second proposition in the labeling
of e, respectively. The query ¢’ simply incorporates G together with the disjunctions on
the edges. Observe that if two edges have the same proposition in their label, then this
will be reflected in ¢’ by some shared variables z,, .

To build Ag we use individuals ¢, and c-, for the truth value of proposition p.
Intuitively, the truth value of p will be determined by either A,(c,) or A,(c-p) being
in the update. Assume a tuple t = (e, vy, v2, a,b), where e € E, {v1,v2} C B, and a, b
are individuals. Let p1, p2 be the first and the second propositions of e. For ¢ € {1, 2}
and v; = t, letl; = p; if p; is positive and I; = —p; otherwise. Similarly, for : € {1, 2}
and v; = f, letl; = —p; if p; is positive and I; = p; otherwise. Then, the ABox A(¢)
consists of the assertions R.(a,dr), R.(dr,b), P(dr,c;,) and P(dr,c;,) depending
on the boolean values in input.

The ABox A is the union of the following ABoxes:

(Al) A((e,v,v,a;,a;)) foralle € E,v,0" € B,0<14,j <2,andi # j;
(A2) A((e, f, f,ai,a;)) foralle € E,and 0 < i < 2;

(A3) A({e,v,v',b,b)) foralle € E,v,v" € B;

(A4) The ABox {B(ao), B(a1), B(az2)};

(A5) The assertions Wp(cp, ¢—p) and Wy, (c—p, ¢p) for all propositions.

Let ag = B(b). It is not too difficult to see that G is a positive instance of co-
CERT3cCOL iff there exists an C-explanation I/ to P such that o € U. Basically,
definitions (A1)-(A3) encode a triangular structure 7" in which edges in G that evaluate
to false according to a given truth assignment can be mapped on any edge of T', reflexive
edges included. If an edge of GG evaluates to true, then it must be mapped to one of the
non-reflexive edges. This ensures that if G can be mapped to 7" under truth assignment
t, then t(G) is 3-colorable. Instead, definitions (A4)-(A5) define a cyclic structure C'
into which any graph G can be embedded. It has to be noted that the node b is not
asserted to be a member of B, hence ¢ cannot be mapped there directly with any truth
assignment. We see this more formally next:

“=" Suppose there is a truth assignment ¢ such that ¢(G) is not 3-colorable. Let
U ={B(b)}Ulh, where Uy = {A,(cp) | t(p) = t}U{A,(c-p) | t(p) = f}. Itremains
to argue that I/ is a C-explanation to P. It is not hard to see that I/ is an explanation.
Indeed g¢ matches already in the ABox obtained by point (A3) (hint: since B(b) € U,
we match g by mapping all variables of g to (interpretation of) b). Suppose there is
a smaller update U/’ C U. Observe that 4; C U’. This is because for all propositions p,
the symbol A,, does not occur in A but does occur in gg. Then, U \ { B(b) } must be an
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update. If this is the case, then ¢g can be matched in Ag without the ABox from (A3),
i.e.in the triangle part. Then ¢(G) is 3-colorable, which contradicts the assumption.
“<" Let U be a C-minimal explanation containing B(b). Due to the presence of
Ge, U ... U g, in gg and the assumption, the role W), cannot occur in ¢/ for any
proposition p. Since U is an explanation, by the definition of ¢’ and (AS5) we have
that A,(cp) € U or Ap(c-p) € U for all propositions p. Since for any proposition p
we have that A, occurs in g¢ with one and only variable z,,, we know that exactly one
of Ay(cp) € U and Ap(c—p) € U holds. Due to the atoms W;,(2,, 2,) in qg, we also
have that individuals of the form ¢, and c—,, are the only ones that can get an A,, label.
Consider the assignment ¢ defined as follows: ¢(e) = t if A,(c,) € U, and t(e) =
if A,(c-p) € U. It is not difficult to argue that ¢(G) is not 3-colorable and thus G is a
positive instance of co-CERT3COL. Indeed, if ¢(G) was 3-colorable, @) should be map-
pable into the triangle part obtained in (A1)-(A3). Then U/ \ {B(b)} would be a smaller
update, which would mean a contradiction. ]

Note that the above lower bound holds already for empty TBoxes.
Proposition 6. For DL-Lite 4 ontologies, <-RELEVANCE is P"\"P-complete.

Proof. (MEMBERSHIP only, HARDNESS in [8]) <-RELEVANCE can be tackled in a way
similar to <-NECESSITY. In fact, the algorithm described in Theorem 1 can be modi-
fied in order to solve this problem. Let SIZE-IN solve the following problem: given a
tuple (P, «,n), where P is a QAP, « an assertion, and n an integer, decide whether
there exists an explanation U, with |I{| = n and o € U. Then, we change the positivity
condition of the <-NECESSITY algorithm as follows: a occurs in some <-minimal ex-
planations U for P iff for some i, 0 < i < m, it holds that: (i) A; is a positive instance
of SI1ZE-IN, and (ii) B; is a positive instance of NO-SMALLER. It is easy to see that
SIZE-IN is solvable in NP, hence the whole problem is again in P"\"P. ]

5 Conclusions

In this paper we have provided the formalization of a new problem, namely the explana-
tion of negative answers to user queries over ontologies. A tuple is said to be a negative
answer, if the user expects it to be part of cert(q, @) but the tuple is actually not. In
our framework, an explanation consists of an ABox that when added to the ontology
leads the negative answer to be returned in the results of the query. We define various
problems that help us in characterizing the complexity of finding explanations, such
as the existence of explanations and relevance/necessity of assertions. We further con-
sider a minimality criterion to be applied over explanations, such as subset-minimal and
minimum-size preference orders. Within this framework, we provide a characterization
of the computational complexity of the various problems for the DL DL-Lite 4.

Future work includes studying the application of this framework to other lightweight
description logics, starting with the ££-family. We would also like to investigate the
problem in the case where the ontology signature and the explanation signature may be
different. That is, the signature over which explanations can be constructed is restricted
only to a subset of the ontology signature [2].
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Abstract. In this paper we introduce the notion of mapping-based knowledge
base (MKB), to formalize those ontology-based data access (OBDA) scenarios
where both the extensional and the intensional level of the ontology are deter-
mined by suitable mapping assertions involving the data sources. We study rea-
soning over MKBs in the context of Hi(DL-Liter ), a higher-order version of
the DL DL-Liter . We show that answering queries posed to MKBs expressed in
Hi(DL-Liter) can be done efficiently through FOL rewriting: hence, query an-
swering can be delegated to a DBMS, as in the case of traditional OBDA systems.

1 Introduction

Ontology-based data access (OBDA) [2] is a recent application of Description Logics
(DLs) that is gaining momentum. The idea behind OBDA is to use a DL ontology as
a means to access a set of data sources, so as to mask the user from all application-
dependent aspects of data, and to extract useful information from the sources based
on a conceptual representation of the domain, expressed as a TBox in a suitable DL.
In current approaches to OBDA, the intensional level of the ontology (the TBox) is
fixed once for all at design time, and the mapping assertions specify how the data at the
sources correspond to instances of the concepts, roles, and attibutes in the TBox. More
precisely, the various mapping assertions determine a sort of virtual ABox, in which
the individual objects are built out from data, and the instance assertions are specified
through the relationships between the sources and the elements of the ontology.

Several OBDA projects have been carried out in the last years [9], and OBDA sys-
tems have been designed to support OBDA applications [1]. The experience gained in
this work has shown that there are important aspects that are missing in current OBDA
technology. In this paper, we concentrate on three such aspects.

The first aspect is related to the need of making the intensional level of the ontol-
ogy more dynamic. Indeed, in real applications, the information about which are the
concepts and roles that are relevant in the domain of interest is often stored in the data
sources. Consider, for example, the database D of a motor industry shown in figure 1,
storing data about different types of cars (table T-CarTypes), and various cars of
such types (table T-Cars) manufactured by the firm. The key observation is that the
database D stores information not only about the instances of concepts, but also about
the concepts themselves, and their relationships. For example, table T-CarTypes tells
us that there are four concepts in our ontology that are subconcepts of the concept Car,
and, implicitely, tells us that they are mutually disjoint. Table T-Cars, on the other
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T-Cars

T-CarTypes [NumberPlate[CarType[EngineSize[BreakPower| Color [TopSpeed]]
Code|TypeName ABI111 T1 2000 200 Silver 260
T1 Coupé AF333 T2 3000 300 Black 200
T2 SUV BR444 T2 4000 400 Grey 220
T3 Sedan AC222 T4 2000 125 Dark Blue 180
T4 | Estate BNS555 T3 1000 75 Light Blue| 180
- BP666 Tl 3000 600 Red 240

Fig. 1. The database of a motor industry

hand, provides information about the instances of the various concepts, as well as other
properties about such instances.

The second aspect is related to the need of metamodeling constructs in the lan-
guage used to specify the ontology [4, 6]. Metamodeling allows one to treat concepts
and properties as first-order citizens, and to see them as individuals that may constitute
the instances of other concepts, called meta-concepts. In our example, it is convenient
to introduce in the ontology the concept Car-Type, whose instances are exactly the
subconcepts of cars stored in table T-CarTypes. In this way, we allow users to dy-
namically acquire knowledge about relevant car types through simple queries asking
for the instances of the meta-concept Car—Type.

The third aspect deals with the need of designing tractable algorithms for query
answering in OBDA systems. In [8], it is argued that, since the data sources used in
OBDA systems are likely to be very large, such systems should be based on DLs that
are tractable in data complexity. In particular, [8] advocates the use of the DL-Lite
family, that allows for First-Order Logic (FOL) rewritability of (unions of) conjunctive
queries. We remind the reader that in a DL enjoing FOL rewritability, query answering
can be divided in two steps. In the first step, called rewriting, using the TBox only, the
query q is transformed into a new FOL query ¢, and in the second step ¢’ is evaluated
over the ABox. The correctness of the whole method relies on the fact the answers to
¢ over the ABox coincide with the certain answers to g over the whole ontology. The
challenge is now to design tractable query answering algorithms even in cases where
the mappings relate data at the sources both to the extensional and the intensional level
of the ontology, and meta-concepts and meta-roles are used in the queries. In this paper,
we address the above aspects, and present the following contributions.

(i) We introduce the notion of mapping-based knowledge base (MKB) (Section 3),
to formalize the situation where both the extensional and the intensional level of the
ontology are determined by suitable mapping assertions involving the data sources.

(if) We describe the higher-order DL Hi(DL-Liter ) (Section 2), based on the ap-
proach presented in [5]. In that paper, it is shown how, starting from a traditional DL
L, one can define its higher-order version, called Hi(L). Here, we apply this idea, and
present Hi(DL-Liter ), which is the higher-order version of DL-Liter [3].

(iif) We show that answering queries posed to MKBs expressed in Hi(DL-Liter )
can be done efficiently through FOL rewriting (Section 4). More specifically, we de-
scribe an algorithm that, given a query g over a MKB, rewrites ¢ into a FOL query that
is evaluated taking into account only the mapping assertions M 4 of the MKB involv-
ing the extensional level of the ontology. Hence query answering can be delegated to a
DBMS, as in the case of traditional OBDA systems.
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2 Higher-order DL-Liter

In this section, we describe the higher-order DL Hi(DL-Liter ), based on the approach
presented in [5]. Every traditional DL L is characterized by a set OP(L) of operators,
used to form concept and role expressions, and a set of MP (L) of meta-predicates, used
to form assertions. Each operator and each meta-predicate have an associated arity. If
symbol S has arity n, then we write S/n to denote such a symbol and its arity. For
DL-Liter, we have

- OP(DL-Liteg) = {Inv/1, Exists/1};
— MP(DL-Liter) = {Instc/2, Instr/3, Isac /2, Isar/2, Disj- /2, Disj p/2}.

We assume that the reader is familiar with DL-Liter, . Therefore, the intuitive mean-
ing of all the above symbols should be clear. The formal specification of their semantics
will be given shortly.

Syntax. We assume the existence of two disjoint, countably infinite alphabets: S, the
set of names, and V, the set of variables. Intutively, the names in S are the symbols
denoting the atomic elements of a Hi(DL-Liter ) knowledge base. The building blocks
of such a knowledge base are assertions, which in turn are based on terms and atoms.

We inductively define the set of rerms, denoted by Tpr pirer (S, V), over the alpha-
bets S and V for Hi(DL-Liter ) as follows:

- ifEeSthen F € TDL-Liter (S, V),
—ifVeVthenV € TDL-Litez (S, V),
—if C/TL € OP(DL-Lil‘eR) and t1,...,t, € TDL-Liter (S, V) then C(tl, ey tn) S

ToL-Liter (S, V).

Ground terms, i.e., terms without variables, are called expressions, and the set of ex-
pressions is denoted by T Liter, (S).

A DL-Liter -atom, or simply atom, over the alphabets S and V for Hi(DL-Liter)
is a statement of the form M (F, ..., E,) where M € MP(DL-Liter), n is the arity
of M, and for every 1 < i < n, E; € TprLiter (S, V). If X is a subset of V, a is
a DL-Liter-atom, and all variables appearing in a belongs to X, then a is called an
X-atom in DL-Liter,.

Ground DL-Liteg-atoms, i.e., DL-Liter-atoms without variables, are called
DL-Liter -assertions, or simply assertions. Thus, an assertion is simply an application
of a meta-predicate to a set of expressions. Intuitively, an assertion is an axiom that
predicates over a set of individuals, concepts or roles.

A Hi(DL-Liter) knowledge base (KB) over S is a set of DL-Liter -assertions over
S. To agree with the usual terminology of DLs, we use the term TBox to denote a set of
Isac, Isag, Disj - and Disj p assertions, and the term ABox to denote a set of Instc
and Inst g assertions.

Semantics. Our definition of semantics for Hi(DL-Liter) is based on the notion of
interpretation structure. An interpretation structure is a triple X = (A, Z.,Z,.) where:
(i) A is a non-empty (possibly countably infinite) set; (ii) Z. is a function that maps
each d € A into a subset of A; and (iii) Z, is a function that maps each d € A into a
subset of A x A. In other words, X treats every element of A simultaneously as: (i) an
individual; (i7) a unary relation, i.e., a concept, through Z.; and (iii) a binary relation,
i.e., arole, through Z,..
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An interpretation for S (simply called an interpretation, when S is clear from the
context) over the interpretation structure X' is a pair Z = (X', Z,), where
- ¥ ={(A,Z.,Z,) is an interpretation structure, and
— 7, is a function that maps:
1. each element of S to a single object in A; and
2. each element C'//n € OP(DL-Liteg) to an n-ary function C%o : A" — A
that satisfies the conditions characterizing the operator C'/n. In particular, the
conditions for the operators in OP (DL-Liter ) are as follows:
(a) foreach d; € A, if d = Inv*(d;) then d¥r = (d¥)~;
(b) for each d; € A, if d = Exists(dy) then d¥c = {e | Jey s.t. (e,e1) €
d*y.
We extend Z, to ground terms in 7pprier (S) inductively as follows: if C'/n €
OP(DL-Liter ), then (C(ty, ..., t,))% = CTo(Ef-, ... EZ).

We now turn our attention to the interpretation of terms in Hi(DL-Liter). To in-
terpret non-ground terms, we need assignments over interpretations, where an assign-
ment 1 over (X, Z,) is a function 1 : V — A. Given an interpretation Z = (X, Z,)
and an assignment p over Z, the interpretation of terms is specified by the function
()ZoH 2 Tpp Lirer (S, V) — A defined as follows:

— if t € S then tZo# = Lo
— ift € V then tZo# = p(t);
— if t is of the form C(ty, . .., t,), then tZo:# = CTo(tFot . tZok),

Finally, we define the semantics of atoms, by defining the notion of satisfaction of
an atom with respect to an interpretation Z and an assignment p over Z as follows:

- T,p = Insto(By, By) if BT € (EFo)Te;

- T,u = Instr(Ey, By, Es) if (Ef", E3=") € (E5=")Tr;
= L p | Tsac(By, Bp) if (By")™ € (B,™")™;

- T, = Isag(By, Ey) if (B{**)T C (E3=)Tr;

- T, u |= Disj o (Ey, By) if (ETo")Te 0 (BT = 0

— T, pu | Disj (B, Bz) if (B 5 0 (B3 )T = 0.

A Hi(DL-Litery) KB H is satisfied by Z if all the assertions in H are satisfied by Z'.
As usual, the interpretations Z satisfying H are called the models of H. A Hi(DL-Liter)
KB H is satisfiable if it has at least one model.

3 Mapping-based knowledge bases

As we said in the previous section, a Hi(DL-Liter) KB is simply a set of assertions.
One might think of such a set of assertions as explicitly stated by the designer of the
KB. This is a reasonable assumption only in those cases where the ontology is managed
by an ad-hoc system, and is built from scratch for the specific application. However, in
many applications, it is of interest to derive the KB directly from a set of data sources,
so that the assertions of the KB are defined by specific mappings to such data sources.
The resulting notion will be called mapping-based knowledge base.

In the following, we assume that the data sources are expressed in terms of the
relational data model. In other words, all the technical development presented in the rest

!'We do not need to mention assignments here, since all assertions in # are ground.
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of this section assumes that the set of sources to be linked to the knowledge base is one
relational database. Note that this is a realistic assumption, since many data federation
tools are now available that are able to wrap a set of heterogeneous sources and present
them as a single relational database.

When mapping relational data sources to a knowledge base over S, one should
take into account that sources store “data values”, and such data values should not
be confused with the elements in S. To face this impedance mismatch problem, [8]
proposes to structure the mapping assertions in such a way that the elements of the
knowledge base are denoted by terms built out from data values stored at the sources
using special function symbols. Although we could in principle follow the same idea
here, for the sake of simplicity, in this paper we assume that the relational data sources
store directly elements of S. Note, however, that all the results presented in the next
sections easily extend to the case where mappings build complex terms for denoting the
elements of the knowledge base.

We are now ready to provide the definition of mapping-based knowledge base.

Definition 1. A Hi(DL-Liter ) mapping-based knowledge base (MKB) is a pair K =
(DB, M) such that: (i) DB is a relational database; (ii) M is a mapping, i.e. a set
of mapping assertions, each one of the form ®(x) ~» 1), where ¢ is an arbitrary FOL
query over DB of arity n > 0 with free variables * = (x1,...,x,), and v is an
X-atom in DL-Liter, with X = {x1,...,Tn}.

In the following, if = (DB, M) is a MKB, then we denote by M 4 the set of
mapping assertions from M whose head predicate is either Instc or Instg. Further-
more, we denote by M 1 the set M \ M 4, i.e., the set of mapping assertions from M
whose head predicate belongs to the set {Isac, Isar, Disj, Disj p}. We call a map-
ping M an instance-mapping if M = M 4, i.e., if the metapredicates Instc and Instp
are the only ones to appear in the right-hand side of the mapping assertions in M.

In order to define the semantics of a Hi(DL-Liter) MKB K = (DB, M), we need
to define when an interpretation satisfies an assertion in M with respect to a database
DB. To this end, we make use of the notion of ground instance of an atom, and the
notion of answer to a query over DB. Let ¢ be an X-atom with X = {x1,...,z,}, and
let v be a tuple of arity n with values from DB. Then the ground instance ¢[x/v] of ¢ is
the formula obtained by substituting every occurrence of x; with v; (fori € {1,..,n})in
1. Also, if DB is a relational database, and ¢ is a query over DB, we write ans(®, DB)
to denote the set of answers to g over DB.

We now specify when an interpretation satisfies a mapping assertion with respect to
a database. We say that an interpretation Z satisfies the mapping assertion ®(x) ~» 1
with respect to the database DB, if for every tuple of values v € ans(®, DB), the
ground atom [z /v] is satified by Z. We say that Z is a model of K = (DB, M) if Z
satisfies every assertion in M with respect to DB.

The following example shows how Hi(DL-Liter ) mapping-based knowledge bases
can be used to model real world situations in a suitable manner.

Example 1. Consider the database D shown in the introduction. We define a
Hi(DL-Liteg ) MKB Ky = (D, M), where the mapping M is defined as follows:

- Ml: {y | T-CarTypes(z,y)} ~ Isac(y,Car)

- M2: {(z,2) | T-Cars(x,y,t,u,v,q) A T-CarTypes(y, z)} ~ Instc(zx, z)

- M3: {(z,y) | T-CarTypes(z1,z) A T-CarTypes(z2,y) A& # y} ~ Disj(z,y)
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Intuitively, M1 states that every type of car (whose name appears in the second column
of table T-CarTypes, i.e. Coupé, SUV, Sedan, etc.) is a Car. M2, instead, indicates how
to correctly retrieve the instances of different types of cars (e.g. car with plate number
AB111 has to be retrieved as an instance of the concept Coupé, cars with plate numbers
AF333 and BR444 as instances of the concept SUV, and so on). Finally, the intended
meaning of assertion M3 is that different types of cars are pairwise disjoint (e.g. a
Coupé is not a SUV, a SUV is not a Sedan, and so on). Obviously, mapping assertions
are always written by people who know the semantics of the information stored in
the database. Notice that the mapping assertions in M are able to model the car-types
hierarchy without knowing a priori (i.e. at design-time) all the different kinds of cars
that are produced by the motor industry.

Suppose now that the motor industry decides to introduce new types of cars to its
car fleet, and in particular it decides to produce Campers and Caravans as well, thus
extending the hierarchy. As one can imagine, these new kinds of cars share some com-
mon characteristics with the previous car types, even though not all of them. Therefore,
it might be a reasonable choice for the database designers to introduce a new relational
table in D:

T-NewCars [NumberPlate[CarType[ Height [Weight[EngineSize|BreakHorsePower|

CM777 | Camper |2,50 mt|680 Kg| 4000 cc 200 bhp
CM888 | Camper |2,20 mt|550 Kg| 3000 cc 150 bhp
CV333 |Caravan|2,30 mt|620 Kg| 3000 cc 200 bhp
CV222 |Caravan|2,50 mt|580 Kg| 4000 cc 250 bhp

The new situation can be modeled in our framework by simply adding to M the fol-
lowing mapping assertions:

- M4: {y| T-NewCars(z,y,t,u,v,q)} ~ Isac(y,Car)

- M5: {(z, 2) | T-NewCars(z, z,t,u,v,q)} ~ Instc(z, 2)

- M6: {(z,y) | T-NewCars(z1,x) A T-NewCars(z2,y) Ax # y} ~ Disjo(z,y)
where mapping M4 states that the new kinds of cars (Camper and Caravan) are Cars,
the second assertion indicates how to correctly retrieve their instances, (e.g. car with
plate number CM777 as an instance of Camper), and mapping M6 states that the new
types of cars are pairwise disjoint (i.e. a Camper is not a Caravan).

Notice that if (instead of creating a new table) the new kinds of cars had been simply
introduced into the initial table T-CarTypes (thus without modifying D in any way), the
new concepts (Camper and Caravan) would been automatically detected at run-time by
mappings M1-M3, whitout requiring any further mapping definition. O

Next, we introduce the notion of query, which in turn relies on the notion of “query
atom”. Intuitively, a query atom is a special kind of atom, constituted by a meta-
predicate applied to a set of arguments, where each argument is either an expression
or a variable. More precisely, we define the set of g-terms to be TpL Liter, (S) U V. We
define a query atom as an atom constituted by the application of a meta-predicate in
MP(DL-Liter) to a set of g-terms, and we call a query atom ground if no variable oc-
curs in it. A query atom whose meta-predicate is Instc or Instp is called an instance-
query atom. A higher-order conjunctive query (HCQ) of arity n is an expression of
the form g(x1,...,2,) ¢ a,...,a, where g, called the query predicate, is a symbol
not in S U V), every x; belongs to V, every a; is a (possibly non-ground) query atom,
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and all variables 1, ..., x, occur in some a;. The variables x1, ..., x, are called the
free variables (or distinguished variables) of the query, while the other variables oc-
curring in ay, . .., a., are called existential variables. A HCQ constituted by instance
atoms only is called an instance HCQ (IHCQ). A higher-order union of conjunctive
queries (HUCQ) of arity n is a set of HCQs of arity n with the same query predicate.
A HUCQ constituted by instance HCQs only is called an instance HUCQ (IHUCQ). A
HCQ/HUCAQ is called Boolean if it has no free variables.

Let 7 be an interpretation and p an assignment over Z. A Boolean HCQ ¢ of the
form ¢ < ay,...,a, is satisfied in I, p if every query atom q; is satisfied in Z, .
A Boolean HUCQ @ is satisfied in Z, s if there exists a Boolean HCQ ¢ € @ that is
satisfied in Z, u. A Boolean HUCQ @ is satisfied in Z, written Z |= @, if there exists
an assignment p over Z such that @ is satisifed in Z, y. Given a Boolean HUCQ @ and
a Hi(DL-Liter) KB KC, we say that @ is logically implied by K (denoted by K |= Q) if
for each model 7 of K there exists an assignment y such that () is satisfied by Z, p.

Given a non-Boolean HUCQ ¢ of the form ¢(t1,...,¢,) + a1, ..., am, a ground-
ing substitution of ¢ is a substitution 6 such that ¢16,...,t,0 are ground terms. We
call t10,...,t,0 a grounding tuple. The set of certain answers to ¢ in K is the set of

grounding tuples 16, ...,t,0 that make the Boolean query ¢y <+ a10,...,a,0 logi-
cally implied by KC. Notice that, in general, the set of certain answers may be infinite
even if the KB is finite. Therefore, it is of interest to define suitable notions of safeness,
which guarantee that the set of answers is bounded. This issue, however, is beyond the
scope of the present paper. Indeed, in this paper, we focus on Boolean queries only, so
as to address the computation of certain answers as a decision problem.

Example 2. Let us refer to the MKB K7 = (D, M) of example 1. Interesting queries
that can be posed to K include: (i) Return all the instances of Car manufactured by
the motor industry, each one with its own type: ¢(x,y) < Instc(x,y), Instc(y, Car);
(i) Return all the concepts which car with plate number '’ABI11’ belongs to: g(x) +
Instc("AB111, ).

4 Query answering

In this section, we study the problem of answering IHUCQs over Hi(DL-Liter ) MKBs.
Our query answering technique is based on query rewriting, so we will first deal with the
problem of computing a perfect reformulation of a IHUCQ over a Hi(DL-Liter ) KB.
Then, we will present a query answering algorithm for MKBs based on the above per-
fect reformulation technique. In the following, we assume that the MKB is consistent.
This does not constitute a limitation, since it is possible to show that checking consis-
tency of a MKB can also be done through query answering, by means of techniques
analogous to the ones defined for DL-Lite.

We start with some auxiliary definitions. Given an assertion o = Instc(eq, e2), we
say that e occurs as a concept argument in «v. Given an assertion o« = Instg(eq, ez, e3),
we say that e3 occurs as a role argument in «. Given an assertion &« = Isac(eq, e3),
we say that e; and ey occur as concept arguments in «. Given an assertion @ =
Isar(e1, e2), we say that ey and e occur as role arguments in «. Given an assertion
a = Disjq(e1,ea), we say that e; and e occur as concept arguments in «. Given an
assertion o« = Disj p(e1, e2), we say that e; and ez occur as role arguments in cv.
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A DL atom is an atom of the form N(t) or N(t1,¢2), where N is a name
and t,%1,to are either variables or names. An extended CQ (ECQ) is a conjunc-
tion of DL atoms, Instc atoms and Instr atoms. An extended UCQ (EUCQ) is
a union of ECQs. Given an atom «, Pred(«) denotes the term appearing in pred-
icate position in « (such a term may be either a variable or an expression). Given
a TBox 7, we denote by Concepts(T) the set {e, Exists(e), Exists(Inv(e)) |
e € & and e occurs as a concept argument in 7 } and denote by Roles(T) the set
{e,Inv(e) | e € & and e occurs as a role argument in 7 }. Given a mapping M and
a database DB, we denote by Retrieve(M, DB) the Hi(DL-Liter ) KB H defined as:

= {(t) | &(z) ~ v € M and DB = (1)}

Given an instance-mapping M and an ABox 4, we say that A is retrievable through
M if there exists a database DB such that A = Retrieve(M, DB).

Query rewriting. We start by providing an intuitive explanation of our rewriting
technique. The basic idea is to reduce the perfect reformulation of an [IHUCQ over a
Hi(DL-Liter ) TBox to the perfect reformulation of a standard UCQ over a DL-Liter
TBox, which can be done e.g. by the algorithm PerfectRef presented in [3]. To do so,
we have to first transform a IHUCQ into a standard UCQ, actually an EUCQ. This is
done through a first partial grounding of the query (through the function PMG) and then
through the functions Normalize and 7 presented below. Once computed the perfect re-
formulation of the EUCQ, we then have to transform the EUCQ back into a IHUCQ,
through the functions Denormalize and 7~ presented below.

Given two THCQs ¢, ¢’ and a TBox T, we say that ¢’ is a partial metagrounding of
q with respect to T if ¢ = o(q) where o is a partial substitution of the metavariables
of ¢ with the expressions occurring in 7 such that, for each metavariable x of g, either
o(x) = x or: (i) if  occurs in a concept position in ¢, then o(x) € Concepts(T); (ii)
if 2 occurs in a role position in ¢, then o(x) € Roles(T). Given an IHCQ ¢ and a TBox
T, we denote by PMG(q, T) the set of all partial metagroundings of ¢ with respect to
T, i.e., the following [HUCQ Q:

Q = {q' | ¢ is a partial metagrounding of ¢ with respect to 7 }

Moreover, given a IHUCQ @ and a TBox 7, we define PMG(Q,T) as the IHUCQ
Ugeq PMG(q,T).
Given an instance atom «, we define Normalize(a) as follows:

- if & = Instc(er,e2) and ey has the form Exists(e’) where e’ is an expression
which is not of the form Inv(e”), then Normalize(a) = Instr(eq, -, €');

- if a = Instc(eq, e2) and ey has the form Ezists(Inv(e’)) where €’ is any expres-
sion, then Normalize(a)) = Instr(_, e1,¢€’);

- if @« = Instr(er,es,e3) and eg is of the form Invk(e’) where k£ > 1 and & is
an even number and €’ is an expression which is not of the form Inv(e”’), then
Normalize(a) = Instr(e1, e2,€');

— if o = Instp(e1,es,e3) and e is of the form Inv*(e’) where k& > 1 and k is
an odd number and €’ is an expression which is not of the form Inv(e”), then
Normalize(a) = Instg(ea, e1,€’).
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Given an THCQ ¢ <+ «i,...,qn, Normalize(q) returns the THCQ ¢ <+
Normalize(a), . .., Normalize(a,). Finally, given an THUCQ @, we define
Normalize(Q) as U, ¢ Normalize(q).

Given an THCQ ¢ and an instance-mapping M, Denormalize(q, M) is the IHUCQ
( defined inductively as follows:

-qeQ;

- if ¢ € @ and ¢ contains an atom « of the form Instg(t1,-,t2), and either
Ezists(ta) occurs in M or Ezists(z) (where x is a variable) occurs in M, then
the query obtained from ¢’ by replacing o with the atom Instc(t1, Exists(t2))
belongs to Q;

- if ¢ € @ and ¢ contains an atom « of the form Instr(_, t1,t2), and ei-
ther Ezists(Inv(t2)) occurs in M or Ewxists(Inv(x)) (where x is a variable)
occurs in M, then the query obtained from ¢’ by replacing « with the atom
Insto(ty, Exists(Inv(t2))) belongs to Q;

- if ¢’ € Q and ¢’ contains an atom « of the form Inst g(t1, to, t3) and either Inv(ts)
occurs in M or Inv(x) (where z is a variable) occurs in M, then the query obtained
from ¢’ by replacing o with the atom Inst g (t2,t1, Inv(t3))) belongs to Q.

Finally, given an IHUCQ @ and a mapping M, we define Denormalize(Q, M) as
Ugeq Denormalize(q, M).

Given an THUCQ @ and a TBox 7T, we denote by PerfectRef(Q,7T) the EUCQ
returned by the query rewriting algorithm for DL-Liter shown in [3].?

We now define the functions 7 and 7~ which translate IHUCQs into EUCQs and
vice versa. Given an IHCQ ¢ and a TBox T, 7(g, T') is the ECQ obtained from q as fol-
lows: (i) for each atom of g of the form Instc(t1,t2), if to € Concepts(T ) then replace
the atom with the atom t5(¢1); (i) for each atom of ¢ of the form Instg(t1,to,t3), if
t3 € Roles(T) then replace the atom with the atom ¢3(¢1,¢2). Then, given an IHUCQ
Q, we define 7(Q,7) ={7(¢,T) | ¢ € Q}.

Given a ECQ ¢ and a TBox 7, 7 (q,7) is the THCQ obtained from ¢ as fol-
lows: (i) for each atom of ¢ of the form ¢9(¢;), replace the atom with the atom
Insto(ty,t2); (if) for each atom of ¢ of the form ¢3(t1,t2), replace the atom with the
atom Instg(t1,t2,t3). Then, given an IHUCQ @, we define 7= (Q,T) = {7 (¢, T) |
q € Q}.

We are now ready to formally define our rewriting algorithm, which takes as input
a I[HUCQ, a TBox and an instance-mapping, and returns a new IHUCQ.

ALGORITHM RewritelUCQ(Q, T, M)
INPUT: Boolean IHUCQ @, DL-Liter TBox T, instance-mapping M
OUTPUT: Boolean IHUCQ @’

Qo = PMG(Q,T);

Q1 = Normalize(Qo);

QQ = T(Q17 T)’

Qs = PerfectRef (Q2,T);
Q4 = Ti(Q377->;

Q' = Denormalize(Qq, M);
return Q’;

2 We are actually considering a slight generalization of the algorithm, which allows for the
presence of a ternary relation (Instg) in the query.
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The THUCQ returned by RewriteIlUCQ(Q, T, M) constitutes a perfect reformula-
tion of the query Q with respect to the TBox 7 and the mapping M, as formally stated
by the following theorem.

Theorem 1. Let T be a TBox, let M be an instance-mapping and let () be a IHUCQ.
Then, for every ABox A that is a retrievable through M, T UA = Q iff A
RewriteIUCQ(Q, T, M).

Query answering. Based on the above query rewriting technique, we now present
an algorithm for query answering over MKBs. Our idea is to first compute a DL-Liter
TBox by evaluating the mapping assertions involving the predicates Isac, Isar, Disj .,
Disj p over the database of the MKB; then, such a TBox is used to compute the perfect
reformulation of the input IHUCQ.

To complete query answering, we now have to consider the mapping of the predi-
cates Instc and Inst g, and to reformulate the query thus obtained replacing the above
predicates with the corresponding FOL queries of the mapping assertions. In this way
we obtain a FOL query expressed on the database. This second rewriting step, usually
called unfolding, can be performed by the algorithm UnfoldDB presented in [8].?

In the following, given a mapping M and a database DB, we denote by DB x4,
the database constituted by every relation R of DB such that R occurs in M 4. Analo-
gously, we denote by DB x4, the database constituted by every relation R of DB such
that R occurs in M 7. We are now ready to present our query answering algorithm.

ALGORITHM Answer(Q, K)
INPUT: Boolean IHUCQ Q, Hi(DL-Liter) MKB K = (DB, M)
OUTPUT: true if K | @, false otherwise

T = Retrieve(Mp, DB p,);

Q' = RewriteIlUCQ(Q, T, Ma);

Q" = UnfoldDB(Q', M 4);

if DB, = Q"

then return true

else return false

The algorithm starts by retrieving the TBox from the DB through the mapping M r.
Then, it computes the perfect reformulation of the query with respect to the retrieved
TBox, and next computes the unfolding of such a query with respect to the mapping
M 4. Finally, it evaluates the query over the database.

The following property can be proved by slightly extending the proof of correctness
of the algorithm UnfoldDB shown in [8].

Lemma 1. Let M be an instance-mapping and let (Q be a IHUCQ. Then, for every
database DB, (M, DB) = Q iff DBy, = UnfoldDB(Q, M).

3 Here we assume that the algorithm UnfoldDB takes as input a EUCQ and an instance-mapping.
This corresponds to actually considering a straightforward extension of the algorithm pre-
sented in [8] in order to deal with the presence of the ternary predicate Instg.
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The above lemma allows us to prove correctness of the algorithm Answer.

Theorem 2. Let K = (DB, M) be a Hi(DL-Liter ) MKB, let QQ be a IHUCQ. Then,
K = Q iff Answer(Q, K) returns true.

Finally, from the algorithm Answer we are able to derive the following complexity
results for query answering over Hi(DL-Liter ) MKBs.

Theorem 3. Let K = (DB, M) be a Hi(DL-Liteg) MKB, and let QQ be a IHUCQ.
Deciding whether K |= Q is in AC° with respect to the size of DB ,, is in PTIME
with respect to the size of KC, and is NP-complete with respect to the size of K U Q.

5 Conclusions

In this paper we have investigated the possibility of generating a knowledge base on the
fly, while computing instance queries, from data stored in data sources through asserted
mappings. A key point to obtain such a degree of flexibility is relying on higher-order
description logics which blur the distinction between classes/roles at the intensional
level and individuals at the extensional level. This paper is only scratching the surfaces
of the immense possibilities that this approach opens. For example, we may allow the
coexistence of multiple TBoxes within the same data sources, and allow the user to
select which TBox to load when querying the system, possibly depending on the query,
much in the spirit of [7]. The user can in principle even compose on the fly the TBox to
use when answering a query. Obviously notions such as authorization views acquire an
intriguing flavor in this setting (hiding intensional as well as extensional knowledge),
as well as consistency, since we may even allow for contradicting assertions to coexist
as long as they are not used together when performing query answering.
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Abstract. Recent research has shown that labeling ontologies can be
useful for restricting the access to some of the axioms and their implicit
consequences. However, the labeling of the axioms is an error-prone and
highly sensible task. In previous work we have shown how to correct the
access restrictions if the security administrator knows the precise access
level that a consequence must receive, and axioms are relabeled to that
same access level. In this paper, we look at a more general situation
in which access rights can be granted or denied to some specific users,
without having to fully specify the precise access level. We also allow a
more flexible labeling function, where the new access level of the relabeled
axioms may differ from the level of the restriction. We provide black-box
algorithms for computing suggestions of axioms to be relabeled.

1 Introduction

Description Logics (DL) [1] have been successfully used to represent knowledge
of various application domains. One of the main advantages of using a logic-
based knowledge representation language is the possibility of reasoning within
the system; that is, deriving implicit consequences from the explicitly stated
knowledge in the ontology.

In some application domains it is desirable to restrict users to access only
portions of the ontology. For instance, in a security scenario [5], users with a low
security clearance should not be able to access classified information. Other mo-
tivations for restricting access to users are the reduction of information overload,
or filtering w.r.t. a level of specialization. Rather than maintaining different sub-
ontologies for each definable user level, we have previously proposed [2] to label
each axiom with information on which users can access it. Reasoning then gener-
alizes to the task of finding an adequate label for each implicit consequence of the
ontology. This label, called a boundary, can be computed through black-box [2]
as well as glass-box [9] techniques.

However, the task of labeling axioms according to their access level is error-
prone and highly sensitive to noise. Indeed, a set of seemingly innocuous axioms

* This work was developed while the author worked for SAP Research Dresden.
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may allow a user to derive some unwanted consequence. Dually, a too restrictive
access level may hide a consequence from relevant users. This problem becomes
more pronounced if neither the security administrator nor the knowledge engi-
neer is an expert in logic. We thus want to develop a system that can automat-
ically suggest changes in the labeling function that correct the access to a given
consequence.

In previous work [8,7] we have developed and implemented efficient algo-
rithms for correcting access restrictions to implicit consequences if (i) the knowl-
edge engineer knows the exact access level the consequence must receive (called
the goal label) and (ii) axioms are always relabeled to the goal label. In this
paper we relax these both conditions. On the one hand, we allow the knowledge
engineer to specify a bound on the desired access level, rather than an exact
value. This is useful, for instance, to express that a set of users must all have
access to the consequence, but it is irrelevant which other users (if any) can also
derive it. On the other hand, the knowledge engineer is also able to specify a
so-called target label to which the axioms are relabeled. Contrary to the previous
approach, the target label needs not be equal to the goal label.

We develop black-box algorithms for finding the minimal sets of axioms that
need to be relabeled to the target label in order for the access of the consequence
to satisfy the restriction imposed. Additionally, we show that our methods can be
improved if one is only interested in finding one such set of minimal cardinality.
All our methods are based on results and ideas from axiom-pinpointing [11, 3],
but optimized by considering the labels of the axioms used.

2 Preliminaries

To keep our presentation and results as general as possible, we impose only
minimal restrictions to our ontology language. We just assume that an ontology
is a finite set, whose elements are called axioms. An ontology language specifies
which sets of axioms are admitted as ontologies, with the only restriction that
every subset of an ontology is itself an ontology. If @’ C O and O is an ontology,
then @’ is called a sub-ontology of O. A monotone consequence relation = is a
binary relation between ontologies O and consequences ¢ such that if O |= ¢,
then for every ontology O’ O O it holds that O’ = ¢. If O = ¢, we say that ¢
follows from O or that O entails c. Consider, for instance, a description logic
L. Then, an ontology is a finite set of general concept inclusion axioms (GCIs)
of the form C T D, with C, D L-concept descriptions and assertion axioms of
the form C(b), with C' an L-concept description and b an individual name. An
example of a consequence is the subsumption relation A C B between concept
names A, B.

If O = ¢, we may be interested in finding the axioms responsible for this
fact. A sub-ontology & C O is called a MinA for O,c if S | ¢ and for every
S" € 8,8 [~ ¢. The dual notion of a MinA is that of a diagnosis. A diagnosis for
O,c is a sub-ontology S C O such that O\ S|/=cand O\ S’ Ecforal & C S.
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For a lattice (L, <) and a set K C L, we denote as P, £ and @,y ¢ the
join (least upper bound) and meet (greatest lower bound) of K, respectively. We
consider that ontologies are labeled with elements of the lattice. More formally,
for an ontology O there is a labeling function lab that assigns a label lab(a) € L
to every element a of O. We will often use the notation L, := {lab(a) | a € O}.

For a user labeled with the access level £ € L, we denote as O, the sub-
ontology Os¢ := {a € O | lab(a) > ¢} visible for him. The sub-ontologies
O<t, 0=, Oz, Oy¢, and Oy, are defined analogously. Conversely, for a sub-
ontology S C O, we define

As = Q,es lab(a) and s = @, lab(a).

An element ¢ € L is join prime relative to Ly, if for every Ky, ..., K, C Lp, it
holds that ¢ < @?:1 Ak, implies that there is 7,1 < i < n such that ¢ < Ag,. For
instance, in the lattice from Figure 1, ¢; and ¢4 are the only elements that are not
join prime relative to L = {¢1,...,05}, since £1 < £ @ ¢4 but neither £; < ¢
nor ¢1 < ¢4 and similarly ¢4 < {5 @& {3 but neither £4 < £5 nor ¢4 < f3. Join prime
elements relative to L., are called user labels. The set of all user labels is denoted
as U. When dealing with labeled ontologies, the reasoning problem of interest
consists on the computation of a boundary for a consequence c. Intuitively, the
boundary divides the user labels ¢ of U according to whether O>, entails ¢ or
not.

Definition 1 (Boundary). Let O be an ontology, lab a labeling function and
¢ a consequence. An element v € L is called a boundary for O,c,lab if for every
join prime element relative to Lia, £ it holds that £ < v iff O = c.

Given a user label £,,, we will say that the user sees a consequence c if £, < v
for some boundary v. The following lemma relating MinAs and boundaries was
shown in [2].

Lemma 2. If §1,...,8, are all MinAs for O,c, then EB?ZI As,; s a boundary
for O,c.

A dual result relating the boundary with the set of diagnoses, also holds.

Lemma 3. IfSy,...,S, are all diagnoses for O,c, then Q;_, us, is a boundary
for O,c.

Ezample 4. Let (Lg,<4) be the lattice shown in Figure 1, and O a labeled
ontology from a marketplace in the Semantic Web with the following axioms

ay : EUecoService M HighperformanceService(ecoCalculatorV1)
as : HighperformanceService

C Service WithLowCustomerNr M LowProfitService
as : Service WithLowCustomerNr T Service WithComingPriceIncrease
a4 : EUecoService & Service WithLowCustomerNr M LowProfitService
as : LowProfitService T Service WithComingPricelncrease
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customer service employee

Fig. 1. Lattice (L4, <4) with 4 user labels and an assignment of 5 axioms to labels

where the function lab assigns to each axiom a; the label ¢; as shown in Figure 1.
This ontology entails Service WithComingPricelncrease(ecoCalculatorV1). The
MinAs for O,c are {ay, az, as}, {a1,a2,as},{a1, a3, a4}, {a1, as, a5}, and its diag-
noses are {a1 }, {az, a4}, {as, as}. Using Lemma 3, we can compute the boundary
as fUfa,} @ Hiag,as) @ M{as,as} = 1 @01 @Ly = Ly. The join prime elements relative
to Ljap, which define valid user labels, are £y, {5, £3, £5. These labels represent the
user roles as illustrated. Thus, the consequence c is only visible for the user roles
by, 05 and {3, i.e. for customer service employees, customers, and development
engineers.

3 Modifying the Boundary

An efficient implementation of a black-box algorithm for computing the bound-
ary of DL consequences already exists [2]. However, a desirable addition to this
method is the capability of automatically relabeling some of the axioms to cor-
rect the access level of some implicit consequence. Indeed, labeling axioms w.r.t.
their access restrictions is highly error-prone, and very small changes in the la-
beling function may produce consequences to become visible to unauthorized
users, or inaccessible to the relevant users.

We have previously shown [8,7] how to detect a set of axioms of minimal
cardinality that needs to be relabeled for obtaining a given boundary. However,
in that setting the knowledge engineer must specify the exact boundary that
the consequence must receive, and all axioms are relabeled to that value. We
now relax these restrictions, by allowing more general constraints on the new
boundary, and a more flexible relabeling function.

Definition 5 (Boundary Constraint, Change Set). A boundary constraint
is a tuple B = (¢, o< Ly, 4y), where ¢ is a consequence, x £y, with xe{< ,>, %, £},
Ly € L is a condition and ¢, is the target label with £y o< £,.

Let O be an ontology, S C O, lab a labeling function, and £ € L. We define
the modified labeling function labs ¢ as

abs o(a) = {e ifacsS,

lab(a) otherwise.
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A sub-ontology S C O is called a change set (CS) for the boundary constraint
B = (c,x Ly, ty) if the boundary v for O, c,labs ¢, satisfies v o .

For the rest of this paper, we assume, w.l.o.g. that the boundary for O, ¢, lab
does not satisfy the condition o< £, since otherwise, the empty set is already a
CS and nothing needs to be changed in the labeling function.

Notice that, since ¢; o< {4, the whole ontology O is always a change set.
However, using the whole ontology as a change set would set ¢; as the boundary
of every consequence of O. In general, we want to make the least possible changes
when correcting the boundary of a given consequence. For that reason, we will
focus on finding all those change sets that are minimal w.r.t. set inclusion. These
sets are useful if the knowledge engineer wants to obtain several suggestions
of correction, and then choose the adequate one by some external criterion.
However, due to the huge number (possibly exponentially many [4]) of change
sets that may exist, one may also look for the “best” change set, and use it
automatically in the correction. Hence, we also study how to find a smallest
change set; that is, one with the least cardinality.

We divide this section in two parts. First we look at the case where the bound-
ary restriction is of the form < or >. We show that previously known techniques
can be used also in this setting. We then look at the negative restrictions, which
require new methods to be developed.

3.1 Positive Conditions

We now focus on the case where the condition of the boundary constraint is of
the form > /,. Due to the duality of MinAs and diagnoses, the case for < ¢, can
be treated in an analogous way (see e.g. [8]).

Let = (¢,> {4, ¢;) be a boundary constraint and ¢, > ¢,. Recall (Lemma 2)
that the boundary can be computed as the supremum of all \s,, where §; is a
MinA for O,c. Thus, if we relabel all the axioms in a MinA S to ¢, then the
boundary for O, c,labs ¢, is > ¢; > {,; that is, every MinA is a change set. Yet,
this change set may not be minimal. In fact, we only need that the infimum of
the labels of all the axioms in this MinA is > /¢,. This can be achieved by only
relabeling the axioms in S that are not already > £,.

Ezxample 6. Continuing Example 4, recall that we have computed the label /4
as the boundary of the consequence c. Suppose now that we want to change
this boundary to be > #5, using f5 also as the relabeling target. As described
above, every MinA is also a change set for this consequence. If we consider the
MinA § = {aj,az2,a3}, then under the new labeling labs s, we obtain the new
boundary

)\{al,az,ag,} 2] )‘{al,ag,a5} 2] )\{al,ag,m;} @ >\{a1,a4,a5} = 62 @ EO 2] 63 @ EO = €2-

However, it is easy to see through a simple computation, that the set {ag} is
also a change set, which is strictly included in the previous MinA. This set is
obtained from the MinA by removing all axioms whose label is greater or equal
{y, namely a1 and as.
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Intuitively, we simply consider every axiom a € O with lab(a) > ¢, as fized
in the sense that its label cannot be changed, as changing it will be superfluous
for any CS. We thus consider a generalization of MinAs, called TAS.

Definition 7 (IAS). A minimal inserted axiom set (IAS) for ¢ is a subset
I C O such that O, U1 |=c and Oy UI' = ¢ for all I' C 1.

The known algorithms for computing all MinAs [6, 12] through a hitting set
tree (HST) method [10] can easily be adapted for also computing TAS [8]. More
interestingly, the set of all minimal change sets corresponds to the set of all IAS.

Theorem 8. Let O be an ontology, B = (¢, > {4, ls) a boundary constraint and
S C 0. S is a minimal CS for B iff S is an IAS for {,.

In [8,7] it is shown how to compute the set of all TAS for a consequence c.
Moreover, the algorithms presented there have been also optimized for finding
the smallest TAS, through the inclusion of a cardinality restriction. Basically,
the construction of an IAS stops once that this has reached the cardinality of
the smallest TAS found so far. It was shown that using these (partial) IAS can
drastically reduce the search space, while preserving correctness of the method.
Due to Theorem 8, all the algorithms for computing IAS and TAS of minimal
cardinality can be used for finding the minimal change sets and a change set of
minimal cardinality, for positive boundary constraints.

3.2 Negative Conditions

We now consider the case in which the boundary constraint has a condition of
the form 2 /,. As in the previous section, the case for £ £, can be solved dually
by simply interchanging MinAs and diagnoses.

Given an ontology O, a labeling function lab and a consequence ¢, if the
boundary for O,c,lab is greater or equal to {,, then we know that for every
diagnosis S for O, c it holds that pus > ¢, (see Lemma 3). Hence, if we relabel
all the axioms in any diagnosis S to ¢; 2 {4, it follows that the boundary is then
changed to a new value 7 £,; that is, S is a CS. However, just as in the previous
section, this CS may not be minimal. One idea to try to find a minimal CS is
to follow the same intuition as in the previous section, and fix all axioms whose
labels already satisfy the condition 2 £,. Unfortunately, this idea is not correct,
as shown by the following example.

Ezample 9. Returning to Example 4, suppose now that we want to change the
boundary from ¢4 to some value % {4, using f5 as a target label. Recall that
{az2,a4} and {as3, a5} are diagnoses for the consequence. If we consider the axioms
having a label 2 ¢4 as fixed, then none of these diagnoses produces a change set.
In the first one, the axiom as would be fixed, but then, under the relabeling
laby,,y,e, we will obtain the boundary

H{as} & H{az,aq} & H{az,as} = 0 ® (62 ® 65) ® (53 @65) =0 R0 QU = £4,
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Algorithm 1 Compute one minimal CS contained in a diagnosis

Procedure compute-one-CS(S, 3)
Input: S: diagnosis; 8 = (¢, 2 £4,£:): boundary constraint;
Output: 7 C § minimal CS for § contained in &
if ¢, > ¢4 then
return ()
T =8
: E = ét
: for every a € S do
if £ @ lab(a) 2 ¢4 then
T :=T\{a}
£:= L& lab(a)
return T

© PP W

which does not satisfy the restriction % £4; hence, {a4} is not a change set.

In the case of the second diagnosis, the problem is even greater, since both
axioms will be considered as fixed. Thus, the approach would deduce that no
axiom needs to be relabeled to obtain a boundary Z ¢4, which is obviously not
true.

Despite this, it is still possible to use diagnoses as a basis for computing the
minimal CS. Suppose that we have a diagnosis S containing an axiom ag such
that ¢; @ lab(ag) # ¢4. Then, S’ = S\ {ag} is also a CS, since

P labs ¢, (a) = £ & lab(ag) # £,.

a€S

Obviously, this result holds not only for a single axiom ag but for any subset 7
of § such that ¢; © @, lab(a) 2 £,.

Lemma 10. Let S be a diagnosis for O,c and f = (c¢,? {4,¢:) a boundary
constraint. If T is a subset of S such that {; © @, lab(a) Z £y, then S\'T is
a CS for 5.

Proof. For every axiom a € S\ T, labs\7 ¢, (a) = ¢;. Additionally, we know that
@D.cslab(a) > €4, and hence T # S. Thus, under the new labeling, we have

that

P labs\ 7, (a) = & & ) lab(a) ¥ ¢,

a€S a€T
Since S is a diagnosis, Lemma 3 implies that the new boundary satisfies the
condition, and hence S\ T is a CS. O

A simple consequence of this lemma is that, given a maximal subset T of S
satisfying £; © @, lab(a) # €4, S\ T is a minimal change set for 8 contained
in S. Algorithm 1 describes how to compute one such minimal change set from
a diagnosis. This, however, might not be a “globally” minimal change set; that
is, there might still exist other change sets strictly contained in it, as shown in
the following example.
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Example 11. Consider the lattice in Figure 1, an ontology O having four axioms
{a1,a2,a3,a4}, and a consequence c¢ such that the diagnoses for O,c are the
sets {a1,aq,a3} and {a1,a4}. Assume that the labeling function lab is given by
the mapping lab(ay) = 44,lab(as) = ¢5,lab(as) = lab(as) = fs. It is easy to see
that the boundary for this consequence is ¢;. If we apply Algorithm 1 to the
diagnosis {a1,az2,a3} and the boundary constraint 8 = (¢, 2 ¢1,03), where at
Line 5, we first choose ag, then ¢ is changed to f5 at Line 8, and hence the test
(@ lab(a) Z# ¢4 fails for axioms a; and as. Thus, the algorithm returns the change
set {a1,az2}. However, {a1} is also a change set, since if a; is relabeled to /s,
then figq, 4,3 = f2,and thus the boundary is 2 /.

Although Algorithm 1 does not always output a globally minimal change set,
one can still use it for computing all the minimal change sets for 8. The idea is
based on the following lemma, which is a simple consequence of the definition of
diagnoses and change sets.

Lemma 12. Let S be a minimal change set for (¢, * £y,¢:). Then, there exists
a set T such that (i) {; © @, lab(a) 2 €4 and (ii)) SU T is a diagnosis for
O,c.

For instance, in Example 11 we found the minimal change set {a;}. The set
T = {a4} satisfies the two conditions stated in Lemma 12.

To compute all minimal change sets, one then needs to compute all diagnoses,
and from each of these diagnoses compute all the minimal change sets that are
contained in it. This is possible through a nesting of two hitting set tree (HST)
algorithms: the external one produces all different diagnoses for O, ¢, while the
internal generates, for any given diagnosis, all the maximal subsets of axioms
that can be removed to obtain a CS. Algorithm 2 shows how this internal HST
algorithm works.

The idea behind all HST-like algorithms is the following. One first computes
a set of axioms 7 satisfying some property; in the case of Algorithm 2, the set
is a minimal CS for 8 contained in S. This set is then used to label the root
of the tree. The algorithm then branches as follows. For each axiom a in T, a
new branch is created and a is removed from the search space. A new set 7~
satisfying the property is then computed, and used to label the successor node.
The removal of the axiom a € T from the search space ensures that 7 ZT .
This process is then iterated until the property is not satisfied by the search
space; that is, Algorithm 1 returns the empty set. This process stops after at
most exponentially many iterations, on the size of S, and the labels of the tree
contain all the minimal sets of axioms satisfying the property; in our case, all
minimal change sets contained in the diagnosis.

There are two common optimizations for HST algorithms, which are also used
in Algorithm 2. The first one is called early path termination. The idea behind
this optimization is that if one can distinguish parts of the tree that will yield no
new minimal sets of axioms, then one can stop exploring those branches. The two
conditions for early path termination described in Line 1 of expand-hst test for a
path where the search space is contained in a search space already explored in a
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Algorithm 2 HST to compute all minimal CS contained in a diagnosis
Procedure compute-all-CS(S, )
Input: S: diagnosis; 8 = (¢, 2 £4,£:): boundary constraint;
Output: C: all minimal CS for 8 contained in S
Global C,H =0
T :=compute-one-CS(S, 3)
C:={T}
for each a € T do
expand-hst(S, (¢, 2 €4, ¢ @ lab(a)), {a})

: return C
Procedure expand-hst(S, 8, H)
Input: S: diagnosis; 8 = (¢, 2 £4,¢:): boundary constraint; H: list of axioms
Side effects: modifications to C,H

1: if exists some H' € H such that H' C H or

H’ contains a prefix path P with P = H then

2 return (early path termination)
37T =0

4: if exists some T € C such that £, ® @, lab(a) x £y then
5 T':=T (CS reuse)
6
7
8

AN

. else
: T’ :=compute-one-CS(S, 3)
: if 77 # 0 then

9: C:=CuUi{T’}

10:  for each a € 7' do

11: expand-hst(S, (¢, 2 €4, ¢ @ lab(a)), H U {a})
12: else
13: H:=HU{H} (normal termination)

previous branch. The second optimization is the reuse of sets. When expanding
a tree, we only ask for a set of axioms satisfying the property that is contained in
the current search space. If these conditions hold in a previously computed label,
then we can reuse it, avoiding this way a possibly expensive call to Algorithm 1.

To find all “global” minimal change sets, we use an additional HST algo-
rithm that computes all diagnoses, and for each of these, calls Algorithm 2. This
algorithm uses the same kind of optimizations. However, to improve the func-
tionality of the reuse of solutions, the set of all change sets computed so far is
kept in a global variable, accessible from every call to compute-all-CS. Thus, a
change set that has been previously computed from a diagnosis S, can be reused
in a call with a different diagnosis S’.

It is worth noticing that in some cases, a diagnosis may contain several axioms
labeled with the same lattice element. Moreover, the condition for obtaining a
minimal CS from Lemma 10 depends only on the labeling, and not in the axiom
itself. Thus, it is sometimes possible to optimize the search for the minimal
CS by considering only the labels and not the individual axioms, as described
in Algorithm 3. The correctness of this algorithm is justified by the following
lemma, whose proof is analogous to the one of Lemma 10.
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Algorithm 3 Compute one minimal CS contained in a diagnosis (optimized)

Procedure compute-one-CS(S, )
Input: S: diagnosis; 8 = (¢, 2 £4,£:): boundary constraint;
Output: 7 C & minimal CS for 3
if ¢, > ¢4 then
return no CS
T =8
=Y
: L:={lab(a) | a € S}
: for every m € L do
if f&m 2 {4, then
T :=T\{a|lab(a) =m}
L:=0dPm
return T

R IS A > o

—_

Lemma 13. Let S be a diagnosis for O,c, B = (¢, 2 {4,4:) a boundary con-
straint, and Ls = {lab(a) | a € S}. If M C Ls is such that £y © @, L Z Ly,
then S\ {a | lab(a) € M} is a CS for .

As in the case for positive conditions, these algorithms can be further op-
timized if one is only interested in a change set of minimal cardinality. Notice
simply that in Algorithms 1 and 3, whenever the condition in the for loop is
violated, then at least an axiom is ensured to belong to the output change set.
Thus, it is easy to adapt these algorithms to include a cardinality bound, return-
ing a partial CS once it has reached a given size. Since our method uses an HST
approach, the proofs of correctness of the variant of HST capable of exploiting
cardinality restrictions [8] hold also in this case. In other words, Algorithm 2 can
be further optimized to compute only one change set of minimal cardinality.

4 Conclusions

We have presented algorithms for correcting the boundary of a consequence in
a more flexible manner than previous approaches. Our framework allows the
knowledge engineer to set bounds on what the new boundary should be, and
specify a label as the target of the relabeling. This flexibility is useful if, for
instance, she wants to grant access to a consequence to some user, but is not
willing to specify the exact set of users that should access it.

We developed algorithms that output all the minimal change sets. Addition-
ally, we show how these algorithms can be optimized if one is only interested in
an arbitrary change set of minimal cardinality.

As future work, we will first implement and test the performance of our
methods on large-scale real-world ontologies and applications. We also plan to
generalize our framework to allow axioms to be relabeled to different elements
of the lattice, according to an adequate minimality criterion.
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Ontology Design and Integration with ICOM 3.0 - Tool
description and methodology

Pablo R. Fillottrani', Enrico Franconi?, and Sergio Tessaris?
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1 Introduction

ICOM is an advanced conceptual modelling tool, which allows the user to design multi-
ple ER or UML class diagrams with inter- and intra-model constraints. Complete logical
reasoning is employed by the tool to verify the specification, infer implicit facts, devise
stricter constraints, and manifest any inconsistency.

For the ontology creation and maintenance tasks, [COM interface supports ontology
engineers in engineering ontologies that meets clear and measurable quality criteria.
Indeed, recently we observe the development of large numbers of ontologies which
have, however, usually been developed in an ad hoc manner by domain experts, often
with only a limited understanding of the semantics of ontology languages. The result
is that many ontologies are of low quality - they make poor use of the languages in
which they are written and do not accurately capture the author’s rich knowledge of
the domain. This problem becomes even more acute as ontologies are maintained and
extended over time, often by multiple authors. Poor quality ontologies usually require
localised “tuning” in order to achieve the desired results within applications. This leads
to further degradation in their overall quality, increases the brittleness of the applications
that use them, and makes interoperability and reuse difficult or impossible. To overcome
these problems tools are needed which support the design and the development of the
basic infrastructure for building, merging, and maintaining ontologies.

The leverage of automated reasoning to support the domain modelling is enabled
by a precise semantic definition of all the elements of the class diagrams. The diagrams
and inter-model constraints are internally translated into a class- based logic formalism.
The same underlying logic enables the use of a view definition language to specify addi-
tional constraints, not captured at the diagram level. The conceptual modelling language
supported by ICOM can express most of features of the Extended Entity-Relationship
data model or the UML class diagrams (we are working on supporting Object-Role
Modelling [5] as well). Moreover it extends with disjoint and covering constraints and
definitions attached to classes and relations by means of view expressions over other
classes and relationships in the ontology; as well as inter-ontology mappings, as in-
clusion and equivalence statements between view expressions involving classes and
relationships possibly belonging to different ontologies.

The main purpose of the ICOM project is not to provide to the ontology community
a robust tool potentially replacing the many other tools available, and we do not claim
that ICOM is currently more usable than any of the existing conceptual modelling tools
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for ontology design (such as, for example, [8, 1]). ICOM is meant to be a proof of
concept, willing to showcase two main points: (1) the effectiveness of using a class
diagram graphical syntax for expressing ontologies, even with complex languages; (2)
the emphasis to the use of complex automated reasoning tasks to deduce implied facts,
as opposed to mere subsumption (classification) and consistency.

The two above points are novel and in our opinion very important in the context of

the existing ontology design tools and methodologies (see next Section). Indeed ICOM
proves (point 1) the feasibility and the ease of use of a class diagram graphical syntax
for expressing ontologies, even with complex ontology languages, by relying on the
notion of views (which roughly correspond to OCL constructs) in order to capture the
(typically very few) cases where a larger expressivity than graphical class diagrams is
needed.
ICOM is based on a deduction-complete notion of reasoning support relative to the
class diagram graphical syntax (point 2). Users will see the original ontology graphi-
cally completed with all the deductions making sense given the provided ontology, and
expressed in the graphical class diagram language itself. This includes checking class
and relationship consistency, discovering implied class and relationship inter-relations
(e.g., subsumption) or cardinality constraints, and in general discovering any implied
but originally implicit class diagram graphical construct. Customarily, ontology design
tools just provide a support limited to class subsumption and consistency.

ICOM is a fairly mature project, its first release has been published in 2000 (see
[7, 4]). The version 3.0 of the ICOM tool is loosely based on the ICOM tool previously
released in 2000 as an Entity-Relationship editor (which had around 3,000 registered
installations, mostly in academic environments and for teaching purposes in industry),
and a demo of a preliminary version was presented few years ago [3]. The founda-
tions of the user-computer interaction have been radically changed according to the
experience of the first ICOM and the research in this last decade. The system has been
completely re-implemented, using different graphic libraries. The graphical interface
has been completely rewritten to improve the usability and intuitiveness of the tool. In-
teroperability with other tools is a crucial aspect; so, import and export modules have
been developed for XMI 2.x and Description Logics based ontology languages via DIG.

The ICOM tool is written in standard Java 5.0, and it is distributed on Linux, Mac,
and Windows machines.> ICOM communicates via the DIG 1.1 protocol with a de-
scription logic server, such as, for example, RACER. ICOM provides an interface for
importing and exporting ontologies in UML-XMI class diagrams format.

2 Ontology Integration and Views in ICOM

In this section we introduce a scenario of usage of the tool in the context of ontology
integration by making use of the view facility of ICOM.

Figure 1a shows two ontologies in the phase to be integrated by the ontology engi-
neer. The top ontology describes concepts where information about Italian ISO certified
companies is held; in particular, the information about their contact person is specified.

3 Available as a free download at http://www.inf.unibz.it/~franconi/icom/
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The facts described by the diagram state that a company should have at least one em-
ployee, and that it should be involved in at least one sector. Among the employees there
is the contact person of the company, which should be unique. Moreover, the Italian
companies are exactly defined as those companies which are in a country called Italy,
while the ISO certified Italian companies are exactly those Italian companies having
an ISO certification (specified as a boolean property called i soCert). Please note the
particular use of the ’slash’ “/” operator in front of the completely intensionally de-
fined classes—in the ontology the classes Ttalian Company and Italian ISO
Company are completely defined by means of the properties specified in the diagram.
This is the simplest case of a view defined in the ontology.

Sector. |

i
+description : char[80]
n

1. | Employee

+name : char(80]

+10le - char(80] +10le : char(80]
+staffiD : chare] +stafflD : charlé]

contacts. 1

[(anocompany | [t cameany A [t e

[s1s0Cert : boolean = true —|———p] +country : char(40) = Haly"

[ ] [
A - J
vy
' K 1
Italian Company Lar contacts p Contact

+address : char(200] +email: char(40]
+companyName : char(80] +tel : char(20]
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ar
tel : char(20]

\

A - J
y A

talian Company | TS / Contact

+address : char(200] ¢ 0.1 |[+emai:chardo)
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_|50CM"DI’IY
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L ] L 1 L 1
(a) Without deductions (b) With deductions

Fig. 1: The first integration scenario.

The lower ontology of Figure la describes a slightly different perspective about
the same domain. Still, there are Italian companies and their contact persons (but now
without any cardinality constraint, and without mentioning that contact persons of com-
panies should be employees), plus the specification that the companies are either ISO
certified or not—here the ISO companies are identified by the code of their ISO certifi-
cation institution. In addition, the ontology includes the view class Sales Rep, which
is completely defined by means of its attributes together with the view expression stat-
ing that sales representative is the range of the contacts association. Note that the
view definition can be written in any reasonable textual ontology language, such as an
OCL constraint, or an OWL axiom, or a SQL check constraint, or first order logic sen-
tence. The view definition mechanism is the hook that allows to use the full power of the
ontology language—if the user wants. Most of the ontologies will not need to use this
hook, and they will be more directly understandable by the engineers. In the case when
subtle integration constraints have to be written, views will come in handy, by providing
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an expressive language to the engineers in a way which is perfectly integrated with the
diagrammatical paradigm proposed here.

Figure 1a includes also the mappings between the two ontologies. You can see that
the Italian ISO companies in the top ontology are declared to be the same as the (Italian)
ISO companies in the lower ontology, and that the Italian companies in both ontologies
are declared to be equivalent as well. Moreover, the contact s association in the lower
ontology is declared to specialise the homologous association in the top ontology. Inter-
ontology mappings are declared by simply drawing directed links between pairs of
classes (or pairs of associations) belonging to different ontologies; these can state either
equivalence, or containment, or disjointness.

Now, the whole picture seems very reasonable to any ontology engineer; however
there are interesting, unexpected, and clarifying consequences that our design tool will
automatically draw—still in a diagrammatic fashion. These are shown in Figure 1b.

7

[ moren [ pwicinier | [ungsocin]
[snoProt - boolean=twe | +contact name :char(40] | [ster-crareo][*
|

isiind
{disjoint, complete} {dsjoint
ai londer
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+SWIFTCode : char(20]

oprofit [ pwicinier | [sutdngsosin |
noProft - boolean=tve | +contact name :char(40] | [ser cnareo[*
| [ ] L |

(disioint, complote}

bankName : char(40]
+SWIFTCode : char(20]

+noProfit - boolean = false

G Bank_s Bank_s

+address. ac char
+tax : char(20) L SWIFTCode : char(20] +ax : char(20] |+SWIFTCode : char[20]
+instName : char[40] +instName : char[40]

(a) Without deductions (b) With deductions

Fig.2: The second integration scenario.

The first consequence relates to the equivalence stated between the two Italian ISO
certified company class definitions in the two ontologies. The two classes have a type
incompatibility in the attribute i soCert: one is declared to be a boolean value, while
the other is declared to be a string of ten characters. Indeed, the system deduces that
if such an integration has to be taken seriously, then the two classes have to be empty
in any possible context, since an object in one context which, say, represents an Italian
ISO Company by having an attribute i soCert with the value true, can not be at the
same time an instance of a class whose i soCert is declared to be of an incompatible
type (i.e., string). Therefore, such an instance can not exist, and, as a matter of fact, no
instances of the two classes can exist at all. This first deduction by the tool (indicated
by the question marks on the corner of the two classes) is actually a hint to the designer
to actually take care of this data reconciliation problem, by, for example, providing
local conversion functions between the two attribute types. Please note that the tool
also correctly derives the fact that any object which is instance of the Italian Company
class (in any of the two contexts/ontologies) should also be an instance of a non ISO
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company. In fact, since no Italian ISO companies can exist in the current version of the
scenario, any Italian company will necessarily be a non ISO certified company. This is
made explicit by the dashed equivalence link added by the tool between the Ttalian
Company class and the Non ISO Company class in the lower ontology.

If we go on with the analysis of the deductions made by the tool, we see that a
stricter cardinality constraint has been deduced: now any Italian company can have
at most one contact person (in the sense of the lower ontology)—this is the [0..1]
cardinality constraint found at the right end of the contacts association. The system
has deduced this stricter constraint by observing that Italian companies are companies,
which have exactly one contact person (in the sense of the top ontology); moreover, each
Italian company should have contact persons (in the lower ontology sense) among the
contact persons in the top ontology sense. Therefore, no Italian company can have more
than one contact person (in the lower ontology sense). The lower bound is not derived
since the specialisation of the contacts association may not necessarily consider all
the Italian companies. So, this is an example of a deduction which is not just an IS-
A link or an inconsistent class, which are the only kind of deductions that the most
advanced ontology design tools (like, e.g., OILEd, or Protege) are capable of.

Another deduction which can not be done by any other ontology design tool is
the one which makes explicit a contacts association in the lower ontology between
Italian companies and sales representative, plus the now stricter cardinality constraint
stating that each Italian company has exactly one sales representative. Please note how
powerful this deduction mechanism is: an isolated class is automatically fully put in
context, by considering all the possible constraints which may relate it to the other terms
of the integrated ontologies. As a matter of fact it can be proved that the design tools
derives all (and only) the implied constraints representable within the diagrammatic
ontology language.

Finally, we note that the tool derives also that sales representative are both contact
persons in the top ontology sense and contact persons in the lower ontology sense.

All these deductions may help the ontology engineer in validating the design—if the
derived constraints make sense to the engineer; they may help in suggesting changes;
or they may show serious but subtle conceptual mistakes. The next case scenario shown
in Figure 2a is an example of the latter case.

In this new integration scenario, the top ontology describes fair lenders which are
partitioned into public lenders and building societies. Public lenders are no profit com-
panies, and in addition it is stated that banks are not building societies.

In the lower less detailed ontology, we have the generic class of lending institutions
which specialises into the bank class. We also assume that actually the lower ontology,
in spite of the fact that it uses more generic terms, describes a world which is actually a
portion of the world described more accurately by the top ontology.

A very natural integration between the two ontologies is pursued by the ontology
engineer: she/he states that banks of the lower ontology are among the banks of the top
ontology, and that lending institutions of the lower ontology are fair lenders and profit
companies as defined in the top ontology.

The consequences of this integration attempt are immediately drawn by the tool as
depicted in Figure 2b. As a first (more or less obvious) deduction we can observe that
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the profit and the no profit classes are derived to be disjoint, as expected. However,
it turns out—from the big question mark at the corner of the Bank_s class—that no
banks can exist according to the lower ontology! This is somehow unexpected, since we
thought we were playing a rather simple game in this case. Why is this? A quick glance
at the attribute types shows that they are perfectly compatible this time. The reason is
the following. First of all, we can derive that lending institutions are building society (as
pointed out by the tool); in fact, lending institutions are fair lenders, which can be either
public lenders or building societies. On the other hand we have that lending institution
are profit companies, which are provably disjoint from public lenders. therefore, any
lending institution has necessarily to be a building society. At this point, we are closer
to the answer to our original question about the inconsistency of the Bank_s class.
Those lower ontology banks are at the same time a kind of top ontology banks and
building societies (by transitivity). However the two latter classes are disjoint, hence no
common instance can exist—i.e., no bank can be a lending institution according to this
integration system.

Of course, there should be something wrong the way the two ontologies have been
integrated, and this calls for a revision of the mappings. The engineer should either
omit the mapping stating that lending institutions are necessarily profit companies, or
the mapping stating that lending institutions are necessarily fair lenders. In both cases,
the outcome will be acceptable by the engineer, and she/he should choose the one that
best fits further analysis of the domain that she/he may have done after this unexpected
discovery.

3 The Ontology Editor

The Ontology Editor works on projects, which may contain one or more UML class
diagrams. The diagrams are referred as models. Multiple projects can be opened at the
same time, but objects cannot be moved across them. Only one project is visible at
a time and the editing of each project is independent. The user can switch between
different projects using the tabs at the top of the project area. Classes are represented by
boxes and n-ary associations by diamonds. Associations may have so-called association
classes specifying their attributes. IsA relationships are represented as arrows with a
disc in the middle (e.g. see MobileCall and Call).

The tool does not implement special visual techniques for handling very large on-
tologies. The tasks that it supports, i.e. authoring of concept description and structuring
the ontology, are not aimed at working simultaneously with thousands of concepts.
However, a set of functionalities that are very useful in managing such ontologies are
available. First, the interface is zoomable, that is, the level of detail and size of the icons
that represent the model can be smoothly changed by pressing the right mouse button
and dragging left to zoom our or right to zoom in. Also, the window can be panned
by pressing the middle button and dragging. This allows the user to focus the attention
in a specific region of the ontology. There are also two dedicated buttons for zooming:
one will show the complete graph, and the other will zoom in to show the selected el-
ements. Selection works by left-clicking on icons or by left click and drag; also, there
is a button for expanding the selection to all connected nodes, which is very useful in
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combination with the zoom-to-selection button. Finally, custom automatic layout algo-
rithms for ontologies are under development. These combine known layout algorithms
for drawing large graphs, with special conventions used in ontologies, like IsAs hierar-
chies are drawn top-down and associations are drawn in the middle of related concepts.
New metrics to measure the "quality" of ontology graphs were developed for this pur-
pose.

Editing Models Most of the model editing is done in the project panel, where each
model in the project is displayed in a separate model panel. In addition, two dialogues
are used to elicit additional information about model objects. The attribute domain di-
alogue allows the domain of attributes to be set. The definition dialogue enables the
characterisation of a class or association by means of a view written in the language
described in the next Section.

Objects can be created by selecting the appropriate button in the toolbar, or an en-
try under the Diagram menu, or a contextual menu in the project area. Most object-
creating operations require further inputs to complete the operation. Usually, the user is
requested to select an existing object in the diagram (e.g. during the creation of an IsA
relationship). In this case, the system will highlight only objects in the diagram suitable
for the specific operation.

All the objects of the diagram have a name. Upon their creation the system allocates
a new fresh name, which can be edited by the user. To improve the identification of the
nodes, when icons become smaller because of the zoom level, all the nodes show their
name on a tool-tip when the mouse is hovering over them. Names are scoped by the
model they belong; e.g. classes with the same name in different models are considered
different.

Metadata fields can be associated to every kind of objects. These fields are ignored
in the reasoning process.

The creation of a new class adds a new box in the diagram with a new default name.
Every class can optionally have attributes. Attributes are added and edited by means of
a specific attribute dialogue. Similar to classes, attributes of the same name in different
models are considered different. Attributes of the same name within the same model
represent the same attribute. For each attribute, a domain should be indicated. There the
set of possible domains is not predefined, and the user is allowed to enter an arbitrary
name. Unlike the classes and associations, domains have a global context. Therefore,
domains of the same name in different models are considered be the same.

Associations are created by default with no roles. N-ary associations can be speci-
fied by adding new roles to existing ones. The creation of a new association introduces a
corresponding association class, which can be edited as a normal class (e.g. it can have
attributes).

Adding new roles to an existing association requires the user to select the association
and a class which restricts the domain of the argument of the association corresponding
to the role. Similar to class and associations names, role names have a model scope.

For example, assume there are two models M1 and M2, each one with a binary asso-
ciation 1ives having the roles subject and object. Note that, being association
scoped over models, from the global perspective there are two associations M1 : 1ives
and M2 : 1ives. Now, the modelling of the domain requires that M2 : 1ives is more
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specific (i.e. a subset) of M1:1ives. Since also role names are scoped over each
model, overall there are four different roles. Therefore, the more specific association
(M2 : 1ives) inherits the roles of the general one, ending up being of arity four (namely
the roles M2 : object, M2 :subject and M1 :object, Ml :subject).

Roles denote the connection of a class to an association and are also used to express
the cardinality constraints of a class in an association. A role may have two constraints:
totality, or the minimum cardinality, and uniqueness representing the maximum car-
dinality. In the current version of the system, the numbers expressing cardinality are
restricted to be 0 and 1. A minimum cardinality of 1 indicates that all instances of
a class must participate in the association at least once (i.e. mandatory constraint). A
maximum cardinality of 1 indicates that all instances of a class can only participate
once in the association (i.e. functional constraint).

Within a project, equivalence and subset role mappings can be defined between roles
in the same or different models. These allow a better characterisation of the relationship
between associations across different models. In the former example, M2 : 1ives can
be set as a binary association by saying that M1 : object contains M2 : object, and
that M1 : subject contains M2 : subject.

The system enables the user to specify inheritance relationships among classes and
associations. The relationships can be arbitrary (e.g. cycles are allowed) provided that
classes can only inherit from classes, and associations from associations. Formally, the
inheritance is expressed by the inclusion (subclass) constraint.

On the diagram, inheritance is specified by means of IsA links (in the diagram indi-
cated by arrows with a circle in the middle) connecting nodes. IsA links can be speci-
fied one-to-one, or many-to-one. The latter groups together more than one (association)
class and restrict all of them to be a subclass of the link target.

The possibility of grouping more than one descendant, not only provides way of
visually organising the layout of the model; but enables the user to specify additional
constraints among the (association) classes. In particular, the covering and disjointness
constraints. The first one expresses the fact that the (association) class is equivalent to
the union of the specified descendant, while the second constraints the grouped (asso-
ciation) classes to be mutually disjoint.

Note that disjointness among classes is not assumed by default; so, in absence of a
specific constraint, (association) classes may overlap.

Inter-Model Axioms Additional constraints among classes and associations can be ex-
pressed by means of intra- as well as inter-model axioms. The Ontology Editor provides
four types of axioms: Node Definition, Equivalence, Subsumption and Disjointness. As
discussed in Section 1 these constraints provide a powerful modelling tool in the context
of data integration and ontology mapping.

Each class and association can be fully defined by means of a view expression. The
view expression language is more expressive that the diagrammatic definition language,
so enables the expert user to add constraints that cannot be expressed by the UML
diagram alone.

The adopted view language is based on the DLR description logic. A definition has
a global context, meaning it can express inter-model relationships as well as intra-model
relationships. The view language includes two syntactic sorts: one for classes and one
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for associations. Full boolean operators are allowed, plus a selection operator (selecting
tuples in an association with a specific class type in some named role argument) and
a unary projection operator (projecting an association over a named role argument). A
generalised projection operator with cardinality restrictions is available as well.

Since a definition can refer to objects in different models, a name-prefix is used
in definitions to distinguish objects with the same name but from different models.
The name-prefix used is the model’s name followed by a colon symbol. For example,
classlinModell and classl inModel?2 would be referred to asModell:classl
and Model2:class1 respectively.

Any two (associations) classes in any model can be related by semantic relation-
ships stating their equivalence, subsumption, or disjointness. Creating one of these re-
lationships requires the user to specify source and target node. The system prevents the
creation of a relationship between non-homogeneous nodes by restricting the scope of
the second node to be selected.

Exporting and Importing Projects ICOM projects can saved and retrieved in an own
XML format, preserving the meaning of all elements including view definitions. It is
also possible to import UML class diagrams saved in the XMI format. The tool only
recognises the subset of XMI determined by classes, associations, attributes, roles and
primitive datatypes defined within an UML model. Functional and mandatory con-
straints on roles are the only type of imported constraints. Aggregation relationships
in the UML model are ignored. We are currently working on exporting projects in XMI
files, but this translation would be necessarily carried out with some loss of meaning
because, for example, not all view definitions can be expressed in XMI even with at-
taching OCL expressions to the model elements (e.g. names in OCL expressions have
a scope which is local to a given class, rather than global as in ICOM).

4 Automated Reasoning

Although the Ontology Editor can be used as a standalone modelling tool, exploiting
its full capabilities requires the coupling of the system with a Description Logic rea-
soner. Without such an automated reasoning tool the Ontology Editor would be unable
to perform deduction-complete automated reasoning over the models. As we noted, this
includes checking class and relationship consistency, discovering implied class and re-
lationship inter-relations (e.g., subsumption) or cardinality constraints, and in general
discovering any implied but originally implicit class diagram graphical construct.

Instead of implementing its own dedicated reasoner, the Ontology Tool can exploit
any DIG enabled DL reasoner (see [2]). Being DIG a standardised communication pro-
tocol, the user can choose the most suitable DL reasoner (e.g. the one used by other
in-house project), or upgrade to the latest version of the preferred reasoner without
being forced to upgrade to a different version of the Ontology Editor.

The so called verification process can be computationally expensive, so it is acti-
vated only on user’s request. This process includes the following operations. The se-
lected project is encoded into an appropriate Description Logics knowledge base and
shipped to the DIG reasoner. Each class, association in the project is checked for sat-
isfiability (i.e. non-emptiness). For each class, association in the project, its equivalent

122



peers, and super-classes are determined. For each class-role-association triple, the sys-
tem calculates the stricter minimum and maximum cardinality constraints. To perform
these operations, the system formulates a sequence of queries to be sent to the DIG rea-
soner. Accordingly to the received answers the Ontology Editor infers properties of the
models in the project. To perform these operations, the system formulates a sequence
of queries to be sent to the DIG reasoner, which is linear in the number of project el-
ements. Accordingly to the received answers the Ontology Editor infers properties of
the models in the project. The algorithm for this inference is quadratic in the number
of concepts and roles, and linear in the number of axioms and IsA links. Thus, the tool
can reasonable manage projects with several hundreds of elements, calling a current
state-of- the-art reasoner.

After the verification process, the system provides the user with a visual account of
the deductions by modifying the appearance of the model diagrams in the project. All
unsatisfiable objects will appear in red in the model diagrams. An object is unsatisfiable
when necessarily describes an empty set of tuples of objects. Additional non explicit de-
ductions will appear in green, to be distinguished from the user specified elements of
the diagrams. Semantically equivalent objects are connected with newly inserted equiv-
alent axiom links. Objects discovered to hold an inclusion relationships between them
are connected with subsumption axiom links. Cardinality constraints which are stricter
than those originally specified. Although the deductions are displayed on the actual di-
agrams, it is up to the user to decide whether they should be permanently added to the
models or discarded. The rational behind this behaviour is that the automated reasoning
process may detect unwanted deductions caused by a wrong modelling of the domain.
In this case the user should correct the project before any subsequent editing. Another
reason is that, in spite of the fact that only the non-trivial deductions are presented,
the user is satisfied by the fact that they are implicit without the need of having them
explicitly asserted.

The user can discard the deductions and the entire project will be returned to its
original state (and any information about unsatisfiability will be discarded). Editing one
of the models in the project will also discard the deductions before the editing is car-
ried out. Alternatively, the equivalence, subsumption association, and role cardinality
deductions can be added permanently to the project by committing them.

5 Conclusions and Future Works

In this paper we presented ICOM, an advanced conceptual modelling tool grounded on
more than ten years of research on the use of automated reasoning to support the devel-
opment and integration of ontologies. ICOM employes a diagrammatic based language
to represent most of the constructs used in ontology design; although it enables the use
of non graphical ontology languages, experience with users demonstrates that the de-
sign of the diagrammatic language is sufficiently expressive to describe rich domains.
Moreover, deductions are expressed within the same diagrammatic language, providing
a uniform view over design and analysis of models.

By means of use cases we demonstrated the importance of exploiting basic reason-
ing tasks (such as subsumption) in order to provide richer information on ontologies.
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This is a crucial step towards guaranteeing the quality of the ontologies designed using
a tool like ICOM.

The research and development of ICOM continues on two main tracks: from one
side we are improving the modelling workflow by considering alternative modelling
languages and reasoning services, while on the other hand we are enhancing the user
experience by improving the graphical user interface and the interoperability.

We are currently considering the adoption of modelling features from ORM [5]
conceptual modelling methodology and representation. Its adoption would have the ad-
vantage of leveraging the vast research which has been carried on supporting the user in
the modelling tasks, including the integration of natural language generation. The use
of ORM modelling style would require also a redesign of the reasoning tasks in order
to align the inferences to the new graphical representation.

On the interface we are improving the automatic layout algorithms and working on
the support of undo actions. We also plan to include a role browser tab to show the
role hierarchy in the same style of the class browser. Moreover, we are improving the
interoperability with other tools by tackling the import and export compatibility with
XMI and OWL.

References

[1] S. Bechhofer, I. Horrocks, C. Goble, and G. Stevens. Oiled: a reason-able ontology editor
for the semantic web. In Proceedings of KI2001, pages 396—408. Springer-Verlag, 2001.

[2] S. Bechhofer, R. Moller, and P. Crowther. The dig description logic interface. In Proceed-
ings of DL 2003, volume 81 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.

[3] P. Fillottrani, E. Franconi, and S. Tessaris. The new icom ontology editor. In Proceedings
of DL 2006, volume 189 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[4] E.Franconi and G. Ng. The i.com tool for intelligent conceptual modeling. In Proceedings
of the 7th International Workshop on Knowledge Representation meets Databases (KRDB
2000), volume 29 of CEUR Workshop Proceedings. CEUR-WS.org, 2000.

[5] T.A. Halpin, A.J. Morgan, and T. Morgan. Information modeling and relational databases.
Morgan Kaufmann series in data management systems. Elsevier/Morgan Kaufman Publish-
ers, 2008.

[6] M. Horridge, S. Bechhofer, and O. Noppens. Igniting the owl 1.1 touch paper: The owl api.
In Proceedings of OWLED 2007, volume 258 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[71 M. Jarke, C. Quix, D. Calvanese, M. Lenzerini, E. Franconi, S. Ligoudistianos, P. Vassil-
iadis, and Y. Vassiliou. Concept based design of data warehouses: The dwq demonstrators.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, page 591. ACM, 2000.

[8] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The protégé owl plugin:
An open development environment for semantic web applications. In Proceedings of ISWC
2004, volume 3298 of Lecture Notes in Computer Science. Springer, 2004.

[9] T. Liebig, M. Luther, O. Noppens, M. Rodriguez, D. Calvanese, M. Wessel, M. Horridge,
S. Bechhofer, D. Tsarkov, and E. Sirin. Owllink: Dig for owl 2. In Proceedings of OWLED
2008, volume 432 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[10] C. Lutz, F. Baader, E. Franconi, D. Lembo, R. Moller, R. Rosati, U. Sattler, B. Suntisrivara-
porn, and S. Tessaris. Reasoning support for ontology design. In Proceedings of OWLED
2006, volume 216 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

124



Efficient Reasoning in Combinations of £L£ and
(Fragments of) FL,

Francis Gassel? and Viorica Sofronie-Stokkermans’

! Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
2 Universitit des Saarlandes, Saarbriicken, Germany

Abstract. We study possibilities of combining (fragments) of the light-
weight description logics F Lo and £L£, and identify classes of subsump-
tion problems in a combination of ££ and Horn-F Lo, which can be
checked in PSPACE resp. PTIME. Since FLq allows universal role re-
strictions and £L allows existential role restrictions, we thus have a
framework where subsumption between expressions including both types
of role restrictions (but for disjoint sets of roles) can be checked in poly-
nomial space or time.

1 Introduction

Description logics [5] are a family of knowledge representation formalisms that
can model the terminological knowledge of a given domain; they are, for instance,
the logical foundation of the W3C language for the Semantic Web. Their most
interesting feature is that they aim at maximizing expressive power while re-
taining decidability. However, with the size of the ontologies appearing in many
applications, decidability alone is not enough because the complexity of the rea-
soning procedures combined with the size of the ontologies makes reasoning too
costly. This consideration triggered the development of lightweight sub-families
of description logics. Among them, we mention ££ (which only allows the use of
conjunction and existential role restrictions) [1] and some of its extensions such
as ELT and £L£1T [2,4, 3]. These logics can model some very interesting domains
sufficiently well to be used widely, for example in the SNOMED ontology [16].
Another lightweight description logic is F Lo (which only allows the use of con-
junction and universal role restrictions). While subsumption without TBoxes in
FLy is decidable in PTIME, its subsumption problem is in PSPACE for stan-
dard terminologies and EXPTIME for general terminologies [8,4]. Since some
very interesting forms of knowledge require universal restrictions in order to be
modeled adequately, recent research has identified tractable fragments of FLg,
such as the Horn-F L, fragment (defined by syntactic restrictions) for which the
subsumption problem is in PTIME [9].

A combination of ££ and (fragments of) FLg is clearly interesting because
of the added expressivity it offers. At the same time, if we allow an unrestricted
combination we lose the lower complexity of the components. In this paper we
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Table 1. Constructors and their semantics

|C0nstructor name |Syntax |Semantics

negation -C DI\C?
conjunction CinCy C’lz N C'QI
disjunction CiuCy C’lz U C'QI

existential restriction|3r.C°  [{z | Jy((x,y) € r* and y € CT)}
universal restriction |Vr.C' |[{z | Vy((z,y) € rT — y € CT)}

present a way to combine these description logics such that we can verify sub-
sumption between two mixed concept expressions w.r.t. TBoxes efficiently, and
identify situations in which this can be done in PSPACE, resp. PTIME.

Structure of the Paper. In Sect. 2 we give general definitions and introduce
the description logics ALC,EL and F Ly and their combination. Sect. 3 presents
the algebraic semantics for each logic and their combination. Sect. 4 presents
generalities on local theory extensions and hierarchical reasoning (which we use
in our approach). These methods are used in Sect. 5, where we present pos-
sibilities of hierarchical reasoning in a combination of ££ and (fragments of)

FLo.

2 Description Logics

The central notions in description logics are concepts and roles. In any descrip-
tion logic a set N¢ of concept names and a set Ng of roles is assumed to be given.
Complex concepts are defined starting with the concept names in N, with the
help of a set of concept constructors. The semantics of description logics is de-
fined in terms of interpretations Z = (AZ,-7), where A is a non-empty set, and
the function -Z maps each concept name C' € N¢ to a set CZ C AT and each
role name r € Ny to a binary relation rZ C AT x AZ. Table 1 shows the con-
structor names used in ALC and their semantics. The extension of -Z to concept
descriptions is inductively defined using the semantics of the constructors.

Terminology. A terminology (TBox, for short) is a finite set of primitive con-
cept definitions of the form C' = D, where C' is a concept name and D a concept
description; and general concept inclusions (GCI) of the form C' C D, where C'
and D are concept descriptions. A TBox which only contains primitive concept
definitions and every concept name is defined at most once is called standard.
(As definitions can be expressed as double inclusions, by TBox (or general TBox)
we will refer to a TBox consisting of general concept inclusions only.) An inter-
pretation Z is a model of a TBox 7 if it satisfies:

— all concept definitions in 7, i.e. CT=D? for all definitions C=D € T;
— all general concept inclusions in 7, i.e. CTCD7? for every CCD € 7.
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Constraint Box. A constraint box (CBox, for short) consists of a TBox 7 and
a set RI of role inclusions of the form 7y o ---or, C s. (We will view CBoxes as
unions GCI U RI of general concept inclusions (GCT) and role inclusions (RI).)
An interpretation 7 is a model of the CBox C = GCIURI if it is a model of GCT

and satisfies all role inclusions in C, i.e. 1"110 - or% C s forallro...or,CseRI.

Definition 1. Let Cy,Cy be two concept descriptions.

— If T is a TBox, we say that Cy is subsumed by Cy w.r.t. T (denoted Cy; Cr
Co) i fICT C CF for every model T of T .
— IfC is a CBox, then Cy C¢ Cy iff CT C CT for every model T of C.

The simplest propositionally closed description logic is ALC which allows for
conjunction, disjunction, negation and existential and universal role restrictions.
For description logics that allow full negation, subsumption tests w.r.t. TBoxes
or CBoxes are reducible to satisfiability testing for concepts (i.e. checking if
there exists a model of the TBox resp. CBox for which the interpretation of
the concept is non-empty). It is well-known that for ALC subsumption checking
(w.r.t. TBoxes and CBoxes) is in EXPTIME (cf. [5]). For lightweight description
logics which do not allow negation, things are different: The main reasoning task
is subsumption testing, which is the problem we consider in this paper.

We now define the fragments of the description logics FL( used in this paper
as well as the description logic ££. 3

The Description Logic FLy. FLy is a lightweight description logic that only
allows as concept constructors conjunction, universal role restrictions, and top
concept. The subsumption problem w.r.t. general TBoxes is known to be in
EXPTIME [4]. Fragments of F L resp. specific classes of subsumption for which
the complexity is known to be lower include:

— Subsumption w.r.t. standard TBoxes has PSPACE complexity [8].

— Subsumption w.r.t. acyclic TBoxes is co-NP complete (where an acyclic
TBox is a standard TBox that does not contain concept definitions A; =
C1,..., Ak = Cp such that A, | ,q ,, 18 used in C; for all 7 < k [10]).

— Horn-FL] [9] is a variant of Ly that both extends and restricts its expres-
sivity in such a way that the subsumption problem remains in PTIME. It
restricts F Ly axioms to the form shown in Table 2. The form of the axioms is
limited in such a way that they can be rewritten into 3-variable function-free
Horn-logic. It follows from this correspondence that verifying consistency of
a Horn-FL§ knowledge base can be done in polynomial time. A Horn-F L,
TBox (CBox) consists only of inclusions of the form indicated in the first
two lines of Table 2.

The Description Logic ££1. The description logic ££ [1] allows as concept
constructors only conjunction, existential role restrictions, and the bottom con-
cept. ELT [2,4,3] additionally allows for nominals and role composition. For
ELT, checking CBox subsumption can be done in PTIME [4, 2].

3 For the sake of simplicity, everywhere in what follows we consider fragments of these
logics without nominals and without ABoxes.
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ACC TCC RCT  ACVYRC
ANBCC ACL RoSCT
R(i, 5) A(9) )

Table 2. Normal form for Horn fﬁa'. A, B,C' are names of atomic concepts;
R, S, T are (possibly inverse) role names.

2.1 Combining FLy and €L

Let N¢ be a set of concept names, and Nr, Nr be disjoint sets of role names.
We propose a combination of ££ (with roles in Ngr) and FL (with roles in Ng/).
The problem we study for such combinations is subsumption between concept
expressions using constructs from both logics (such that existential restriction is
used only for roles in Nr and universal restriction only for roles in Ng/) w.r.t.
mixed TBoxes, consisting of an £L£ part and an F L, part. We allow these TBoxes
to share concept names (but the role names used in each type of axioms have to
be disjoint). We have to impose the restriction that Ng N Ng/ = @) in order to be
sure that fine-grained complexity results can be obtained for TBox subsumption
in such combinations, since the description logic combining these features freely,
ALEU, has an EXPTIME complexity for the subsumption problem w.r.t. TBox*.

Definition 2. A mixed TBox is a TBox T = Tr U Tr which consists of two
distinct parts: A set Ty of EL GCI (with role names Nr), and a set T of FLy
GCI (with role names Ng/ ), each respecting the syntactic restrictions imposed
by their logic. In a mixed TBox with acyclic FLy part, 7p is a standard acyclic
TBox; in a mixed TBox with standard FLy part, 7 is a standard TBoz.

We will use the names ££-TBox and FL-TBox to denote the set of EL (resp.
Horn-F L) inclusion axioms in a mixed TBox.

3 Algebraic Semantics

We assume known notions such as partially-ordered set, semilattice, lattice and
Boolean algebra. For further information cf. [11]. We define a translation of
concept descriptions into terms in a signature naturally associated with the set
of constructors. For every role name 7, we introduce unary function symbols,
far, fvr- The renaming is inductively defined by:

— 6_2 C for every concept name C} o
— =C = =C, _Cl|_|02:cl/\g2, CiUCy =C1VCy;
— Ir.C = f3.(C), Vr.C= fu.(C).

There exists a one-to-one correspondence between interpretations Z = (D, %)
and Boolean algebras of sets (P(D),U,N, =, 0, D,{ f3r, fur treny ), together with

* This follows from the fact that ALEU can simulate ALC [7].
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valuations v : No — P(D), where fa,, fy, are defined, for every U C D, by:

far(U) = {z | Jy((z,y) € r* and y € U)}
JorlU) = {2 | Vy((z,y) e ¥ = y € U)}.

Consider the following classes of algebras:

— BAOny,, the class of all Boolean algebras with operators
(B,V,A\,—,0,1,{far, fvr}reny), where
o f3 is a join-hemimorphism, i.e. fa.(zVy) = fa(z)V far(y), fa-(0) = 0;
e fy, is a meet-hemimorphism, i.e. fy.(z Ay)=fvr(z) A for(y), fvr(1)=
° fw( ) = = far(—z) for every xz € B.
- BAON the class of boolean algebras with operators
(B, \/ A, =,0,1,{f3}renp), such that f3, is a join-hemimorphism.
— BAOY Ny , the class of boolean algebras with operators
(B,V, /\ -,0,1,{fvr}reny, ), such that fy, is a meet-hemimorphism.
- SLON the class of all A-semilattices with operators
(S, /\ ,0,1,{f3r}reny), such that fs, is monotone and f3,(0) = 0.
— SLOY N, the class of all A-semilattices with operators
(S, A 0, L, {fer}reny, ), such that fy, is a meet-hemimorphism and fy,(1)=1
— SLOY Nr,Ny, the class of all A-semilattices with operators
(S, A 0, 17 {far}reng, {fvr}reny, ), such that fs, is monotone and f3,.(0) = 0,
and fy, is a meet-hemimorphism and fy,.(1)=1.

It is known that the TBox subsumption problem for ALC can be expressed as a

uniform word problem for Boolean algebras with suitable operators (cf. e.g. [6]).
Let RI, RI' be sets of axioms of the form rCs and ryorsCr, with 7, 5,71, 19€NR

(resp. 1, 8,171,726 Nr/). We associate with RI, RI’ the following set of axioms:

={Vz (far, 0 far)(x) < far(x) |riors Cre RITU
{Va far(2) < fas(x) | r C s € RI}

RI, = {V& (furs © for)(@) > for(@) |1 072 C7 € RI'}U
(Vo for(x) > fos(x) |r Es € RI'}

where fog denotes the composition of the functions f, g. Let BAO]HVR(RI ) (resp.
SLOJEVR(RI)) be the subclass of BAO3 (SLOH ) consisting of those algebras
which satisfy RI,, and BAOY\,R, (RI") (resp SLONR, (RI')) be the subclass of
BAOY, , (SLOY R,) consisting of the algebras satisfying RI ;

In [13] we studied the link between TBox subsumption in ££ and uniform
word problems in the corresponding classes of semilattices with monotone func-
tions, and in [14] we studied an extension to E£T. We will present these results
here, together with an algebraic semantics for F L.

Theorem 1 ([13]) Assume that the only concept constructors are intersection
and existential restriction. Then for all concept descriptions D1, Do and every
ELT CBox C=GCIURI, with concept names No = {C1,...,Cy}:

D1CeDy iff  SLOR,(RI) EVC:...Col(Accpeger C<D) — Di<Dy).
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We give a similar result for FLg.

Theorem 2 Assume that the only concept constructors are intersection and
universal restriction. Then for all concept descriptions D1, Do and every ]—"E(J{
CBox C=GCIURI, with concept names No = {C1,...,Cp}:

D1CeDy iff SLOY,, (RI) EVCy ... Cul(Accpece; C<D) — Di<Dy).

3.1 Algebraic Semantics for a Combination of ££ and FLg

Theorem 3 Assume the only concept constructors are intersection, existential
restriction over roles in Nr and universal restriction over roles in Ngr:. Let T
be a mized TBox consisting of an EL-TBox Ty (with roles in Nr) and an FLy-
TBox Tr (with roles in Ng: ), where NeN\Ng: = (). Then for all concept descrip-
tions D1, Do in the combined language, with concept names Noo = {C1,...,Cp}:

DiC7Dy iff SLO?\}’RWR, EVC...Co((Accper C<D) — Di<Dy).

Note: The results can be extended in a natural way to E£7, FL{ and CBoxes
(we will then take the combination of the role inclusions RI, RI’, and the corre-
sponding subclass SLOJH\Z% Ny (RI, RI') satistying the axioms RI, U RI)).

In what follows we show that we can reduce, in polynomial time and with a poly-

nomial increase in the length of the formulae, the validity tasks w.r.t. SLO?\yR’ Ny

to satisfiability tasks w.r.t. SLOYVR, which can in general be solved in EXPTIME.
We obtain the following finer grained results:

— If 7 is a standard TBox, the subsumption tasks are in PSPACE;
— If 7 is in the Horn-F L, fragment, the reduction generates formulae whose
satisfiability can be checked in PTIME.

For obtaining these results, we use the notion of local theory extensions, which
is briefly introduced in what follows.

4 Local Theories and Local Theory Extensions

We here consider theories specified by their sets of axioms, and extensions of
theories, in which the signature is extended by new function symbols. Let 7y be
a theory with signature Iy = (X, Pred), where Xy a set of function symbols, and
Pred a set of predicate symbols. We consider extensions 77 of 7y with signature
II = (X,Pred), where X = Xy U Xy (i.e. the signature is extended by new
function symbols). We assume that 77 is obtained from 7y by adding a set K of
(universally quantified) clauses in the signature I1, each of them containing at
least a function symbol in Xy and denote this by writing 77 = 7o U K.

Locality. Let K be a set of (universally quantified) clauses in the signature IT.
In what follows, when referring to sets G of ground clauses we assume they are
in the signature I1¢ = (X' U X, Pred) where X, is a set of new constants. An
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extension 7y C 7o U K is local if satisfiability of a set G of clauses w.r.t. 7o U K
only depends on 7j and those instances K[G] of K in which the terms starting
with extension functions are in the set st(K,G) of ground terms which already
occur in G or K, i.e. if condition (Loc) is satisfied:

(Loc) For every finite set G of ground clauses 71UG =L iff TyUK[GJUG =L

where K[G] = {Co | C € K, for each subterm f(t) of C, with f € Xy,
f(t)o € st(K,G), and for each variable  which does not
occur below a function symbol in Xy, o(z) = x}.

Hierarchical Reasoning. In local theory extensions hierarchical reasoning is
possible. All clauses in K[G] U G have the property that the function symbols in
X1 have as arguments only ground terms. Therefore, K[G] U G can be purified
(i.e. the function symbols in X are separated from the other symbols) by intro-
ducing, in a bottom-up manner, new constants ¢; for subterms ¢t = f(g1,...,9n)
with f € X4, g; ground XU X -terms (where X. is a set of constants which con-
tains the constants introduced by flattening, resp. purification), together with
corresponding definitions ¢; ~ t. The set of clauses thus obtained has the form
KoUGoUD, where D is a set of ground unit clauses of the form f(g1,...,9n) = ¢,
where f € 3y, cis a constant, g1, ..., g, are ground terms without function sym-
bols in Y, and Ky and Gy are clauses without function symbols in 3.

For the sake of simplicity in what follows we will always first flatten and then
purify K[G] U G. Thus we ensure that D consists of ground unit clauses of the
form f(c1,...,¢n) = ¢, where f € X1, and ¢1,.. ., ¢y, ¢ are constants.

Theorem 4 ([12]) Let K be a set of clauses. Assume that Ty € Ty UK is a
local theory extension. For any set G of ground clauses, let Ko U Go U D be
obtained from K[G] UG by flattening and purification, as explained above. Then
the following are equivalent:

(1) ToUKUG L.
(2) ToUK[GIUG L.
(3) ToUKoUGoU Ny =L, where

No={Ncird—crd|flcr,...,co) = ¢, f(dr,...,dy) ~d € D}.

i=1

Theorem 5 ([15]) The extension of any semilattice-ordered theory with mono-
tone functions is local. In particular, the extension SLON C SLONR Ny, Of the
theory of semilattices with meet-hemimorphisms in a set {fVR | R e NR/} with
monotone functions in a set {fap | R € Ng}, where Np N\ Ng: = 0, is local.

Thus, the method for hierarchical reasoning described in Theorem 4 can be used
in this context to reduce the proof tasks in SLO]HVVRA N, to proof tasks in SLOY\,R,.
We describe the approach in the next section. For the sake of simplicity, in what
follows we use the notation IR.C for f3r(C) and VS.D for fys(D). >

5 In [14] we proved generalized locality results also for extensions with monotone
functions satisfying axioms of the form RI,, so the results can be further extended to
give a reduction of proof tasks in SLONR Ny (RI, RI") to proof tasks in SLO]VVR, (RI').
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5 The Combination of £L£ and FL,

We consider the subsumption problem for the combination of ££ and F L intro-
duced in Section 3.1 and illustrate the way hierarchical reasoning can be used for
reasoning in this combination, and for identifying fragments of this combination
and subsumption tasks which can be checked in PSPACE/PTIME. 6

We first have to purify the expressions for which we want to verify subsump-
tion. Consider for instance the subsumption C' © dR.D, where C and D are
resp. an FLy and an EL concept description. To purify it, we add the axiom
D’ =3R.D to the EL-TBox (where D’ is a new concept name) and rewrite the
subsumption as C' C D’. We apply this process in an ”inside-out” fashion such
that the final result is checking subsumption between concept names w.r.t. to
an augmented TBox. This procedure does not affect complexity when we use
new names for ££ concept descriptions (€L allows for equalities and inequalities
TBoxes). In what follows, C[IR.C"] is a notation indicating that C' is a concept
description in the combination of ££ and F L containing a subterm of the form
JR.C’, R € Ng; the notation C[C"”] indicates the concept description obtained
by replacing AR.C’ with C" in C.

Theorem 6 Consider the subsumption problem C[3R.C'| Tt D (where C' is an
EL concept description) w.r.t. a mized TBox T = Tp UTp and the subsumption
problem C[C"] T+ D w.r.t. the extension T' of T with a new concept name C"
together with its definition C” = AR.C’. Then the following are equivalent:

(1) SLON, w,. E (Acsceserpure C1 < C2) — CBR.CT < D
(2) SLON, v, F (Aciccuersure C1 <Ca A C"=3R.C') - C[C"| < D

This also holds for subsumption problems of the form C' T D[3R.D’].

Theorem 7 Consider the subsumption problem C[VS.C'] Tt D (where C" is an
FLy concept description) w.r.t. a mized TBox T = TgUTr and the subsumption
problem C[C"] T+ D w.r.t. the extension T' of T with a new concept name C"
and a definition for it (C"" =VS.C'). Then the following are equivalent:

(1) SLON, v, E (Acicenerpure C1 < C2) — CVS.C'| < D
(2) SLOX, v, = (Acycopersur, C1 < Co A C” = VS.C') — C[C"] < D.
This also holds for subsumption problems of the form C' C D[VS.D'].

F Lo with Standard TBoxes. Assume that we consider a combination of ££
with the fragment of FLgy with standard TBoxes. Then 7 is a standard FLo-
TBox, hence also 7p U {C” = VS.C"} is a standard TBox.

FLy with Acyclic TBoxes. Assume that we consider a combination of £L£
with the fragment of FLy with acyclic standard TBoxes, i.e. 7p is a standard

5 The results can be extended to combinations of ££ and FL{ and to subsumption
tasks w.r.t. CBoxes. Due to space constraints this extension is not presented here.
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acyclic TBox {A; = C; | i = 1,...,k}. Assume that C’ does not contain any of
the atomic concept names A;. Since C” is a new concept name, the FLy-TBox
Tr U{C" =VS5.C"} is an acyclic TBox. After the elimination of 3R.C' concepts
and introduction of new concept names and definitions, the resulting TBox is a
standard FLo-TBox (which is acyclic only if additional acyclicity assumptions
are made on Tg).

Horn-FLj. The restriction imposed on the form of the TBox axioms in Horn-
F Lo prevents purification by adding definitions of the form C” = VS.C" (we
cannot allow universal restriction on the left-hand side of an axiom). For the
case where we have to purify the left-hand side that causes no problem since if
VS.C’ occurs on the left-hand side we only need to add C” C VS.C” to the TBox:

Theorem 8 Consider the subsumption problem C[¥S.C'] Ty D (where C' is an
FLy concept description) w.r.t. a mized TBox T = TpUTp, and the subsumption
problem C[C"] 1+ D w.r.t. the extension T' of T with a new concept name C"
and an inclusion of the form (C" CVS.C"). Then the following are equivalent:

(1) SLO?\yR,NR/ F (Ac,coserpur, C1 < C2) = CVS.C' < D.
(2) SLON, v, E (Aciccsersury C1 S C2 A C" <VS.C') — C[C"] < D.

However, we cannot replace universal restriction on the right-hand side with a
name in general which prevents us to purify arbitrary expressions.

Hierarchical Reasoning. Consider the purified form of the problem. We re-
place all terms of the form dR.C in 7 with a new constant, say C3g.c. Let Def
be the set of all definitions for these new constants, of the form C3g o = 3R.C.
Let My be the set of corresponding instances of monotonicity axioms:

My={Cy <Cy — C3p.c, <C3r.c, | Car.c, = IR.C; € Def}.
Let (7)o be the purified form of 7x. By Theorem 4, the following are equivalent:

(i) SLOR, N, E Apepyer D < D' — C1 < Cs.
(ii) Go A My is unsatisfiable in SLOY\,R,, where Go = (Tg)oATr A (—(C1 < C2))o.

Note that in the presence of the monotonicity axioms, the instances of the con-
gruence axioms in Ny (cf. notation in Theorem 4) are redundant.

Theorem 9 Assume that the only concept constructors are intersection and
existential restrictions over roles in Nr and universal restrictions over roles
in Ng. Assume that we have a mized TBox, consisting of an EL-TBox Tg
(with roles in a set Nr) and an FLy-TBox Tp (with roles in a set N/ ), where
Nr N Ng = (. Then for all concept descriptions D1, Dy with concept names
Ne ={Ch,...,Cy} over this signature, the following hold:

(1) If Tp is a standard TBozx, then:
(a) For any subsumption problem purification yields a new mized TBox T' =
T, U T = Tg A Def A Tp with a standard FLy part, and after the
elimination of AR.C' concepts, (Tf)o U T} is a standard FLy TBox.
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(b) Checking whether D1Cr, 1. D2 can be done in PSPACE.

(2) If Tp is a Horn-F Lo TBoz and C is an arbitrary concept description in the
combined language and D does not contain terms of the form 3R.Dy, where
R € Ng with subterms of the form ¥S.Dy, S € Ng/, then:

(a) Purification yields a new mized TBox with a Horn-FLy part; after the
elimination of 3R.C' concepts, (T})o U T/ is a Horn-FLy TBoz. Since
(Z) C ET D1 [l D2 sz(C ET D1 and C ET Dg), and
(i) VS commutes with intersections,
we can consider, w.l.o.qg. only subsumption problems D1 C7 VSy....VS,.D,
n >0, where Do, D are concept names.

(b) Checking whether D1Crp, 7. D2 where Dy =V5S1....VS,,.D (where n >
0 and C, D are concept names) can be done in PTIME.

Proof. (1)(a) and (2)(a) are simple consequences of the purification procedure.
Consider the purified form of the problem By Theorems 3 and 4, D1Cr, 7. D2
iff SLO]VVHR,NR, FE Apcprer(D < D' — Dy < Dy iff Go A My is unsatisfiable
in SLOY ,, where Gy = (Tg)o A Tr A (=(Cy < C3))o. In order to test the
unsatisfiability of the latter problem we proceed as follows. We first note that,
due to the convexity of SLO\Z\,R,, if Go A My =L, then there exists a clause C' =
(1 <dy — ¢ <d) € Mpsuchthat Gy = ¢1 < dy and GoA{c < d}AMN\{C} EL.
By iterating the argument above we can always successively entail sufficiently
many premises of monotonicity axioms in order to ensure that there exists a set
{C1,...,Cpn} of clauses in My with Cj = (¢] < df — ¢/ < d’), such that for all
ke{0,....,n—1}, Go A /\jzl(cj <) E AT < dFand Go A /\?Zl(cj <
d’) =1 . Conversely, if the last condition holds, then Gy A My =_L. This means
that in order to test satisfiability of Gy A My we need to: (i) test entailment
of the premises of My from Gp; when all premises of some clause are provably
true we delete the clause and add its conclusion to Gy, and (ii) in the end check
whether Go A A\J_, (¢! < &) L.

Under the assumptions in (1), every entailment task in (i) and the test in
(ii) are in PSPACE. Since space can be reused, the process terminates and is in
PSPACE. Under the assumptions in (2), 7o = (7g)o U 7r and Gq are in Horn
FLy. Therefore, every entailent task in (i) above can be done in PTIME. The
task (ii) - for the case that Gy is derived from a subsumption problem of the
form C C7 VSy....VS,.D, where n > 0, and C, D are concept names, can be
translated to a satisfiability test in Horn-F Ly, so it can be done in PTIME. O

6 Conclusion

We identified a class of subsumption problems in a combination of ££ and Horn-
F Loy, which can be checked in PTIME. Since F L allows universal role restriction
and £L allows existential role restrictions, we thus have a framework where
subsumption between expressions including both types of role restrictions (but
for disjoint sets of roles) can be checked in polynomial space or time.
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Status Q7 0O: An Update

Birte Glimm', Yevgeny Kazakov', and Carsten Lutz?
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2 Universitit Bremen, Germany

Abstract. We prove co-N2ExpTmMEe-hardness for conjunctive query entailment in
the description logic ALCOI ¥, thus improving the previously known 2ExpTIME
lower bound. The result transfers to OWL DL and OWL2 DL, of which ALCOIF
is an important fragment. A matching upper bound remains open.

1 Introduction

Due to its importance for ontology-based data access and data integration, conjunctive
query (CQ) answering has developed into one of the most widely studied reasoning
tasks in description logic (DL). Nevertheless, the precise complexity (and sometimes
even decidability) of CQ answering in several important expressive DLs is still an open
problem. In particular, this concerns fragments of the W3C-standardized OWL DL on-
tology language that comprise nominals, inverse roles, and number restrictions, a com-
bination of expressive means that is notorious for interacting in intricate ways. In this
paper, we concentrate on the basic such fragment ALCOIF in which number restric-
tions take the form of global functionality constraints.

Decidability of CQ answering in ALCOI ¥ and its extension ALCOIQ with qual-
ified number restrictions has been shown only very recently [1]. Since the proof is based
on a mutual enumeration of finite models and theorems of first-order logic, it does
not yield any upper complexity bound. The best known lower bound for CQ answer-
ing in ALCOIF is 2ExpTiME, inherited from the fragment ALCT of ALCOIF that
does not include nominals and functionality constraints [2, 3]. The aim of this paper is
to improve upon this lower bound by establishing co-N2ExpTmMe-hardness. Note that
CQ answering in the fragment ALCIF of ALCOIF that does not include nominals
is in 2ExpTiME [4], and the same is true for the fragment ALCQO that does not in-
clude inverse roles [5] and ALCOT that does not include functionality restrictions [6].
Thus, our result shows that the combination of nominals, inverse roles, and number
restrictions leads to an increase of complexity of CQ answering from 2ExpTIME to (at
least) co-N2ExpTime. This parallels the situation for the subsumption problem, which
is co-NExpTmMe-complete for ALCOIF, but ExpTiME-complete in any of ALCIF,
ALCQO, and ALCOT . Since ALCOIF is a fragment of OWL DL (in both the OWL1
and the OWL2 version), our co-N2ExpTiME lower bound obviously also applies to CQ
answering in this language.

We prove our result by a reduction of the tiling problem that requires to tile a torus
of size 2% x 22", Our construction combines elements of two existing hardness proofs,
but also requires the development of novel ideas. We follow the general strategy of the
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proofs that show N2ExpTmME-hardness of satisfiability in SROZQ [7] and in the ex-
tension of SHOIF with role conjunctions [8]. One central part of those proofs is the
realization of a counter that counts up to 2%'. We realize this counter using a (rather sub-
tle!) adaptation of the conjunctive queries that have been developed in [2, 3] to establish
2ExpTiMe-hardness of CQ-answering in ALCT.

An extended technical report including proofs and further details is available [9].

2 Preliminaries

We assume standard notation for the syntax and semantics of ALCOIF knowledge
bases [10]. The presence of nominals allows for only working with TBoxes, which
consist of concept inclusions (CIs) C & D. A knowledge base (KB) is then simply a
TBox. Let Ny be a countably infinite set of variables. An atom is an expression C(v) or
r(v,v"), where C is a (potentially compound) ALCOIF -concept, r is an atomic role,
and v, € Ny.> A conjunctive query ¢ is a finite set of atoms. We use Var(g) to denote
the set of variables that occur in the query ¢. Let K be an ALCOIF KB, I = (£, 4%)
a model of K, g a conjunctive query, and : Var(q) — 4% a total function. We write
T E" Cv)if n(v) € C* and T E" r(v,V) if (n(v), (v")) € rI. If T E™ at for all at € g,
we write 7 " g and call 7 a match for I and gq. We say that I satisfies g and write
I E g if there is a match « for 7 and ¢. If 7 | ¢ for all models 7 of a KB K, we
write K [ ¢ and say that K entails q. The conjunctive query entailment problem is,
given a knowledge base K and a query g, to decide whether K [ ¢. This is the decision
problem corresponding to query answering, see e.g. [11].

A domino system is a triple D = (T, H,V), where T = {1,...,k} is a finite set of
tiles and H,V C T X T are horizontal and vertical matching relations. A tiling of m X m
for a domino system D with initial condition ¢® = (19,...,10), 1% e Tfor1 <i<n,isa
mapping ¢: {0,...,m—1}x{0,...,m—1} — T such that (t(i, j), #(i+ 1 mod m, j)) € H,
@, j),t(@, j + 1 mod m)) € V, and #(i,0) = t?_] (0 < i, j < m). There exists a domino
system Dy for which it is N2ExpTiME-complete to decide, given an initial condition c°
of length n, whether D, admits a tiling of 2 x 22" with initial condition c° [12].

3 Conjunctive Query Entailment in ALCOIF

Our aim is to construct, for an initial condition ¢ of length n, an ALCOIF-KB K,
and conjunctive query g such that K ¥ qo iff Dy admits a tiling of 22" x 22" with initial
condition c°.

Intuitively, the models of Ky that we are interested in have the form depicted in
Figure 1: a torus of dimension 22" x 2%', where the lower left corner is identified by
the nominal o, the upper right corner by the nominal e, each horizontal dashed arrow
denotes the role /, and each vertical dotted arrow the role v. We will install two counters
that identify the vertical and horizontal position of torus nodes. To store the counter

values, we use binary trees of (roughly) depth n below the torus nodes, where each

3 Complex concepts C in atoms C(x) are used w.l.0.g.; to eliminate them, we can replace C(x)
with Ac(x) for a fresh atomic concept Ac and add C E A to the TBox.
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Fig. 1. Schematic depiction of the torus

of the 2" leaves store one bit of each counter (represented via concept names X and
Y). The filled circles in Figure 1 denote true torus nodes, which are labeled by a tile
later on, while the unfilled circles denote auxiliary nodes that will help us in properly
incrementing the counters. This incrementation is the main difficulty of the reduction,
and it is achieved with the help of the query ¢go. As the details are intricate, we defer a
discussion of the details until later, and first concentrate on the construction of Kj.

The following concept inclusions (1) to (9) of K lay the foundation for enforcing
the torus structure with attached trees. Successors in trees are connected via the com-
position of the roles r~ and r, from now on denoted by r~; r. This is needed in the query
construction later on, similar to the use of symmetric roles in [2, 3]. We call additional
nodes between r~ and r the ‘intermediate’ tree nodes. Note that no branching occurs
at intermediate nodes. Also for the query construction, the root of a tree below a true
torus node is the torus node itself while the root of a tree below an auxiliary torus node
is reachable by traveling one step along the role r (see Figure 1). To distinguish these
two kinds of trees, we label trees of the former kind with the concept name B and call
them black trees, and trees of the latter kind with the concept name W and call them
white trees. Later on, we will use white trees that are on the vertical axis to increment
the vertical counter and white trees that are on the horizontal axis to increment the hor-
izontal counter. To support this, we further label white trees of the former kind with V
and white trees of the latter kind with H. The basic idea for constructing the torus itself
is similar to what is done in [13, 7, 8]: the maximum value of both counters (indicated
by the concept names My and My) identifies the upper right corner, which has to sat-
isfy the nominal e and is thus unique. Inverse functionality for /# and v then guarantees
uniqueness of elements for all other values of the horizontal and vertical counters, and
that the torus ‘closes’ in the expected way. We use concept names Ly, ..., L, to mark
the levels of the trees, to deal with the symmetry of the composition »~; r. Thus, the
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Fig. 2. A black and a white tree, forn = 2

concept B I Ly identifies the true torus nodes.

{o) EBM L (1
BnLyEJhWn3Ir(HNWnLy)n3h(BN L)) )

BN Ly CIv.(WnIr (VO WnNLy) N IAv.(BM Ly)) 3)

BmLyn My My C {e} @)

L; € 3r™ . 3Ar.(Ais1 M Lig1) N A Ar(=Ai1 T Livr) i<n ®)

AiNMLEVr Vr(Ljy — A) I<i<j<n (6)

—A; ML CVYr Vr(Lljy — —A)  1<igj<n @)
ccvyrCnVvr.C forall C € {B,W,H,V} ®)

TCL<Ih.T TCLS DT O]

Note that the concept names Aj,...,A, implement a binary counter for the leafs of

the trees, i.e., for counting the bit positions in the horizontal and vertical counters. In
summary, the internal structure of the trees is as shown in Figure 2 where branching
tree nodes have dark background and intermediate nodes have light background.

The next step is to make sure that the horizontal and vertical counter have value 0
at the origin and that My is true at the root of a tree when the horizontal counter has
reached the maximum value, and similarly for My. We use Y(r~; r)".C to denote the 2n-
quantifier prefixed Vr~.Vr.---Vr~.¥r.C. Recall that the concept name X represents the
truth value of bits of the horizontal counter, and likewise for Y and the vertical counter.

{o} TYGE ;)" (=X =Y) (10)

L,C(X & Mx)N (Y & My) (1)

Lioyn3r Ar(LinA; N Myx)3Ar Ar(L;NM-A; M Mx) C My  o<isn (12)
Lyn3r IrLinA, N My)N3r Ir(L;iN-A; M My) E My oO<i<n (13)

Ly 3r 3r(L;N-Mx) E -My o<isn  (14)

L,y 3dr-3Ar(L; 1 =My) C =My o<i<n (15)

The general strategy for updating the horizontal and vertical counter is as follows. We
introduce additional concept names X’ and Y’, which represent the truth value of the

bits of two additional binary counters, the ‘primed versions’ of the horizontal and verti-
cal counter. Using Kj, we ensure that, in black trees, the X-counter has the same value
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as the X’-counter, and likewise for the Y- and Y’-counter. In white trees, we distinguish
between horizontal incrementation indicated by the concept name H and vertical incre-
mentation indicated by the concept name V: if the tree satisfies H, then the value of
the X’-counter is the value of the X-counter incremented by one, while the values of
the Y- and Y’-counter coincide; if the tree satisfies V, it is the other way around. The
remaining job to be accomplished by the query ¢y is then to

(*) ensure that the value of the X’-counter (resp. Y’-counter) in a (black or white) tree
is identical to the value of the X-counter (resp. Y-counter) in its ‘successor trees’, i.e.,
in trees that can be reached by traveling a single step in the torus along the roles % or v.

This behavior of the counters, with the exception of (x), is implemented by the subse-
quent concept inclusions. To increment a counter, we use a concept name F to mark the
bits that have to be flipped. Another concept name S, which is propagated down from
the root to a single leaf, is used to mark the unique bit of the incremented counter such
that (i) all bits to the right are flipped from 1 to 0, (ii) the bit itself is flipped from O to
1, and (iii) all bits to the left remain unchanged. As a special case, all bits flip when the
maximum counter value has been reached. In the following, CIs (16) to (20) implement
the proper marking by F and S, CIs (21) to (23) realize the actual incrementation of
the X-counter to the X’-counter in (white) H-trees, and CI (24) ensures that the Y- and
Y’-counters have the same value in H-trees and in black trees. We also need CIs (21)
to (24) with H replaced by V, X by ¥, X’ by Y’, Y by X, and Y’ by X’.

LoM (=Mx L =My)C S (16)

Lonn(Mxn My)C Fri=S 17)
L nNSCVYrVr[L; > A N-FN=S)UuE-AnS)u

Vr-Vr[Li —» (A;nS)U(=A; N Fni=S)] o<i<n  (18)

L nNFMN=SCVr Vr(l; - F1-S) o<i<n  (19)

L M=Fn=S CVr Vr(l; > -Fn=S) o<i<n ~ (20)

HOL,nFN=SCXn-X 21

HnL,nSc-XxnXx (22)

HNL,N=-Fn-SCXnX)uE=Xn-X) (23)

(BUH)NL,CXnNY)u=yn=y) (24)

To enable the construction of a query ¢ that enforces (x), we add a further (single) r~; r-
successor to each leaf in each tree. At this extra node, which is marked with the concept
name L, 1, the truth value of all concept names A;, X, X', Y, Y’ is complemented com-
pared to its predecessor L,-node. We also introduce a marker concept Q that is true at
the intermediate node between each L,,-node and L,,;-node. This is similar to what is
done in [2, 3]. We call such intermediate nodes Q-nodes.

L, C3r.(Qn3arL,.,) (25)
L,nCCVr ¥r(L, — -0) L,n=-CC VYr Vr(L,;; —» C)
forallCe{A,..., A, X, X", Y, Y} (26)

The construction of Kj is not yet finished. However, it will be more convenient to
construct the remaining part along with the query go. The query is assembled from
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Fig. 3. A counting component of the query ¢, and the two ways to fold it

two types of components: counting components and copying components. We start with
presenting and explaining a simplified version of counting components, which are then
refined in a second step. The final query gy will contain one counting component for
each bit of the counter Aj,...,A, that counts the leaves of our trees. The simplified
version of the counting component for A; is shown as the topmost cycle in Figure 3,
where, for the moment, every arrow should be interpreted as a role atom that uses the
role name r. The goal is that matches of this query component should map (i) v to a
Q-node of a black tree and V' to the Q-node of a white successor tree such that the
two predecessor L,-nodes agree on the value of A; or, symmetrically, (ii) V' to a Q-
node of a white tree and v to the Q-node of a black successor tree such that the two
predecessor L,-nodes agree on the value of A;. By taking the union of all counting
queries for A,...,A, such that the variables v and V' are shared, we thus link leaves
of successor trees that represent the same bit position for the horizontal and vertical
counter, which is the first important step towards enforcing ().

Due to the Q-concept at v and V', each variable labeled with A; or —A; is matched
to an L,-node or an L,.;-node. Ignoring the presence of the role names % and v in the
torus and pretending that white trees are rooted directly on the torus, each match of the
counting component gives rise to one of the two ‘foldings’ presented in Figure 3. These
foldings are obtained by identifying variables that are matched to the same domain
element, as indicated by the dotted lines. Intuitively, the two foldings correspond to
the bit A; being false (upper folding) and true (lower folding). For brevity, we omit the
concept names Q, B, W in the foldings. Since the long sides of the counting component
are of length 2n + 1 (counted in terms of compositions r~; r) and trees are of depth n,
the two trees involved in a match cannot be further away than one step in the torus. Due
to the use of B and W, they cannot be identical.

In the discussion of the simplified counting components above, we have neglected
the presence of the roles / and v in the torus that we need to ‘cross’ when matching
the query in the described way. Refining the counting queries to deal with these roles
is the major challenge in the current reduction, compared to the 2ExpTiME lower bound
in [2, 3] where only a single role r is used. Note that we cannot just introduce a single
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Fig. 5. Side chains for branching (upper) and intermediate (lower) nodes

h-arrow and v-arrow into the counting components since we want to match either % or v,
but not both; moreover, the position of the s-arrow/v-arrow would shift back and forth
with the different ways to fold the query. To solve the problem, we replace each role
composition r~; r in the query (but not in the trees!) with a composition of 18 roles that
we call a ‘meta role’, see Figure 4.

Note that the meta role is symmetric, like the composition r~; r. The aim is that
each meta-role in the refined counting query matches one »~; r-role composition that
connects two successor nodes in a tree. To resolve the mismatch between the role com-
position r~; r of length two and the meta role of length 18, the meta role is designed
such that the remaining parts can be folded away into ‘side chains’ that we will add to
each tree, i.e., chains of roles that start at each tree node. There are five ways to achieve
such a folding, one for each corresponding pair of r~- and r-arrows in the left and right
half of the meta role. For example, we can use the 3rd r~-arrow and the 3rd r-arrow to
match the r~; r-composition in the tree, and then have to fold away the prefix compo-
sition r~; v; r~; v~ before the 3rd r~-arrow, the infix composition h; r—; h™;r ;r; hyry h™
between the 3rd r~-arrow and the 3rd r-arrow, and the postfix composition v;r;v™;r
following the 3rd r-arrow. Observe that the infix composition is symmetric and thus
can be folded into a chain. The postfix composition is the converse of the infix compo-
sition, which will allow us to leave a side chain that we have entered with the postfix
composition using the prefix composition of the subsequent meta role. Similar foldings
allow us to match the r~; r; h; r-compositions required to move up one level in a black
tree and then cross via an h-edge to the root of a white successor tree, the r~; h; r~; r-
compositions that allows us to cross from the root of a white tree to a black tree and
then move down one level, and to perform the two remaining crossing with % replaced
by v.

The scheme for adding side chains is shown in Figure 5, where intermediate tree
nodes (lower node on the center line) receive different chains than branching tree nodes
(upper node on the center line). These chains are added to every node in each tree
with the exception of the roots of black trees, as those are directly on the torus and
adding side chains would violate inverse functionality of 4 and v. Note that the side
chains attached to branching tree nodes are precisely the possible postfix compositions
mentioned above, while the side chains attached to intermediate tree nodes are foldings
of what we called infix compositions above. The chains are generated by the following
ClIs, to be added to Kp. We use the concept Np = (Lo 1 W) U | |i<i<ps1 Li to identify
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Fig. 6. From black to white trees via & (left) and from white to black trees via & (right)

branching tree nodes and N; = 3r.| ||;<,4 Li to identify intermediate tree nodes.

Np C I3hAr3h” Ar.v.Ar.v" Fr. T N . Ar. v Ar. T M

Jh Ar. v Ar.Iv Ar. T AT 27
N, C I~ v A 3hIr- 3 A . TN IRI- A AT O
I e e | A | | e B T [ A (28)

In matches of the refined query, the endpoints of the two foldings shown in Figure 3 will
match at the end of (possibly empty) side chains at the level n+ 1, v and v" will match at
the end of the side chains between the levels n and n + 1, and the adjacent inner nodes
labeled with —A; resp. A; will match at the end of the side chains at the level n. For this
reason, we propagate all relevant concept names to the end of those chains. For C €
{Al,..., Ay, AL, ..., —AL X, —X, Y, =Y}, C € {Q, B, W}, add the concept inclusions

(L,UL, ) NCCYAYrYA™ NrNvYrYv  Yr.C Yy ¥r¥v .Vr.C M

Yh™ NrYv Yr¥v- Yr.C Yy .Vr.C (29)
onC CYvNr ¥v ¥r YaVr ¥Yh™¥r .C'mMYhVYr VYA~ ¥r.C'nN
Vv Yr- YhNr Y™ ¥r.C' nYh~ Vr .C’ (30)

Figure 6 shows, for n = 2, how to fold the refined counting query such that v is mapped

to a Q-node of a black tree and v to a Q-node of a white successor tree that can be
reached via crossing an h-edge in the torus, and likewise for the case where v’ is mapped
to a white tree, and v to a black successor tree reachable via 4. We display only those
side chains that are needed for accommodating the query match. To get started, note
that in the left part of Figure 6, the s-edge in the right half of a meta role as shown in
Figure 4 is matched onto the crossing h-edge in the model. The square and diamond
nodes indicate where the middle and end parts of each meta role in the query match.
Crossings of v-edges are similar.

We now define counting query parts in a more precise way. Note that each counting
query consists of 4n + 4 meta roles. In the subsequent definition, g,/ is a meta role used
in the counting query for A;, where j ranges over 0, ..., 4n + 3.
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Definition 1. Foralli, jwith1 <i<nand0 < j<4n +4, put
anl = (v vy VD 05 v, v v, rs VD O v,
rvy v, v vil), 1 v, il Vi), RO ViDL iV ),

ijoiJ L i i ij L i ij o iJ Lj | hj+l
RV vi3)s T3 Vi VOV Vi) T(0y5, Vig)s iz, vig)s r(viz, v )

with v84"+4 = vf;o. For each i with 1 < i < n, the counting query for A; is
) 0 1 ne2 ne3
g = { A, A, A, A U ) g

0<j<4n+4

with vg’o =, vgzmz = V. The counting query q. for the whole counter is

ge = {B(), ), W), 00N} U | 4l

) I<i<n .

Note that each counting query ¢'. is a cycle as intended since v84"+4 = vgo.

As explained above, the overall counting query g, links a Q-node x; of a tree to the
Q-nodes x; of its successor trees that represent the same bit position for the horizontal
and vertical counters. To establish the central property () in models of K that do not
match the query ¢go to be constructed, it thus remains to modify g such that it matches
only if the truth assignment at the L,-predecessor x| of x; to X" and Y’ is not identical
to the truth assignment at the L,-predecessor x/, of x; to X and Y. This is achieved by
the second type of component queries in g, the copying components.

To prepare for these components, let us distinguish two types of side chains in the
tree nodes: the outgoing chains starting with 4 and v shown to the left in Figure 5 and
the incoming chains starting with the inverses of 4 and v show to the right in Figure 5.
As can be seen in Figure 6, when the query has a match, the incoming chains are used
in a predecessor tree and the outgoing chains are used in a successor tree. We will
distinguish the ends of incoming chains from the ends of the outgoing chains on the
levels n and n + 1 using an additional concept P:

(L, U Ly ) TYRNr Y Nr v Nr YV Vr.PIYv YrNv Vr.P M
Yh™ NrNvNrNv Nr=PrO Vv .Vr.—=P (31)

The copying components take the form displayed in Figure 7, i.e., there are 8 such
components in total. Each component is like the upper half of a counting component,
except that the concept labels have changed to negated conjunctions. In Figure 7, the
four copying components in each row take care of each possible truth assignment to
X’ and Y’ for the predecessor and the corresponding assignment to X and Y for the
successor. We need two queries per truth assignment to deal with the two possible ways
in which a counting query can match for the variables v and v':

(a) v matches into a tree that satisfies B, and v’ into a successor tree that satisfies W;
(b) v/ matches into a tree that satisfies W, and v into a successor tree that satisfies B;

To explain in detail how the copying queries work, consider case (a). Due to the Q-
label in the counting queries, the variables v and v can only be matched to Q-nodes.
Thus assume that v is matched to a Q-node x; of a predecessor tree that satisfies B and
V' to a Q-node x, of a successor tree that satisfies W. The relevant queries are those
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Fig.7. The 8 query copying components

from the first row in Figure 7. Let u be the neighboring variable of v in the copying
components, and u’ the neighboring variable of v'; thus, both u and u’ are labeled with
negated conjunctions. Similar to the situation in Figure 6, u can only be matched to the
ends of two outgoing chains (satisfying P): one chain is at level n and another one is at
level n + 1. Let us refer to the ends of these chains as x| and x/’ respectively. Likewise,
u’ can only be matched to one of the two ends x} and xJ’ of incoming chains (satisfying
—P) at the levels n and n + 1, respectively.

First assume that the truth assignment at x] to X’ and Y’ is identical to the truth
assignment at x} to X and Y and thus there should be no match of the overall query
qo. Take the corresponding counting component from the first row, e.g., the first one
when X’, Y’, X, and Y are all interpreted as true. It can be seen that, in this situation,
the matches with u = x| or with &’ + X/ are not possible because they violate the
concept labels of u and respectively «’. The match u = x{ and ' +— xJ is also not
possible because the path from u to u’ is not long enough. Thus, there is no match of
this component, whence no match of the overall query gg.

Conversely, assume that the truth assignment at x| to X" and Y” is different from the
truth assignment at x, to X and Y, e.g., that x| satisfies X" but x} does not satisfy X.
Since by (26) the truth values of X" and X are complemented at the level n + 1, x| does
not satisfy X" and x7) satisfies X. Then the first two components from the first row have
amatch u — x| and u' — x5 and the next two components have a match  — x| and
u' = xj . All components in the second row have a match due to the use of the concept
name P in the labels (note the swapped v, v"). Thus,the overall query gy matches.

A formal definition of copying queries can be found in [9].

This finishes the construction of the query ¢go and of the part of K that enforces the
torus structure. It remains to encode tilings of the domino system Dj:

TCT U---uTy ,nT; CL 1<i<j<k (32)

T,m3nT; c L T, MmIvT, C L i, jy ¢ H(k, 0y g V (33)
Finally, we enforce the initial condition ¢ = (7, ..., %) of the torus.

{0} € Tp MVA(Ty M Yh(Tg MYh(Tp M. YhTy ..))) (34)

More details regarding the correctness of the reduction can be found in [9]. The most
challenging issue is to show that when Dy admits a tiling with initial condition c® and
we build a model 7 of K that has the intended torus shape, then I|/= go: we need to
prove that there are no unintended foldings and matchings of the query gj.

Theorem 1. Conjunctive query entailment by ALCOIF knowledge bases is co-N2Exp-
Tvme-hard.
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4

Conclusions

We have shown that conjunctive query entailment in the Description Logic ALCOIF
is hard for co-N2ExpTiME. The challenging problem of finding a matching upper bound,
or in fact any elementary upper bound, remains open.
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Abstract. The detection of changes between OWL ontologies is an important
service for ontology engineering. There are several approaches to this problem,
both syntactic and semantic. A purely syntactic analysis of changes is insufficient
to detect changes with logical effect, while the current state of the art in semantic
diffing ignores logically ineffectual changes, which might be of great interest to
the user. We develop an exhaustive categorisation of ineffectual changes, based
on their justifications. In order to verify the applicability of our approach, we col-
lected 88 OWL versions of the National Cancer Institute (NCI) Thesaurus (NCIt),
and extracted all pairwise, consecutive diffs. We discovered a substantial number
of ineffectual changes and, as a result, argue that the devised categorisation of
changes is beneficial for ontology engineers. We devised and applied a method
for performance impact analysis (culprit finding) based on the diff between on-
tologies, and identified a number of culprits between two NClIt versions.

1 Motivation

The comparison of ontologies is a valuable service whether for purely analytic pur-
poses, versioning systems [3], or collaboration. When comparing two ontologies it is
desirable to detect both syntactic and logical changes. OWL defines a high level notion
of syntactic equivalence, so-called “structural equivalence”, which abstracts from such
concrete details as the order of axioms. Associated with structural equivalence is struc-
tural difference. A different syntactic approach is that of an edit-based diff, wherein
change records are produced within the ontology editor being used thereby capturing
the history of change, as implemented in Swoop [8]. The diffs mentioned so far, as well
as PROMPTDIFF [12], do not recognize the logical impact of changes. When analysing
the impact of changes, it is sensible to inspect not only logically effectual changes, but
also ineffectual ones since these might have been intended to have logical impact, and
thus may be of interest to users. Semantic diffs, such as CEX [10,4], OWLDiff [11]
or ContentCVS [7] detect only effectual changes. So on the one hand, syntactic diffs
detect without distinction both effectual and ineffectual changes, and on the other hand
semantic diffs do not analyse ineffectual changes.

In this paper we propose a diff notion that builds on structural diff with a logical im-
pact analysis, which we refer to as intentional difference, incorporating a categorisation
of ineffectual axioms based on their justifications. The goal of this categorisation is to
suggest on the intent behind such changes. For the purpose of verifying the suitability
of our approach, we collected all 88 versions of the National Cancer Institute (NCI)
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Thesaurus (NCIt) available in OWL format, freely downloadable! from the web, and
conducted a diachronic study of the corpus. This study consisted of the extraction of
all pairwise, consecutive diffs between NCIt versions. Our diff revealed a fairly high
number of ineffectual changes across the corpus, averaging at 13% and even reaching
values above 90%. In addition to this we carried out a reasoner performance test to in-
spect the performance impact of both effectual and ineffectual changes throughout the
NCIt. While ineffectual changes carry no logical impact, it is still the case that they have
a performance impact.” The test revealed an unusual performance increase between 2
versions, the latter of which was 89% faster and also slightly bigger in number of ax-
ioms. This motivated a more in-depth performance impact analysis, wherein we attempt
to find subsets of the slow ontology without which the ontology performs considerably
faster (referred to as culprits). We devise a culprit finding method based on the diff
between ontologies, and demonstrate its applicability with a number of culprits for the
NCTt case.

2 Preliminaries

We assume the reader to be reasonably familiar with OWL [13], as well as the under-
lying description logics (DLs) [5], though detailed knowledge is not required. We do
use the notion of entailment [2], which is identical to the standard first order logic en-
tailment (albeit restricted to certain syntactic forms for consequences, typically atomic
subsumption). When comparing two versions of an ontology we refer to the earlier
version as 1, and the more recent as O,. A justification 7 of a consequence « is a
minimal subset of an ontology O that is sufficient for « to hold [9]. The signature of an
ontology O is denoted O. An axiom o € O is logically ineffectual for an ontology O»
iff ¢ Oy and Oy = «a, and we often describe it as having no impact.

3 Ontology Difference

The problem of computing the difference between pairs of ontologies has been ap-
proached both syntactically and semantically. We distinguish two major aspects of on-
tology diffing: (i) the detection of changes, and (ii) the presentation of changes to the
end-user. As we analyse existing diff approaches, we point out that most effort has been
largely dedicated to (7). It is often the case that the output of diff operations is the set of
axioms or terms in the diff. While this may reflect the desired identification of change, it
does not convey sufficient information to the user w.r.t. the intent of changes, or whether
these are effectual or not.

3.1 Diff Desiderata

Table 1 summarises useful features of an ontology diff, and whether existing approaches
exhibit such desiderata.

"http://evs.nci.nih.gov/ftpl/NCI_Thesaurus
% A trivial example is adding all inferred subsumptions, therefore speeding up reasoning tasks.
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Table 1. Desiderata of ontology diffing approaches.

Properties | ContentCVS| CEX|OWLDIff [11][PROMPTDIFF |Swoop Diff
Difference Detection
Syntactic analysis v X v v v
Semantic analysis v v v X X
Effectively computable v X v v v
OWL 2 adequacy v X v X v
Difference Output

Axiom-based v v v X v
Term-based X v X v v
Effectual change analysis v v v N/A N/A
Ineffectual change analysis X X X N/A N/A

Among the stated properties, an ideal logical diff should combine effective com-
putability for OWL 2 ontologies while providing some analysis of the impact of
changes, whether these be effectual or ineffectual. Although this is a complex task
in itself, from Table 1 we see that some diffs analyse effectual changes, but none of
them inspects ineffectual changes. This desideratum leads to the categorisation method
proposed in this paper for the latter type of changes.

3.2 Intentional Diff

Given the limitations of diff approaches described in Table 1 w.r.t. (ii) (as described
at the beginning of Section 3), we build on the notion of structural difference with a
categorisation mechanism for ineffectual axioms. This requires checking if axioms in
the first ontology are entailed by the second (and vice-versa), if that is not the case then
those axioms are regarded as effectual changes.

Consider the following ontologies @1 and 05, which are referred to in examples
throughout this section:

01:{a1: ACC, 02:{512 ACBUC,
as: BLCC, Bs: AL B,
az: FE=D, Bz: BLC,
as: DLCF, Bs: ECD,
Qs FEGa 55: DEEa
ag: GLC HMds.H, Bs: FECBUIC,
ar: FLCI, 6. DLCFEUG,
ag: FCGNINJ} Bs: GLCds.HMH,
ﬁg: FEGHI}

The notion of structural difference is based on OWL’s notion of structural equiva-
lence (denoted =) [13]. The latter deems the order of axioms in an ontology as irrele-

% For DLs up to SROTQ.
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vant, as well as the order of disjunctions or conjunctions between concepts. Therefore
one can rule out differences that an otherwise syntactic equality based diff would detect.

Definition 1 (Structural Difference [6]) The structural difference between O and O4
are the following sets:

e Additions(01,03) = {B € Os | thereisno o € Oy s.t. a =4 [}
e Removals(O1,0s) = {a € Oy | thereisno § € Oy s.t. a =5 [}

So if there is an axiom 3 s.t. 8 € Additions, this implies that 5 € O3 \ Oy, and
similarly for Removals. Examine the following example:

Example 1 From the defined ontologies O1 and Os we have that:

<& AdditiOHS(Ol, 02) = {ﬁla 627 643 657 663 577 ﬁ9}

o Removals(01,0s) = {aq, as, aq, a5, ar, ag}

Note that the axiom s is syntactically equal to B3; as = (3. We also have that
ag =s Ps. Therefore these axioms are not reported as changes.

Based on these two sets, the logical difference pinpoints which axioms in Additions
(or Removals) affect the set of entailments of O (or Os). In other words, it distin-
guishes between those axioms in the structural difference which are entailed by O; (or
05), as follows:

Definition 2 (Logical Difference) The logical difference between Oy and Oy are the
following sets:

EffectualAdditions(Oy, O2) = {f € Additions(O;,02) | O1 ¥ 8}
EffectualRemovals(O;, O2) = {a € Removals(Oy, 02) | Oz ¥ a}
Ineffectual Additions(O;, O2) = Additions \ EffectualAdditions
IneffectualRemovals(O1, O2) = Removals \ EffectualRemovals

The resulting sets Ineffectual Additions and IneffectualRemovals are composed of
those axioms which do not change the set of entailments of O; and O, respectively. An
axiom (3 is in Ineffectual Additions iff Oy = 3, and similarly for IneffectualRemovals
(Example 2).

Example 2 Given the sets Additions and Removals (from Example 1) we have that:

o EffectualAdditions(O;, O2) = {B2, s }

o EffectualRemovals(Oy, 02) = {ay, ag}

o IneffectualAdditions(O4, Oz) = {81, B4, B5, B7, Bo}
o IneffectualRemovals(O1, O2) = {aq, as, a5, ar}

In order to characterise ineffectual changes, we devise a categorisation of axioms
based on their justifications as follows:

Definition 3 (Intentional difference) An axiom o € IneffectualRemovals is:
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e Strengthened, if there is a J for a with J N Effectual Additions # 0.

e Rewritten, if there is a justification J for a with J N Additions # (), and o = J.
If J C Additions then « is a complete rewrite, otherwise a partial rewrite.

e Redundant, if there is a J for a with 7 C (O1 N Os). If J C (01 N Oz) U
Ineffectual Additions then « is an avoided redundancy.

To obtain the corresponding categories for added axioms 3 € Ineffectual Additions, re-
place o, Additions, Effectual Additions and Ineffectual Additions with 8, Removals,
EffectualRemovals and IneffectualRemovals respectively. In Ineffectual Additions
the label for the criteria of Strengthened axioms changes to Weakened axioms.

The intentional difference gives possibly overlapping sets of axioms, as demon-
strated in Example 3. Also we note that these categories are exhaustive, in the sense
that there is no axiom such that the justifications of which do not imply one of the
defined categories. Consider an axiom « and ontologies O and O, with a € O,
but @« ¢ Oy, and Oy | «. Then there must be a justification 7 C (& for
a. If T C (01 N Os) U Ineffectual Additions then « is redundant, otherwise if
J N Effectual Additions # (, then « is strengthened.

Example 3 Given the sets IneffectualAdditions and IneffectualRemovals (from Ex-
ample 2) we have that:

01 —0 2 02 —0 1
o Rewritten = {a3} o Rewritten = {9}
o Strengthened = {ay } o Weakened = {87, B9}
o Redundant = {ay, a3, a5, a7} | ¢ Redundant = {31, B4, Bs, 87, Bo }

Note that the existence of a rewritten axiom from O1 to Os does not imply that the
same holds in the opposite direction. This is applicable to all categories. Also we can
have that an axiom is in more than one categorical set, exemplified as follows:

Rewritten and redundant The axiom as has been rewritten from O1 to Os. The justi-
fication for ag is J1 = { B4, Bs}, which is categorised as a rewrite since ag = J.
However, since {4, 5} € IneffectualAdditions, [J; also indicates a redundancy.
So the axiom a3 is part rewritten part redundant.

Strengthened and redundant Consider axiom «y; we can see that Oy = a. A jus-
tification Jy for an is J1 = {Ba2, B3}, which indicates a strengthening (since
B2 € EffectualAdditions), as well as a redundancy (83 € O1NOs). Another justi-
Sication Jo = {1, B3} indicates a strict redundancy; 51 € IneffectualAdditions.

Rewritten, weakened and redundant Axiom By is categorised as rewritten, weak-
ened and redundant. A justification for By is J1 = {as,ar}, where By = 1,
pointing to a rewrite. We also have that {as, a7} € IneffectualRemovals, there-
fore being categorised as redundant as well. A second justification is J» = {asg},
and since ag € EffectualRemovals, By is categorised as weakened.

While the logical diff identifies those logically ineffectual axioms in the difference,
it does not suggest on the intent of change or present appropriate reasons for it, i.e.
justifications. With the categorisation method described, users have, at the very least, an
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indicator as to why such axioms have no impact. Note that these categories are merely
suggestive of the developers’ intent. In order to ensure the real intent one would require
either a detailed edit-based diff or contact with the ontology developers.

4 Empirical results

In order to substantiate our approach to ontology diffing, we carried out a diachronic
study of the NCIt using the methods described. The NCIt archive® contains 88 ver-
sions of the ontology in OWL format, two of which were unparsable (releases 05.03F
and 05.04d) with the OWL APL* and consequently Protégé.’> The experiment ma-
chine is an Intel Xeon Quad-Core 3.20GHz, with 12Gb DDR3 RAM dedicated to
the Java Virtual Machine (JVM v1.5). The system runs Mac OS X 10.6.7, and all
tests were run using the OWL API (v3.1). All gathered test data is available from
http://owl.cs.manchester.ac.uk/ncit,apartofitis published on Google
Public Data Explorer,® and can be visualised at http://bit.1ly/JFKU3R.

4.1 Axioms Difference

The logical difference throughout the NCIt time-line consists mostly of subclass axioms
(see Figure 1, and for complete results the mentioned website), with an average of 75%
(excluding O14 and O;¢). The average proportion of logical changes is 15%, and the
remaining are annotation changes. It should be noted that, despite the large number of
annotations, NCIt developers devoted considerable effort towards the logical part of the
ontology. Version Og is a curious case, where a large number of classes (5170) were
renamed,’ and around 220,000 annotations and 14,418 subclass axioms were deleted.
This indicates a possible re-modelling, or mass-renaming of classes in the NCIt at this
point. More evidence to support this includes the addition of 30,859 subclass axioms,
9,070 classes and 23 object properties (and roughly 240,000 entity annotations). Simi-
larly in Og5 a series of changes were carried out to the subsumption hierarchy, with the
removal of 8,231 subclass axioms and 2,899 equivalent class axioms compared to the
previous version, and also the addition of 10,591 subclass axioms and 3,011 equivalent
class axioms.

There is a fair amount of ineffectual removals in the corpus, reaching values of 93%
in Qg9 or 97% in Oy, and with an average of 35% of all logical removals (see Figure
1). Out of these ineffectual removals 92% turned out to be strengthened axioms (e.g.
047 has 3,104 strengthened axioms out of 3,843 removals), while 42% were removed
redundancies. On average 5% of logical additions are ineffectual, yet there are some
high values such as 61% in Os4. Among these 73% are added redundancies, and 82%
are weakened axioms. We also identified a number of rewrites in the corpus. Particularly

http://evs.nci.nih.gov/ftpl/NCI_Thesaurus
“http://owlapi.sourceforge.net/

5 http://protege.stanford.edu/
Shttp://www.google.com/publicdata/home

7 Since throughout the NCIt evolution no classes are removed.
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from O39 to O35 there are 227 rewritten axioms, typically taking a form as shown in
Example 4.

Example 4 A = B (3r.D) M (3s.F) N (Vt.G) rewritten into:
A=Bn((3r.D)n(3s.F)) N (Vt.G)

This kind of change is not only syntactic but also trivial and easily detected. While
ideally the underlying structural diff would not include these, at least with our categori-
sation and alignment with source axioms, it is easy to spot and recognize the triviality.
One can also argue that certain ineffectual changes are in fact refactorings of one version
into another, albeit in the case of strengthened and weakened axioms one could say that
the intention was exactly that but turned out not to have the desired effect. The distinc-
tion here should be made that the strengthening of an axiom does not necessarily mean
strengthening of the ontology. Consider an ontology O1 = {a; : AT B,as : AC C},
and a change of o1 into A T B M C'. The axiom «; was strengthened, but the resulting
ontology O = {ay : A T BN C,ay : A C C} was not. However, if we change
ag € Oz into A T C'1 D, then we can say both the axiom «g and the ontology O are
strengthened.

We noted a recurring trend throughout the NCIt corpus, which is the addition of
redundancies. This trend has more incidence up until Og, but there are high values in
the rest of the corpus as well, such as Qg5 with 174 added redundant axioms (see Figure
1). The highest value found is in O17, where 482 redundant axioms were added. Upon
investigating this phenomenon, we found that such added redundancies are, in most or
all cases, entailments from previous versions. These entailments are those derived from
the transitivity of the subclass relationship, e.g. O1 = {a1 : AC Ir.B,ay: C C A},
Os = {a1, @z, a3 : C C Ir.B}. From the example we see that o3 is redundant; C C A
suffices for C' C Jr.B to hold.

Overall the average of ineffectual changes is 13%, while the remaining are
effectual. However there are cases where the number of ineffectual changes is quite
high, such as Os4 where 52% of logical changes are ineffectual, as well as Os7, Oag
and O3 with 48% each. In retrospect this is a high amount of changes that would go
unexplained by existing diffs, and while structural diff captures this it does not analyse
the logical impact of such changes.

4.2 Reasoner Performance

It is often the case that, for reasoner testing, only a few or even one ontology version
is tested against. There is no reported reasoner benchmark using a corpus of the same
kind as the one here described. So, in the process of analysing the NCIt, we evaluated
how modern reasoners handle all published OWL versions of the NCIt. Three major DL
reasoners were put to the test; FaCT++ (v1.5.1), Pellet (v2.2.2) and HermiT (v1.3.3).
Since we also possess the axioms in the difference between NCIt versions, this allows
us to test incremental reasoning as well.® In Figure 2 we plot the reasoning times in a

8 As implemented within Pellet.
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Fig. 1. Logical diff across selected versions of the NCIt (number of axioms).

logarithmic scale of each reasoner, comprising consistency checking, classification and
concept satisfiability (denoted RT(Q)). Out of the three reasoners put to test, FaCT++
behaves consistently faster than Pellet and HermiT (014 and O;4 aside).

This performance test also shows that, to some degree, incremental reasoning pro-
vides a big advantage when handling the NCIt (or other large ontologies) in terms of
reasoning time. However it did not terminate upon classifying 014 and, like HermiT,’
O16. This is due to the abundance of individuals: incremental reasoning is based on
locality-based modules [1], and these behave poorly in the presence of individuals.
Aside from these two cases, the timings gathered using the incremental classifier were
consistently below 5 seconds per version, across the corpus.

5 Culprit Finding

Upon completing the reasoner performance test we noted that, from Org to Ogg
(in Figure 2), there is a significant performance improvement in HermiT. While our
initial premise was to categorise logical diff-based impact between ontologies, now
we encounter another problem: identifying and dissecting performance impact. We
ascertained that the source of the bad performance is in the diff removals between
those versions (R = Removals(Org, Ogg)), as with the additions of Og, the rea-
soning time was substantially lower. In order to investigate this phenomenon, we
started with a brute-force culprit finding approach: for each axiom a € R check if
RT(Osp U {a}) > RT(Osp). The size of R is 4,583 axioms, making this an expen-
sive approach. It is also naive in the sense that culprits are not necessarily singleton
sets. Nevertheless we examined RT(Ogo U {aw € R}) and found 13 (effectual) axioms
which yield reasoning times ranging from 76 to 8,490 seconds. Surprisingly adding all

® HermiT returns a “StackOverflowError” when classifying O, both in Protégé and OWL APL.
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Fig. 2. Reasoner performance across NCIt (in seconds).

13 axioms to Ogg results in a reasoning time of little over 9 hours. Thus some of the
non-culprit additions exhibit a protective effect.

However, this approach is not only computationally expensive, but also relies on
the existence of a diff which is not always available. We might want, given an “un-
manageable” ontology, to find a subset thereof with which one can work with. As such
we carried out a test partly based on the method described in [14], wherein we test the
satisfiability checking time of each concept in the ontology. Such a test may be sugges-
tive of the amount of time the reasoner spends on those concepts during classification
(our culprit finding method is described in Algorithm 1). In order to extract a logically
coherent subset of the ontology, which would be useful for repairing the culprit, we use
the notion of a locality-based module [1]. We found a total of 12 concepts which have
satisfiability checking times far greater than the average (see Table 2). The locality-
based modules for the signature of the usage closure of each concept are significantly
smaller than Oz, the largest of which has 4,305 axioms (out of 116,587 logical ax-
ioms in O7g). We found 9 modules M, for which RT(O~g \ M;) is nearly an order of
magnitude faster than RT(Or9) (RT(Or9) = 430 seconds).

6 Discussion and Outlook

We have demonstrated with the diachronic study of the NCIt that merely syntactic diffs
do not provide nearly enough insight into the impact of changes carried out, since log-
ical differences are not identified. We found that ineffectual changes exist and account
for a significant amount of logical changes throughout the NCIt. Such changes are dis-
carded by semantic diffs, yet we show that they may provide helpful modelling insights.
The axiom categorisation we devised allows ontology engineers to understand the lack
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Algorithm 1 Identify subsets of an ontology O for which reasoning times are consid-
erably better than the original ontology.

Input: Ontology O
Output: Set of modules .S, wherein for each M, € S: RT(O \ M;) < RT(0O)

S < 0; BadConcepts < ()
for all concepts C' € O do
Times < Times U (C, SATtime(C))
end for B
forall C' € O do
if SATtime(C) > average(SATtimes € Times) x 50 then
BadConcepts < BadConcepts U C
end if
end for
for all C' € BadConcepts do
Y = {terms ¢t € Usage(C)}
M =T L*mod(X)
if RT(O \ M) < RT(O) then

S+ SuM

end if
end for
return S
Concept #M; | HermiT-RT (O \ M;) | Pellet-RT(O \ M)
Cerebral_Glioblastoma 3029 56.7 38.1
TP53_Gene 3933 50.4 61.5
TP53_wt_Allele 3871 51.8 443
Erlotinib_Paclitaxel _Trastuzumab | 4021 53.9 94.6
Tumor_Protein-p53 3894 51.4 102.2
Platelet-De?lved,Gro'wthFactor, 3201 548 606
Receptor-Like_Protein
HRAS _wt_Allele 3302 63.1 442
p21_H-Ras_Protein 3329 62.9 89.7
AC-T-T_Regimen 4305 50.7 97.2

Table 2. Extracted culprits and corresponding concepts found in O (time in seconds).

of impact of their changes, and possibly refine these before publishing newer versions,
particularly if redundancies are present.

From our structural analysis, we were able to gain considerable insight into the NCIt
and its evolution. By looking at the entire history, it became relatively straightforward
to identify tool artefacts and significant events and thus to disentangle accidental and
essential features of the ontology. We are currently confirming our interpretation of var-
ious events with the EVS and thus far it conforms to their understanding of the history.
Such an analysis is proving useful to the EVS as they find instances of the OWL version
that do not correspond with their intent, and thus allowing them to publish corrections.
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In the future we plan to apply a similar categorization to logically effectual changes. We
also intend to examine the stability of entailments, i.e., whether an entailment persists
throughout some or all NClIt versions. Finally, more elaborate forms of structural anal-
ysis, such as examining the justificatory structure [9], hold great promise for exposing
the axiomatic richness of the modelling.

The reasoner performance results identify areas of performance weakness that
would not have been evident using standard “grab a version” methods. Furthermore,
we demonstrate the advantage (in terms of time) of using incremental reasoning for on-
tology engineering tasks, especially when large and complex ontologies are involved.
We found in the NCIt corpus a realistic case for performance impact analysis, based on
which we identified a number of meaningful culprits. The preliminary culprit finding
methods and results described indicate that this approach works reasonably well. How-
ever the question of how to present these culprits to, and validate our approach with
users still remains.

References

1. Cuenca Grau, B., Horrocks, 1., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. of Artificial Intelligence Research 31 (2008)

2. Cuenca Grau, B., Horrocks, 1., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2:
The next step for OWL. J. of Web Semantics (2008)

3. Franconi, E., Meyer, T., Varzinczak, I.: Semantic diff as the basis for knowledge base ver-
sioning. In: Proc. of NMR-10 (2010)

4. Gatens, W., Konev, B., Ludwig, M., Wolter, F.: Versioning based on logical difference for
lightweight description logic terminologies. In: Proc. of ARCOE-11 (2011)

5. Horrocks, 1., Kutz, O., Sattler, U.: The even more irresistible SROZQ. In: Proc. of KR-06
(2006)

6. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, 1., Berlanga Llavori, R.: Building ontolo-
gies collaboratively using ContentCVS. In: Proc. of DL 2009. CEUR (http://ceur-ws.
org/), vol. 477 (2009)

7. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga Llavori, R.: Supporting concur-
rent ontology development: Framework, algorithms and tool. Data and Knowledge Engineer-
ing 70(1) (2011)

8. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.: Swoop: A Web ontology
editing browser. J. of Web Semantics 4(2) (2006)

9. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Proc. of ISWC/ASWC (2007)

10. Konev, B., Lutz, C., Walther, D., Wolter, F.: Logical difference and module extraction with
CEX and MEX. In: Proc. of DL 2008. CEUR (http://ceur—-ws.org/), vol. 353 (2008)

11. Kfemen, P., Abrahamdik, J., Pufler, J., Smid, M.: OWLDiff (2008), http://krizik.
felk.cvut.cz/km/owldiff/

12. Noy, N.E.,, Musen, M.A.: PROMPTDIFF: A fixed-point algorithm for comparing ontology
versions. In: Proc. of AAAI-02 (2002)

13. W3C OWL Working Group: OWL 2 Web Ontology Language: Document overview. W3C
Recommendation (27 Oct 2009), http://www.w3.0org/TR/owl2-syntax/

14. Wang, T.D., Parsia, B.: Ontology performance profiling and model examination: First steps.
In: Proc. of ISWC/ASWC-07. LNCS, vol. 4825. Springer-Verlag (2007)

157



Rewriting Ontological Queries into Small Nonrecursive
Datalog Programs™

Georg Gottlob! and Thomas Schwentick?

! Department of Computer Science, University of Oxford gottlob@cs.ox.ac.uk
2 Fakultit fiir Informatik, TU Dortmund t homas . schwent ick@udo.edu

Abstract. We consider the setting of ontological database access, where an A-
box is given in form of a relational database D and where a Boolean conjunctive
query g has to be evaluated against D modulo a 7-box Y formulated in DL-
Lite or Linear Datalog™. It is well-known that (X, q) can be rewritten into an
equivalent nonrecursive Datalog program P that can be directly evaluated over
D. However, for Linear DatalogjE or for DL-Lite versions that allow for role
inclusion, the rewriting methods described so far result in a nonrecursive Datalog
program P of size exponential in the joint size of X' and g. This gives rise to
the interesting question of whether such a rewriting necessarily needs to be of
exponential size. In this paper we show that it is actually possible to translate
(X, ) into a polynomially sized equivalent nonrecursive Datalog program P.

1 Introduction

This paper is about query rewriting in the context of ontological database access. Query
rewriting is an important new optimization technique specific to ontological queries.
The essence of query rewriting, as will be explained in more detail below, is to com-
pile a query and an ontological theory (usually formulated in some description logic or
rule-based language) into a target query language that can be directly executed over a
relational database management system (DBMS). The advantage of such an approach
is obvious. Query rewriting can be used as a preprocessing step for enabling the ex-
ploitation of mature and efficient existing database technology to answer ontological
queries. In particular, after translating an ontological query into SQL, sophisticated
query-optimization strategies can be used to efficiently answer it. However, there is
a pitfall here. If the translation inflates the query excessively and creates from a rea-
sonably sized ontological query an enormous exponentially sized SQL query (or SQL
DDL program), then the best DBMS may be of little use.

Main results. We show that polynomially sized query rewritings into nonrecur-
sive Datalog exist in specific settings. Note that nonrecursive Datalog can be efficiently
translated into SQL with view definitions (SQL DDL), which, in turn, can be directly
executed over any standard DBMS. Our results are — for the time being — of theoret-
ical nature and we do not claim that they will lead to better practical algorithms. This
will be studied via implementations in the next future. Our main result applies to the

* Future improvements and extended versions of this paper will be published in arXive-CORR
athttp://arxiv.org/abs/1106.3767
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setting where ontological constraints are formulated in terms of tuple-generating de-
pendencies (tgds), and we make heavy use of the well-known chase procedure [17, 14].
For definitions, see Section 2. The result after chasing a tgd set 2 over a database D is
denoted by chase(D,X).

Consider a set X' of tgds and a database D over a joint signature R. Let g be a
Boolean conjunctive query (BCQ) issued against (D,X'). We would like to transform ¢
into a nonrecursive Datalog query P such that (D,X) |= ¢ iff D |= P. We assume here
that P has a special propositional goal goal, and D |= P means that goal is derivable
from P when evaluated over D. Let us define an important property of classes of tgds.

Definition 1. Polynomial witness property (PWP). The PWP holds for a class C of
tgds if there exists a polynomial -y such that, for every finite set X C C of tgds and each
BCQ q, the following holds: for each database D, whenever (D,X) |= q, then there is
a sequence of at most v(| X, |q|) chase steps whose atoms already entail q.

Our main technical result, which is more formally stated in Section 3, is as follows.
Theorem 1. Let X' be a set of tgds from a class C enjoying the PWP. Then each BCQ
q can be rewritten in polynomial time into a nonrecursive Datalog program P of size
polynomial in the joint size of g and X, such that for every database D, (D,X) |= q if
and only if D |= P. Moreover, the arity of P is max(a + 2,9), where a is the maximum
arity of any predicate symbol occurring in X, in case a sufficiently large linear order
can be accessed in the database, or otherwise by O(max(a + 2,9) - logm), where m
is the joint size of q and 3.

Other Results. From this result, and from already established facts, a good number
of further rewritabliity results for other formalisms can be derived. In particular, we can
show that conjunctive queries based on other classes of tgds or description logics can
be efficiently translated into nonrecursive Datalog. Among these formalisms are: linear
tgds, originally defined in [5] and equivalent to inclusion dependencies, various major
versions of the well-known description logic DL-Lite [9, 20], and sticky tgds [8] as well
as sticky-join tgds [6, 7]. For space reasons, we will just give an overview and very short
explanations of how each of these rewritability results follows from our main theorem.

Structure of the Paper. The rest of the paper is structured as follows. In Section 2
we state a few preliminaries and simplifying assumptions. In Section 3, we explain the
idea of the proof of the main result. Section 4, contains the other results following from
the main result. A brief overview of related work concludes the paper in Section 5.

2 Preliminaries and Assumptions

We assume the reader to be familiar with the terminology of relational databases and
the concepts of conjunctive query (CQ) and Boolean conjunctive query (BCQ). For
simplicity, we restrict our attention to Boolean conjunctive queries g. However, our
results can easily be reformulated for queries with output, see the extended version of
this paper [13]).

Given a relational schema R, a tuple-generating dependency (tgd) o is a first-order
formula of the form VXVY ¢(X,Y ) —»3Z ¥ (X, Z), where (X ,Y ) and ¥ (X, Z)
are conjunctions of atoms over R, called the body and the head of o, denoted body (o)
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and head (o), respectively. We usually omit the universal quantifiers in tgds. Such o is
satisfied in a database D for R iff, whenever there exists a homomorphism / that maps
the atoms of ¢(X,Y") to atoms of D, there exists an extension i’ of / that maps the
atoms of ¥ (X, Z) to atoms of D. All sets of tgds are finite here. We assume in the rest
of the paper that every tgd has exactly one atom and at most one existentially quantified
variable in its head. A set of tgds is in normal form if the head of each tgd consists
of a single atom. It was shown in [4, Lemma 10] that every set X' of TGDs can be
transformed into a set X’ in normal form of size at most quadratic in | X, such that X
and X’ are equivalent with respect to query answering. The normal form transformation
shown in [4] can be achieved in logarithmic space. It is, moreover, easy to see that this
very simple transformation preserves the polynomial witness property.

For a database D for R, and a set of tgds X’ on R, the set of models of D and X,
denoted mods(D,X), is the set of all (possibly infinite) databases B such that (i) D C B
and (ii) every o € Y is satisfied in B. The set of answers fora CQ ¢ to D and Y, denoted
ans(q, D, %), is the set of all tuples a such that a € ¢(B) for all B € mods(D,X'). The
answer for a BCQ g to D and X is yes iff the empty tuple is in ans(q, D,X), also
denoted as D U X' |=q.

Note that, in general, query answering under tgds is undecidable [2], even when the
schema and tgds are fixed [4]. Query answering is, however, decidable for interesting
classes of tgds, among which are those considered in the present paper.

The chase procedure [17, 14] uses the following oblivious chase rule.

TGD CHASE RULE. Consider a database D for a relational schema R, and a tgd o
on R of the form ¢(X,Y) — IZ¥(X, Z). Then, o is applicable to D if there
exists a homomorphism /4 that maps the atoms of #(X,Y") to atoms of D. Let o be
applicable to D, and h; be a homomorphism that extends h as follows: for each X; €
X, hi(X;) = h(X;); foreach Z; € Z, h1(Z;) = zj, where z; is a fresh null value
(i-e., a Skolem constant) different from all nulls already introduced. The application of
o on D adds to D the atom hy (¥ (X, Z)) if not already in D (which is possible when
Z is empty). m

The chase algorithm for a database D and a set of tgds Y consists of an exhaustive
application of the tgd chase rule in a breadth-first (level-saturating) fashion, which leads
as result to a (possibly infinite) chase for D and Y. Each atom from the database D is
assigned a derivation level. Atoms in D have derivation level 0. If an atom has not
already derivation level < ¢ but can be obtained by a single application of a tgd via the
chase rule from atoms having derivation level < 4, then its derivation level is ¢ + 1. The
set of all atoms of derivation level < k is denoted by chase” (D, ). The chase of D
relative to X, denoted chase(D, %), is then the limit of chase”(D,%) for k — oc.

The (possibly infinite) chase relative to tgds is a universal model, i.e., there exists
a homomorphism from chase(D,X') onto every B € mods(D,X') [11,4]. This result
implies that BCQs ¢q over D and X' can be evaluated on the chase for D and X, i.e.,
DU X [ qisequivalent to chase(D,X) = q.

A chase sequence of length n based on D and X is a sequence of n atoms such that
each atom is either from D or can be derived via a single application of some rule in X’
from previous atoms in the sequence. If S is such a chase sequence and ¢ a conjunctive
query, we write S’ |= ¢ if there is a homomorphism from ¢ to the set of atoms of S.
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We assume that every database has two constants, 0 and 1, that are available via
the unary predicates Zero and One, respectively. Moreover, each database has a binary
predicate Neq such that Neq(a, b) is true precisely if a and b are distinct values.

We finally define N-numerical databases. Let D be a database whose domain does
not contain any natural numbers. We define Dy as the extension of D by adding the
natural numbers 0, 1, ..., N to its domain, a unary relation Num that contains exactly
the numbers 1,..., N, binary order relations Succ and < on 0,1, ..., N, expressing
the natural successor and “<” orders on N, respectively. > We refer to Dy as the
N-numerical extension of D, and, a so extended database as N -numerical database.
We denote the total domain of a numerical database Dy by domy (D) and the non-
numerical domain (still) by dom(D). Standard databases can always be considered to
be N-numerical, for some large N by the standard type integer, with the < predicate
(and even arithmetic operations). A number maxint corresponding to /N can be defined.

3 Main Result

Our main result is more formally stated as follows:

Theorem 1. Let C be a class of tgds in normal form, enjoying the polynomial wit-
ness property and let y be the polynomial bounding the number of chase steps (with
~v(n1,n2) > max(ny,ns), for all naturals ny,ns). For each set X C C of tgds and
each Boolean CQ q, one can compute in polynomial time a nonrecursive Datalog pro-
gram P of polynomial size in |X| and |q|, such that, for every database D it holds
D.¥ = qifand only if D |= P. Furthermore:

(a) For N-numerical databases D, where N > ~v(| X, |q|), the arity of P is max(a +
2,9), where a is the maximum arity of any predicate symbol occurring in X;

(b) otherwise (for non-numerical databases), the arity of P is O(max(a + 2,9) -
logv(|X|, lq])), where a is as above.

We note that NV is polynomially bounded in |X| and |g| by the polynomial  that
only depends on C. The rest of this section explains the basic ideas of the proof of this
result. A more detailed proof is given in [13].

High-level idea of the proof. We first describe the high level idea of the con-
struction of the Datalog program P. It checks whether there is a chase sequence
S = ty,...,ty with respect to D and 3/ and a homomorphism h from g to (the set
of atoms of) S. To this end, P consists of one large rule rg., of polynomial size in N
and some shorter rules that define auxiliary relations and will be explained below.

The aim of 7,0, is to guess the chase sequence .S’ and the homomorphism ¢ at the
same time. We recall that N does not depend on the size of D but only on |X| and
l¢| and thus 74, can well be as long as the chase sequence and ¢ together. One of the
advantages of this approach is that we only have to deal with those null values that
are actually relevant for answering the query. Thus, at most N null values need to be
represented.

3 Of course, if dom(D) already contains some natural numbers we can add a fresh copy of
{0,1,..., N} instead.
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One might try to obtain 74, by just taking one atom A; for each tuple ¢; of S and
one atom for each atom of ¢ and somehow test that they are consistent. However, it is
not clear how consistency could possibly be checked in a purely conjunctive fashion.*
There are two ways in which disjunctive reasoning is needed. First, it is not a priori
clear on which previous tuples, tuple ¢; will depend. Second, it is not a priori clear to
which tuples of S the atoms of ¢ can be mapped.

To overcome these challenges we use the following basic ideas.

(1) We represent the tuples of .S (and the required tuples of D) in a symbolic fashion,
utilizing the numerical domain.

(2) We let P compute auxiliary predicates that allow us to express disjunctive relation-
ships between the tuples in S.

Example 1. We illustrate the proof idea with a very simple running example, shown in
Figure 1.

(@ X () ¢: Rg,(X Y), Rs(Y, X)
o1: Ri(X,Y)—3Z Ry(X,Y,Z) (c) D:
g2. RQ(K Z) — 33X R4(X, Y, Z)
o3 Rs(X,Z) — 3Y Ru(X,Y, 2)
o4: R4(X1,Y1,Zl),R4(X27Y2,Z2) — R5(X1,ZQ

Fig. 1. Simple example with (a) a set X' of tgds, (b) a query g and (c) a database D.

A possible chase sequence in this example is shown in Figure 2(a). The mapping X +— «
and Y — g, maps R5(X,Y) to t5 and R3(Y, X) to tg, thus satisfying g.

@ (b) 17| fi|xin|Ti2|Tiz|si|cit|ciz
_ t1:R1(a7b) - t1: R (a ) 1/1{0|a|b|a (0|00
- t22R4(a,b, J_z) — ta: R4(a b J_Q) 214111 a b 2111
_ tgiRQ(e,g) _— R2(6 g,e ) (C) 3/2(0]| e g|e 0|00
— ta: Ra(La,e,9) — ta: Ra(La,e,9) 411 4 1e|g|2|3)3
- t5: Rs(a,g) - t5: Rs(a,g,a) 55/1fajg|ald 2 4
- te: R3(g,a) - t¢: R3(g,a,9) 63|10/ g]a]g[0]0]0

Fig.2. (a) Example chase sequence, (b) its extension and (c) its encoding. ¢2 is obtained by
applying o1 to t;1. Likewise ¢4 and ¢5 are obtained by applying o2 to t3 and o4 to t2 and t4,
respectively.

Notation and conventions. Let C be a class of tgds enjoying the PWP, let X' be a set
of tgds from C, and let ¢ be a BCQ. Let Ry, ... R,, be the predicate symbols occurring
in X or in q. We denote the number of tgds in X by £.

* Furthermore, of course, there are no relations to which the atoms A; could possible be
matched.
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Let N := ~(|X], |q|) where ~ is as in Definition 1, thus N is polynomial in |X'| and
|g|- By definition of N, if (D,X) = ¢, then ¢ can be witnessed by a chase sequence
I' of length < N. Our assumption that v(ny,ng) > max(ny, ng), for every ny, ns,
guarantees that IV is larger than (i) the number of predicate symbols occurring in X, (ii)
the cardinality |g| of the query, and (iii) the number of rules in X.

For the sake of a simpler presentation, we assume that all relations in X' have the
same arity a and all rules use the same number k of tuples in their body. The latter
can be easily achieved by repeating tuples, the former by filling up shorter tuples by
repeating the first tuple entry. Furthermore, we only consider chase sequences of length
N. Shorter sequences can be extended by adding tuples from D.

Example 2. Example 1 thus translates as illustrated in Figure 3. The (extended) chase
sequence is shown in Figure 2 (b). The query g is now satisfied by the mapping X +— a,
Y g, U g,V a, thus mapping R5(X,Y, X) to t5 and R3(Y, X,Y) to ¢s.

(a) X
1. Rl(X, Y,X),R1(X,Y,X) — 37 ]%4()(7 Y, Z) (b) q: R5(X,Y2U),R3(Y,X, V)
o2 Ro(Y,Z,Y),Ra(Y,Z,Y) = 3X Ry(X,Y,Z) (c) D:

o3: Rs(X,Z,X),Rs(X,Z,X) — 3Y Ra(X,Y, Z) Ri || R || Rs
oa: Ra(X1,Y1,21), Ra(Xa, Yo, Zs) — alblal [e[gle] g]alg
Rs(X1, Z2, X1) cldjc glhlg

Fig. 3. Modified example with (a) a set X of tgds, (b) a query g and (c) a database D.

Proof idea (continued). On an abstract level, the atoms that make up the final rule
Tg0a1 Of P can be divided into three groups serving three different purposes. That is, 7goal
can be considered as a conjunction Typles A Tchase /A Tquery- Each group is “supported”
by a sub-program of P that defines relations that are used in 7., and we refer to these
three subprograms as Piypies, Pehase and Pyery, respectively.

— The purpose of 7ypies is basically to lay the ground for the other two. It consists of
N atoms that allow to guess the symbolic encoding of a sequence S = t1,...,txn.

— The atoms of 7, are designed to verify that S is an actual chase sequence with
respect to D.

— Finally, 7query checks that there is a homomorphism from g to S.

Piuples and 7ypres.  The symbolic representation of the tuples ¢; of the chase se-
quence S uses numerical values to encode null values, predicate symbols R; (by 7),
tgds o; € X' (by j) and the number of a tuple ¢; in the sequence (that is: 7).

In particular, the symbolic encoding uses the following numerical parameters.’

— 7, to indicate the relation I, to which the tuple belongs;
— f; to indicate whether ¢; is from D (f; = 0) or yielded by the chase ( f; = 1);

’ We use the names of the parameters as variable names in 7goq1 as well.
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— Furthermore, z;1,...,x;, represent the attribute values of ¢; as follows. If the j-
th attribute of ¢; is a value from dom(D) then x;; is intended to be that value,
otherwise it is a null represented by a numeric value.

Since each rule of 2 has at most one existential quantifier in its head, at each chase step,
at most one new null value can be introduced. Thus, we can unambiguously represent
the null value (possibly) introduced in the j-th step of the chase by the number ;.

The remaining parameters s; and c;1, . . ., ;. are used to encode information about
the tgd and the tuples (atoms) in S that are used to generate the current tuple. More
precisely, s; is intended to be the number of the applied tgd o, and ¢;1,. .., ¢, are
the tuple numbers of the k& tuples that are used to yield ¢;. In the example, e.g., 5 is
obtained by applying o4 to to and t4. The encoding of our running example can be
found in Figure 2 (c).

We use a new relational symbol 7" of arity a + k + 4 not present in the schema of
D for the representation of the tuples from S. Thus, rupies is just:

T(1, 71, f1,%11, -+, T1as S1,Cl1s - - -5 Clk)s - - -
T(N,TN,fN,le, ooy INagySNsCN1y--- ,CNk)-

The sub-program Pipes is intended to “fill” 1" with suitable tuples. Basically, T'
contains all encodings of tuples in D (with f; = 0) and all syntactically meaningful
tuples corresponding to possible chase steps (with f; = 1).

Prhase and 7cpase- The following kinds of conditions have to be checked to ensure
that the tuples “guessed” by rpies constitute a chase sequence.

(1) For every ¢, the relation R, of a tuple ¢; has to match the head of its rule o, .
— In the example, e.g., 74 has to be 4 as the head of o5 is an R4-atom.
(2) Likewise, for each i and j the relation number of tuple ¢.,, has to be the relation
number of the j-th atom of o,.
— In the example, e.g., ro must be 4, as c5 1 = 2 and the first atom of o5, = 04 is
an R4-atom.
(3) If the head of o, contains an existentially quantified variable, the new null value is
represented by the numerical value <.
— This is illustrated by ¢4 in the example: the first position of the head of rule 2
has an existentially quantified variable and thus x4 ; = 4.
(4) If avariable occurs at two different positions in o, then the corresponding positions
in the tuples used to produce ¢; carry the same value.
(5) If a variable in the body of o, also occurs in the head of o, then the values of the
corresponding positions in the body tuple and in ¢; are equal.
— Zj occurs in position 3 of the second atom of the body of ¢4 and in position 2
of its head. Therefore, x4 5 and x5 5 have to coincide (where the 4 is determined
by ¢5 2.

It turns out that all these tests can be done by rp.se, given some relations that
are precomputed by Pepase. More precisely, we let Pepse specify a 4-ary predicate
IfThen(Xy, X2, Uy, Us) that is intended to contain all tuples fulfilling the condition:
if X3 = Xs then U; = Us. Similar predicates are defined for conditions with two and
three conjuncts in the [F-part. Their definition by Datalog rules is straightforward.
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Pyuery and 7query. Finally, we explain how it can be checked that there is a ho-
momorphism from ¢ to S. We explain the issue through the little example query
R3(x,y) A Ra(y, z). To evaluate this query, rquery makes use of two additional vari-
ables g1 and ¢o, one for each atom of ¢. The intention is that these variables bind to the
numbers of the tuples that the atoms are mapped to. We have to make sure two kinds
of conditions. First, the tuples need to have the right relation symbol and second, they
have to obey value equalities induced by the variables of ¢ that occur more than once.

The first kind of conditions is checked by adding atoms IfThen(qy,%,7;,3) and
IfThen(qa, %, 7,4) to Tquery, for every ¢ < N. The second condition is checked simi-
larly. As we do not need any further auxiliary predicates, Fyyery is empty.

This completes the description of P. Note that P is nonrecursive, and has polyno-
mial size in the size of ¢ and 3. Furthermore, the arity of P is as required. This proves
part (a) of Theorem 1.

In order to prove part (b), we must get rid of the numeric domain (except for 0
and 1). This is actually very easy. We just replace each numeric value by a logarithmic
number of bits (coded by our 0 and 1 domain elements), and extend the predicate arities
accordingly. As a matter of fact, this requires an increase of arity by a factor of log N =
O(log|q|). This concludes our explanation of the proof ideas underlying Theorem 1.

Remark 1. Note that the evaluation complexity of the Datalog program obtained
for case (b) is not significantly higher than the evaluation complexity of the program P
constructed for case (a). For example, in the most relevant case of bounded arities, both
programs can be evaluated in NPTIME combined complexity over a database D. In
fact, it is well-known that the combined complexity of a Datalog program of bounded
arity is in NPTIME (see [10]). But it is easy to see that if we expand the signature of
such a program (and of the underlying database) by a logarithmic number of Boolean-
valued argument positions (attributes), nothing changes, because the possible values for
such vectorized arguments are still of polynomial size. It is just a matter of coding. In a
similar way, the data complexity in both cases (a) and (b) is the same (PTIME).

Remark 2. It is easy to generalize this result to the setting where ¢ is actually a
union of conjunctive queries (UCQ).

4 Further Results Derived From the Main Theorem

We wish to mention some interesting consequences of Theorem 1 that follow easily
from the above result after combining it with various other known results.

4.1 Linear TGDs

A linear tgd [5] is one that has a single atom in its rule body. The class of linear tgds
is a fundamental one in the Datalog® family. This class contains the class of inclusion
dependencies. It was already shown in [14] for inclusion dependencies that classes of
linear tgds of bounded (predicate) arities enjoy the PWP. That proof carries over to
linear tgds.

By Theorem 1, we then conclude:
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Theorem 2. Conjunctive queries under linear tgds of bounded arity are polynomially
rewritable as nonrecursive Datalog programs in the same fashion as for Theorem 1. So
are sets of inclusion dependencies of bounded arity.

4.2 DL-Lite

A pioneering and highly significant contribution towards tractable ontological reasoning
was the introduction of the DL-Lite family of description logics (DLs) by Calvanese et
al. [9,20]. DL-Lite was further studied and developed in [1].

A DL-lite theory (or TBox) X = (X, ") consists of a set of negative constraints
X~ such as key and disjointness constraints, and of a set X7 of positive constraints
that resemble tgds. As shown in [9], the negative constraints 2~ can be compiled into a
polymomially sized first-order formula (actually a union of conjunctive queries) of the
same arity as X'~ such that for each database and BCQ ¢, (D,X) | qiff D & X~
and (D,X ) [= ¢. In (the full version of) [5] it was shown that for the main DL-Lite
variants defined in [9], each X can be immediately translated into an equivalent set of
linear tgds of arity 2. By virtue of this, and the above we obtain the following theorem.

Theorem 3. Let q be a CQ and let X = (X, X%) be a DL-Lite theory expressed
in one of the following DL-Lite variants: DL-Liter , DL-Liter r, DL—Litej\ﬂ, DLR-
Liter m, DLR-Liter n, or DLR-Litejlﬂ. Then X1 can be rewritten into a nonrecursive
Datalog program P such that for each database D, (D,X ) |= q iff D = P. Regarding
the arities of P, the same bounds as in Theorem 1 hold.

4.3 Sticky and Sticky Join TGDs

Sticky tgds [6] and sticky-join tgds [6] are special classes of tgds that generalize linear
tgds but allow for a limited form of join (including as special case the cartesian product).
They allow one to express natural ontological relationships not expressible in DLs such
as OWL. For space reasons, we do not define these classes here, and refer the reader
to [8]. By results of [8], which will also be discussed in detail in a future extended
version [13] of the present paper, both classes enjoy the Polynomial Witness Property.
By Theorem 1, we thus obtain the following result:

Theorem 4. Conjunctive queries under sticky tgds and sticky-join tgds over a fixed
signature R are rewritable into polynomially sized nonrecursive Datalog programs of
arity bounded as in Theorem 1.

S Related Work on Query Rewriting

Several techniques for query-rewriting have been developed. An early algorithm, in-
troduced in [9] and implemented in the QuOnto system®, reformulates the given query
into a union of CQs (UCQs) by means of a backward-chaining resolution procedure.

® http://www.dis.uniromal.it/ quonto/
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The size of the computed rewriting increases exponentially w.r.t. the number of atoms
in the given query. This is mainly due to the fact that unifications are derived in a
“blind” way from every unifiable pair of atoms, even if the generated rule is superflu-
ous. An alternative resolution-based rewriting technique was proposed by Peréz-Urbina
et al. [19], implemented in the Requiem system’, that produces a UCQs as a rewriting
which is, in general, smaller (but still exponential in the number of atoms of the query)
than the one computed by QuOnto. This is achieved by avoiding the useless unifica-
tions, and thus the redundant rules obtained due to these unifications. This algorithm
works also for more expressive non-first-order rewritable DLs. In this case, the com-
puted rewriting is a (recursive) Datalog query. Following a more general approach, Cali
et al. [3] proposed a backward-chaining rewriting algorithm for the first-order rewritable
Datalog® languages mentioned above. However, this algorithm is inspired by the orig-
inal QuOnto algorithm, and inherits all its drawbacks. In [12], a rewriting technique
for linear Datalog® into unions of conjunctive queries is proposed. This algorithm is an
improved version of the one already presented in [3]. However, the size of the rewriting
is still exponential in the number of query atoms.

Of more interest to the present work are rewritings into nonrecursive Datalog.
In [15, 16] a polynomial-size rewriting into nonrecursive Datalog is given for the de-
scription logics DL-Lite7,  and DL-Litey, . For DL-Lite}, . a DL with counting, a
polynomial rewriting involving aggregate functions is proposed. It is, moreover, shown
in (the full version of) [15] that for the description logic DL-Lite r a polynomial-size
pure first-order query rewriting is possible. Note that neither of these logics allows for
role inclusion, while our approach covers description logics with role inclusion axioms.
Other results in [15, 16] are about combined rewritings where both the query and the
database D have to be rewritten. A recent very interesting paper discussing polynomial
size rewritings is [22]. Among other results, [22] provides complexity-theoretic argu-
ments indicating that without the use of special constants (e.g, 0 and 1, or the numerical
domain), a polynomial rewriting such as ours may not be possible. Rosati et al. [21]
recently proposed a very sophisticated rewriting technique into nonrecursive Datalog,
implemented in the Presto system. This algorithm produces a non-recursive Datalog
program as a rewriting, instead of a UCQs. This allows the “hiding” of the exponential
blow-up inside the rules instead of generating explicitly the disjunctive normal form.
The size of the final rewriting is, however, exponential in the number of non-eliminable
existential join variables of the given query; such variables are a subset of the join vari-
ables of the query, and are typically less than the number of atoms in the query. Thus,
the size of the rewriting is exponential in the query size in the worst case. Relevant
further optimizations of this method are given in [18].
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Abstract. In this paper, we present an approach to determining the cognitive
complexity of justifications for entailments of OWL ontologies. We introduce
a simple cognitive complexity model and present the results of validating that
model via experiments involving OWL users. The validation is based on test data
derived from a large and diverse corpus of naturally occurring justifications. Our
contributions include validation for the cognitive complexity model, new insights
into justification complexity, a significant corpus with novel analyses of justifi-
cations suitable for experimentation, and an experimental protocol suitable for
model validation and refinement.

1 Introduction

A justification is a minimal subset of an ontology that is sufficient for an entailment
to hold. More precisely, given O = 7, J is a justification for n in O if 7 C O,
J E nand, forall 7' € J, J" F~ n. Justifications are the dominant form of ex-
planation in OWL,! and justification based explanation is widely deployed in popular
OWL editors. The primary focus of research in this area has been on explanation for
the sake of debugging problematic entailments [3], whether standard entailments, such
as class unsatisfiability or ontology inconsistency, or user selected entailments such as
arbitrary subsumptions and class assertions. The debugging task is naturally directed
toward “repairing” the ontology and the use of “standard errors” further biases users
toward looking for problems in the logic of a justification.

The Description Logic that underpins OWL, SROZQ, is N2ExpTime-complete
[5], which suggests that even fairly small justifications could be quite challenging to
reason with. However, justifications are highly successful in the field, thus the compu-
tational complexity argument is not dispositive. We do observe often that certain jus-
tifications are difficult and frustrating to understand for ontology developers. In some
cases, the difficulty is obvious: a large justification with over 70 axioms is going to be at
best cumbersome however simple its logical structure. However, for many reasonably
sized difficult justifications (e.g. of size 10 or fewer axioms) the source of cognitive
complexity is not clearly known.

We present the results of several experiments into the cognitive complexity of OWL
justifications. Starting from a simple cognitive complexity model, we test how well the
model predicts error proportions for an entailment assessment task. We find that the

! Throughout this paper, “OWL” refers to the W3C’s Web Ontology Language 2 (OWL 2).
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model does fairly well with some notable exceptions. A follow-up study with an eye
tracker and think aloud protocol supports our explanations for the anomalous behaviour
and suggests both a refinement to the model and a limitation of our experimental proto-
col.

While there have been several user studies in the area of debugging [6,4], ontology
engineering anti-patterns [9], and an exploratory investigation into features that make
justifications difficult to understand [1], to the best of our knowledge there have not
been any formal user studies that investigate the cognitive complexity of justifications.

2 Cognitive Complexity & Justifications

In psychology, there is a long standing rivalry between two accounts of human deduc-
tive processes: (1) that people apply inferential rules [8], and (2) that people construct
mental models [2].2 In spite of a voluminous literature (including functional MRI stud-
ies), to date there is no scientific consensus [7], even for propositional reasoning.

Even if this debate were settled, it would not be clear how to apply it to ontology en-
gineering. The reasoning problems that are considered in the literature are quite differ-
ent from understanding how an entailment follows from a justification in an expressive
logic. Furthermore, the artificiality of our problems may engage different mechanisms
than more “natural” reasoning problems: e.g. even if mental models theory were cor-
rect, people can produce natural deduction proofs and might find that they outperform
“reasoning natively”. For ontology engineering, we do not need a true account of hu-
man deduction, but just need a way to determine how usable justifications are for our
tasks. What is required is a theory of the weak cognitive complexity of justifications, not
one of strong cognitive complexity [10].

A similar practical task is generating sufficiently difficult so-called “Analytical Rea-
soning Questions” (ARQs) problems in Graduate Record Examination (GRE) tests. In
[7], the investigators constructed and validated a model for the complexity of answering
ARQs via experiments with students. Analogously, we aim to validate a model for the
complexity of “understanding” justificiations via experiments on modellers.

3 A Complexity Model

We have developed a cognitive complexity model for justification understanding. This
model was derived partly from observations made during an exploratory study in which
people attempted to understand justifications from naturally occuring ontologies, and
partly from intuitions on what makes justifications difficult to understand. Table 1 de-
scribes the model, wherein 7 is the justification in question, 7 is the focal entailment,
and each value is multiplied by its weight and then summed with the rest. The final
value is a complexity score for the justification. Broadly speaking, there are two types
of components: (1) structural components, such as C1, which require a syntactic analy-
sis of a justification, and (2) semantic components, such as C4, which require entailment
checking to reveal non-obvious phenomena.

% (1) can be crudely characterised as people use a natural deduction proof system and (2) as
people use a semantic tableau.
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Table 1. A Simple Complexity Model

Name Base value Weight

C1 AxiomTypes Number of axiom types in J & 7. 100

C2 ClassConstructors Number of constructors in J & 7. 10

C3 Universallmplication Ifan o € J is of the form VR.C' T D or D = VR.C then 50 else 1
0.

C4 SynonymOfThing If 7 =T C Aforsome A € Signature(J)and T C A ¢J and 1
T CE A # nthen 50 else 0.

C5 SynonymOfNothing  If 7 = A C L forsome A € Signature(J)and A C L ¢J and 1
A C 1 # nthen 50 else 0.

C6 Domain&NokExistential If Domain(R,C) € J and J|/= E L 3R.D for some class 1
expressions £ and D then 50 else 0.

C7 ModalDepth The maximum modal depth of all class expressions in J . 50

C8 SignatureDifference ~ The number of distinct terms in Signature(n) not in Signature(.7). 50

C9 AxiomTypeDiff If the axiom type of 7 is not the set of axiom types of J then 50 else 0 1

C10 ClassConstructorDiff The number of class constructors in 77 not in the set of constructors of 1
J.

C11 LaconicGCICount The number of General Concept Inclusion axioms in a laconic version 100
of 7

C12 AxiomPathLength The number of maximal length expression paths3 in J plus the number 10

of axioms in 7 which are not in some maximal length path of J

Components C1 and C2 count the number of different kinds of axiom types and
class expression types as defined in the OWL 2 Structural Specification.* The more
diverse the basic logical vocabulary is, the less likely that simple pattern matching will
work and the more “sorts of things” the user must track.

Component C3 detects the presence of universal restrictions where trivial satisfac-
tion can be used to infer subsumption. Generally, people are often surprised to learn
that if (z,y) & RT forall y € AZ, then z € (VR.C)Z. This was observed repeatedly in
the exploratory study.

Components C4 and CS5 detect the presence of synonyms of T and L in the sig-
nature of a justification where these synonyms are not explicitly introduced via sub-
sumption or equivalence axioms. In the exploratory study, participants failed to spot
synonyms of T in particular.

Component C6 detects the presence of a domain axiom that is not paired with an
(entailed) existential restriction along the property whose domain is restricted. This
typically goes against peoples’ expectations of how domain axioms work, and usually
indicates some kind of non-obvious reasoning by cases. For example, given the two
axioms JR. T C C and VR.D C (C, the domain axiom is used to make a statement
about objects that have R successors, while the second axiom makes a statement about
those objects that do not have any R successors to imply that C' is equivalent to T.
This is different from the typical pattern of usage, for example where A C JR.C and
JR.T C Bentails A C B.

Component C7 measures maximum modal depth of sub-concepts in 7, which tend
to generate multiple distinct but interacting propositional contexts.

Component C8 examines the signature difference from entailment to justification.
This can indicate confusing redundancy in the entailment, or synonyms of T, that may
not be obvious, in the justification. Both cases are surprising to people looking at such
justifications.

*http://www.w3.org/TR/owl2-syntax/
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Components C9 and C10 determine if there is a difference between the type of, and
types of class expressions in, the axiom representing the entailment of interest and the
types of axioms and class expressions that appear in the justification. Any difference can
indicate an extra reasoning step to be performed by a person looking at the justification.

Component C11 examines the number of subclass axioms that have a complex left
hand side in a laconic version of the justification. Complex class expressions on the left
hand side of subclass axioms in a laconic justification indicate that the conclusions of
several intermediate reasoning steps may interact.

Component C12 examines the number of obvious syntactic subsumption paths through
a justification. In the exploratory study, participants found it very easy to quickly read
chains of subsumption axioms, for example, {A C B,BC C,D C D,D C E} to
entail A C FE. This complexity component essentially increases the complexity when
these kinds of paths are lacking.

The weights were determined by rough and ready empirical twiddling, without a
strong theoretical or specific experimental backing. They correspond to our sense, esp.
from the exploratory study, of sufficient reasons for difficulty.

4 Experiments

While the model is plausible and seems to behave reasonably well in applications, its
validation is a challenging topic. In principle, the model is reasonable if it successfully
predicts the difficulty an arbitrary OWL modeller has with an arbitrary justification
sufficiently often. Unfortunately, the space of ontology developers and of OWL justifi-
cations (even of existing, naturally occurring ones) is large and heterogeneous enough
to be difficult to randomly sample.

4.1 Design Challenges

To cope with the heterogeneity of users, any experimental protocol should require mini-
mal experimental interaction, i.e. it should be executable over the internet from subjects’
own machines with simple installation. Such a protocol trades access to subjects, over
time, for the richness of data gathered. To this end, we adapted one of the experimental
protocols described in [7] and tested it on a more homogeneous set of participants—a
group of MSc students who had completed a lecture course on OWL.

While the general experimental protocol in [7] seems reasonable, there are some is-
sues in adapting it to our case. In particular, in ARQs there is a restricted space of possi-
ble (non-)entailments suitable for multiple choice questions. That is, the wrong answers
can straightforwardly be made plausible enough to avoid guessing. (The questions are,
in essence, enumeration problems.) A justification inherently has one statement that it
is a justification for (even though it will be a minimal entailing subset for others). Thus,
there isn’t a standard “multiple set” of probable answers to draw on. In the exam case,
the primary task is successfully answering the question and the relation between that
success and predictions about the test taker are outside the remit of the experiment (but
there is an established account, both theoretically and empirically). In the justification
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case the standard primary task is “understanding” the relationship between the justifica-
tion and the entailment. Without observation, it is impossible to distinguish between a
participant who really “gets” it and one who merely acquiesces. In the exploratory study
we performed to help develop the model, we had the participant rank the difficulty of
the justification, but also used think aloud and follow-up questioning to verify the suc-
cess in understanding by the participant. This is obviously not a minimal intervention,
and requires a large amount of time and resources on the part of the investigators.

To counter this, the task was shifted from justification understanding task to some-
thing more measurable and similar to the question answering task in [7]. In particular,
instead of presenting the justification/entailment pair as a justification/entailment pair
and asking the participant to try to “understand” it, we present the justification/entailment
pair as a set of axioms/candidate entailment pair and ask the participant to determine
whether the candidate is, in fact, entailed. This diverges from the standard justification
situation wherein the modeller knows that the axioms entail the candidate (and form
a justification), but provides a metric that can be correlated with cognitive complexity,
which is error proportions.

4.2 Justification Corpus

To cope with the heterogeneity of justifications, we derived a large sample of justifi-
cations from ontologies from several well known ontology repositories: The Stanford
BioPortal repository> (30 ontologies plus imports closure), the Dumontier Lab ontology
collection® (15 ontologies plus imports closure), the OBO XP collection’ (17 ontologies
plus imports closure) and the TONES repository® (36 ontologies plus imports closure).
To be selected, an ontology had to (1) entail one subsumption between class names with
at least one justification that (a) was not the entailment itself, and (b) contains axioms in
that ontology (as opposed to the imports closure of the ontology), (2) be downloadable
and loadable by the OWL API (3) processable by FaCT++.

While the selected ontologies cannot be said to generate a truly representative sam-
ple of justifications from the full space of possible justifications (even of those on the
Web), they are diverse enough to put stress on many parts of the model. Moreover, most
of these ontologies are actively developed and used and hence provide justifications that
a significant class of users encounter.

For each ontology, the class hierarchy was computed, from which direct subsump-
tions between class names were extracted. For each direct subsumption, as many justi-
fications as possible in the space of 10 minutes were computed (typically all justifica-
tions; time-outs were rare). This resulted in a pool of over 64,800 justifications.

While large, the actual logical diversity of this pool is considerably smaller. This is
because many justifications, for different entailments, were of exactly the same “shape”.
For example, consider /; = {AC B, BC C}EACCand o ={FC E,EC
G} E F C G. As can be seen, there is an injective renaming from J; to Jo, and J; is

Shttp://bioportal.bioontology.org
Shttp://dumontierlab.com/?page=ontologies
"http://www.berkeleybop.org/ontologies/

8 http://owl.cs.manchester.ac.uk/repository/
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therefore isomorphic with Js. If a person can understand 7; then, with allowances for
variations in name length, they should be able to understand .7>. The initial large pool
was therefore reduced to a smaller pool of 11,600 non-isomorphic justifications.

4.3 Items and Item Selection

Each experiment consists of a series of test items (questions from a participant point of
view). A test item consists of a set of axioms, one following axiom, and a question, “Do
these axioms entail the following axiom?”. A participant response is one of five possible
answers: “Yes” (it is entailed), “Yes, but not sure”, “Not Sure”, “No, but not sure”, “No”
(it is not entailed). From a participant point of view, any item may or may not contain a
justification. However, in our experiments, every item was, in fact, a justification.

It is obviously possible to have non-justification entailing sets or non-entailing sets
of axioms in an item. We chose against such items since (1) we wanted to maximize the
number of actual justifications examined (2) justification understanding is the actual
task at hand, and (3) it is unclear how to interpret error rates for non-entailments in
light of the model. For some subjects, esp. those with little or no prior exposure to
justifications, it was unclear whether they understood the difference between the set
merely being entailing, and it being minimal and entailing. We did observe one person
who made use of this metalogical reasoning in the follow-up study.

Item Construction: For each experiment detailed below, test items were constructed
from the pool of 11,600 non-isomorphic justifications. First, in order to reduce variance
due primarily to size, justifications whose size was less than 4 axioms and greater than
10 axioms were discarded. This left 3199 (28%) justifications in the pool. In particular,
this excluded large justifications that might require a lot of reading time, cause fatigue
problems, or intimidate, and excluded very small justifications that tended to be trivial.’

For each justification in the pool of the remaining 3199 non-isomorphic justifica-
tions, the complexity of the justification was computed according to the model pre-
sented in Table 1, and then the justification was assigned to a complexity bin. A total
of 11 bins were constructed over the range of complexity (from O to 2200), each with a
complexity interval of 200. We discarded all bins which had 0 non-isomorphic justifi-
cations of size 4-10. This left 8 bins partitioning a complexity range of 200-1800.

Figure 1 illustrates a key issue. The bulk of the justifications (esp. without the triv-
ial), both with and without isomorphic reduction, are in the middle complexity range.
However, the model is not sophisticated enough that small differences (e.g. below a
difference of 400-600) are plausibly meaningful. It is unclear whether the noise from
variance in participant abilities would wash out the noise from the complexity model.
In other words, just from reflection on the model, justifications whose complexity dif-
ference is 400 or less do not seem reliably distinguishable by error rates. Furthermore,
non-isomorphism does not eliminate all non-significant logical variance. Consider a

® Note that, as a result, nearly 40% of all justifications (essentially, the 0-200 bin) have no
representative in the pruned set (see Figure 2). Inspection revealed that most of these were
trivial single axiom justifications (e.g. of the form {A =B} E AC Bor{A = (BNQC)} E
AL B,etc.
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chain of two atomic subsumptions vs. a chain of three. They have the same basic log-
ical structure, but are not isomorphic. Thus, we cannot yet say whether this apparent
concentration is meaningful.

Since we did not expect to be able to present more than 6 items and keep to our
time limits, we chose to focus on a “easy/hard” divide of the lowest three non-empty
bins (200-800) and the highest three non-empty bins (1200-1800). While this limits
the claims we can make about model performance over the entire corpus, it, at least,
strengthens negative results. If error rates overall do not distinguish the two poles
(where we expect the largest effect) then either the model fails or error rates are not
a reliable marker. Additionally, since if there is an effect, we expect it to be largest in
this scenario thus making it easier to achieve adequate statistical power.

Each experiment involved a fixed set of test items, which were selected by randomly
drawing items from preselected spread of bins, as described below. Please note that the
selection procedure changed in the light of the pilot study, but only to make the selection
more challenging for the model.

The final stage of item construction was justification obfuscation. All non-logical
terms were replaced with generated symbols. Thus, there was no possibility of using
domain knowledge to understand these justifications. The names were all uniform, syn-
tactically distinguishable (e.g. class names from property names) and quite short. The
entailment was the same for all items (i.e. C'1 C (C2). It is possible that dealing with
these purely symbolic justifications distorted participant response from response in the
field, even beyond blocking domain knowledge. For example, they could be alienating
and thus increase error rates or they could engage less error prone pattern recognition.

Fig. 1. Justification Corpus Complexity Distribution
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4.4 Pilot study

Participants: Seven members of a Computer Science (CS) Academic or Research Staff,
or PhD Program, with over 2 years of experience with ontologies and justifications.
Materials and procedures: The study was performed using an in-house web based
survey tool, which tracks times between all clicks on the page and thus records the time
to make each decision.

The participants were given a series of test items consisting of 3 practice items,

followed by 1 common easy item (E1 of complexity 300) and four additional items,
2 ranked easy (E2 and E3 of complexities 544 and 690, resp.) and 2 ranked hard (H1
and H2 of complexities 1220 and 1406), which were randomly (but distinctly) ordered
for each participant. The easy items were drawn from bins 200-800, and the hard items
from bins 1200-1800. The expected time to complete the study was a maximum of 30
minutes, including the orientation, practice items, and brief demographic questionnaire
(taken after all items were completed).
Results: Errors and times are given in Table 2(a). Since all of the items were in fact jus-
tifications, participant responses were recoded to success or failure as follows: Success
= (“Yes” | “Yes, but not sure”) and Failure = (“Not sure” | “No, Not sure” | “No”). Error
proportions were analysed using Cochran’s Q Test, which takes into consideration the
pairing of successes and failures for a given participant. Times were analysed using two
tailed paired sample t-tests.

An initial Cochran Q Test across all items revealed a strong significant difference in
error proportions between the items [Q)(4) = 16.00, p = 0.003]. Further analysis using
Cochran’s Q Test on pairs of items revealed strong statistically significant differences
in error proportion between: E1/H1 [Q(1) = 6.00, p = 0.014], E1/H2 [Q(1) = 6.00,

= 0.014] E2/H2 [Q(1) = 5.00, p = 0.025] and E3/H2 [Q(1) = 5.00, p = 0.025].
The differences in the remaining pairs, while not exhibiting differences above p = 0.05,
were quite close to significance, i.e. E2/H1 [Q(1) = 3.57, p = 0.059] and E3/H1
[Q(1) = 2.70, p = 0.10]. In summary, these error rate results were encouraging.

An analysis of times using paired sample t-tests revealed that time spent understand-
ing a particular item is not a good predictor of complexity. While there were significant
differences in the times for E1/H1 [p = 0.00016], E2/H1 [p = 0.025], and E3/H1
[p = 0.023], there were no significant differences in the times for E1/H2 [p = 0.15],
E2/H2 [p = 0.34] and E3/H2 [p = 0.11]. This result was anticipated, as in the ex-
ploratory study people gave up very quickly for justifications that they felt they could
not understand.

Table 2. Failures and times

(a) Pilot Study Items (b) Experiment 1

Item Failures Mean Time (ms) Time S.D. (ms) Item Failures Mean Time (ms) Time S.D. (ms)
El 0 65839 39370 EM1 6 103454 68247
E2 1 120926 65950 EM2 6 162928 87696
E3 2 142126 61771 EM3 10 133665 77652
H1 6 204257 54796 HM1 12 246835 220921
H2 6 102774 88728 HM2 13 100357 46897

HM3 6 157208 61437
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4.5 Experiment 1

Participants: 14 volunteers from a CS MSc class on OWL ontology modelling, who
were given chocolate for their participation. Each participant had minimal exposure to
OWL (or logic) before the class, but had, in the course of the prior 5 weeks, constructed
or manipulated several ontologies, and received an overview of the basics of OWL 2,
reasoning, etc. They did not receive any specific training on justifications.

Materials and procedures: The study was performed according to the protocol used in
the pilot study. A new set of items were used. Since the mean time taken by pilot study
participants to complete the survey was 13.65 minutes, with a standard deviation of
4.87 minutes, an additional hard justification was added to the test items. Furthermore,
all of the items with easy justifications ranked easy were drawn from the highest easy
complexity bin (bin 600-800). In the pilot study, we observed that the lower ranking
easy items were found to be quite easy and, by inspection of their bins, we found that
it was quite likely to draw similar justifications. The third bin (600-800) is much larger
and logically diverse, thus is more challenging for the model.

The series consisted of 3 practice items followed by 6 additional items, 3 easy
items(EM1, EM2 and EM3 of complexities: 654, 703, and 675), and 3 hard items
(HM1, HM2 and HM3 of complexities: 1380, 1395, and 1406). The items were ran-
domly ordered for each participant. Again, the expectation of the time to complete the
study was a maximum of 30 minutes, including orientation, practice items and brief
demographic questionnaire.

Results Errors and times are presented in Table 2(b). The coding to error is the same
as in the pilot. An analysis with Cochran’s Q Test across all items reveals a significant
difference in error proportion [Q(5) = 15.095, p = 0.0045].

A pairwise analysis between easy and hard items reveals that there are significant
and, highly significant, differences in errors between EM1I/HM1 [Q(1) = 4.50, p =
0.034], EM1I/HM2 [Q(1) = 7.00, p = 0.008], EM2/HM1 [Q(1) = 4.50, p = 0.034],
EM2/HM2 [Q(1) = 5.44, p = 0.02], and EM3/HM2 [Q(1) = 5.44, p = 0.02].

However, there were no significant differences between EM1/HM3 [Q(1) = 0.00,
p = 1.00], EM2/HM3 [Q(1) = 0.00, p = 1.00], EM3/HM3 [Q(1) = 2.00, p = 0.16]
and EM3/HM1 [Q(1) = 0.67, p = 0.41].

With regards to the nonsignificant differences between certain easy and hard items,
there are two items which stand out: An easy item EM3 and a hard item HM3, which
are shown in Figure 2.

In line with the results from the pilot study, an analysis of times using a paired

samples t-test revealed significant differences between some easy and hard items, with
those easy times being significantly less than the hard times EM1/HMI1 [p = 0.023],
EM2/HM2 [p = 0.016] and EM3/HM1 [p = 0.025]. However, for other pairs of
easy and hard items, times were not significantly different: EM1/HM1 [p = 0.43],
EM2/HM1 [p = 0.11] and EM3/HM2 [p = 0.10]. Again, time is not a reliable predic-
tor of model complexity.
Anomalies in Experiment 1: Two items (EM3 and HM3) did not exhibit their pre-
dicted error rate relations. For item EM3, we conjectured that a certain pattern of su-
perfluous axiom parts in the item (not recognisable by the model) made it harder than
the model predicted. That is, that the model was wrong.
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For item HM3 we conjectured that the model correctly identifies this item as hard, !’
but that the MSc students answered “Yes” because of misleading pattern of axioms at
the start and end of item HM3. The high “success” rate was due to an error in reasoning,
that is, a failure in understanding.

In order to determine whether our conjectures were possible and reasonable, we
conducted a follow-up study with the goal of observing the conjectured behaviours in
situ. Note that this study does not explain what happened in Experiment 1.

4.6 Experiment 2

Participants: Two CS Research Associates and one CS PhD student, none of whom
had taken part in the pilot study. All participants were very experienced with OWL.
Materials and procedures: Items and protocol were exactly the same as Experiment
1, with the addition of the think aloud protocol. Furthermore, the screen, participant
vocalization, and eye tracking were recorded.

Results: With regard to EM3, think aloud revealed that all participants were distracted
by the superfluous axiom parts in item EM3. Figure 2 shows an eye tracker heat map
for the most extreme case of distraction in item EM3. As can be seen, hot spots lie over
the superfluous parts of axioms. Think aloud revealed that all participants initially tried
to see how the Jpropl.C6 conjunct in the third axiom contributed to the entailment and
struggled when they realised that this was not the case.

Fig. 2. Eye Tracker Heat Maps for EM3 & HM3

C1E ¥ prop1 C3
y C6= ¥ prop2.C7
C1iC
- 1
4 = C5n (3 propT.C6) -
C5 - 3 prop2.C8 FASRREP TR
j b gerece) 3 prop2.T.C C4
C1C 3 prophco :
. C2=(3PIp1.C3) - (¥ prop3.Co)
C2=C7n(3 prop1.C10) EM3 HM3

In the case of HM3, think aloud revealed that none of the participants understood
how the entailment followed from the set of axioms. However, two of them responded
correctly and stated that the entailment did hold. As conjectured, the patterns formed
by the start and end axioms in the item set seemed to mislead them. In particular,
when disregarding quantifiers, the start axiom C1 C Vpropl.C3 and the end axiom
C2 C dpropl.C3 LI... look very similar. One participant spotted this similarity and
claimed that the entailment held as a result. Hot spots occur over the final axiom and
the first axiom in the eye tracker heat map (Figure 2), with relatively little activity in
the axioms in the middle of the justification.

191t had been observed to stymie experienced modellers in the field. Furthermore, it involves
deriving a synonym for T, which was not a move this cohort had experience with.
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5 Discussion and Future Work

In this paper we presented a methodology for validating the predicted cognitive com-
plexity of justifications. The main advantages of the experimental protocol used in the
methodology is that minimal study facilitator intervention is required. This means that,
over time, it should be possible to collect rich and varied data fairly cheaply and from
geographically distributed participants. In addition to this, given a justification corpus
and population of interest, the main experiment is easily repeatable with minimal re-
sources and setup. Care must be taken in interpreting results and, in particular, the pro-
tocol is weak on “too hard” justifications as it cannot distinguish a model mislabeling
from people failing for the wrong reason.

The cognitive complexity model that was presented in this paper fared reasonably
well. In most cases, there was a significant difference in error proportion between model
ranked easy and hard justifications. In the cases where error proportions revealed no dif-
ference better than chance, further small scale follow-up studies in the form of a more
expensive talk-aloud study was used to gain an insight into the problems. These inspec-
tions highlighted an area for model improvement, namely in the area of superfluity. It
is unclear how to rectify this in the model, as there could be justifications with super-
fluous parts that are trivial to understand, but the location and shape of superfluity seem
an important factor.

The refinement and validation of our model is an ongoing task and will require
considerably more experimental cycles. We plan to conduct a series of experiments
with different cohorts as well as with an expanded corpus. We also plan to continue the
analysis of our corpus with an eye to performing experiments to validate the model over
the whole (for some given population).
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Abstract. This paper introduces relaxed abduction, a novel non-standard
reasoning task for description logics. Although abductive reasoning over
description logic knowledge bases has been applied successfully to various
information interpretation tasks, it typically fails to provide adequate (or
even any) results when confronted with spurious information or incom-
plete models. Relaxed abduction addresses this flaw by ignoring such
pieces of information automatically based on a joint optimization of the
sets of explained observations and required assumptions. We present a
method to solve relaxed abduction over ££T TBoxes based on the notion
of multi-criterion shortest hyperpaths.

Keywords: abduction, interpretation, non-standard reasoning

1 Introduction

Abduction was introduced in the late 19th century by Charles Sanders Pierce
as an inference scheme aimed at deriving potential explanations for some obser-
vation [7]. It is conveniently expressed by the derivation rule

¢ Dw w

¢

which can be understood as an inversion of the modus ponens rule that permits
to derive ¢ as a hypothetical explanation for the occurrence of w, given that the
presence of ¢ in some sense justifies w. Note that this general formulation does
not presuppose any causality between ¢ and w; various notions of how ¢ sanctions
the presence of w give rise to different notions of abductive inference such as
the set-cover-based approach, logic-based approaches, and the knowledge-level
approach (see [12] for a survey). This paper focuses on logic-based abduction
over ELT TBoxes, however all results except the algorithm presented in Sect. 3
carry over to other logic-based representation schemes straightforwardly.

Due to its hypothetical nature, an abduction problem typically does not have
a single solution but a collection of alternative answers A, 4,,..., A, among
which optimal solutions are selected by means of a preference order <. We denote
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2 Relaxed Abduction for Incomplete Models

A; being not worse than A; by A; < A, indifference (A, < A; N A; < A;) is
abbreviated by A; ~ A;, and strict preference (A; < A; NA; 2 A;) by A, < A;.
Then a (normal) preferential abduction problem can be defined as follows:

Definition 1 (Preferential abduction problem PAP = (7,A4,0,=<,)).
Given a set of axioms T called the theory, a set of abducible axioms A, a set
O of azioms representing observations such that T/= O, and a (not necessarily
total) order relation < 4 C P(A) x P(A), determine all < 4-minimal sets A C A
such that T U A is consistent and T U A = O.

Typical preference orders over sets include subset-minimality (A4;=<°4; <
A; € A;), minimum cardinality (4,=°A; < [A;] < |4,]), and weighting-based
orders defined by a function w that assigns numerical weights to subsets of A
(A4;=XVA; < w(A;) < w(A;)). The first two orders prefer a set A over any of its
supersets, this monotonicity property is formalized in Def. 2.

Definition 2 (Monotone and anti-monotone order). An order < (<) over
sets is monotone (strictly monotone) for set inclusion if and only if 8" C S
implies S" =S (S' C S implies S’ < S). Conversely, < (<) is anti-monotone
(strictly anti-monotone) for set inclusion if and only if S’ 2 S implies S’ X S
(S' O S implies 8" < S).

Applications of abductive information interpretation using a formal domain
model include media interpretation [4] and diagnostics for complex technical
systems such as production machinery [9]. These domains are characterized by
an abundance of low-level observations due to a large number of sensors whereas
the model is often unelaborate or incomplete. The next example illustrates how
the classical definition of abduction may fail to handle such situations adequately.

Ezample 1 (Sensitivity to spurious information). Consider the diagnostic unit
of a production system whose model states that a fluctuating power supply man-
ifests by intermittent outages of the main control unit while the communication
links remain functional and the mechanical gripper of the production system is
unaffected (the observations entailed by the diagnosis). Assume a new vibration
sensor additionally observes low-frequency vibrations of the system. If the diag-
nostic model has not been extended yet to encompass these observations, the
additional data will in fact distract the diagnostic process and invalidate the di-
agnosis concerning the power supply, although it might be completely unrelated.

This flaw rests on the requirement that every single observation o, € O be
entailed by an admissible solution. It severely restricts the practical applicability
of logic-based abduction to real-world industrial applications where an ever-
growing amount of sensor data almost inevitably generates pieces of information
that the model cannot account for. We therefore extend logic-based abduction
in Sect.2 to handle such cases in a more flexible yet formally sound way, and
propose a method to solve such extended abduction problems expressed in the
description logic ££T in Sect. 3. Section4 contrasts our proposal with relevant
related work on logics and abduction, and we conclude in Sect. 5.
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Relaxed Abduction for Incomplete Models 3

2 Relaxed Abduction

While for very simple models it is possible to identify and remove spurious in-
formation in a preprocessing step, this is not feasible for reasonably complex
models since the (ir-)relevance of a piece of information depends on the inter-
pretation and is thusly not known beforechand. We therefore propose a general
approach based on the intuition that spurious and missing information are two
complementary facets of information imperfection and should thus be treated
similarly: In addition to assuming information as needed based on the set of
abducibles A, relaxed abduction ignores observations from O during hypotheses
generation if required. This intuition is formalized in the next definition.

Definition 3 (Relaxed abduction problem RAP = (7,A4,0,=,,=0)).
Given a set of axioms T called the theory, a set of abducible axioms A, a set O
of azioms representing observations such that T[/= O, and two (not necessarily
total) order relations = 4 C P(A) x P(A) and < C P(O) x P(O), determine
all <-minimal tuples (A, O) € P(A) x P(O) such that T U A is consistent and
TUA = O. The order = is defined based on <, and =4 as follows:

— (A,0) ~ (A,0") > A~ A NO~, O
— (A4,0) < (A,0") = (A= 4 A NO<p0') V(A= 4 A NO=p0')
— (A4,0) 2 (A,0") < ((A,0) < (A,0") V ((4,0) ~ (A, 0"))

Intuitively, a good solution will have high expressive power regarding the ob-
servations while being as non-assumptive as possible, which suggests to chose < 4
monotone and =, anti-monotone for set inclusion, respectively. The following
example uses one such combination to solve the problem presented in Ex. 1.

Ezample 2 (Sensitivity to irrelevant data (cont.)). Using inclusion as order cri-
terion over sets, we let A <4 A" & A C A and O <%, O' < O D O'. As
intended, the resulting order =< gives rise to the minimal solution which explains
all observations but the vibrations and only requires to assume the diagnosis,
namely a fluctuating power supply.

Proposition 1 (Conservativeness). A C A is a solution to the preferential
abduction problem PAP = (T,A,0,=4) if and only if (A,O) is a solution to
the relazed abduction problem RAP = (T, A, O, = 4,=0) for an arbitrary order
<o that is anti-monotone for set inclusion.

Proof. Assume A solves PAP. Then T U A is consistent, 7 UA = O, and A
is < 4-minimal. As < is anti-monotone for set inclusion O is naturally <,-
minimal; (A, O) is therefore <-minimal and thus solves RAP.

Conversely if (A, O) solves RAP then 7 UA is consistent, TUA = O, and (4, O)
is <-minimal. Assume A’ <, As.t. A’ C A, T UA’ is consistent, T U A’ = O.
Then (A’,O) < (4, O), contradicting <-minimality of (4, O). O
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4 Relaxed Abduction for Incomplete Models

Conservativeness states that, under natural conditions, relaxed abduction
is guaranteed to reproduce all (if any) solutions of the corresponding standard
abduction problem. Since =< 4 and =, will typically represent competing opti-
mization objectives, it is convenient to treat relaxed abduction as a bi-criterion
optimization problem. <-minimal solutions then correspond to Pareto-optimal
points in the space of all combinations (A4, O) meeting the logical requirements
of a solution (consistency and entailment) as shown next.

Proposition 2 (Pareto-optimality of RAP). Let RAP = (T, A, 0, =4, =)
be a relazed abduction problem. (A*,O*) is a solution to RAP if and only if it

is a Pareto-optimal element (subject to <, and <») of the candidate space
{(A4,0) e P(A)xPO) | TUAEOANTUAKE 1}

Proof. If (A*,O*) solves RAP, then T U A* is consistent and 7 U A* = O*
holds. (A*,0*) is thus an element of the explanation space (ES), furthermore
(A*,0*) must be <-minimal. Now assume (A*,O*) is not Pareto-optimal for
ES, and let (A’,0') € ES such that (w.l.o.g.) A’ <4 A* and O' <, O*. Then
(A7, 0") < (A*,0%), contradicting <-minimality of (A*,0*). Thus, (4*,0*) is a
Pareto-optimal element of the explanation space.
Analogously, let (A’,O’) be a Pareto-optimal element of FS. To show that the
tuple is <-minimal, let (A*, O*) be a solution to RAP such that (4*, O*) <
(A",0"). Thenw.l.o.g. A* <4 A" and O* <, O, contradicting Pareto-optimality
of (A’,0"). Conclusively, (A’, O") must be <-minimal and therefore solves RAP.
O

The next section presents an approach to solving relaxed abduction for E£7
that explicitly addresses the bi-criterial nature of the problem.

3 Solving Relaxed Abduction for ££7

The description logic ££7 is a member of the ££ family of lightweight DLs for
which subsumption can be tested in PTIME [1]. ££7 concept descriptions are
definedby C:=T | A | CNC | Ir.C (for A€ N, r € N a basic concept /
role name); ££1 axioms are either concept inclusion axioms C'MD or role inclu-
sion axioms ryo---or, C r (C, D concept descriptions, r,7,...,7r, € Ng,k > 1).
Since any ££ TBox can be normalized with only a linear increase in size, we can
assume w. L. 0. g. that all axioms are of one of the following forms (NF1) A; C B,
(NF2) A, M A, C B, (NF3) A, C Ir.B, (NF4)3Ir.A, C B, (NF5)r; C s, and
(NF6)r oy C s (for A, Ay, B € N& = NoU{ T} and 7,,75,5 € Ng). In ad-
dition to standard refutation-based tableau reasoning, the ££ family allows for
a completion-based reasoning scheme that explicitly derives valid subsumptions
using a set of rules in the style of Gentzen’s sequent calculus. The rules are
depicted in Fig. 1, the graph-structure created by applying them to derive sub-
sumptions provides the basis for our approach as shown in the next subsection.

In contrast to other work such as [3,5] where observations and abducibles
are represented by means of named concepts, we assume that both A and O are

183



Relaxed Abduction for Incomplete Models 5

AC A,

(CR1) = [ CBeT]
(CR2) AgAlAEBAEA2 [A,MA, CEBeT)
(CR3) % (A, C 3rB e T]
(CRa) AE HT'AIZ . BA1 A 5, 4,cBeT)
(CRS) % [ CseT]

A E ElTl.Al A1 ; HTQ.B
ALC 3s.B

(CRO6) [riory CseT]

(IR1) (IR2)

AC A ACT

Fig. 1. Completion rules for £E£T

sets of DL axioms just like 7. In our experience the axiom-oriented represen-
tation provides greater flexibility and information reuse as well as being easier
to understand for non-expert users; we furthermore conjecture without formal
proof that the concept-based definition is subsumed by the axiom-based one.?

3.1 From Completion Rules to Hypergraphs

Since the rules shown in Fig.1 constitute a sound and complete proof system
for ££1, any normalized axiom set can be represented equivalently as a hy-
pergraph whose vertices are all axioms of type (NF1) and (NF3) over the con-
cept and role names used in the axiom set (corresponding to all statements
admissible as premise or conclusion in a derivation step). The hyperedges are in-
duced by instantiations of the rules (CR1)-(CR6); for example an instantiation of
(CR4) that derives C C F from C C Jr.D and D C F using the axiom Ir.E C F
induces a hyperedge e = (T'(e), h(e),w(e)) with T(e) = {C C3r.D,D C E},
h(e)=CCF,and w(e) =3r. ECF.

This correspondence can be extended to relaxed abduction problems as fol-
lows: Both 7 and A contain arbitrary ££1 normal form axioms that can justify

3 First observe that 7 |= A;M---MA, C O as required in [3] straightforwardly implies
{TCA,...,TCA,}UT =T L O, ie. aspecial case of our definition. Concept
abduction and contraction introduced in [5] can conceptually be seen as abduction
problems in the line of [3] with additional limitations on the solution A (namely
A ={C, H} in the former and A = {K, D} in the latter case).
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6 Relaxed Abduction for Incomplete Models

single derivation steps represented by a hyperedge (to simplify presentation we
assume w. L. 0. g. that AN O = 0). Elements from O on the other hand represent
information to be justified (i. e. derived), they therefore correspond to vertices of
the hypergraph. This leads to the requirement that axioms in O may be of type
(NF1) and (NF3) only — this restriction is however negligible in practice since
(NF2)- and (NF4)-axioms can be translated into a (NF1)-axiom by introducing
a new concept name, and role inclusion axioms are not required for expressing
observations about domain objects. To keep track of required assumptions and
explained observations, the hyperedges are labelled according to these criteria.
This intuition is formalized in the next definition.

Definition 4 (Induced hypergraph Hy ;). Let RAP = (T, A,0, = 4, =0)
be a relazed abduction problem. The weighted hypergraph Hy 4p = (V, E) induced
by RAP is defined by V = {(AC B),(AC 3r.B) | A,B € Nl ,r € Ny} where
Ve ={(A,A),(A,T) | Ae NI} CV denotes the set of terminal states, and E
the set of all hyperedges e = (T'(e), h(e),w(e)) s.t. there is an aziom ax € T U A
Justifying the derivation of h(e) € V' from T(e) CV due to one of (CR1)-(CR6).
The edge weight w(e) = (A, O) is defined by

A:{{azx} if ax € A, O:{{h(e)} z‘fh(e)e(?,.

1] otherwise ’ 0 otherwise

Note that the size of Hy 4 is bounded polynomially in | N | and | Ny |. Check-
ing whether a concept inclusion D C F (C' C 3r.D) is derivable corresponds to
checking if in the graph there exists a hyperpath from V5 to the vertex D C E
(C C 3r.D). Intuitively, there is a hyperpath from X to ¢ if there is a hyperedge
connecting some set of nodes Y to ¢, and each y, € Y is reachable from X via a
hyperpath; Def. 5 formalizes this intuitive picture.

Definition 5 (Hyperpath). py , = (Vx ;, Ex ;) is a hyperpath in H = (V, E)
from X tot if and only if (i)t € X and px , = ({t},0), or (ii) there is an edge
e € E such that h(e) = t,T(e) = {y1,..-, Yy}, px,, are hyperpaths from X to

Y, V2 Vx,={t}u Uy,,;ET(e) Vi, and E2 Ex , ={e}U UyleT(e) Ex -

3.2 Hyperpath Search for Relaxed Abduction

This section presents an algorithm for solving a relaxed abduction problem RAP
by determining bi-criterion shortest hyperpaths. The graph algorithm extends
a label-correcting algorithm for finding bi-criterion shortest paths in graphs,
which is one of the most efficient algorithms known for this problem [14]. It
compactly represents the graph using two lists S and R as proposed in [1], the
entries are however extended with labels encoding the Pareto-optimal paths to
the vertex found so far, and changes are propagated along the weighted edges
using two operators called meet (®) and join (4¢). When saturation has ter-
minated, the labels of all <-minimal paths in Hj 4 are collected in the set
MP(Hg 4p) = U,ey label(v). Algorithm 1 depicts the label propagation algo-
rithm restricted to rule (CR4) only due to space limitations. Note that while
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Relaxed Abduction for Incomplete Models 7

the order of propagations is irrelevant for correctness, it may have a significant
effect on the number of candidates generated: Finding near-optimal solutions
early leads to many suboptimal solutions being dominated and therefore not
propagated further. As a heuristic to improve performance, we therefore suggest
to exhaustively apply 7 -propagations first, and introduce assumptions only if
no other propagation is possible.

Algorithm 1: Label correcting construction of Hy 4p
Data : RAP = (T, A, O,=4,=0), a relaxed abduction problem over NJ and
NR.
Result : Hi 4p, the induced hypergraph.

// initialization
1 foreach r € Ny do
| R(r) < 0;
foreach C € NJ do
4 | S(O) = {T:HO,0}C:{@,0)}}

// propagation

N

w

5 repeat

6 changed « false;

7 foreach axz € T U A do

8 else if az = 3r.A, C B then // CR4

9 foreach A; € N s.t. S(A;) > A, : La, s, do
10 foreach A € NJ s.t. R(r) 3 (4, A;) : La,a, do
11 L «— 0;
12 if S(A)> B: Ly then L «— Ly g;
13 L* «— join(L, meet (Lo a,, Lara,, az, AC B));
14 if L* # L then
15 L S(4) — (SA\{B: Lo} U{B: L'};
16 changed « true;

17 until changed = false;

Proposition 3 (Correctness). The set of all solutions to a relazed abduc-
tion problem RAP = (T,A,O,=<4,=p) is given by the <-minimal closure of
MP(Hy 4p) under component-wise union (A,0)w (A',0") := (AUA,OU0’).

Proof. Due to space limitations we can only present an outline of the proof here.
Following the argumentation in [13,8], it is clear that hyperpaths in Hp 4p
starting in V+ do indeed represent derivations, and that labels constructed from
the hyperpaths can be used to encode relevant pieces of information used during
that derivation. By Prop. 2, it then suffices to show that the proposed algorithm
correctly determines the labels of all Pareto-optimal paths in H 45 starting in

186



8 Relaxed Abduction for Incomplete Models

Function meet(L,, Ly, just, concl)

Input : L, L,, two label sets; just, concl, two normal form axioms.
Output : The label set produced by the meet-operator ®.

result « {(A; U Ay,0,UO,) | (A1,0;) € L1, (As,05) € Ly };

if just € A then result « {(AU {just},O) | (A4, O) € result};

if concl € O then result — {(A4,0 U {concl}) | (A,O) € result};
return result;

W N

Function join(L,, L)
Input : Ly, L,, two label sets.
Output : The label set produced by the join-operator ®.

1 result «— L, U Ly;
2 result «+— remove-dominated(result, =< 4, <p);
3 return result;

V. This can be proven inductively based on the correctness of the operators &
and ®, which can easily be established in a case-by-case analysis. The terminal
closure of | J,y label(v) under component-wise union is based on the intuition
that, having proved two statements a and b, we can obviously prove a A b by
joining the two proofs (corresponding to the ® operator). Graphically, this can
be seen as adding a dedicated vertex T such that any other v € V is connected
to T by a hyperedge ({v}, T,{0,0}), and determining the label of this node that
intuitively represents anything that can be derived at all. O

Since the node labels may grow exponentially in the size of A and O for
general preference orders such as set inclusion, it is worthwhile investigating
the benefit of our method as compared to the following simple brute-force ap-
proach: Iterating over all pairs (A4,0) € P(A) x P(O), collect all (A4, O) such
that 7 U A = O holds and finally drop all <-dominated tuples among them.
This approach obviously requires 2141119l entailment tests, each set passing this
test is consequently tested for <-minimality. We argue that the our approach is
superior to the brute-force method due to three aspects:

1. In contrast to the uninformed search outlined above, the approach proposed
in this paper realizes an informed search as it does not generate all possible
(A, O)-pairs haphazardly but only those for which the property 7 U A = O
actually holds, without requiring any additional entailment tests. The net
effect of this property depends on the model 7 as well as on A and O;
problems having only few solutions at all will obviously benefit most.

2. Dropping =<-dominated labels for <, and < 4 being (anti-)monotone for set
inclusion reduces the worst-case size of node labels from by at least a factor of
O(+/|A] - |O]). This can be justified as follows: Fixing a set A* C A, the sets
O, C O that constitute the (non-dominated) label entries (A*, O,) must form
an antichain w.r.t. set inclusion. The maximum size of such an antichain is
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Relaxed Abduction for Incomplete Models 9

given by (LI (|9(|9/|2 j) according to Sperner’s theorem [15], and can be bounded

by 2/1€1/,/7/2 - |O| using Stirling’s approximation.* An analogous argument
holds for fixed O*; the size of the cross product can therefore be bounded
by O((2M41/1/]A]) - (21°1/1/]0])), resulting in the factor stated above.

3. In addition to the strict upper bound to the size of labels provided by
the preceding line of argumentation, we can also determine the expected
number of non-dominated paths to a state as follows: We assume two ar-
bitrary orders over the elements of A and O such that any subset can be
encoded straightforwardly as a binary vector of length |A| (resp. |O]). Fix-
ing A* C A, an estimate of the expected number of label entries (A*,0;)
is given by the expected number A(n,!) of maximal (0, 1)-vectors of length
I = |O] among a set of k distinct such vectors chosen uniformly at random.
For our estimation, we let k := 2/°| to get an upper bound though the
actual number is expected to be less (c.f. aspect 1). Adapting the tech-
nique used in [2], A(n,l) can be expressed by the recurrence A(n,l) <

(51 A0 4 151 ARG = 5 Al = 1)+ A@/20 = 1) As-

suming n > 2!~ the recursion is limited only by [ and terminates with the
terms A(n,1) = A(n'/(=1) 1) = 1 at depth [ — 1. An upper bound is thus
given by A(n,1) < A1) = A'(I—1)+ - A0-1)=3.40-1) = (3"
the expected label size is thus O(1.541+1C1),

Other choices for < 4 and =<, can lead to more substantial savings; since
the preference orders are used as a pruning criterion during solution generation
this may however turn the approach into an approximate one. For instance if
the assumption and observation sets are not compared by set inclusion but by
cardinality, the maximum label size is reduced to |A| - |O] — dependent on the
order of rule application the algorithm may however fail to find the optimal
solutions. In a more complex setting, assigning numerical weights to observations
and abducibles allows to drop only solutions that are significantly worse than
others, or to compute bounds on the maximum score a partial solution may still
achieve, and use this value as a pruning criterion.

* For m — oo it holds that (*™) ~ \/%. Letting m := | %], this yields the estimate
n al3l 48 om

(1)) ~ VEIEl T Vs VR

5 This recurrence can be understood as follows: Assume the vectors are arranged in
a (n x l)-matrix, sorted by the first component. A randomly chosen vector v starts
with 1 or 0 with probability 0.5 each. In the former case, v cannot be dominated by
any vector starting with a 0, i. e. the "lower half” of the table is ruled out instantly,
and its probability of being dominated by another vector starting with 1 is given
by the expected number of maxima among the remaining [n/2] vectors divided by
their number, taken together v is maximal with probability A([n/2],1 —1)/[n/2].
If v starts with 0, we can similarly determine its probability of being maximal to be
A(n,l—1)/n. Summing up these probabilities and and multiplying the result by the
number n of original vectors yields the expected number of maxima given above.
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10 Relaxed Abduction for Incomplete Models
4 Related Work

While abductive reasoning naturally addresses the problem of missing observa-
tions, there are to the authors’ best knowledge no other approaches providing a
formally sound solution to logic-based abduction with incomplete models.

The idea of considering abduction as a multi-criteria optimization problem
is also central to [10], where multi-criteria decision making techniques are em-
ployed to red-cell antibody identification in blood samples. The task is solved
using domain-specific operators for combining entries in tables representing the
hypotheses. Being an instance of the set-cover approach to abduction, the pro-
posed method does however not address the problem of hypotheses generation,
and requires a simple tabular mapping from hypotheses to effects. In the context
of abductive (or diagnostic) inference in Bayesian networks, [11] distinguishes be-
tween most informative and most simple explanations which correspond to the
=p-minimal and the =< ,-minimal solution in our approach, respectively. How-
ever, intermediary Pareto-optimal combinations are not considered in their ap-
proach which is furthermore limited to propositional Bayes nets. The algorithm
presented in [4] for ABox abduction resembles our approach as it determines
alternative explanation sets with varying expressive power, keeping track of the
assumptions required for each of them. Unlike the approach presented in this pa-
per, the work by Castano et al. requires special handcrafted models combining
forward- and backward-chaining rules, and uses an iterative approach to handle
models expressed in the more expressive description logic ALCQ.

[13,8] use an automaton which is structurally similar to the hypergraph
Hp 4p introduced in Def.4 to generate a formula encoding all solutions to a
pinpointing respectively a (standard) abduction problem. In contrast to our ap-
proach these works guarantee polynomial runtime for solution generation, they
do however impose strong restrictions on the combination function, and are
inherently limited to uni-criterion problems. Assumption-based Truth Mainte-
nance Systems (ATMSs) [6] impose fewer restrictions on edge weights as com-
pared to the previously mentioned approaches, and similarly to our approach
labels containing information on required assumptions are propagated between
vertices in a hypergraph structure. We are however not aware of any extension
to ATMSs allowing for a tradeoff between assumptions and explanatory power,
nor do ATMSs consider any order over labels other than implication.

5 Conclusions and Outlook

We have introduced relaxed abduction, a novel non-standard reasoning task for
description logics. Relaxed abduction extends logic-based abduction to a gen-
eral and formally sound framework for interpreting spurious information w.r.t.
incomplete models. We have presented an algorithm for relaxed abduction over
ELT knowledge bases based on the notion of Pareto-optimal hyperpaths in the
derivation graph, and motivated its superiority to a straightforward enumeration
approach despite the inherent exponential growth of node labels. The proposed
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Relaxed Abduction for Incomplete Models 11

algorithm is straightforwardly extensible to other DLs for which subsumption
can be decided by completion such as ££7" which supports nominals and thus
ABox abduction. The very general notion of relaxed abduction allows for sev-
eral interesting specializations resulting from different choices for < 4, and =<:
Approximate solutions can for example be generated very efficiently (i.e. with
linear label size) if we use set cardinality as a dominance criterion. More elabo-
rate schemes based on weights assigned to the axioms allow for early and even
lossless pruning of suboptimal partial solutions while also reducing label sizes.
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Abstract. We analyze the complexity of subsumption in probabilistic variants of
the description logic £L. In the case where probabilities apply only to concepts,
we map out the borderline between tractability and EXPTIME-completeness. One
outcome is that any probability value except zero and one leads to intractability
in the presence of general TBoxes, while this is not the case for classical TBoxes.
In the case where probabilities can also be applied to roles, we show PSPACE-
completeness. This result is (positively) surprising as the best previously known
upper bound was 2-EXPTIME and there were reasons to believe in completeness
for this class.

1 Introduction

The fact that traditional description logics (DLs) do not provide any built-in means for
representing uncertainty has led to various proposals for probabilistic extensions, see
for example [14, 10,5, 13, 12] and references therein. Recently, a new family of prob-
abilistic DLs was introduced in [15], with the distinguishing feature that its members
relate to the well-established probabilistic first-order logic (FOL) of Halpern and Bac-
chus [7,4] in the same way as classical DLs relate to traditional FOL. The main purpose
of DLs from the new family, from now on called Prob-DLs, is to enable concept defini-
tions that require reference to (degrees of) possibility, likelihood, and certainty. To this
effect, Prob-DLs provide a probabilistic constructor P, with ~ € {<, <, =,> >}
and p € [0, 1] that can be applied to concepts and sometimes also to roles. For example,

Patient M Jfinding.(Disease M P 25Infectious)

describes patients having a disease that is infectious with probability at least .25. It
was argued in [15] that Prob-DLs are well-suited to capture aspects of uncertainty in
biomedical ontologies such as SNOMED CT. Since such ontologies are often formulated
in DLs from the ££ family for which subsumption can be solved in polynomial time [2,
16], probabilistic extensions of £L in the style of Prob-DLs is particularly relevant in
this context. Some initial results have already been obtained in [15].

In this paper, we establish a rather complete picture of the complexity of subsum-
tion in Prob-DLs based on £L. In the first part, we consider Prob-EL in which prob-
abilities can only be applied to concepts, but not to roles. In [15], it was shown that
some concrete combinations of probability constructors such as P~ and P-4 lead
to intractability (in fact, EXPTIME-completeness) of subsumption while a restriction
to the probability values zero and one does not. Here, we prove the much more gen-
eral result that the extension of ££ with any single concept constructor P.,, where
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~ e {<,<,=,>,>}and p € (0,1), results in EXPTIME-completeness. More specif-
ically, this result applies to general TBoxes, i.e., to sets of concept inclusions C C D
when ~ € {=,>,>} and even to the empty TBox when ~ € {<, <, }. Inspired by
the observation that many biomedical ontologies such as SNOMED CT are classical
TBoxes, i.e., sets of concept definitions A = D with atomic and unique left-hand sides,
we then show that probabilities other than zero and one can be used without losing
tractability in (possibly cyclic) classical TBoxes for the cases ~ € {>, >}. More pre-
cisely, subsumption in Prob-£L is tractable when only the constructors P., and P_;
are admitted, for any (single!) choice of ~ €{> , >} and p € (0, 1). The resulting logic
actually ‘coincides’ for all possible choices. We also show that when a second probabil-
ity value from the range (0, 1) sufficiently ‘far away’ from p is added, the complexity
of subsumption snaps back to EXPTIME-completeness.

In the second part of the paper, we consider Prob-E L,., where probabilities can be
applied to both concepts and roles, concentrating on general TBoxes. While decidability
is an open problem for full Prob-£L,., it was known that subsumption is in 2-EXPTIME
and PSPACE-hard in Prob-EL; %=1 Wwhere probability values are restricted to zero and
one. Since subsumption in the ALC-version of Prob-£ £ %= is 2-EXPTIME-complete
and the complexity of the £L-version and the ALC-version of many-dimensional DLs
(such as Prob-DLs) coincides in all known cases, it was thus tempting to conjecture
2-EXPTIME-completeness also of subsumption in Prob-££~%=!. We show that this
is not the case by establishing a tight PSPACE upper bound for subsumption in Prob-
£L£;7%=!. This also implies PSPACE-completeness for the two-dimensional DL S5¢ 1,
in sharp contrast with the 2-EXPTIME-completeness of S5 4¢.

This paper is a workshop version of [6]. Proofs can be found in the long version of
that paper, to be found at http://www.informatik.uni-bremen.de/"clu/papers/.

2 Preliminaries

Let N¢ and Ng be countably infinite sets of concept names and role names. Prob-EL is
the extension of £L that allows the application of probabilities to concepts, i.e., Prob-
EL concepts are built according to the rule

C,D:=T|A|CND|3rC|P.,C

where A ranges over N¢, 7 over Ng, ~ over {<,<,=,> >}, and p € [0,1]. The
concept P.,,C denotes the class of objects that are an instance of C' with probability
~ p. For example, the SNOMED CT concept ‘animal bite by potentially rabid animal’
can be expressed as

Bite M 3by.(Animal M Ps( s3has.Rabies).

When we admit only a few values for ~ and n, we put them in superscript; for example,
Prob-££7%4<0-1 denotes the extension of £L with P 4C and P 1C. Probabilities
can be applied to roles using the concept constructors 3P, r.C' where ~ and p range
over the same values as above, expressing that there is an element satisfying C' that is
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related to the current element by the role name r with probability ~ p. For example, the
SNOMED CT concept ‘disease of possible viral origin’ can be modeled as

Disease M 3P gorigin.Viral.

We denote the extension of Prob-£L with the constructor 3P ,r.C' with Prob-EL,.. We
also consider the restriction Prob-£L£; %=1 of Prob-£L,. to probabilities 0 and 1 (both
on concepts and roles).

The semantics of the probabilistic DLs is given in terms of a probabilistic interpre-
tation T = (AT, W, (Tw)wew, it), where A7 is the (non-empty) domain, W a non-
empty set of possible worlds, |1 a discrete probability distribution on W, and for each
w € W, I, is a classical DL interpretation with domain A%, We usually write C%-*
for CZv, and likewise for »Z. For concept names A and role names r, we define the
probability

- pE(A)thatd € ATisan Aas u({w € W | d € ATv});
— pie(r) that d, e € A7 are related by r as p({w e W | (d,e) € 7J,w}).

Next, we extend pZ(A) to compound concepts C' and define the extension CZ% of
compound concepts by mutual recursion on C. The definition of pZ (C) is exactly as in
the base case, with A replaced by C. The extension of compound concepts is defined as
follows:
TI,w — AI (C M D)I,w _ CI,'LU N DI,w
(3r.C)Ew ={d € AT | Je.(d,e) € rT¥ Ne € CTv}
(P.,C)Ev = {d € AT | p%(C) ~ p}
(3P.,r.C)tw ={d e AT | Je € CT¥ :pie(r) ~ p}

A general TBox is a finite set of concept inclusions C' T D, where C, D are concepts.
A classical TBox is a set of concept definitions A = C, where A is a concept name
and the left-hand sides of concept definitions are unique. Note that cyclic definitions
are allowed.

A probabilistic interpretation Z satisfies a concept inclusion C' T D if CT% C
DT and a concept definition A = C if AT* = CT% forall w € W. T is a model of
a TBox 7T if it satisfies all inclusions/definitions in 7. A concept C' is subsumed by a
concept D relative to a TBox T (written T |= C C D) if every model Z of T satisfies
CLCD.

The above definition is the result of transferring the notion of subsumption from
standard DLs to probabilistic DLs in a straightforward way. However, there is an al-
ternative variant of subsumption that is natural for probabilistic DLs: a concept C' is
positively subsumed by a concept D relative to a TBox T (written 7 =" C T D)
if CTw C DTv for every probabilistic model Z = (AT, W, (Z,)wew, i) and every
w € W with p(w) > 0. Intuitively, classical subsumption is about subsumptions that
are logically implied whereas positive subsumption is about subsumptions that are cer-
tain. For example, when 7y is the empty TBox, then Ty = P—1 A C A, but we can only
have d € (P-; A)%v\ AT when u(v) = 0, thus non-subsumption is only witnessed by
worlds that we are certain to not be the actual world. Consequently, 7y =1 P—1 A C A.
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In the extension Prob-ALC of Prob-£L with negation studied in [15], positive sub-
sumption can easily be reduced to subsumption. This does not seem easily possible in
Prob-£L. In fact, we will sometimes use (Turing) reductions in the opposite direction.

3 Probabilistic Concepts

In [15], it was shown that subsumption in Prob-££”%=! with general TBoxes is in
PTIME, whereas the same problem is EXPTIME-complete in Prob-££” %> (both in
the positive and in the unrestricted case). This raises the question whether any proba-
bility except 0,1 can be admitted in Prob-£ L without losing tractability. The following
theorem provides a strong negative result.

Theorem 1. Forall p € (0, 1), (positive) subsumption in Prob-EL™ relative to

1. general TBoxes is EXPTIME-hard when ~ € {=,> >}
2. the empty TBox is EXPTIME-hard when ~ €{< , <}

Matching upper bounds are an immediate consequence of the fact that each logic Prob-
EL™P is a fragment of the DL Prob-ALC,. for which subsumption was proved EX-
PTIME-complete in [15]. To prove the lower bounds, it suffices to show that each
logic Prob-EL"™? is non-convex, i.e., that there are a general TBox 7 and concepts
C,Dy,...,Dp,n>2,suchthat 7 =C C D, U---UD,,but 7)/= C C D, for all 4.
Once that this is established, standard proof techniques from [2] can be used to reduce
satisfiability in ALC relative to general TBoxes, which is EXPTIME-complete, to sub-
sumption in Prob-£L™". The following constructions work for standard subsumption
and positive subsumption alike.
First consider ~ = > and assume p < 0.5. Fix a k > O such that £ - p > 1 and set

T:{A1|_|AJEPZPB”|1SZ<] Sk’}
C:PEPAlﬂ---l_lPZpAk
Dij = P>pBij

Intuitively, the probabilities stipulated by C' sum up to > 1, thus some of the A; have
to overlap, but there is a choice as to which ones these are. Formally, we can show non-
convexity by proving that 7 = C' T U<, <k D;j, but T)/= C T D;; for any 1, j.
The comparisons ~ € {=, >} can be handled similarly.

Now assume that p > 0.5. We start with the case ~ = > and use a variation of the
above. The main idea is to employ P-,C to simulate P~ ,C, for some ¢ < 0.5, which
brings us back to a case already dealt with. More precisely, let n > 0 be smallest such

1

that n > =) and set ¢ = pn —n + 1. An easy computation shows that 0 < ¢ < 0.5.

Moreover, it can be shown that
P>pX1|_|""—|P>an EP>q(X1|—1|_|Xn)

which allows us to redo the above reduction with probability ¢ < 0.5. Details are given
in the long version of [6]. The comparisons ~ € {=, >} can be handled similarly.
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For the remaining cases ~ € {<, <}, there is a very simple argument for non-
convexity even w.r.t. the empty TBox: we have T T P.,A U P.,P.,A, but neither
TC PcpAnor T & PP A, and likewise when ~ is <.

When ~ € {=, >, >}, the proof of Theorem 1 relies on general TBoxes in a crucial
way. It turns out that when we restrict ourselves to classical TBoxes, tractability can be
attained even with probabilities other than O and 1.

Theorem 2. For all ~ € {>,>} and p € [0,1], (positive) subsumption in Prob-
EL™P=Y relative to classical TBoxes is in PTIME.

To prove Theorem 2, we start with positive subsumption. We can assume p > 0 since
subsumption in Prob-££”%=! is in PTIME even with general TBoxes. To prove a
PTIME upper bound, we use a ‘consequence-driven’ procedure similar to the ones in
[2,11]. A concept name A is defined in a classical TBox 7T if there is a concept defi-
nition A = C' € T, and primitive otherwise. We can w.l.o.g. restrict our attention to
the subsumption of defined concept names relative to TBoxes. We also assume that the
input TBox is normalized to a set of concept definitions of the form

A=pPn---nP,0C0---MNCh

n,m > 0, and where P, ..., P, are primitive concept names and C1, ..., C,, are of
the form P.,A, P_1 A, and 3r.A with A a defined concept name (note that the top
concept is completely normalized away). It is well-known that such a normalization
can be achieved in polytime, see [1] for details. For a given TBox 7 and a defined
concept name A in 7, we write C'4 to denote the defining concept for A in T, i.e.,
A = Cy € T. Moreover, we deliberately confuse the concept C4 = Dy M- Dy
with the set { D1, ..., Dy }. We define a set of concepts ‘certain for C4’ as

cert(Ca) ={P.B|P.BeCs}U | ) {Cs}
P_,BeCqp

where, here and in what follows, P, ranges over P_; and P-,. Intuitively, cert(Cn)
contains concepts that hold with probability 1 whenever A is satisfied in some world.
The algorithm starts with the normalized input TBox and then exhaustively applies the
completion rules displayed in Figure 1. As a general proviso, each rule can be applied
only if it adds a concept that occurs in 7 and actually changes the TBox, e.g., R1 can
only be applied when 3r.B’ occurs in 7 and 3r.B’ ¢ C 4. Exemplarily, we explain rule
RS in more detail. If all defining concepts C'p of B are certain for A, then A C P_1 B,
thus we can add P—; B to C'4. Let 7™ be the result of exhaustive rule application and
let C% be the defining concept for A in 7*, for all concept names A. The ‘only if’
direction requires a careful and surprisingly subtle model construction.

Lemma 1. For all defined concept names A, B, we have T =% AC B iff C5 C C%.

It is easy to see that TBox completion requires only polytime: every rule application
extends the TBox, but both the number of concept definitions and of conjuncts in each
concept definition is bounded by the size of the original TBox.

To prove Theorem 2 for unrestricted subsumption, we provide a Turing reduction
from unrestricted subsumption to positive subsumption. We again assume that the input
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R1If3r.B € Ca,and Cg C Cp

then replace A = C4 with A= C4 U { F.B'}
R2If P-1B € Ca

then replace A = Ca with A=Ca UCp
R3IfP-1B€Ca

then replace A = C4 with A = C4 U {P-,B}
R4If P.,B € Ca,and D € cert(Cg)

then replace A = C4 with A = C4 U {D}
R5IfCp C cert(Ca)

then replace A = C'4 with A = C4 U {P=1 B}
R6If P.,B € C4 and Cps C cert(Ca) UCB

then replace A = C4 with A = C4 U {P.,B’}

Fig. 1. TBox completion rules for positive subsumption

TBox is in the described normal form and then exhaustively apply the rules shown in
Figure 2, calling the result 7* with defining concept of the form C;.

Lemma 2. For all defined concept names A, B, we have T = AT B iff Cj C C4.

Clearly, the Turing reduction and thus the overall algorithm runs in polytime.

It is interesting to note that the proof of Theorem 2 is based on exactly the same
algorithm, for all ~ €{> ,>} and p € (0, 1]. It follows that there is in fact only a
single logic Prob-EL™?, for all such ~ and p. Formally, given a Prob-£L~"-concept
C,~ e€{>,>}and q € (0,1], let Cx, denote the result of replacing each subconcept
P.,D in C with Pr¢D in C and similarly for Prob-£L~?-TBoxes 7.

Theorem 3. For any p,q > 0, ~,~ € {>,>}, EL P-concepts C,D and -TBox T,
we have T =7 C T D iff Tag =" Cxq T Day, and likewise for unrestricted
subsumption.

Consequently, the (potentially difficult!) choice of a concrete ~ €{> ,>} and p €
(0,1] is moot. In fact, it might be more intuitive to replace the constructor P.,C with
a constructor £ C that describes elements which ‘are likely to be a C”, and to replace
P_,C with the constructor C C' to describe elements that ‘are certain to be a C’, see e.g.
[8, 9] for other approaches to logics of likelihood. Note that the case p = 0 is differ-
ent from the cases considered above: for example, we have 7y =7 3r.A C Ir.P,A
iff p = 0, and likewise 7y = Ps,3r.A C P5,3r.P5,A iff p = 0. In the spirit of
the constructors C and £, P~(C' can be replaced with a constructor PC' that describes
elements for which ‘it is possible that they are a C”. For example, the SNOMED CT con-
cepts ‘definite thrombus’ and ‘possible thrombus’ can then be written as C Thrombus
and P Thrombus (although we speculate that the SNOMED CT designers mean ‘likely’
rather than ‘possible’).
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S1If3r.B € Ca,and Cpr C Cp

then replace A = Ca with A= Ca U { F.B'}
S2If 7 =" cert(Ca) C P.B

then replace A = C4 with A = C4 U {P.B}

Fig. 2. TBox completion rules for Turing reduction

It is a natural question whether the PTIME upper bound for classical TBoxes extends
to the case of multiple probability values (except one, which is apparently always un-
critical). The following result shows that many combinations of two probability values
lead to (non-convexity, thus) intractability, even without any TBox.

Theorem 4. Let ~ € {>,>}, and p,q € [0, 1). Then (positive) subsumption in Prob-
EL™P™ relative to the empty TBox is EXPTIME-hard if (i) g = 0, (ii) p < 1/2 and
q < p?, or more generally (iii) 2p — 1 < q < p°.

In particular, we cannot combine the constructors P and £ mentioned above without
losing tractability. The above formulation of Theorem 4 is actually only a consequence
of a more general (but also more complicated to state) result established in the long
version of [6]. We conjecture that (positive) subsumption in Prob-£ L™~ relative to
classical TBoxes is in PTIME whenever p > ¢ > p2 and that, otherwise, it is EXPTIME-
hard.

4 Probabilistic Roles

Adding probabilistic roles to Prob-£L tends to increase the complexity of subsump-
tion. While for full Prob-£ L, even decidability is open, it was shown in [15] that sub-
sumption is in 2-EXPTIME and PSPACE-hard in Prob-££;%='. As discussed in the
introduction, there were reasons to believe that this problem is actually 2-EXPTIME-
complete. We show that this is not the case by proving a PSPACE upper bound, thus
establishing PSPACE-completeness. This result holds both for positive and unrestricted
subsumption, we start with the positive case.

We again concentrate on subsumption between concept names and assume that the
input TBox is in a certain normal form, defined as follows. A basic concept is a concept
of the form T, A, PsgA, P—1 A, or da. A, where A is a concept name and, here and in
what follows, « is a role, i.e., of the form r, P~gr, or P_17r with 7 a role name. Now,
every concept inclusion in the input TBox is required to be of the form

Xin---nXx,C X

with X, ..., X,,, X basic concepts. It is not hard to show that every TBox can be trans-
formed into this normal form in polynomial time such that (non-)subsumption between
the concept names that occur in the original TBox is preserved.

Let T be the input TBox in normal form, CN the set of concept names that occur
in 7, BC the set of basic concepts in 7, and ROL the set of roles in 7. Call a role

197



probabilistic if it is of the form P—;7 or P5or. Our algorithm maintains the following
data structures:

— a mapping () that associates with each A € CN a subset Q(A) C BC such that
TEAC X forall X € Q(A);

— a mapping Qcert that associates with each A € CN a subset Qcert(A) C BC such
that 7 = AC P X forall X € Qcert(A);

— amapping R that associates with each probabilistic role &« € ROL a binary relation
R(a) on CN such that 7 = A C Ps(Ja.B) forall (4, B) € R(a).

Some intuition about the data structures is already provided above; e.g., X € Q(A)
means that 7 = A C X. However, there is also another view on these structures
that will be important in what follows: they represent an abstract view of a model of
T, where each set QQ(A) describes the concept memberships of a domain element d
in a world w with d € AT and R describes role memberships, i.e., when (4, B) €
R(a), then d € A" implies that in some world v with positive probability, d has an
element described by Q(B) as an a-successor. In this context, Qcert(A) contains all
concepts that must be true with probability 1 for any domain element that satisfies A
in some world. Note that non-probabilistic roles r and probabilistic roles P—;r are not
represented in the R(-) data structure; we will treat them in a more implicit way later
on.
The data structures are initialized as follows, for all A € CN and relevant roles a:

Q(A) = {T7 A} chrt(A) = {T} R(Oé) = (Z)

The sets Q(-), Qcert(+), and R(-) are then repeatedly extended by the application of
various rules. Before we can introduce these rules, we need some preliminaries. As the
first step, Figure 3 presents a (different!) set of rules that serves the purpose of saturating
a set of concepts I'. We use cl(I") to denote the set of concepts that is the result of
exhaustively applying the displayed rules to I, where any rule can only be applied if
the added concept is in BC, but not yet in I". The rules access the data structure Q(-)
introduced above and shall later be applied to the sets Q(A) and Qcert(A), but they will
also serve other purposes as described below. It is not hard to see that rule application
terminates after polynomially many steps.

R1IfX:M..NX,CXe7TandXy,...,X, € ['thenadd X to I"
R2If P_1A € I"'thenadd Ato I"

R3If3P_ir.A € I"thenadd Ir.Ato I

R4 If A € I'thenadd P~gAto I’

R5If 3r.A € I' then add 3P~or. Ato I"

R6 If 3a.A € I' and B € Q(A) then add 3. B to I’

Fig. 3. Saturation rules for cl(I")
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The rules that are used for completing the data structures Q(+), Qcert(+), and R(-)
are more complex and refer to ‘traces’ through these data structures.

Definition 1. Ler B € CN. A trace to B is a sequence S, Ay, o, Aa, . .., apn, A, where

1. S = Afor some P~gA € Q(A1) or S = (r, B) for some (A1, B) € R(P~o7);
2. each A; € CN and each «; € ROL is a probabilistic role, such that A,, = B;
3. (A“Ai,1) € R(ai)for 1<i<n.

If ¢ is a trace of length n, we use tx, k < n, to denote the trace S, A1, o, ..., ak, Ak.
Intuitively, the purpose of a trace is to deal with worlds that are generated by concepts
P-A and 3P5r.A; there can be infinitely many such worlds as Prob-££; %= lacks
the finite model property, see [15]. The trace starts at some domain element represented
by a set (A1) in the world generated by the first element S of the trace, then repeat-
edly follows role edges represented by R(-) backwards until it reaches the final domain
element represented by Q(B). The importance of traces stems from the fact that infor-
mation can be propagated along them, as captured by the following notion.

Definition 2. Let t = S, A1, q9,...,an, Ay be a trace of length n. Then the type
I'(t) CBCoftis

o cl({A} U Qcert(41)) ifn=1and S = A;

o cl(Qeert(A1) U{37.B" € BC | B' € Qeen(B)}) if n = 1 and S = (r, B);

o cl(Qeerc(An) U{F ay.B € BC| B/ € I(t,_1)}) if n > 1.

Note that the rules R1 to R6 are used in every step of this inductive definition. The
mentioned propagation of information along traces is now as follows: if there is a trace
t to B, then any domain element that satisfies B in some world must satisfy the concepts
in I'(t) in some other world. So if for example P~oA € I'(t), we need to add P~ogA
also to Qcert(B) and to Q(B).

Figure 4 shows the rules used for completing the data structures Q(-), Qcert(+), and
R(-). Note that S6 and S7 implement the propagation of information along traces,
as discussed above. Our algorithm for deciding (positive) subsumption starts with the
initial data structures defined above and then exhaustively applies the rules shown in
Figure 4. To decide whether 7 =1 A C B, it then simply checks whether B € Q(A).

Lemma 3. Let T be a Prob-E L, %= -TBox in normal form and A, B be concept names.
Then T =1 A C B iff, after exhaustive rule application, B € Q(A).

We now argue that the algorithm can be implemented using only polynomial space.
First, it is easy to see that there can be only polynomially many rule applications: every
rule application extends the data structures Q(-), Qcert(-), and R(-), but these structures
consist of polynomially many sets, each with at most polynomially many elements. It
thus remains to verify that each rule application can be executed using only polyspace,
which is obvious for all rules except those involving traces, i.e., S6 and S7. For these
rules, we first note that it is not necessary to consider all (infinitely many!) traces. In
fact, a straightforward ‘pumping argument’ can be used to show that there is a trace
t to B with some relevant concept C' € I'(t) iff there is a non-repeating such trace,
i.e., a trace t’ of length n such that for all distinct k,¢ < n, we have I'(t}.) # I'(t}).
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S1 apply R1-R6 to Q(A) and Qcert(A)

S2if P.B € Q(A)
then add P, B t0 Qcert(A)

S3 lf C € chrt(A)
then add P—;C and C to Q(A)

S4 If 3. B € Q(A) with « a probabilistic role
then add (A4, B) to R(c).

S51If PsoB1 € Q(A), (B1, B2) € R(a), B3 € Qcen(B2)
then add Jov. B3 t0 Qcert (A)

S6 if ¢ is a trace to B and P, A € I'(t)
then add P; A t0 Qcert(B)

S7 if ¢ is a trace to B and Ja. A € I'(t) with «v a probabilistic role

Fig. 4. The rules for completing the data structures.

Clearly, the length of non-repeating traces is bounded by 2, m the size of 7. To get
to polyspace, we use a non-deterministic approach, enabled by Savitch’s theorem: to
check whether there is a trace ¢ to B with C' € I'(t), we guess ¢ step-by-step, at each
time keeping only a single A;, ; and I'(¢;) in memory. When we reach a situation
where A; = B and C' € I'(t;), our guessing was successful and we apply the rule. We
also maintain a binary counter of the number of steps that have been guessed so far. As
soon as this counter exceeds 2", the maximum length of non-repeating traces, we stop
the guessing and do not apply the rule. Clearly, this yields a polyspace algorithm.

Theorem 5. Deciding positive subsumption in Prob-EL; %=1 yith respect to general
TBoxes is PSPACE-complete.

As a byproduct, the proof of Lemma 3 yields a unique least model (in the sense of
Horn logic), thus proving convexity of Prob-££.%=". Note that positive subsumption
in Prob-£L; %=1 s actually the same as subsumption in the two-dimensional descrip-
tion logic S5¢ ¢, which is thus also PSPACE-complete. Using a Turing reduction similar
to that shown in Figure 2, we can ‘lift’ the result from positive subsumption to unre-
stricted subsumption.

Theorem 6. Subsumption in Prob-EL.%=" relative to general TBoxes is PSPACE-
complete.

S Conclusion
We have established a fairly complete picture of the complexity of subsumption in Prob-

EL, although some questions remain open. We speculate that Theorem 2 can be proved
also when ~ is = with only minor changes (e.g. rule R3 becomes unsound). It would be
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interesting to verify the conjecture made below Theorem 4 that (positive) subsumption
in Prob-& £~ relative to classical TBoxes is in PTIME whenever p > ¢ > p? and
that, otherwise, it is EXPTIME-hard relative to the empty TBox. It is even conceivable
that the conjectured PTIME result can be further generalized to any set of probability
values P C [0, 1] as long as ¢ > p? whenever p, ¢ € P and p > ¢. Moreover, variants
of Theorem 4 that involve, additionally or exclusively, the case where ~ is = would
also be of interest.
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Unchain My £L£ Reasoner

Yevgeny Kazakov, Markus Krotzsch, and Frantisek Simancik
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Abstract. We study a restriction of the classification procedure for
ELTT where the inference rule for complex role inclusion axioms (RIAs)
is applied in a “left-linear” way in analogy with the well-known procedure
for computing the transitive closure of a binary relation. We introduce
a notion of left-admissibility for a set of RIAs, which specifies when a
subset of RIAs can be used in a left-linear way without loosing conse-
quences, prove a criterion which can be used to effectively check this
property, and describe some preliminary experimental results analyzing
when the restricted procedure can give practical improvements.

1 Introduction

The description logic (DL) ££ and its extension E£ [1] provide the bases of
the OWL EL profile of the Web Ontology Language [6] and are distinguished
by having tractable worst-case complexity for the standard DL reasoning prob-
lems. The nice computational properties of £L-style reasoning procedures such
as optimal (polynomial) worst-case complexity and “pay-as-you-go” behavior, are
commonly mentioned as main reasons for the improved practical performance of
reasoners based on such procedures for large ontologies such as SNOMED CT
[2,5,3,8].

Although ££71 admits a polynomial reasoning procedure, different features
of £L1T contribute differently to the degree of this polynomial [4]. In particu-
lar, the ££ rule for dealing with complex role inclusion axioms (RIAs) has
O(n4) time complexity, which is higher than for other rules. Even for a single
transitivity axiom, the rule can result in O(n®) inferences. Although complex
role inclusion axioms are not used as commonly as other constructors in exist-
ing ontologies such as SNOMED CT, this might change in the future as more
OWL EL ontologies emerge.

Inspired by an O(n?) algorithm for computing the transitive closure of a
binary relation, in this paper we propose a refinement of the E£1T rule for deal-
ing with complex RIAs. Our main idea is to restrict the rule so that inferences
are applied in a left-linear way, that is, only a restricted number of the “initial”
axioms can be used in all premises of the rule except for the left-most. To this
end, we (i) formulate a notion of left-admissibility describing subsets of com-
plex RIAs that can be used in a left-linear way without losing consequences,
(ii) prove a criterion for left-admissibility that can be checked in polynomial
time, and (iii) provide an experimental evaluation measuring the proportion of
left-admissible RIAs and reduction in the number of inferences for a selection of
commonly-used ontologies.
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Table 1. The inference rules for ELR, with N¢ the set of all concept names

Co C,EO:CENC
cce
C; cC :C'CDeKB
o (CCC)L, n>1
270cCcb [I.,CGCDEeKB
cCcc’ ,
_— |: .
Cs CC3RD C"'CdR.D € KB
CC3aRD DCD ,
— — : . C
Cy CCE JdR.D'C FE € KB
cC3s.D
- |:
Cs CC3RD SCReKB
C (Cici EJR,.Ci)j—y n>1
® " CyC3RC, Ri-....R,CREcKB

2 Reasoning in ELR

We first introduce a basic classification calculus for the description logic ELR
that will serve as a baseline for our study. ELR is the DL that supports only
conjunction, existential role restrictions, role hierarchies, and role inclusion ax-
ioms, each of which can be used in arbitrary general concept inclusions and role
inclusion axioms. We do not require regularity of RBoxes, and £LR can thus
be viewed as a fragment of E£T without top, bottom, nominals, and concrete
domains. We use the following notation for role inclusion axioms.

Definition 1. A role chain p is an expression of the form Ry -...- R,, n > 0;
when n = 0 then p = € is the empty role chain and when n > 2 then p is a
complex role chain. We denote by py - p2 the concatenation of two role chains
p1 and p2. A (complex) role inclusion axiom (short RIA) is an expression of the
form p C R where p is a non-empty (complex) role chain and R a role. An RBox
R is a finite set of RIAs.

Table 1 shows the rules of a classification calculus for ELR, obtained by re-
stricting the calculus for ££%F [1]. The input to the rules are axioms from an
ELR knowledge base that have been normalized as in [1]. The main difference
is that we treat n-ary conjunctions/role chains in a single application of C,/Cg,
corresponding to the implementation we used for experiments. Each rule of in-
ference consists of a premise, a conclusion, and possible side conditions. The
calculus derives axioms of the form C' C D and C' C dR.D based on an input
knowledge base KB, and it is sound and complete for classification in the sense
that an axiom C C D is entailed by KB if and only if the exhaustive application
of the inference rules can be used to derive C' C D. This follows immediately
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from the according result in [1] since it is easy to see that our rules correspond
to the inference rules in that paper: Cqy corresponds to the initialization, Cy to

CRj, C; to CRy, C3 to CR3, C4 to CRy, Cs to CRyg, and Cg to CRy;.

3 Linear Use of Role Inclusion Axioms

One of the simplest examples of complex RIAs is a transitivity axiom:
R-RCR (1)

Transitivity axioms occur in many ontologies where they are used to express hi-
erarchical relations between concepts, such as “part-of” or “child-of” hierarchies.
Let us consider an ontology containing axioms expressing a simple R-hierarchy:

A, E3dR A, 1<i<n. (2)
If we apply rule Cg to these axioms, we derive exactly axioms of the form:
A;C3RA;, 1<i<j<nm, (3)
using the following instances of rule Cg:

A;C3RA; A;C3RA,

l<i<j<k<n 4
A4, CIRA, Si<j<ksn 4)

There are exactly n - (n — 1)/2 possible axioms of the form (3) and there are
exactly n- (n— 1) - (n —2)/6 rule applications in (4). In particular, every axiom
in (3) is derived (n — 2)/3 times in average. Clearly, this demonstrates that rule
Ce can be a source of inefficiency, especially for large n.

The inferences (4) look like the computation of the transitive closure for a
binary relation, if we read C' C 3R.D as (C, D) € R. Using this correspondence,
we can apply a more efficient algorithm for computing the transitive closure by
restricting the second premise in Cg to the initial axioms only. Specifically, let
us use C° to distinguish the initial (told) axioms C' C° IR.D from the axioms
C C JR.D that are derived using inference rules. Then one can restrict rule Cg
for transitivity axioms as follows:

Ci CT3R.Cy; CyC°3R.Cs
Ch C3R.Cs

‘R-RC ReKB. (5)

We will call the rule (5) a left-linear rule in analogy with left-linear production
rules in context-free grammars because the conclusions of other inferences can
be used here only in the left premise. By applying (5) to the input axioms (2)
(written using C°), we obtain inferences of the following form:

A, C3RA; A;C°3RA;

<1 ] .
A, CIRA 1<i<j<n (6)
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Table 2. Left-linear inference rules for ELR

LO mCENC
cCC.C ,
- . C
L; CCeD C'CDeKB
L (CCLCy)iey n>1
27 CC:D [I.,GCDeKB
CECC/ ,
- . C .
L3 CCY3RD C'C JdR.D € KB
CC,3RD DLC,.D ,
L :dR.D'C E € KB
‘ CCcE RDCEC
CC.3S.D
_— . C
s . 3rp SERER
Ccc%3S.D
L =L . 5C
Ls CE%HR.D SCReR
L (Cic1 B 3Ri.Ci)y n>1
6 CoCz3RC, Ri-....R,CReR\L
L Co Cr IR1.C1 (Cin T AR;.Ci)i—s n>1
6 Co Cc 3R.Cy, "Ri-...-R,CREL

It is easy to see that there are exactly (n — 1) - (n —2)/2 rule applications in (6)
producing exactly those axioms in (3) that are not in (2), and that every such
axiom is derived exactly once. Clearly, this strategy represents an improvement
over the application of the (unrestricted) rule Ce.

We use the idea above to formulate a calculus for ELR with a restricted
version of rule Cg. In order to do that, we need to specify where the “initial”
axioms C' C° 3R.D come from. Clearly, we cannot take such axioms just from the
knowledge base, since otherwise, e.g., we would not be able to derive A C 3R.D
for KB consisting of A C dR.B, BC C, C C dR.D, and R- R C R, as we
cannot avoid using B T 3R.D in the second premise of Cg. Similarly, we need
to allow initial axioms to be produced by Cs, since otherwise A C 3R.C' cannot
be derived for KB consisting of A C dR.B, BC 35.C, SC R,and R- RC R.

The new calculus for ££LR is formulated in Table 2. The calculus is para-
metrized with a distinguished subset £ C R of complex RIAs. The RIAs in £
can, similar to the transitivity axiom in the example above, only be used in a
left-linear version Lg of rule Cg. The remaining axioms from R \ £ can be used
without restrictions in rule L. The initial axioms of the form C' =% IR.D are
produced by rules Lz and L5. We use £ in the subscripts of T, and L% to em-
phasize that these relations depend on £. We implicitly assume that &% C C;
in particular, axioms of the form C' £% 3R.D can also be used as premises of
rules Ly and Lg and as the first premise of rule Lg. Note that if £ = ), our new
calculus coincides with the original calculus for ELR (ignoring the distinction
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Table 3. Left-linear composition of roles
Eo m :R € Ng
pCc S
pCEc R
TC% S
TC% R

(pi Cc Ri)iey n>1

P pnCe R Ri-...-RhnCReR\L

pCeR (TiCr R)Ey n>1
p1'T2'...'TnELR RanERGE

E; :SCReR

:SCReR

between C% and C.). Clearly, the larger £ is, the more restricted our rules are,
and so the less inferences are possible. Thus, in the remainder of the paper we
are concerned with the problem of finding subsets £ of a given R which do not
result in lost consequences relative to the original calculus in Table 1.

4 Left-Admissible Role Inclusion Axioms

In this section we are concerned with the problem of how to determine, given a
set of complex RIAs £ C R, whether the calculus in Table 2 produces the same
consequences as the original calculus in Table 1. In order to study the properties
of the calculus in Table 2 for different subsets £ of R, consider the smallest
relations C% C T, on role chains satisfying the properties in Table 3. Note the
similarities between the rules in Table 3 and rules in Table 2. Also note that
unlike the derivation relation CY in Table 2, the relation T in Table 3 does not
depend on £ and coincides with the closure of the role hierarchy. The following
lemma can be easily proved using the correspondence between the rules L3, Ls,
L5, Lg and Lg and the rules Eg, Ey, Ef, E; and E5.

Lemma 1. For every subset L C R of complex RIAs, all concepts A and B,
and every role R, the following two conditions are equivalent:

(i) AT, 3R.B.
(i) There exist Co,...,Cp and Ry - ... Ry, T R such that A = Cy, B = C,,

The following properties can be proved by induction on S E7 T

if RC} Sand ST T, then RCY. T, (1)
if pCp Sand SC T, then pCp T. (8)

The necessary and sufficient condition on £ C R that guarantees that our
new calculus for ELR derives the same consequences as the original calculus,
can now be defined as follows:
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Definition 2. A set of complex RIAs L C R is left-admissible for R if the
following condition holds:

if(piCe Ri)q and Ry -...-R,C RER, thenpy-...-pp, T R.  (9)

Intuitively, £ C R is left-admissible if the relation T, is closed under the
unrestricted version of the rule E; when RIAs R;-...-R,, C R can be taken not
only from R\ £, but from the whole R (note the similarity of (9) and E3). Left-
admissibility thus ensures that the relation C, coincides with the unrestricted
relation Cg, i.e., the relation for £ = §).

Example 1. Consider R consisting of the axiom
isPartOf - isProperPartOf C isProperPartOf. (10)

It is easy to show that the following relations hold for any (of the two) £ C R:

isPartOf CY. isPartOf (by Ep), (11)
isProperPartOf C§ isProperPartOf (by Ep), (12)
isPartOf - isProperPartOf C . isProperPartOf (by E; or E3). (13)

The following relation, however, holds only for £ = (:
isPartOf - isPartOf - isProperPartOf C . isProperPartOf (by E2). (14)

When £ = R, one cannot use E3 to produce (14) from (11) and (13) using (10).
Therefore £ = R is not left-admissible for R according to Definition 2.
Now suppose R is extended with the transitivity axiom

isPartOf - isPartOf C isPartOf. (15)
Then, similarly, for any £ C R we have
isPartOf - isPartOf C . isPartOf (by Ez or E). (16)

And now (14) can be produced from (16) and (12) using (10) for any £ C R. In
fact, one can show that any £ C R will be left-admissible for the extended R.

Theorem 1. Let KB be a knowledge base with RBox R, and L C R be left-
admissible for R. Then C T D is derivable by rules in Table 1 using KB iff
C C, D is derivable by rules in Table 2 using KB.

Proof. The “if” direction of the theorem is straightforward since each rule in
Table 2 is a restriction of a corresponding rule in Table 1.

To prove the “only if” direction, assume to the contrary that there exists C' C
D derivable by rules in Table 1 such that C' [Z, D. Without loss of generality,
C C D is produced by some rule in Table 1 from some premises C; C D;,
0<i<mn,n>0,such that C; Ty D;. We obtain contradiction by considering
all possible cases for such a rule.
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The only non-trivial case is an application of the rule Cg since all other rules
have a direct counterpart in Table 2. In this case D;—1 = 3R;.C; (1 < i < n),
C=Cy, D=3R.Cpand R -...- R, C R € R. By case (i) = (i) of Lemma 1
applied to each C;_1 C 3R;.C;, there exist C’f_l C% 3RI.CY (1 <j <m;) such
that CY = C;_1, C™ = C; and R} - ...+ R" C; R;. Define p; := R} - ...  R[™.
Since p; Cp R; (1 <i<n),R;-....R, C R € R, and L is left-admissible, we have

pi- - pn Cr R. By case (i) < (ii) of Lemma 1 for ((C¢' 2% ﬂRz.Cg);”:il)?zl
using p; - ... pp Tz R we obtain C = Cy = CY) C, IR.C™ = 3JR.C, = D,
which contradicts C' [Z, D. This proves the theorem. a

5 Recognizing Left- Admissibility

It is difficult in general to verify the conditions of left-admissibility formulated
in Definition 2 since this requires checking property (9) for a potentially infinite
number of role chains p;. In this section we give an equivalent formulation for
left-admissibility, which can be checked in polynomial time.

We start with the following sufficient condition for left-admissibility:

Lemma 2. Let L C R be sets of complexr RIAs that satisfy the property:
ifpCSeRand p1-S-p2Cr R, then p1-p-p2 Cr R. (17)
Then L is left-admissible for R.

Proof. We first show that (17) implies the following stronger property:
ifpEysSand p;-S-py Ep R, then p1-p-p2 Cf R. (18)

The proof of (18) is by induction on the derivation of p T, S. In the base case
Ep we have p = S and the claim p;-S-p2 T, R is part of the precondition. In all
other cases E;—Ej there exist (o; £z S;)™;, n > 1such that p=0y ... 0, and
S-Sy ESeR. By (17) p1-S1-...-Sn - p2 Ex R. Now use the induction
hypothesis (18) for each o; T, S; to iteratively expand the left-hand side of
p1-S1...-Sp-p2 Ez R to obtain the claim p1-p-p2a =p1-01+...-0n-p2 Cr R.

To finish the proof of the lemma, we now show that (18) implies (9). To
this end, consider any (p; Ty R;)?, and Ry -...- R, C R € R. We must
prove that py - ... p, C, R. For this, note that Ry - ... - R, E R € R implies
Ri-...-R, C, R, and use (18) for each p; T, R; to iteratively expand the
left-hand side of Ry -...- R, £, R to obtain the desired p1 -...-p, T R. O

The following lemma formulates some useful closure properties of the relation
C ., which hold for arbitrary L:

Lemma 3. Let L C R be sets of RIAs. If p1 T Sv, (T3 T% Si)iey, n>1, and

S1 . SpEr R, thenpy - To-...- T, Cr R.
Proof. Let p = p1-To - ...-T,. We will show p T, R by induction on the
derivation of S -...-S, C, R.
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Eo: n =1 and S; = R. The claim p; T R is part of the precondition.

Ei: S1-...- 5, Cz Sand SC R € R. By the induction hypothesis p C, S from
which p E, R follows by E;.

E}: Analogous to the case of Ej.

Ex: S1-...-8, =01-...-c0m,m>1, ((TZ‘ Cr Rl);zl and Ry-...-R,,C Re R\E

Let s; and e; be the start and the end indices of ¢; in Sy - ... - S,. By the
induction hypothesis p1 - T - ... Tey, Tg Ry and (T, - ... - Te, Tp Ry,
from which p T, R follows by Ej.

E2: S1-... Sk Cg Ry, k> 1, (Siyk—1 C% R)™y,m > 1, k+m=n+1and
Ry-...- R, £ R € L. By the induction hypothesis p; - T3 - ... - Ty E, R;.
By (7) we have (Tj1r—1 C% R;)™,. Then p C, R follows by Ej. ]

We are now ready to formulate our main criterion for left-admissibility:

Theorem 2. A subset L C R of complex RIAs is left-admissible for an RBozx
R if and only if the following property holds:

ifpCS1eER, S1Cr Sy andpr-Sa-po T ReL, thenpr-p-p2CTr R (19)

Proof. The “only if” direction of the theorem can be easily shown using Defini-
tion 2 since p C S € R and Sy &% Sy imply p &2 Ss.
To show the “if” direction, we first prove the following strengthening of (19):

ifpC S e€R,S1CY Syand p1-S2-p2 Cp R, then py-p-p2 Cr R. (20)
The proof of (20) is by induction on the derivation of py - S2 - p2 T, R.

Eo: S2 = R and p; = pa = €. Then (20) follows from (8).

Ei: p1-S2:-p2 Cp Sand S C R € R. By the induction hypothesis p1-p-p2 E2 S,
from which p; - p- p2 T, R follows by Ej.

E}: Analogous to the case of Ej.

Ex: p1-Se-po=01-...-0p, (6, Cg R)Pjand Ry -...- R, C Re R\ L. Let
k be such that Sy occurs in oy, that is o1 - ... o_1 = p}, o = pY - S2- ph,
Okt1 ... On = phand p1 = p}-pY, p2 = ph - ph. By the induction hypothesis
o1-p-py Cr Ry, from which py-p-po = 01+ .cop—1-p] - p-py-0kt1-....on Tz R
follows by Ej.

Elzi p]‘SQ‘pQ = Ul'Tg‘.‘.'Tn, g1 EL Rl, (E EOE Ri);ﬂzg and Rl'. . Rn E Re L.
If S5 occurs in o7, then this is analogous to the case of Ep. Otherwise, let k
be such that 01 'TQ'...'T]@,1 = pP1, Tk = SQ and Tk;+]_ Tn = pP2. By (7)
S1 C% Ri. By (19) applied to pC S; € R, S1 T Ryand Ry -...- R, T R
we obtain Ry -... - Rgp—1-p- Rgy1-...- Ry C¢ R, from which p; - p-p2 =
o1 To-...- Ty p-Thy1-...- T E¢ R follows by Lemma 3.

Having proved (20), condition (17) now follows by taking S; = Sy = S in
(20) and using rule Eg to derive S T} S. Therefore L is left-admissible for R. O

Condition (19) in Theorem 2 can be checked in polynomial time in the size
of R. Indeed, there are only polynomially many possible instances of the precon-
dition in (19). For every such precondition, the property p; - p- p2 Cz R can be

209



checked in polynomial time by, e.g., applying Lemma 1: p; - p- p2 T R holds iff
Co Cz 3R.Cy, is derivable from (C;_1 C% 3R;.C;)I,, where Ry -.. .-R,, = p1-p-pa.

Theorem 2 can help checking if a given set L is left-admissible, but does not
explain how to find such a set without exhaustively checking al possible subsets
of R. The following sufficient condition will help us quickly find a suitable left-
admissible set of RIAs in practice:

Theorem 3. For a set of RIAs R let L(R) be the set of exactly those complex
RIAs 0 C R € R that satisfy the following condition for all p, p1, p2, S1, S2:

ifpCS1€R, S1C% Sy and p1 - S2 - pa =0, then p1-p- p2 Cr R. (21)
Then L(R) is left-admissible for R.

Proof. Note that the relations C, are anti-monotonic in £, that is for £; C Lo
we have Cp, D Cp,. Let £ = L(R). Since £ C R, we have T, D Cg, and, since
C% does not depend on £, we have £} = C%. Now it is easy to show that £
satisfies (19): Suppose p C S1 € R, S1 C% Sz and p; - S2 - p2 T R € L. Then
C% = C% implies S1 C% Sa, 50 p1-p-p2 Tr R by (21). Then Ty O Cx implies
p1-p-p2 Tz R, so (19) holds. Therefore £ = L(R) is left-admissible for R by
Theorem 2. O

6 Experimental Evaluation

In this section we present the results of an experimental comparison of applying
the calculi in Sections 2 and 3 to several commonly considered €L ontologies that
contain complex RIAs, and discuss whether and to which extent our optimized
treatment of RIAs can improve the performance of reasoning in practice.

To evaluate the proposed algorithms, we have implemented the calculi de-
scribed in Sections 2 and 3 in a prototype Java-based reasoner ELK.! All exper-
iments were conducted using Java 1.6 on a 2.5 GHz quad core CPU with 4GB
RAM running Fedora 13 Linux.

Our test ontology suite includes GO,?2 FMA-lite,® and an OWL EL version
of GALEN.? These ontologies contain only (left-admissible) RIAs of the form
RC Sand R- R C R. In order to test which proportion of complex RIAs in
realistic ontologies is left-admissible, we additionally considered the two latest
versions of GALEN,® namely GALEN7 and GALENS, which contain RIAs of
the foorm RC S, R-SLC R,and S-R C R. We reduced these ontologies to ELR
by removing all axioms for role functionalities and role inverses and replacing
all datatypes by fresh atomic concepts. It is worth noting that the RIAs in
GALEN7 and GALENS do not satisfy the regularity restrictions of OWL 2 [7]

! http://code.google.com /p/elk-reasoner /

% obtained from http://lat.inf.tu-dresden.de/  meng/toyont.html

3 obtained from http://www.bioontology.org/wiki/index.php/FMAInOwl
4 obtained from http://condor-reasoner.googlecode.com/

® obtained from http://www.opengalen.org/sources/sources.html
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Table 4. Ontology metrics and experimental results

GO FMA-lite OWL GALEN GALEN7  GALENS

Number of normalized input axioms

ACB 28,896 121,708 71,366 92,749 588,806
M, A; C B,n>2 0 0 11,561 12,097 122,527
AC3JR.B 1,796 12,355 14,115 15,105 106,065
JdR.AC B 0 0 7,549 7,973 93,241
RCS 0 3 958 972 996
Ri-RaCR3eR 1 1 58 385 385
Ri-RaCR3el 1 1 58 183 183
Number of derived axioms

ACB 206,205 1,035,527 1,119,636 1,770,895 11,462,383
ALC3JR.B 33,985 867,209 2,282,471 3,299,376 24,998,147
Number of rule applications

Co/Lo 19,468 78,977 25,963 30,534 202,664
Ci/Ly 241,834 958,754 1,396,379 2,917,625 15,900,712
C2/L2 0 0 259,654 372,780 2,639,688
C3/Ls3 21,994 114,724 339,880 446,980 3,780,076
Cs/Ls 0 0 949,148 1,316,768 17,217,292
Cs/Ls+L5 0 96,891 2,023,828 2,903,821 21,988,137
Ce 34,753 5,807,992 275,248 1,264,208 11,867,857
Leé+Ls 19,756 1,186,733 216,982 1,087,328 8,728,711

and, for this reason, no OWL reasoner can handle them in the unreduced form.
We have excluded SNOMED CT from our experiments for the reason that the
only complex RIA it contains is redundant for classification in the sense that
rule Cg is never applied on this ontology.

In our experiments, we first normalized all test ontologies using structural
transformation, and applied Theorem 3 to identify left-admissible sets of RIAs.
Table 4 presents statistics on the number of axioms of each type and the num-
ber of left-admissible RIAs for each of the tested ontologies. For GALEN7 and
GALENS, which contain identical complex RIAs, we found a left-admissible sub-
set containing 183 out of the total 385 complex RIAs. In this case, we additionally
checked that adding any one of the remaining complex RIAs to the previously
found 183 violates the conditions of Theorem 2, showing that the left-admissible
subset of RIAs we found is maximal. For the remaining ontologies, the full set
of RIAs is left-admissible since transitivity axioms are the only kind of complex
RIA. In general, the computation of left-admissible RIAs had no relevant impact
on overall performance, running in less than 0.5 seconds in all cases.

For each of the tested ontologies, we computed the saturation under the infer-
ence rules of Table 1 and Table 2. Table 4 presents the total number of different
conclusions of each type, and the total number of inferences for each rule. In
accordance with Theorem 1, both approaches produce the same conclusions. For
this reason, the number of applications of each rule Co—Cs coincides with the
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corresponding number for rules Lo—L5. Differences between the two approaches
are found in the number of applications of Cg on the one hand, and the com-
bined number of applications of Lg and Lg on the other hand. As can be seen
from the results, the effect of our optimization strongly depends on the input
ontology, with the largest relative reductions obtained for FMA-lite and GO,
and less significant reductions for all versions of GALEN.

Although the reduction in the number of rule application is significant for
FMA-lite and GO, this, surprisingly, did not translate to a significant reduction
in the running time for our prototype implementation. For FMA-lite, for exam-
ple, the running time is reduced just from 7.2 to 6.1 seconds (15.3%), which is
less than expected for more than 65% reduction in the number of inferences. For
other ontologies the reduction in the running time was even less measurable.

One possible explanation for this effect is that a rule application producing
a new consequence costs more than a rule application producing a previously
derived consequence because the first requires a (relatively expensive) memory
allocation. Since our optimized procedure derives exactly the same conclusions,
it reduces only the number of inferences of the second kind. Nevertheless, our
optimization can give improvement in some cases and should not be difficult to
implement (at least for transitivity) in any reasoner based on the original ££
calculus [1], such as in CEL/jCEL [2] or Snorocket [5].
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Abstract. Evolution of Knowledge Bases expressed in Description Logics (DLs)
proved its importance. Most studies on evolution in DLs have focused on model-
based approaches to evolution semantics and in particular on Winslett’s semantics
(WS). It was understood that evolution under WS even in tractable DLs, such
as DL-Lite, suffers from inexpressibility, i.e., the result of evolution cannot be
expressed in the same logics. In this work we show which combination of DL-
Lite logical constructs is responsible for the inexpressibility and explain reasons
for such a behaviour. We present novel techniques, based on what we called
prototypes, to capture Winslett’s evolution in FO[2] for DL-Liter . We also discuss
which fragments of DL-Liter are closed under evolution.

1 Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured
knowledge by means of Knowledge Bases (KBs) X that are composed of two compo-
nents: TBox (describes intensional or general knowledge about an application domain)
and ABox (describes facts about individual objects). DLs constitute the foundations for
various dialects of OWL, the Semantic Web ontology language.

Traditionally DLs have been used for modeling static and structural aspects of
application domains [1]. Recently, the scope of KBs has broadened, and they are now
used also for providing support in the maintenance and evolution phase of information
systems. This makes it necessary to study evolution of Knowledge Bases [2], where
the goal is to incorporate a new knowledge A into an existing KB K so as to take
into account changes that occur in the underlying application domain. In general, N/
is represented by a set of formulas denoting those properties that should be true after
K has evolved, and the result of evolution, denoted X ¢ A/, is also intended to be a
set of formulas. In the case where N interacts with K in an undesirable way, e.g., by
causing the KB or relevant parts of it to become unsatisfiable, N cannot simply be
added to the KB. Instead, suitable changes need to be made in K so as to avoid this
undesirable interaction, e.g., by deleting parts of K conflicting with . Different choices
for changes are possible, corresponding to different approaches to semantics for KB
evolution [3,4,5].

One approach to evolution semantics that proved its importance is Winslett’s seman-
tics (WS) [6], which is an update semantics in terms of Katsumo and Mendelzon [4],
and was originally proposed for propositional theories. Under this semantics the result of
evolution KC o A is a set of models of N that are minimally distanced from models of ,
where the distance is based on symmetric difference between models (see Section 3 for
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2 Evgeny Kharlamov, and Dmitriy Zheleznyakov

details). Since the result of evolution K ¢ N is a set of models, while K and A are logical
theories, it is desirable to represent K ¢ A as a logical theory using the same language
as for K and V. Thus, looking for representations of K ¢ N is the main challenge in a
study of evolution under WS. When K and N are propositional theories, representing
K o N is well understood [5], while it becomes dramatically more complicated as soon
as K and N\ are first-order, e.g., DL KBs [7].

In this work we study how WS can be applied to evolution of KBs under the following
two assumptions. First, we assume that both X and N are written in a language of the
DL-Lite family [8]. The focus on DL-Lite is not surprising since DL-Lite is tightly
connected with conceptual data models and it is the basis of OWL 2 QL, a tractable
OWL 2 profile.Second, we assume that A" is a new ABox and the TBox of K should
remain the same after the evolution. That is, we study a so-called ABox evolution. ABox
evolution is important for areas, e.g., bioinformatics, where the structural knowledge
TBox is well crafted and stable, while ABox facts about specific individuals may get
changed, or/and new facts can be inserted in the ABox. These ABox changes should be
reflected in KBs in a way that the TBox is not affected.

There are several works on WS for both DL-Lite and more expressive DLs. Liu,
Lutz, Milicic, and Wolter studied Winslett’s evolution in expressive DLs [7], for KBs
with empty TBoxes. Most of DLs they considered are not closed under WS and in order
to close these logics they used “@” operator. Poggi, Lembo, De Giacomo, Lenzerini,
and Rosati applied WS to DL-Lite [9] and proposed an algorithm to compute the result
of evolution. It turned out that their algorithm is wrong, i.e. it is neither sound, nor
complete [10]. Actually, such an algorithm cannot exist since Calvanese, Kharlamov,
Nutt, and Zheleznyakov showed that, e.g., DL-Lite r is not closed under WS of evolu-
tion [11], that is, there are K and N such that K ¢ N\ is not axiomatizable in this family.
Recently [12] we introduced profotypes, which are in a way generalization of the notion
of canonical model, and proposed a way to capture some fragments of DL-Lite in FO[2],
a fragment of first-order logic that uses two variables only.

Current work extends the preliminary results of [12]. Our goals here are

(i) to clarify our prototype-based techniques which was only sketched in [12],
(ii) to extend the techniques to wider DL-Lite fragments,
(iii) to gain a better understanding on which fragments of DL-Lite are closed under WS
and how to approximate evolution results in DL-Lite.
We would also like to promote prototypes since we believe they are an useful tool to
study evolution of ontologies and might be not only of DL-Lite ones.

In Sections 2 and 3 we define DL-Litez and ABox evolution under WS. In Section 4
we give an intuition of our approach to capture WS of evolution for DL-Liter KBs using
prototypes and FO[2] theories. In Sections 5 and 6 we formalize the approach. Finally,
we discuss properties and approximation of these theories.

2 DL-Liter

We introduce some basic notions of DLs (see [1] for more details). We consider a logic
DL-Liter of DL-Lite family of DLs [8,13]. DL-Liter has the following constructs for
(complex) concepts and roles: (i) B ::= A | 3R, (ii) C := B | =B, (iii) R::= P | P,
where A and P stand for an atomic concept and role, respectively, which are just
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names. A DL knowledge base (KB) K = (7, .A) is compound of two sets of assertions:
TBox T, and ABox A. DL-Litex TBox assertions are concept inclusion assertions of
the form B T C and role inclusion assertions R T Ry, while ABox assertions are
membership assertions of the form A(a), ~A(a), and R(a, b). The active domain of K,
denoted adom(KC), is the set of all constants occurring in K. The DL-Lite family has nice
computational properties, for example, KB satisfiability has polynomial-time complexity
in the size of the TBox and logarithmic-space in the size of the ABox [14,15].

The semantics of DL-Lite KBs is given in the standard way: using first order inter-
pretations I, all over the same countable domain A. We assume that A contains the
constants and ¢ = ¢, i.e., we adopt standard names. Alternatively, we view interpreta-
tions as sets of atoms: A(a) € Z iff a € AT and P(a,b) € T iff (a,b) € PL.

Definitions of Z being a model of an ABox or a TBox assertion F', denoted Z = F',
and a KB K, denoted 7 |= K, are standard, as well as the notion of satisfiability. We use
Mod(K) to denote the set of all models of . We use entailment on KBs L = K’ in the
standard sense. An ABox A 7T -entails an ABox A’, denoted A =7 A", if TUA = A/,
and A is 7 -equivalent to A’, denoted A =7 A, if A =7 A and A’ =1 A.

The deductive closure of a TBox T, denoted cl(7), is the set of all TBox assertions F’
such that 7 |= F'. For satisfiable KBs K = (7, A), a full closure of A (wrt T), fclr(A),
is the set of all membership assertions f (both positive and negative) over adom(KC)
such that A =7 f. Clearly, in DL-Liteg both cl(7T) and clr(A) are computable in time
quadratic in, respectively, | 7|, i.e., the number of assertions of 7, and |7 U A|. For the
ease of exhibition and wlg we assume that all TBoxes and ABoxes are closed.

A homomorphism h from a model 7 to a model 7 is a structure-preserving mapping
from A to A satisfying: (i) h(a) = a for every constant a; (ii) if « € AT (resp.,
(a,3) € PT), then h(a) € A7 (resp., (h(a), h(B)) € P7) for every A (resp., P). We
write Z — J if there is a homomorphism from Z to 7. A canonical model Z of I,
denoted as Z;*" or just Z°“" when K is clear from the context, is a model of X' which
can be homomorphically embedded in every model of K [8].

3 Winslett’s Semantics for Evolution of Knowledge Bases

We start with ABox evolution of single models under Winslett’s semantics. Let K =
(7,.A) be a DL-Liteg KB, Z a model of K, and N/ a new ABox satisfiable with 7.
Evolution of a model Z of K is based on the symmetric difference &: 51 & Sy =
(S1\ S2) U (S2\ S1), and defined as follows. The (result of) evolution of T with N
under Winslett’s semantics (WS) [9], denoted Z ¢ V, is the set of models 7 such that:
(i) J € Mod(T U N), and
(ii) there is no model J' € Mod(7T U Nj satisftyingZ & J' CZT6 J
Note that in Case (i) we have Mod of both 7 and A/, which means that the evolution
preserves both the old TBox and the new knowledge. Case (ii) guarantees the principle
of minimal change [5]. We extend the definition to KBs:
The result of evolution of K with A" under WS, denoted K o N, is the following set
of models:
Ko N = Uzemox)Z ¢ N.

In terms of [10], WS corresponds to £ semantics, i.e., local model-based semantics
based on atoms and set inclusion.
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The input for evolution is two finite syntactic objects: a KB K = (7, .4) and a new
information A/, while the output X o A is a set of models, which is an infinite object for
DL-Liter . Indeed, K o N\ is in general infinite. One can easily come up with examples
where K ¢ N has an infinite number of infinite models. These observations imply that
storing XC o A is infeasible and in practice one would like to represent the evolution as
a KB K’. Moreover, one would like to stay within the same formalism and express K’
in DL-Liter . Formally, we say that a logic £ is closed under Winslett’s evolution if for
every K and NV in L, the result of evolution K ¢ N is expressible in £, that is, there is a
KB K’ = (T, A’) in L such that Mod(K') = K o N.

Example 1. Consider the following DL-Lite KB K; = (71, A1) and N; = {C(b)}:

T = {A CdR,JR™ C _'C}; Al = {A(a)a C(e)a C(d)7 R(CL, b)}
Consider the following model 7 of /Cy:
. AT ={a,2}, CT ={d,e}, RT ={(a,b),(z,b)},

where € A\ adom. The following models belong to Z ¢ N;:

Jo: AT =0, CT ={d,e,b}, RT =4,

Ji: AT ={a}, CT ={e,b}, RT {(z,d)},

Jo: AT ={x}, Cct ={d,b}, RT = {(z,e)}.
Indeed, all the models satisfy N7 and 7;. To see that they are in Z o A observe that
every model 7 (I) € (Z ¢ N}) can be obtained from Z by making modifications that
guarantee that 7 (1) = (N7 U 77) and that the distance between Z and 7 (1) is minimal.
What are these modifications? Since in every J(I) the new assertion C'(b) holds and
(C C = R") € Tq, there should be no R-atoms with b-fillers at the second coordinate
in J (7). Hence, the necessary modifications of Z are either to drop (some of) the R-
atoms R(a,b) and R(z,b), or to modify (some of) them, by substituting the b-fillers
with another ones, while keeping the elements a and x on the first position. The model
Jo corresponds to the case when both R-atoms are dropped, while in [7; and 72 only
R(a,b) is dropped and R(z,b) is modified to R(z, d) and R(z, ), respectively. Note
that the modification in R(x, b) leads to a further change in the interpretation of C' in
both J; and J», namely, C(d) and C'(e) should be dropped, respectively. |

4 Prototypes for Winslett’s Semantics

We first present a general discussion on issues with capturing WS in DL-Lite, then give
an intuition of our approach for capturing it in FO[2], and finally give an example of how
the approach works. In the next section we formalize the approach.

ABox Evolution of a DL-Lite KB K with an ABox A is the set of models K o A/
that may not have a canonical one [12]. This immediately yields that & ¢ A cannot be
described (aka axiomatized) in any language of the DL-Lite family.

Example 2. We now illustrate the lack of canonical models in K1 ¢ N from Example 1.
One can verify that any model 7., that can be homomorphically embedded into Jy, J1,
and J5 is such that A7« = RI«w = (), and e, d ¢ C7« . It is easy to check that such a
model does not belong to K1 ¢ A;. Hence, there is no canonical model in K ¢ N and it
is inexpressible in DL-Lite. ]
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N \

Mod(K(Jo)) — ModK(T))  ppoaic(7,))

Fig. 1. Graphical representation of our approach to capture the result of evolution under WS.

A closer look at sets K o N for different C and \V gave a surprising outcome: all of
them satisfy the following property.

Theorem 3. K o N can be divided (but in general not partitioned) into finitely many
subsets Sy, - . ., S, of models, where each S; has a canonical model J;. Each of these
canonical models is a minimal element in KC o N wrt homomorphisms.

We called these ;s prototypes [12]. Thus, capturing K ¢ N in some logics boils
down to (i) capturing each S; with some theory KCs, and (ii) taking the disjunction across
all Ks,. This will give the desired theory K’ = Ks, V --- V K, that captures K o N.
Unfortunately, some of g, are not DL-Lite theories (while they are FO[2] theories, see
Section 5 for details).

We construct K’ in two steps. First, we construct DL-Litez, KBs K(J;) for each J;
such that K(7;) is a sound approximations of S;s, that is, S; C Mod(K(7;)). Second,
based on KC and V, we construct an FO[2] formula ¥, which cancels out all the models
in MOd(/C(‘Z)) \SZ, that is, ,CSO VeV Kgn =UA (,C(jo) VeV K(jn))

To get a better intuition on our approach, consider Figure 1, where the result of
evolution K ¢ N is depicted as the figure with solid-line borders (each point within the
figure is a model in Ko A\). Assume that Ko\ can be divided in four subsets Sy, . . . , Ss.
To emphasize this fact, K ¢ A looks similar to a hand with four fingers, where each
finger represents an S;. Consider the left part of Figure 1. Each of S;s has a canonical
model depicted as a star. Using DL-Lifer , we can provide KBs K(Jp), . . ., K(J3) that
are sound approximation of corresponding S;s. We depict the models Mod(K(7;)) as
ovals with dashed-line boarders. Consider the right part of Figure 1. In this figure we
depict in grey the models Mod(KC(J;)) \ S; that are cut off by ¥.

Before proceeding to the next section where we formalize our approach, we introduce
prototypes formally.

Definition 4. Let K be a DL-Liteg KB and N be an ABox. A prototypal set for K o N
is a minimal subset '] = {Jo, ..., Tn} of K o N satisfying the property:

for every J € K o Nthereis J; € 7 such that J; — J.

We call every J; € *J a prototype for K o . Note that prototypes generalize canonical
models in the sense that every set of models with a canonical one, say Mod(K) for a
DL-Liter KB K, has a prototype, which is exactly the canonical model.

S Computing Winslett’s Semantics When No Roles Interact

We first discuss some of the reasons of WS inexpressibility in our examples and DL-Liter.
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BZP(K,N)
Jo := Align(Z°*™, N') UN, where Z°™ is the canonical model of K.
2. Foreach R(a,b) € AA(K,N),do Jo := Jo \ {R(a,b)},
if there is no R(a,3) € A\ AA(K,N) do Jo := Jo \ 100t (3R(a)).
3. Return J.

Fig. 2. The procedure of building zero-prototype

—

Dual-Affection of Roles. As we discussed in the previous section and illustrated in
Example 1, sets of models K o N that result from Winslett’s evolution do not have
canonical models. We now give an intuition why in K o N canonical models are missing.
Observe that in Example 1 the role R is affected by the old TBox 7; as follows:
(i) 11 places (i.e., enforces the existence of) R-atoms in the evolution result, and on
one of coordinates of these R-atoms, there are constants from specific sets, e.g.,
A C 3R of 77 enforces R-atoms with constants from A on the first coordinate, and
(ii) T1 forbids R-atoms in K1 o N7 with specific constants on the other coordinate,
e.g., IR~ C —(C forbids R-atoms with C'-constants on the second coordinate.
Due to this dual-affection (both positive and negative) of the role R in 77, we were
able to provide an ABox A; and N7, which together triggered the case analyses of
modifications on the model Z, that is, .A; and N; were triggers for R. Existence of
such an affected R and triggers 4; and N7 made K; o N] inexpressible in DL-Litey; .
Therefore, we now learn how to detect dually-affected roles in TBoxes and how to
understand whether these roles are triggered by an ABox and a new (ABox) information.
Formally, let 7 be a TBox, a role R is dually-affected in T if for some concepts A
and Bitholds that 7 = A C JRand 7 = 3R~ C —B. Let N be an ABox satisfiable
with 7, then a dually-affected role R is triggered by N if there is a concept B such that
7 E 3R C —-Band N =7 B(b) for some constant b. The set TR(7", \') (or simply
TR) is the set of all roles (dually-affected in 7") that are triggered by .
Description Logics DL—Litefa. We now show a restriction of DL-Liter for which we
later present an algorithm to capture WS using prototypal set. DL-Lite; (where I stands
for (mutual) independence of roles) is a restriction of DL-Literz in which TBoxes 7°
satisfy: for any two roles R and R’, 7[/= 3R C 3R’ and 7[/= 3R C — R’. That is, we
forbid direct role interaction (subsumption and disjointness) between role projections.
Some interaction is still possible: role projections may contain the same concept. This
restriction allows us to analyze evolution affecting roles independently for every role.
Components for Computation. We now introduce several notions and notations that
we further use in the description of our algorithm. An alignment of a model I with N,
denoted Align(Z,N'), is the interpretation:

Align(Z,N) ={f | f € Z and f is satisfiable with N'}.

An auxiliary set of atoms AA (Auxiliary Atoms) that, due to evolution, should be deleted
from the original KB and have some extra condition on the first coordinate is:

AA(T, A, N') = {R(a,b) € fel(A) | T = AC 3R, A =7 A(a), N =7 3R~ (b)}.

For the set TR we define the set of forbidden atoms FA[T , A, N|(R;) of the original
ABox as:

{D(c) € felr(A) | 3R; () A D(c) = L, NY=r1 D(c), and N)/=r =D(c)}.
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BP(K,N, 7o)

1. 7 = {jo}

2. For each subset D = {D1(c1),...,Dir(ck)} C FAdo
foreach R = (R;,, ..., Ri, ) such that D;(c;) € FA(R;;) forj =1,...,kdo
foreach B = (A;,, ..., A;, ) suchthat A; € SC(R;) do
TID,R,B) := [T \ UL, roorr(Dife) | UUL, [fel (Ri(wi, ) U{Ag; (@)}]
where all x;’s are different constants from A \ adom(KC), fresh for Z°¢".

J:=Ju{J[D,R,B]}.
3. Return 7).

Fig. 3. The procedure of building prototypes in DL-Lite) based on the zero prototype Jo

Consequently, the set of forbidden atoms for the entire KB (7, .4) and N is
FA(T,A,N) = Ug,errFA(T, A, N)(R;).

In the following we omit the arguments (7, A, N') whenever they are clear from the
context. For a role R, the set SC(R), where SC stands for sub-concepts, is a set of those
concepts which are immediately under 3R in the concept hierarchy generated by 7 :

SC(R)={A|7T = AC3JRandthereisno A'st. 7 = AC A'and 7 E A’ C 3R}.

If f is an ABox assertion, then roor%!(f) is a set of all the atoms that 7 -entail f. For
example, A(z) € root%(3R(z)) if T = AC 3R.
We are ready to proceed to construction of prototypes.

Constructing Zero-Prototype. The procedure BZ P (K, N') (Build Zero Prototype) in
Figure 2 constructs the main prototype 7y for K and A from DL-Litefz, which we call
zero-prototype. Based on J we will construct all the other prototypes. To build J, one
has to align the canonical model of K with A/, and then delete from the resulting set of
atoms all the auxiliary atoms R(a, b) (from AA(KC, ). In the case when no R(a,3 ) for
some constant (3 such that R(a,( ) € AA(K, ) is in the canonical model, we also delete
atoms root% (3R(a)), since their presence in the model and the absence of R-atoms with
a at the first coordinate would contradict the TBox.

Constructing Other Prototypes. The procedure BP (K, N, Jy) (Build Prototypes) of
constructing 7/ for the case of DL-Lites, takes Jo and manipulates with it by first
dropping atoms from FA and then adding atoms in order to compensate the dropped
ones so that the result is an evolved model under WS. It can be found in Figure 3

We conclude the discussion on the algorithms with a theorem:

Theorem 5. Let K = (7, A) be a DL-Lite}s KB, and N a DL-Litez ABox consistent
with T. Then the set BP(K,N', BZP(K,N)) is a prototypal set for K o N.

Continuing with Example 1, it is easy to check that the prototypal set for KC; and N;
is {Jo, J1, J2, T3}, where Jy, J1, and T, are described in the example and

Js: AT :{xvy}’ CI :{b}’ RI :{(.CC, d)?(yve)}'

We proceed to correctness of BP in capturing evolution in DL-Lite), where we use
the following set FC[7, A, N|(R;) = {c | D(c) € FA[T, A, N](R;)}, that collects all
the constants that participate in the forbidden atoms.
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Theorem 6. Let K = (7, A) be a DL-Litesy KB, N a DL-Liter, ABox consistent with T,
and BP(K,N,BZP(K,N)) ={Jo,-..,TIn} is a prototypal set for K o N. Then

KoN =Mod(T)NMod(AyV ...V Ap) N Mod(P AV),
where A; is a DL-Litez, ABox such that J; is a canonical model for (T, A;), and

b= /\ /\ V. [(Ri(x,cj) — (roat%—t(ERi(m)) #* @)) A

R;€TR ¢ EFC[R;]

Vy. (Ri(z,¢cj) A Ri(w,y) —y = c;)],

v= A\ 3R(a) — rootf (3R(a)) N fely (A).
R(a,b)eSat
The A; mentioned in Theorem 6, can be constructed in the similar way that the
corresponding prototypes 7;, taking the original ABox A instead of Z¢*"*. Note that an
ABox may include a negative literals, like —B(c). Those should be treated in the same
way that the positive literal (atoms) are. We will denote such an ABox as A[J;].

Theorem 7. A prototype J; is a canonical model of the KB (T , A[T;]).
Continuing with Example 1, the ABoxes A[J)] and A[J1] are as follows:

Aldo] ={C(d),C(e),C(0)};  Al] = {A(x),C(e), C(b), R(x,d)}.

A[J>] and A[J3] can be built in the similar way. Note that only A[J] is in DL-Liter,
while writing A[J1], ..., A[J5] requires variables in ABoxes. Variables, also known
as soft constants, are not allowed in DL-Liter ABoxes, while present in DL-Liter s
ABoxes. Soft constants x are constants not constrained by the Unique Name Assumption:
it is not necessary that 27 = z. Since DL-Liters is tractable and FO rewritable [13],
expressing A[J1] in DL-Liter s instead of DL-Liter; does not affect tractability.

6 Computing Winslett’s Semantics with Roles Interaction

The algorithm BP for constructing prototypal set works only when roles do not interact.
The following example illustrates that it does not work in a general case.

Example 8. Consider a KB Ko = (73,.A3) and a new ABox Ny = {C'(b)}:

TBox 7s: JR-C-#+-, JR-C-C, ACTR, BLC3dP;

ABox As: R(a,b), A(a), R(f,9), A(f), P(e,d), B(c), Cle).
One can check that the following model 7 is in Kz o Na:

A‘T = {y}7 B‘T = {Z}> CJ, = {b’e}a RJI = {(yad)}v Pj, = {(Zag)}

At the same time, BP over Ky and N5 returns the following four prototypes only:

AT B cJi R pJi
i=0 {r} {ct  A{ber  {(f,9)} {(c,d)}
i=1 {f,z} {cb  {b} {(f,9), (z,€)} {(c,d)}
i=2 {f,y} 0 {bey  {(f,9),(y,d)} 0
1=3 {famyy} @ { b} {(fvg)v(x7€)7(y7d)} 0

where = and y are fresh constants. It is easy to see that none of 7;s is homomorphically
embeddable in 7'. Thus, BP does not capture 7 and it is incomplete. n

220
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BP..(K,N)
1. Compute J := BP(K,N, BZP(K,N)).
2. Repeat
T =

foreach 7 € J do J := JU BP(K,NUS,J),
where S = {f € J | afresh constant from A \ adom(K) appears in f};
until J = 7.

3. Return ).
Fig. 4. The procedure of building prototypes in DL-Liter

6.1 Recursive BP Algorithm.

For general DL-Liter KBs, BP algorithm does return prototypes but not all of them.
The reason is: when, while constructing prototypes with BP, we delete a forbidden
atom (an atom from FA), it may trigger another dually-affected role and such triggering
may require further modifications, which are not accounted by BP. In order to compute
all prototypes we should run BP recursively: considering the prototypes obtained at
the previous step as zero ones. We present a recursive algorithm BP,,. for building
prototypes for general DL-Liter KBs in Figure 4. The following theorem shows the
correctness of the algorithm.

Theorem 9. Let K = (7, A) be a DL-Liter KB and N a DL-Liter ABox consistent
with T. Then the algorithm BP,,.(K,N') terminates and returns the finite set which is a
prototypal set for K o N.

We illustrate B P,,. on the following example.

Example 10. Consider KB Ky = (73, .A2) and a new ABox N> from Example 8. Let us
compute BP,,.(K2,N2). First we run BP(K, N, Jp) and it returns four prototypes: Jo,
J1, J2, and J3 (see Example 8). Now we apply the B P procedure to J;, J2, and J3.
It is easy to see that BP(K, N U {A(z), R(z,e)}, J1) = 0, since no role atom except
for R(a,b) was affected. Consider BP(K, N U {A(y), R(y,d)}, J2): it consists of the
only prototype J4:

AT = {y}’v Bt = {Z}v CT = {b76}’7 R = {(yvd)}a pPI = {(ng)}

The uniqueness of the prototype follows from the fact that the role atom that was
affected in 7 is P(c, d) and FA[T, A, N U {A(y), R(y,d)}|(P) = {3R " (g)}. Finally,
running BP(7,N U {A(y), R(y,d), B(z), P(z,9)}, J1) we obtain a prototype Js:

AT = {y,U}, B = {Z}v Cco = {b}7 R% = {(yad)a (Uae)}7 PP = {(ng)}

Note that BP(T, NU {A(y), R(y, d), B(=), P2, 9), A(v), R(v,¢)}, Js) = 0. Anal-
ogously, Js can be obtained by running BP (K, NU{A(z), A(y), R(z,e), R(y,d)}, Js3):

ATs = {x,y}, B = {Z}7 co = {b}’ R7 = {(‘737 6), (yvd)}v p7e = {(Z’g)}
Thus, the prototypal set J/ for K o N is {J; ?:0. [

We conclude with the theorem that B P, gives a sound approximation for WS.
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Theorem 11. Let K = (7, A) be a DL-Liteg KB, N a DL-Liter ABox consistent with
T, and BP,,.(K,N) ={Jo, - .., Tn} is a prototypal set for K o N. Then

KoNC Mod(T)NMod(AygV ...V A,) N Mod(P N\W),

where A; is a DL-Liter ABox such that J; is a canonical model for (T , A;) and ¢ and
¥ are as they defined in Theorem 6.

6.2 Closure Under Evolution and Approximation

Next theorem allows us to approximate results of evolution under WS, since FO[2] is
decidable.

Theorem 12. K o N under WS for KBs in DL-Liter can be captured in FO[2].

As a future work we are going to study ways to approximate the resulted FO[2]
theories in DL-Lite.

Finally, we discuss cases when the result of Winslett’s evolution is expressible
in DL-Liter . The following formulas appearing in Theorem 6 are not expressible in
DL-Liter: (i) the disjunction of the ABoxes Ay V ...V A, and (ii) formula & A V.
The disjunction of ABoxes becomes expressible when it is of the length one, i.e., there
is the only prototype: Jo. The last statement yields that FC = () and therefore & is
always true. The formula ¥ becomes trivially true when AA = (), i.e., for every atom
R(a,b) € fely(A) either N)/=7 =3R~ (b) or root% (3R;(a;)) N fely(A) = 0. As one
can see, the condition of expressibility of the result in DL-Liter (emptiness of FA and
AA), depends on a TBox, an ABox, and a new information. Hence, if we do a chain
of evolution, at some step the result may be not expressible in DL-Liter. Since TBox
stays unchangeable, to guarantee the expressibility we need to find TBoxes 7 such that
(7T, A) o N is expressible in DL-Liter; for every A and \V. A condition that guarantees
the emptiness of FA and AA is: for every role R € X (K UN) at least one of the following
items holds: (/) there is no concept C' such that 7 = 3R~ T —C, or (2) there is no
concept A such that 7 = A C 3R. The former conditions gives that TR = {) since
N)/=7 —=3R~(b), which leads to FA = AA = (). The latter one yields that SC(R) = 0,
therefore TR again is empty.

As a practical summary of this section, given a KB K and a new ABox N, one can
check (in polynomial time) whether any dually-affected role is “triggered” by N If it
is not the case, one can compute (in polynomial time) an evolved KB K’ that exactly
captures K o N. Otherwise, it is the case that X o N is inexpressible in DL-Liter.
Thus, one can compute an FO[2] theory that captures K ¢ A/ and then approximate it in
DL-Liter, by, for example, dropping all the not DL-Liter formulas. We will not focus
on approximation in this paper.

7 Conclusion

We studied how to capture ABox evolution for DL-Liteg under WS. In general the
result of evolution requires constructs that are not present in DL-Liter, and even not
in DL-Lite, such as disjunction. Moreover, in general the result of evolution, which is
a set of models, does not even have a canonical model, which should always exist for
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any DL-Lite theory. It turned out that the inexpressibility is caused by a condition on the
TBox level, which we called dual-interaction: by pairs of assertions of the form A C 3R
and 3R~ C —B. In order to capture evolution results in the presence of dual-interactions,
we introduced prototypes. Our approach is based on the observation that evolution results
can be divided into a finite number of subsets and each of them has a canonical model,
i.e., a prototype. These subsets can be captured by theories guided by prototypes and the
disjunction of these theories, compensated with two formulas, captures evolution results
and is in FO[2]. We proved that this technique works for DL-Liter,. We are currently
working on efficient approximation of the obtained FO[2] theory in DL-Lite and on
extending results to capture evolution for other DL-Lite languages.
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Abstract. We show that, although conjunctive queries over OWL 2 QL
ontologies are reducible to database queries, no algorithm can construct
such a reduction in polynomial time without changing the data. On the
other hand, we give a polynomial reduction for OWL 2 QL ontologies
without role inclusions.

1 Introduction

Ontology-based data access (OBDA) [9, 13, 21] has recently emerged as a promis-
ing application area for description logic (DL) with a potential impact on the
new generation of information systems. One of the profiles of the Web Ontology
Language OWL 2, called OWL 2 QL, was tailored specifically aiming at OBDA.
In DL terms, OBDA involves the following reasoning problem:

CQA(A,T,q): given an ABox (data) A;! a TBox (ontology describing the back-
ground knowledge) T, a conjunctive query (CQ) ¢(x), and a tuple a of ABox
elements, decide whether a is a certain answer to g(x) over (T, .A).

In other words, the task is to check whether Z |= ¢(a) for every model Z of (T, A).
It is to be noted that reasoning problems of this kind are well known in logic
and computer science (cf. Prolog or Datalog). A distinctive feature of OWL 2 QL
is that ‘in OWL 2 QL, conjunctive query answering can be implemented using
conventional relational database systems. Using a suitable reasoning technique,
sound and complete conjunctive query answering can be performed in LOGSPACE
with respect to the size of the data’ (www.w3.org/TR/owl2-profiles).

There exists a number of reductions of OBDA with OWL 2 QL to answer-
ing queries in relational database management systems, which transform (or
rewrite) the problem CQA(A,T,q) to the database query evaluation problem
QE(A, ¢'), where the first-order (FO) query ¢’ does not depend on A. They have
been implemented in the systems QuOnto [1], REQUIEM [20], Presto [23] and
Nyaya [11]. In all of these approaches, the size of the query ¢’, posed to the
database system, can be O((|T] - |¢])!?) in the worst case.

The aim of this paper is to try and understand whether the exponential blow-
up in the size of the rewritten query is inevitable and whether polynomial rewrit-
ings are possible, at least for fragments of OWL 2 QL. In Section 3, we show that

! Here we ignore the problem of data representation in database systems; see Section 5.
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the problem CQA({A(a)}, T, q) for singleton ABoxes and OWL 2 QL TBoxes is
NP-complete for combined complexity. As the problem QE({A(a)},¢’) is solved
in linear time (LOGSPACE) in |¢'|, it follows that no algorithm can construct FO
rewritings ¢’ (over {A(a)}) in polynomial time, unless P = NP. For OWL 2 QL
without role inclusions and the logic ELH, the problem CQA({A(a)},T,q) is
polynomial for combined complexity, while for ££7 it is EXPTIME-complete. We
observe that the parameterised complexity of the problem CQA({A(a)}, T,q),
where |g| is regarded as a parameter, is fixed-parameter tractable. In Section 4,
we present a polynomial FO rewriting of conjunctive queries over OWL 2 QL on-
tologies without role inclusions. This result improves on the polynomial rewriting
from [14], which reduces CQA(A, T, q) to QE(A + Auz,q’), where Auz is a set
of fresh constants encoding the canonical model of (7,.4). Note also the recent
polynomial reduction [12] of CQA(A,T,q) to QE(A + {0,1},¢"), which uses
two fresh constants 0, 1 and works for the extension Datalogt+ of OWL 2 QL
(see Remark 1). We discuss the implications of the obtained results for OBDA
in Section 5.

o0 H
2 OWL2QL and DL-Lite];
The description logic underlying OWL 2 QL was introduced under the name
DL-Liter [6,7] and called DL-Lite’ . in the more general classification of [2]
(for simplicity, we disregard some constructs such as reflexivity constraints).
The language of DL-Lite’  contains individual names a;, concept names A,

and role names P;, i > 1. Roles R and concepts B are defined by:

R == P | P, B == 1 | T | 4 | 3R.

1

A DL-Lite®  TBox, T, is a finite set of concept and role inclusions of the form
Bl E BQ, Bl M B2 E 1 and R1 E RQ, R1 M RQ E L, respectively. An ABOJ?, .A,
is a finite set of assertions of the form B(a;) and R(a;,a;). T and A together
constitute the knowledge base (KB) K = (T, A). The semantics of DL-Lite’t
is defined as usual in DL [4]. The presented results do not depend on the UNA.
DL-Liteore 18 DL—LiteZ’.f),,e without role inclusions of the form Ry C R». Note also
that OWL 2 QL contains concept inclusions of the form B’ C 3R.B, which here
will be regarded as abbreviations for DL-Lite’t ., inclusions B’ C 3Rp, 3R; C B
and Rp C R, where Rp is a fresh role name.

A conjunctive query (CQ) q(x) is a first-order formula Jy ¢(x,y), where ¢
is constructed, using only A, from atoms of the form A(t;) and P(t1,t2), with
A being a concept name, P a role name and ¢; a term (an individual name or
variable from x or y). Given an ABox A, we use Ind(A) to denote the set of
individual names in A. A tuple a C Ind(A) is a certain answer to q(x) over
K = (T,A) if T = q[a] for all models Z of I; in this case we write K = ¢[a].
To simplify notation, we will often identify ¢ with the set of its atoms and use
P~ (t,t') € q as a synonym of P(t',t) € q; term(q) is the set of terms in q.

Query answering over OWL 2 QL KBs is based on the fact that, for any
consistent KB I = (7T, .A), there is an interpretation Uy such that, for all CQs
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g(xz) and a C Ind(A), we have K = qla] i flllc = g[a]. The interpretation Uy,
called the canonical interpretation of K, is constructed as follows. Let C3 be
the reflexive and transitive closure of the role inclusion relation given by 7T,
[R] = {S| RC% S and S C% R}, and let [R] <7 [S] i ffR C% S. For each [R],
we introduce a fresh symbol c(g), the witness for [R], and define a generating
relation ~x on the set of these witnesses together with Ind(A) by taking:

— a~x cg if a € Ind(A) and [R] is <7-minimal such that = 3R(a) and
K|~ R(a,b) for every b € Ind(A);
— ¢[s] ~k ¢ if [R] is <7-minimal with 7 |= 35~ C 3R and [S™] # [R].

A generating path for K is a finite sequence acig,]---cgr,], » > 0, such that
a € Ind(A), a ~x cr,] and c[g,) ~k C[R,,,], for i < n. Denote by path(K) the
set of all generating paths for K and by tail(o) the last element in o € path(KC).
Now, Uy is defined by taking:

AYx = path(K), d“* =a, for all a € Ind(A),
AU = {a€nd(A) | K E A(@)}U{o-cp | T IR C A},
PY% = {(a,b) € Ind(A) x Ind(A) | K |= P(a,b)} U

{(o,0 - ¢iry) | tail(o) ~x gy, [R] <7 [P]}U

{(o - cry,0) | tail(o) ~x cr), [R] <7 [P7]}.

We shall also need a compact representation of (in general infinite) Uy in the
form of the generating interpretation Gx = (A9%,.9%) defined as follows. Its
domain A9 consists of Ind(A) and all C[R,,) for which there are generating paths
acg,) - -~ Cr,) € path(K); and we set a9%% = g¥c A9 = {tail(o) | 0 € AYr}
and P9% = {(tail(c),tail(¢”)) | (0,0') € PY<}. Tt is readily seen that Gk can be
constructed in polynomial time in /C.

The problem CQA(A,T,q), for DL-Lite’f . TBoxes T, is reducible to the
database query evaluation problem QE(A,¢’), with ¢’ being independent of
A [7,2]. However, in all known reductions, the size of ¢’ is exponential in the
size of ¢: for instance, |¢'| = O((|T] - |¢|)!?) for both QuOnto [1] and RE-
QUIEM [20]; Presto [23] uses sophisticated optimisation techniques and pro-
duces a non-recursive Datalog program ¢’, which is still exponential in the worst
case. The size of ¢’ is irrelevant for data complexity, but heavily influences the
performance of database systems; see Section 5 for a discussion.

In the next section, we show that no algorithm can produce FO rewritings
¢’ of CQs q and DL-Lite’ A TBoxes 7 in polynomial time (unless P = NP).

core

3 Intractability of Query Rewriting for OWL 2 QL

To see that query rewriting for DL-Lite’f _ is not tractable, we separate the

contributions of A and T to the complexity of the problem CQA(A, T, q). Indeed,
NP-completeness of CQA(A, T, q) for combined complexity does not give any
information on the size of rewritings because the lower bound follows from NP-
hardness of database query evaluation. To remove the influence of A, one can
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analyse the combined complexity of CQ answering over singleton ABoxes of the
form A = {A(a)}, i.e., the problem CQA({A(a)},T,q). We call this measure
the primitive combined complexity (PCC). The reason behind this notion is that
any FO query ¢ over such an ABox alone can be answered in linear time in |g].
Thus, if CQ answering is NP-hard for PCC, then no algorithm can construct
FO rewritings QE(A, ¢') of CQA(A, T, q) in polynomial time, unless P = NP.

Theorem 1. CQ answering in DL-Lite’t__ is NP-complete for PCC.

core

Proof. The lower bound is proved by reduction of Boolean satisfiability. Given
a CONF ¢ = /\;n:1 Dj over variables p1, ..., p,, where D; is a clause, we consider
the TBox 7 containing the following axioms, for 1 <i<n,1<j<m,k=0,1:
A;-; C 3P .XF, XFC oA,

X)C3rPC; if-pieD;, X} C3PC; ifp €D;, C; LC3PC;.

The canonical interpretation Ui of L = (T, {Ao(a)}) is obtained by ‘unravelling’
the generating interpretation Gx shown below. Consider the CQ ¢(yo):

q(yo) = Jyz'...2" [Ao(yo) A Ny P(yiryi1) A An(yn) A
/\;’nzl (P(yns 29) AN Nizy P2y, 20) A CJ(Z%))]
(Note n atoms P connecting y,, to yo and n + 1 atoms P connecting y,, to 27,

which means that any match of ¢ in Ui must map zJ onto a point in the infinite
chain containing C;.) One can show that ¢ is satisfiable iff K = ¢(a).

24
1 0%
o O

A

Theorem 2. Unless P = NP, no polynomial-time algorithm can reduce the
problem CQA(A,T,q), for DL-Lite’ . TBoxes T and CQs q, to the problem

core

QE(A,q'), where ¢’ is a first-order query independent of A.

Note that it is still open whether, for any 4, 7 and ¢, there exists a polyno-
mial FO query ¢’ giving the same answers over A as ¢ over (T, A).

Remark 1. If we extend the ABox with fresh constants 0 and 1 then ¢(y) in the
proof above can be rewritten as Ao(yo) A Ip1 - Ipn(AiZy (Pi # y0) A N\j=y Dj),
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where D; is obtained from D; by replacing every literal p; with p; = 1 and every
—p; with p; = 0. Moreover, using Vp;, one can polynomially encode the PSPACE-
complete validity problem for QBFs. A polynomial reduction of CQA(A, T, q)
to QE(A + {0,1},¢) is given in [12] for the extension Datalog+ of OWL 2 QL,
where |T| 4 |g| steps of the chase are simulated using 0 and 1.

Theorem 1 means that there are two sources of non-determinism in OBDA
with OWL 2 QL: finding a match in the ABox and finding a match in the re-
maining tree part of the canonical interpretation. It turns out that, from the
complexity-theoretic point of view, these two sources have different status. Re-
call from [19] that query evaluation QE(A, q) is not fixed-parameter tractable if
|q| is regarded as a parameter.

Our next result shows, on the contrary, that the problem CQA({A4(a)},T,q)
is fized-parameter tractable for DL-Lite’ = TBoxes 7. This means that there
exist a deterministic algorithm A, a computable function f and a polynomial p
such that, for any TBox 7 and CQ ¢, A can check whether (7,{A(a)}) = ¢ in
time bounded by f(|q|) - p(|T|). In a nutshell, the idea of the proof is as follows.
First, given a CQ ¢, we construct all tree-shaped homomorphic images of ¢, the
number of which is bounded by a function exponential in |g| and independent
of 7. Then we show that (7, {A(a)}) = ¢ iff at least one of those tree-shaped
homomorphic images can be ‘embedded’ in Uy, and that the existence of such
an embedding can be established by a dynamic programming (elimination) al-
gorithm in time polynomial in |7 and |g|.

Theorem 3. The problem CQA({A(a)},T,q) with |q| a parameter is fized-
parameter tractable for DL-Lite’t = TBoxes T .

core

Proof. A CQ q is tree-shaped if its primal graph (term(q),{(¢t,t') | R(t,t') € q})
is a tree. By a tree reduct of ¢ we mean a pair (¢’,r), where ¢’ is a set of atoms
and r € term(q’) is such that the following conditions are satisfied (cf. [10]):

(tree) the query ¢ is tree-shaped and all of its predicate names occur in g;

(root) if a € term(q’) then r = q;

(hom) there exists a surjection h: term(q) — term(q’) such that h(a) = a for
a € term(q), A(h(t)) € ¢ for A(t) € ¢, and P(h(t),h(t")) € ¢’ for P(t,t') € q.

By (hom), for every Z and every tree reduct (¢',r) of q, if Z |= ¢’ then T = q.
Let (¢’,7) be a tree reduct of ¢ and let K = (7,{A(a)}). An embedding of
(¢',7) in Uy is an injective map a: term(q’) — AY< such that U =* ¢’ and

(e-root) a(t) =a(r)- o, for all t € term(¢’), i.e., a(r) is located in Ui nearer to
its root than any other a(t).

Let Ux = q. Then there is a homomorphism a of ¢ in Ux. As Uk is a tree
with root a*, we can construct a tree reduct (¢’,r) of ¢ by taking ¢’ to be the
quotient of ¢ under equivalence {(¢,t') | a(t) = a(t')} and r the equivalence class
of t such that a(t) is nearest to the root a¥/<. It follows that (¢’,r) is embeddable
in Ux. Checking whether a tree reduct (¢,r) of ¢ is embeddable in Uk can be
done in time polynomial in |7] and |¢| using the interpretation G (constructed
in polynomial time in |7]) and a standard dynamic programming algorithm [8].
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Theorem 1 reflects the interaction between role inclusions and inverse roles.
The observations below supplement this theorem by giving a somewhat broader
picture (we remind the reader that DL-Litepor, extends DL-Litesr with con-
cept inclusions of the form By M--- M B, C B, £L allows qualified existential
restrictions and conjunctions in both sides of concept inclusions, H allows role
inclusions and Z inverse roles; for details see [3]):

Theorem 4. With respect to primitive combined complexity, CQ answering is
(i) P-complete for DL-Litepor, and ELH, and (i) EXPTIME-complete for ELT.

Proof. The polynomial-time upper bound for DL-Lite,, and ELH can be ob-
tained using the fact that, for each CQ ¢ and each r € term(q), one can construct
a unique tree reduct of ¢ with root r (by eliminating ‘forks’) [16] and then check
whether it is embeddable in the generating interpretation as in the proof of The-
orem 3 (see also Section 4). EXPTIME-completeness for £LZ follows from [3].

Although ALC and ALCH have no canonical interpretations (they are not
Horn), a unique tree reduct for a CQ with a root exists [10], and CQ answering
is ExpT1ME-complete for PCC; in ALCZ, we again have to consider multiple
tree reducts, which makes CQ answering 2EXPTIME-complete for PCC [16].

That CQ answering is in P for PCC does not mean yet that there is a
polynomial rewriting ¢’ for any CQ ¢ and ontology 7. For instance, as CQ
answering for £LH is P-complete for data complexity, we cannot have any first-
order rewriting at all. The reason is that if we put an ABox element a to a
concept A, then a TBox axiom of the form dR.A T B requires adding every
ABox element b with R(b,a) to B, and so on. In this case, a pre-processing of
the ABox, constructing the generating interpretation, is required; see [18].

4 Polynomial Rewriting for DL-Lite_.,.

The combined approach to CQ answering [18, 14] first constructs the generating
interpretation Gg for K = (7T ,.A), and then rewrites the given CQ ¢ (indepen-
dently of A) to an FO query ¢’ to be answered over Gx. An important achieve-
ment of this approach is that (i) |¢'| = O(|q|*> + |q| - |T]), even for DL-Litep,orn,
and (i) ¢ is obtained by expanding ¢ by simple conjuncts with = and without
any extra variables and quantifiers. The two-step construction of Gx and ¢’ can
be encoded in a polynomial non-recursive Datalog program for DL-Litepor,, and
a polynomial FO query for DL-Lite.,.., which require auxiliary constants in the
database domain. Here we give a polynomial FO rewriting for DL-Lite ., which
is based on the ideas of [14] but does not involve any constants.

Let 7 be a DL-Lite.,. TBox. As we do not have role inclusions, instead of
cig) we write cg. Let R = {cr | R arole in T} and R% be the set of all finite
words over Ry (including the empty word ). We use tail(o) to denote the last
element of o € R%-\ {e}; by definition, tail(¢) = e.

Consider a CQ g(x). Without loss of generality we assume that (the primal
graph of) ¢ is connected. Let R be a role and ¢ a term in g. A partial function
f from term(q) to (R7)* is called a tree witness for (R,t) in g if
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— the domain of f is minimal with respect to set-theoretic inclusion,

- f(t) =,
— for all atoms S(s,s’) € ¢ with f(s) defined, we have

CR; if f(s)=¢and S =R,
f(sh) =10, if f(s) =0 cy,
f(s)-cs, if f(s) # e and tail(f(s)) # cs-.

By definition, if a tree witness for (R,t) exists then it is unique; in this case
we denote it by fr: and use dom fr, for the domain of fr:. Note that even
if ¢ contains no atom of the form R(¢,¢'), the tree witness for (R,t) exists and
fr+(t) = €. Denote by g|r+ the set of atoms of ¢ whose terms are in dom fg ;.
When we consider g|g ¢ as a query, we assume that all of its variables are free.
Informally, a tree witness fr: has root ¢t and direction R, and describes the
situation where ¢ is mapped to an ABox element a of some canonical interpreta-
tion without R-successors in the ABox. In this case, the only choice for mapping
any ' in R(t,t') € ¢ is ack = a- fr(t'). Further, any ¢t in S(¢',t") € ¢ has
to be mapped to acrcs = a - fr(t”), if S # R™; however, if S = R~ then
t” can only be mapped onto a, which reflects the fact that acg has a single
R~ -successor a in the canonical interpretation. To illustrate, consider the CQ

¢ = {T(yo,y1), S(y1,90), B(y1,42), S(y2,y3), S(ys,u3)}. The tree witnesses
for (R,y1) and (S,y4) in ¢ exist and are as depicted below:

undef. 5 € CR undef. S _undef. €
s B
R £
Ir s o [s s
»Y1 Ya Y4 Ya

For (S,y1), (T~,y1) and (R~,y2), tree witnesses do not exist.

Proposition 1. Suppose a tree witness for (R,t) exists and s € dom fr . If
frt(s) # € then a tree witness exists for every (S,s) with tail(fr(s)) # cs-.
If fri(s) = € then a tree witness exists for (S,s) with S = R. In either case,
dom fs s Cdom fr; and fri(s') = fri(s) - fss(s'), for all s € dom fs 5.

Even if a tree witness for (R, t) exists, g|g, is not necessarily a tree-shaped
query. Define a relation =g as the set of all pairs (¢, s) such that a tree witness
for (R, t) exists and fr(s) = €. By Proposition 1, =g is an equivalence relation
(on its domain). By taking the quotient of ¢|r; under =g, we obtain a tree
reduct of ¢|r, (cf. [17]). We call ¢ a quasi-tree with root t € term(q) if a tree
witness for (R, t) exists for all directions R and |J dom fgr; = term(q).

Proposition 2. Suppose q is not a quasi-tree and tree witnesses exist for (Ry,t1)
and (Rg,tz), If le,tl (tQ) 18 deﬁned, thtl (tg) 75 & then dom ng,tg g_ dom fRutl
and le,h (8) = le,h (t2) : fRz,tz (8), fOT‘ all s € dom fRz,tz'

We are now in a position to introduce the ingredients of our polynomial
rewriting. Let K = (7, .A) and ¢(z) = Jy ¢(x,y). Consider an atom B(t) for a
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concept B. Then
extg(z) = \/ B'(x) Y \/ Jw R(z, w)

concept B’ s.t. T=B'CB role R s.t. T=3RCB

gives the answers to B(t) over ABox A: for every a € Ind(A), we have Ux = B(a)
iff A |= extp(a). Note that, for all other elements ¢ in the domain AY< of Uy,
we have Ui |= B(o) i ffT = 3T~ C B, where tail(o) = cr.

|
: \R <
q|Rt R: )/17'03\1‘ o 4,<: quasi-tree ¢’
3 h t | o >
@1CR i | a2CR,  GCR,
|

Consider now an atom R(¢,t') € ¢ and the ways its terms can be mapped in U.
1. If both ¢ and ¢’ are mapped to ABox elements a,a’ then Ux = R(a,a’) i ff
R(a,a’) € A because Ui inherits the binary relations from A.

2. If ¢ is mapped to an ABox element a and t’ to an ‘anonymous’ element in
AU\ Ind(A), then R(t,t') can only be true if (i) a ~ cg, (i) a tree witness for
(R, t) exists, and (4ii) ¢|r, can be embedded into the sub-tree of Ux beginning
with the edge (a, acg); see the left-hand side of the picture above. Condition (%)
can be defined by the formula

wtp(z) = extgr(z) A 2o R(z,w).

For all R and a € Ind(A), we have A |= wtr(a) i fla ~x cr (i.e., acg € AYx).
For condition (3ii), consider the conjunction treeA% ,(x) of the formulas:

(to) exta(z), for all A(s) € q|r,+ with fr+(s) = ¢;
(t1) Tif 7 =37~ C Aand L otherwise, for all A(s) € q|r., tail(fr:(s)) = cr;
(t2) Tif 7 =37~ C 3S and L otherwise, for S(s, s’) Rt tail(fre(s)) = cr.

One can show that A [= wtr(a) A treeA%, ,(a) i fillic E° g|r, for an assignment
a such that a(s) = a- fr(s), for all s € dom fr .

3. If both ¢, ' are mapped to anonymous elements in A< \ Ind(A), then two
more cases need consideration.

3.1. Suppose first that there is a tree witness for some (.9, s) such that s is
mapped to an ABox element a with a ~ cg, (iv) both ¢ and ¢’ are in dom fg g,
and (v) all the terms s’ € dom fg s with fg(s’) # ¢ are existentially quantified
variables in ¢ (only existential variables can be mapped to anonymous elements).
In this case, as we observed above, R(t,t') is true in U if the formula

wts(s) AtreeAd [(8) A N=yo (5 =5)

is true in A under an assignment a such that a(s’) = a- fs 5(s’), for s’ € dom fg .
The disjunction of all such formulas for (S, s) satisfying (iv)—(v) depends only
on the choice of terms ¢,¢ and will be denoted by attached-tree; 4/ (x,y). (This
case is a generalisation of Case 2.)
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3.2. Thus, it remains to consider the case (shown in the right-hand side of the
picture) where the whole query is mapped to the anonymous part of Uy. Then
q a quasi-tree and all terms in ¢ are existentially quantified variables that are
mapped to the sub-tree of Uy generated by some ABox element a. More precisely,
a € Ind(A) generates a sequence of the form a ~x cg, ~x -~k Cr,, ¢ has a
root s (i.e., term(q) = (Jgdom fss), s is mapped to o = acg, - - - cr,,, while all
other terms s" are mapped to - fs s(s’). The latter condition can be captured by
a formula similar to the one in the previous case. The difference is that now we
begin with o, tail(o) = cg, (rather than a). To cope with this, consider the union
q" of ¢ and {R (v,8)}, for a fresh variable v, and let treeT?, . be treeA}
where the tree witnesses are computed in query ¢’. Note that treeTq s is a
sentence because ¢’ has no atoms for item (tg). We denote by detached tree the
disjunction of sentences of the form

Jwwtg, (w) A treeT?

Rp S

for all roots s of ¢ and all pairs of roles Ry, R,, such that there are Ro,..., R,_1

with 7 = 3R; C 3R;41 and Ripq # R, for 1 <i < n; if ¢ is not a quasi-tree

containing only existentially quantified variables, we set detached-tree = .
Denote by ¢* the result of replacing each A(¢) and P(¢,t’) in ¢ with

A*(t) = exta(t) V attached-tree, ;(x, y) V detached-tree,
P*(t,t") = P(t,t') V attached-tree; ;/ (x, y) V detached-tree,

respectively. Note that these formulas depend not only on the predicate name
but also on the terms in the atom. The length of ¢* is O(|q|? - |T|®) and can be
made O(|q|? - |T|) if the sentence detached-tree is computed separately (in fact,
for the majority of queries, e.g., queries with answer variables, it is simply L).

Theorem 5. Ux E° q(x) iff A E* ¢*(x), whenever a(z) € Ind(A) for allz € x.
The rewriting above can also be adapted to DL-Litep,,,, and even DL—L11:eN

horn
under the UNA. In this case, however, we need non-recursive Datalog programs
to define the predicates extp(x); for details, see [14]. The non-recursive Datalog
queries can be transformed to unions of CQs, but at the expense of exponential
blowup. The problem whether a polynomial-size FO rewriting (without addi-
tional constants as in [12]) exists for DL-Litepory is still open (and equivalent to

the complexity problem ‘LOGSPACE = P7’).

5 Discussion

FO reducibility (or ACY data complexity) does not seem to provide enough in-
formation to judge whether a DL is suitable for OBDA. When measuring the
complexity of query evaluation in database systems, it is usually assumed that
queries are negligibly small compared to data. Thus, it makes sense to consider
data complexity [24], which takes account of the data but ignores the query. A
more subtle analysis [19] shows, however, that the obvious time |g|-|.A[l?! required
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to check A |= ¢ cannot be reduced to f(|g|) - p(|A]), for any computable function
f and polynomial p: QE(A, q) is W[l]-complete for parameterised complexity,
|¢| being a parameter. The success of database systems—despite fixed-parameter
intractability—seems to imply that optimisation techniques are indispensable,
that the ‘real-world’ queries are small and of ‘special’ form. In OBDA, the latter
does not hold as the rewritten queries can be large and complex. However, data
complexity does not differentiate among, e.g., DL-Lite o, OWL 2 QL and the
language of sticky sets of TGDs [5], all of which are in AC? for data complex-
ity, while the primitive combined complexity, reflecting the size of the rewrit-
ing, ranges from P to NP and further to EXPTIME. Another explanation of
the database efficiency is that we only use queries with a bounded number of
variables, in which case query evaluation is P-complete for combined complex-
ity [25]. However, query rewritings may substantially increase the number of
variables (for example, a CQ ¢ is rewritten in [12] into a query with O(N -log N)
auxiliary binary variables, where N = |T'| + |q|).

The W3C recommendation (www.w3.org/TR/owl2-profiles) for OBDA is
to reduce it to query evaluation in database systems. Two drawbacks of this
recommendation are that it (¢) disregards the complexity of possible reductions,
and (i) excludes some useful DLs from consideration. As we saw above, rewrit-
ings of CQs in OWL 2 QL cannot be done in polynomial time without adding
extra constants, variables and quantifiers as in [12]. One might argue that, in
the real-world ontologies, role inclusions do not interact with inverse roles in as
sophisticated way as in Theorem 1, but then more research is needed to support
this argument. A number of ‘lightweight’ DLs such as ELH or DL—Liteg:fl) [2] are
deemed not suitable for OBDA because they are P-complete for data complexity.
Recall that both of these logics are P-complete for primitive combined complex-
ity (vs. NP in the case of OWL2QL). The combined approach to OBDA [18,
14,15] resolves this issue by expanding the data at a pre-processing step and
then rewriting and answering CQs. The expansion is linear in |.4| and can be
done by the database system itself; the size of the rewritten query for ££ and
DL-Lites,,,, is only quadratic (for OWL 2 QL, it is still exponential).

In this paper, we do not touch on the problem of representing ABoxes in
database systems, where usually GLAV mappings are used to connect data
sources to ontologies. Such mappings introduce some problems as tuples in the
same relation can come from different data sources. Also, they provide certain
information on the completeness of concepts and roles, which can (and should)
be exploited in order to minimise the rewritings [22]. Finally, with so many lan-
guages and rewritings for OBDA suggested, it looks like the time is ripe for
comprehensive experiments that could clarify the future of OBDA with DLs.

Acknowledgments: supported by the UK. EPSRC grant EP/H05099X/1.
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Abstract. We introduce an extension of Description Logics (DLs) for
representing and reasoning about contextualized knowledge. Our formal-
ism is inspired by McCarthy’s theory of formalizing contexts and based
on two-dimensional semantics, with one dimension representing a usual
object domain and the other a domain of contexts. Additionally, it is
equipped with a second DL language for describing the context domain.
As a result, we obtain a family of two-sorted, two-dimensional combina-
tions of pairs of DLs.

1 Introduction

Description Logics (DLs) provide a clear and broadly accepted paradigm for rea-
soning about terminological knowledge. Under the standard Kripkean semantics,
a DL ontology forces a unique, global view on the represented world, in which
the ontology axioms are interpreted as universally true. This philosophy is well-
suited as long as everyone can share the same conceptual perspective on the
domain or there is no need for considering alternative viewpoints. Alas, this is
hardly ever the case since a domain can be modeled differently depending on the
intended use of an ontology. Consequently, effective representation and reasoning
about knowledge pertaining to such multiple, heterogenous viewpoints becomes
the primary objective for many practical applications [1,2].

The challenges above resemble clearly those problems that originally inspired
J. McCarthy to introduce a theory of formalizing contexts in knowledge repre-
sentation systems, as a way of granting them more generality [3,4]. The gist of
his proposal is to replace logical formulas ¢, as the basic knowledge carriers, with
assertions ist(c, ) stating that ¢ is true in ¢, where ¢ denotes an abstract first-
order entity called a context, which on its own can be described in a first-order
language. For instance:

ist(e, Heart(a)) A HumanAnatomy(c)

states that the object a is a heart in some context described as HumanAnatomy.
Based on this foundation, the theory advocates complex models of knowledge
which are able to properly account for the local, context-specific scope of the
represented knowledge, while at the same time provide an expressive apparatus
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for modeling semantic interoperability of contexts, i.e. generic rules guiding the
information flow between different contexts.

The importance of contextualized knowledge in DLs has been generally ac-
knowledged, nevertheless the framework is still not supported with a dedicated
theory of handling context-dependent information. In this direction, the most
commonly considered perspectives are restricted to global integration of local
ontologies [5,6] or modeling levels of abstraction as subsets of models of a DL
ontology [7,8]. The purpose of this paper is to introduce a novel extension of DLs
for reasoning with contextualized knowledge. Our proposal is systematically de-
rived from two formal roots. On the one hand, by resorting to McCarthy’s theory
we ground our approach in a longstanding tradition of formalizing contexts in
AT On the other, we build on top of two-dimensional DLs [9], which provide us
with well-understood formal foundations. In particular, we extend the standard
DL semantics with a second modal dimension, representing a possibly infinite
domain of contexts. Additionally, our logics are equipped with a second DL
language for describing the context domain. This way we obtain a family of
two-sorted, two-dimensional combinations of pairs of DLs for reasoning about
contextualized knowledge.

This paper is the workshop version of [10] and [11]. It extends the work
presented there by discussing thoroughly the motivation underlying the formal
design of the introduced DLs of contexts. We also review a number of expres-
sive fragments of these logics and report the corresponding complexity results
obtained and proven in the two papers.

2 Overview and formal motivation

Since its introduction, McCarthy’s theory of formalizing contexts has inspired a
significant body of work in Al studying implementations of the approach in a
variety of formalisms and applications [12,13,14,4,1,15]. The great appeal of this
theory stems from the simplicity of the three major postulates it is based on:

1. Contexts are formal objects. More precisely, a context is anything that
can be denoted by a first-order term and used meaningfully in a statement of
the form ist(c, ¢), saying that formula ¢ is true (ist) in context ¢ [3,4,12].

2. Contexts have properties and can be described. As first-order objects,
contexts can be in a natural way described in a first-order language [14,4].
This allows for addressing them generically through quantified formulas such
as Vo (C(z) — ist(x,p)), expressing that ¢ is true in every context of type C.

3. Contexts are organized in relational structures. In the commonsense
reasoning, contextual assumptions are dynamically and directionally altered
[15,12], thus contexts are often accessed from other contexts. Formally, this can
be captured by allowing nestings of the form ist(c, ist(d, ¢)).

The logics proposed in this paper originate as an attempt of adopting these
principles in the framework of DLs. In the following paragraphs we discuss the
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central design choices we made and the motivation behind them. We start from
the basic semantic considerations on contexts and further trace their impact on
the selection of specific logical languages.

The key to importing McCarthy’s theory into a knowledge representation
framework is a faithful interpretation of his three postulates on the model-
theoretic grounds of the framework. By doing so within the DL paradigm, we
effectively commit ourselves to a specific sort of semantic structures that must
be taken into account in order to express and interpret contextualized knowledge
adequately. Figure 1 illustrates one such structure — a formal model of some ap-
plication domain supporting multiple contexts of representation. As an intuitive
example, consider here a formal description of a society of interconnected agents,
each one sustaining his own viewpoint and focus on the represented world.

O —» oObjects and their relations

a, A’ B’ y object-level vocabulary
. D —p contexts and their relations
= ’

D ¢, D, E,t context-level vocabulary

- - — - same objects in different contexts

Fig. 1. A formal model of an application domain complying to McCarthy’s principles.

The model has two apparent levels. The context-level consists of context
entities (postulate 1), which are possibly interlinked with accessibility relations
(postulate 3) and described in a language containing individual names, concepts
and relation names (postulate 2). For instance, context ¢ is of type D and
is related to d through the relation ¢. Intuitively, each context in the model
can be seen as a box carrying a piece of the object-level representation. Clearly,
instead of a unique global model of the object domain, we associate a single local
model with every context. Naturally, these models might obviously differ from
each other as each of them reflects a specific viewpoint on the object domain.
Moreover, they might not necessarily cover the same fragment and aspects of
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the application domain and not necessarily use the same fragment of the object
language for describing it. For instance, objects a and b occur at the same time
in contexts ¢, d, e, but in each of them they are described differently and remain
in different relations to other objects.

The central insight emerging from this short analysis is that the semantic
structures comprising the model theory of a reasonably expressive DL of con-
text are inherently two-dimensional, with one dimension consisting of (domain)
objects and the second — contexts.

context language model object language models

Fig. 2. Combining models of two DLs.

Once we have identified the main characteristics of the intended semantic
structures, the next step is to find convenient languages for speaking about
them, and constraining their possible properties. By the assumption taken in this
work, DLs are suitable formalisms for representing the object-level knowledge.
The key challenge is then to extend them with additional syntactic means that
would facilitate accommodating the context-level information. A first crucial
observation in this direction is that contexts and their relations, as pictured
above, correspond to Kripke frames, with possible worlds interpreted as context
entities. It is commonly known that such frames can be combined in a product-
like fashion with the standard DL interpretations, giving rise to two-dimensional
semantics for DLs with additional modal operators [16]. These operators are
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typically intended for modeling the evolution of the object knowledge across the
states of the second dimension, for instance time points, as in temporal DLs
[17]. Although this approach seems in general very encouraging, the caveat is
that it does not offer a direct methodology for describing the elements of the
second dimension. More precisely, we can easily augment a DL language with
modal ‘contextualization’ operators <, O for traversing the context dimension of
the models and quantifying over implicit context objects, but it is not clear how
to explicitly assert properties of the accessed contexts — an essential point for
obtaining a fine-grained contextualization machinery.

As a solution, we employ a second DL language for describing the context
dimension. Thus, we obtain a two-sorted language with each sort interpreted
over the respective dimension. The two languages are suitably integrated on the
syntactic and semantic level, so that their models can be eventually combined as
presented in Figure 2. The style of combination remains fully compatible with
that underlying two-dimensional DLs described above. In fact, we are able to
show that, depending on the choice of the integration mechanism, our logics are
proper extensions of the well-known (K,,), or S5, [16].

In the following sections, we first recap the basic DL nomenclature, next we
formally define the syntax and semantics of the proposed DLs of context and
give an overview of their expressiveness—complexity characterization. Finally, we
consider intended application scenarios for the framework.

3 Description Logics of Context

A DL language L is specified by a vocabulary X' = (N, Ng, Ny), where N¢ is a
set of concept names, Ni a set of role names and N; a set of individual names,
and a number of constructors for composing complex expressions. In this paper,
we focus on the well-known DLs ££, ALC and ALCO [18,19] and assume the
reader is familiar with those formalism and the basic notions concerning DLs.

A Description Logic of Context Cﬁg consists of a DL context language L¢,
supporting context descriptions, and an object language Lo equipped with con-
text operators for representing object knowledge relative to contexts. We in-
troduce two families of such DLs, characterized by different types of context
operators.

Definition 1 (Cﬁg -context language). The context language of Qﬁg is a DL
language Lo over the vocabulary I' = (Mc, Mg, M), with o designated subset
Mr C M.

The set M7 contains context names. Following some common-sense intu-
itions, we consider contexts only as a subset of the domain of the context lan-
guage. Indeed, certain elements of this domain might carry no object knowledge
at all, and instead, serve only as individuals referred to in context descriptions
(cf. Figure 1). This is often the case in applications concerned with provenance
of knowledge [2]. For instance, a context ¢, associated with a single knowledge
source, might be there described with an axiom hasAuthor(c, henry), where
henry is an individual related to ¢, but obviously not a context per se.
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Definition 2 (Qfﬁg-object language). Let Lo be a DL language over the vo-

cabulary X = (N¢, Ngr, N1). The object language on:gg is the smallest language
containing Lo and closed under the constructors of Lo and one of the two types
— §1 resp. §2 — of concept-forming operators:

(re)D | [r.CD (81)
(G)p | [CD (82)

where C and r are a concept and a role of the context language and D is a
concept of the object language.

Intuitively, the concept (r.C)D denotes all objects which are D in some
context of type C accessible from the current one through =. Similarly, [r.C]D
denotes all objects which are D in every such context. In the case of the operators
in F2, the concept (C)D denotes all objects which are D in some context of
type C, whereas [C]D — all objects which are D in every such context. For
example, (neighbor.Country) Citizen, refers to the concept Citizen in some
context of type Country accessible through the neighbor relation from the
current context. Analogically, (HumanAnatomy)Heart refers to the concept
Heart in some context of HumanAnatomy.

Definition 3 (fog -knowledge base). A Qfﬁg -knowledge base (CKB) is a pair
K = (C,0), whereC is a set of axioms of the context language in any of the forms
(1), and O is a set of formulas of the form:

c:p| C:yp

where @ is an aziom of the object language (a GCI or a concept/role assertion),
c € M7 and C is a concept of the context language.

A formula ¢ : ¢ states that the axiom ¢ holds in the context denoted by the
name c¢. Note that this corresponds directly to McCarthy’s ist(e, ¢). Axioms of
the form C': ¢ assert the truth of ¢ in all contexts of type C'. For example, the
formula Country : (neighbor. Country) Citizen T NoVisaRequirement states
that in every country, the citizens of its neighbor countries do not require visas.

The semantics is given through €£g -interpretations and Qég -models, which
combine the interpretations of Lo with those of Lp. We assume the semantics
of EL, ALC and ALCO to be defined in the standard way[18,19]. As explained
before, the (possibly infinite) domain of contexts € is subsumed by the entire in-
terpretation domain of the context language ©. For technical reasons, we assume
a constant object domain A for all contexts. This assumption, though often im-
practical, grants greater generality to the complexity results and can be easily
relaxed to the varying domain case.

Definition 4 (Qﬁﬁg-interpretations). A Qﬁﬁg -interpretation is a tuple M =
(@7 sz 'Jv A 7{'I(i)}ieq‘), where:

1. (6,-7) is an interpretation of the context language, where © is a non-empty
domain of individuals and -7 an interpretation function, where:
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— € C O is a non-empty domain of contexts,
— ¢7 € ¢, for every ¢ € M7,

2. (A4, -I(i)), for every i € €, is an interpretation of the object language, where
A is a non-empty object domain and X an interpretation function of Lo,
such that:

(F1) for every (r.C)D and [r.C|D:
e ((rC)D)YW) ={z|Fjec:(,j)er? ANje C/ ANz e DT},
e ([rCID)WD ={z|Vjec: (i,j)er/ Aje C/ = xec DI},
(§2) for every (CYD and [C)D:
e ((C)D)) ={z|Fjec:jec ! Axe DI},
e ([CID)) ={z|Vje€:jec ¢/ - xec DI},

Clearly, the difference between the context operators of type §F; and Fo lies
in the choice of the relational structures involved in quantifying over the context
domain. §1-operators bind contexts only along the roles of the context language
(similarly to K-modalities), while Fo-operators ignore these relationships and
rest upon the universal relation over ¢ (similarly to S5-modalities). This is re-
flected in the scope and the character of the distribution of the object knowledge
over contexts in Qfg—models. For instance, in Figure 1, the concept (¢.F)B is
satisfied by object a only in context ¢, while (F') B is satisfied by a in all contexts
in the model. From the perspective of McCarthy’s theory, employing operators
§2, rather than §Fi, is equivalent to scarifying postulate (3). This means that
every two contexts in the model become in principle accessible to each other.

Definition 5 (Qég'modelS). A 622 -interpretation. M = (0,¢,-7, A,
{*@}ice) is a model of « CKBK = (C,0) i ff

— for every ¢ € C, (0,-7) satisfies o,
— for every c: v € O, (A4, ~I(°y)) satisfies o,
— for every C: o e O andicC, ific C then (A, X)) satisfies .

As hinted before, there is a close connection between our DLs of context and
the modal DLs (K,,). and S5.. In particular, the former are proper extensions
of (K,)z resp. S5,. This relationship is formally established in Theorem 1.

Theorem 1. If M; = Mc = 0 then Qﬁfg with context operators (only) of type
$1 resp. §2 is a notational variant of (K,)z, resp. S5z, with global azioms.

Proof sketch. Observe that all formulas are of the form T : ¢. First, replace
every (r.T) with <, and [r.T] with O,., resp. every (T) with & and [T] with
0. Next, replace every T : p € O with . It is easy to see that the semantics of
Qﬁg coincides with that of (K, )z, resp. S5.,. Note that an axiom is global iff
it is satisfied in all possible K,,-worlds resp. S5-worlds. d

As our main technical contributions in [10] and [11], we obtained a wide
panorama of complexity results for reasoning in DLs of context using particular
combinations of DLs for Lo and Lo, and different types of context operators.
We summarize these results in Table 1, and shortly elaborate on them below.
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context operators| . ¢ £L ALC, ALCO
o)
type 1 ALC, ALCO|| 2EXpPTIME-complete 2EXPTIME-complete
EL PTiME ExpTiME-hard
type S ALC ExpTiME-complete NExpPTIME-complete
ALCO  ||NExpTIME-complete NEXPTIME-complete

Table 1. Complexity of reasoning in Cﬁg

The results reveal that the computational properties of the proposed logics are
predominantly affected by the choice of the context operators. More precisely,
reasoning in €£g with §1-operators is harder than with §s-operators. This be-
havior can be explained by the fact that such difference in the complexity is
essentially present already between the underlying logics (K, ) and S5, [10,20].

In the case of DLs of context with §i-operators, we first established the
2ExPTIME lower bound for the satisfiability problem for (K,,) 4c¢ w.r.t. to global
TBoxes and only local roles. The proof is a reduction of the word problem for
an exponentially bounded, alternating Turing machine. This result turned out
to be quite surprising since it could be expected that without rigid roles the
satisfiability problem can be straightforwardly reduced to satisfiability in fusion
models. This in turn would have to yield an EXPTIME upper bound by means
of the standard techniques. However, as the following example for (K,)arc
demonstrates, this strategy fails.

(t) ¢;C N 3r.O; L (1) Jsuee;.C M IrVsuce;. L

Although (t) clearly does not have a model, its reduction (1) to a fusion lan-
guage, where modal operators are translated to restrictions on fresh ALC roles,
is satisfiable. The reason is that while in the former case the information about
the structure of the K-frame is global for all individuals, in the latter it becomes
local. The r-successor in (1) is simply not ‘aware’ that it should actually have a
succi-successor. The matching 2EXPTIME upper bound is proven by using the
quasistate elimination technique, similar to the proofs for certain products of
modal logics [9].

Regarding DLs of context with Fs-operators, for Lo € {ALC, ALCO} and
Le € {ALC,ALCO}, we encounter a jump from EXPTIME to NEXPTIME-
completeness. The non-determinism involved can be interpreted by the need of
guessing the interpretation of the context language first, before finding the model
of the object component of the combination. In particular, the lower bound is
obtained by an encoding of the 2™ x 2" tiling problem, known to be NEXP-
TiME-complete [9]. In the case of Lo = ALCO and L = EL this jump can be
explained by the interaction of nominals and the context operators, in fact this
enables to encode the 2™ x 2" tiling problem, as in the previous cases. For the
upper bounds for Lo € {ALC, ALCO} we devise a variant of a type elimination
algorithm, whereas for Lo = EL a completion algorithm in the style of [21].
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4 Application scenarios

There are two natural application scenarios for the DLs of context. First, they
can be used as native representation languages dedicated to modeling and rea-
soning about knowledge of inherently contextualized nature. Alternatively, the
framework can be used to support an external ‘integration’ layer over standard
DL ontologies. Observe, that a collection of DL ontologies O, ..., O, in some
language Lo can be seen as a set of formulas O = {c¢; : ¢ | ¢ € O;, i € (1,n)} in
Cﬁg, where every ontology corresponds to a unique context name. Consequently,
the extra expressive power of Cﬁg can be utilized for imposing interoperability
constraints over those ontologies. Arguably, the first type of use might be of
interest for knowledge-intensive/expert applications, while the second one seems
appealing from the perspective of integrating information on the Semantic Web.
We support the two cases with small examples, based on different types of con-
text operators, and explain some possible inferences.

Contextualized knowledge base. Consider a simple representation of knowl-
edge about the legal status of people, contextualized with respect to geographic
locations. We define a CKB K = (C, O), consisting of the context (geographic)
ontology C and the object (people) ontology O, as follows:

C: Country(germany) (
neighbor(france, germany) (
O : germany : hasParent. Citizen(john) (
Country : hasParent.Citizen T Citizen (
france : (neighbor.Country) Citizen C NoVisaRequirement (

Visibly, france and germany play here the role of contexts, described in the
context language by axioms (1) and (2). In the context of germany, it is known
that john has a parent who is a citizen (3). Since in every Country context
— thus including germany — the concept JhasParent.Citizen is subsumed by
Citizen (4), therefore it must be true that john is an instance of Citizen in
germany. Finally, since germany is related to france via the role neighbor,
it follows that john (assuming rigid interpretation of this name across contexts)
has to be an instance of NoVisaRequirement in the context of france (5). A
sample ¢§g-model of K is depicted in Figure 3.

Citizen
hasParent
Citizen germany

Country

(*)J =john

@ NoVisaRequirement

O NoVisaRequirement

Fig. 3. A ¢Z%-model of the CKB K.
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Interoperability constraints over DL ontologies. Consider an architecture
such as the NCBO BioPortal project®, which gathers numerous published bio-
health ontologies, and categorizes them via thematic tags, e.g.: Cell, Health,
Anatomy, etc., organized in a meta-ontology. The intention of the project is to
facilitate the reuse of the collected resources in new applications. Note, that the
division between the context and the object language is already present in the
architecture of the BioPortal, which can be immediately utilized to state, e.g.:

C: HumanAnatomy C Anatomy (1)
O: T :(HumanAnatomy)Heart C [Anatomy]|HumanHeart (2)
Anatomy : Heart C Organ (3)

where (2) maps the concept Heart from any HumanAnatomy ontology to
the concept HumanHeart in every Anatomy ontology; (3) imposes the axiom
Heart © Organ of an upper anatomy ontology over all Anatomy ontologies,
which due to axiom (1) carries over to all HumanAmnatomy ontologies.

In general, fog provides logic-based explications of some interesting notions,
relevant to the problem of semantic interoperability of ontologies, such as:

concept alignment: T : (A)C C [B]D

every instance of C' in any ontology of type A is D in every ontology of type B
semantic importing: ¢: (A)C C D

every instance of C' in any ontology of type A is D in ontology ¢

upper ontology axiom: A: CC D

axiom C C D holds in every ontology of type A

5 Conclusions

The problems of 1) representing inherently contextualized knowledge within the
paradigm of DLs and 2) reasoning with multiple heterogenous, but semantically
interoperating DL ontologies, are both interesting and important issues, moti-
vated by numerous practical application scenarios. It is our belief that these two
challenges are in fact two sides of the same coin and, consequently, they should
be approached within the same, unifying formal framework. In this paper, we
have proposed two novel families of two-dimensional DLs of context. Arguably,
these logics achieve the objective declared above to a great extent, by providing
sufficient syntactic and semantic means to support both functionalities, seam-
lessly integrated within one formalism.

As our results show, such two-dimensional extension of the DL framework
does not necessarily entail an increase in the computational complexity of reason-
ing, as for e.g. Qfgﬁ and Qﬁffcc with §s-operators, nor does it affect the generally
adopted knowledge representation methodology of DLs. We therefore consider
the approach a worthwhile subject to further research. In particular, it is es-
sential to investigate how certain notions and problems central to the practical
use and maintenance of multi-context knowledge systems (e.g. handling local
inconsistencies) can be meaningfully restated within the presented framework.

% See http://bioportal.bioontology.org/.
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Abstract. W3C currently extends the SPARQL query language with so-called
entailment regimes, which define how queries are evaluated using logical en-
tailment relations. We describe a sound and complete algorithm for the OWL
Direct Semantics entailment regime. Since OWL’s Direct Semantics is based on
Description Logics (DLs), this results in an expressive query language for DL
knowledge bases. The query language differs from the commonly studied con-
junctive queries in that it only has distinguished variables. Furthermore, variables
can occur within complex concepts and can also bind to concept or role names.
We provide a prototypical implementation and propose several novel optimiza-
tion strategies. We evaluate the efficiency of the proposed optimizations and find
that for ABox queries our system performs comparably to already deployed sys-
tems. For complex queries an improvement of up to three orders of magnitude
can be observed.

1 Introduction

Query answering is important in the context of the Semantic Web, since it provides
a mechanism via which users and applications can interact with ontologies and data.
Although SPARQL [12] was standardized in 2008 by the World Wide Web Consortium
for querying Semantic Web data, only the simple semantics of RDF is supported by
SPARQL 1.0, which does not allow for any reasoning.

There is not yet a standardized query language for OWL knowledge bases (KBs).
Several of the widely deployed systems support, however, some query language. Pellet
supports SPARQL-DL [13], which is a subset of SPARQL, adapted to work with OWL’s
Direct Semantics. Similarly, KAON2 supports [9] SPARQL, but restricted to ABox
queries. Racer Pro [3] has a proprietary query language, called nRQL [4], which allows
for queries that go beyond ABox queries, e.g., one can retrieve sub- or super-concepts
of a given concept. TrOWL is another system that supports ABox SPARQL queries,
but the reasoning in TrOWL is approximate, i.e., an OWL DL ontology is rewritten
into an ontology that uses a less expressive language before reasoning is applied [14].
Furthermore, there are systems such as QuOnto® or Requiem,* which support profiles of
OWL 2, and which support conjunctive queries, e.g., written in SPARQL syntax. Of the
systems that support all of OWL 2 DL, only Pellet supports non-distinguished variables
as long as they are not used in cycles, which is a measure to ensure decidability.

3 http://www.dis.uniromal .it/~quonto/
4 http://www.comlab.ox.ac.uk/projects/requiem/home.html
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The SPARQL W3C working group is currently devising version 1.1 of SPARQL,
which also includes several entailment regimes. These entailment regimes redefine the
semantics of SPARQL queries based on standard semantic web entailment relations
such as RDFS or OWL Direct Semantics entailment. This allows for using SPARQL
also as a query language over OWL ontologies with query answers also including solu-
tions that are implicit consequences of the queried ontology or knowledge base.

In this paper, we present an implementation and optimization techniques for the
SPARQL OWL 2 Direct Semantics entailment regime, which we call SPARQL-OWL
for brevity. SPARQL-OWL only allows for distinguished variables (for compatibility
with SPARQL 1.0), but it poses significant challenges for implementations, e.g., by
allowing variables that bind to concepts or roles and which can even occur within com-
plex concepts. Our implementation supports ontologies (knowledge bases) in OWL 2
DL and is based on the HermiT reasoner.> Most of the devised optimization techniques
are also applicable when using another OWL reasoner. In our algorithm, we extend the
techniques used for conjunctive query answering to deal with arbitrary SPARQL-OWL
queries and propose a range of novel optimizations in particular for SPARQL-OWL
queries that go beyond SPARQL-DL.

Our prototypical system is the first to fully support SPARQL-OWL, and we have
performed a preliminary evaluation in order to investigate the feasibility of our algo-
rithm and the effectiveness of the proposed optimizations. This evaluation suggests
that, in the case of standard conjunctive queries, our system performs comparably to
existing ones. It also shows that a naive implementation of our algorithm behaves badly
for some non-standard queries, but that the proposed optimizations can dramatically
improve performance, in some cases by as much as three orders of magnitude.

An extended version of this paper is accepted at ESWC’11 [10].

2 Preliminaries

In this section we give a brief introduction to the SPARQL-OWL entailment regime
and in the next section we describe an algorithm that finds answers to queries under this
regime.

2.1 The Relationship between RDF, SPARQL, and OWL

SPARQL is originally an RDF query language and the WHERE clause of a SPARQL
query consists of an RDF graph, where some nodes or edges are replaced by variables.
There is, however, a close relationship between OWL and RDF since OWL ontologies
can be represented as RDF graphs. Furthermore, OWL’s RDF-Based Semantics is a
direct extension of the RDF and RDFS semantics. We focus here, however, on OWL’s
Direct Semantics, which is based on the DL SROZQ [8] and which is only defined for
certain well-formed RDF graphs. Well-formedness guarantees that the RDF graph can
be mapped into an OWL 2 DL ontology [11], which can be seen as a SROJQ KB.

5 http://www.hermit-reasoner.com
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An example of a SPARQL query is
SELECT ?i FROM <ontologyIRI> WHERE { ?i rdf:type C }

where the triple in the WHERE clause is called a basic graph pattern (BGP) and is
written in Turtle [1]. Since the Direct Semantics of OWL is defined in terms of OWL
structural objects, such a BGP is mapped into structural objects, which can have vari-
ables in place of class, object property, data property, or individual names or literals. For
example, the above BGP is mapped to ClassAssertion(C ?i) in functional-style syntax
or C(?) in DL syntax.

OWL DL is a typed language and to map RDF triples into OWL structural ob-
jects, one often has to know the type of a term. For example, in order to map the
triple p rdfs:subpropertyOf p” into an OWL structural object, we have to know whether
p is an abstract or a concrete role (an object or a data property), in the former case,
the mapping results in SubObjectPropertyOf(p p’), whereas in the latter case, we get
SubDataPropertyOf(p p’). In DL notation, we get p C p’, but p and p’ would either be
abstract or concrete roles. In many cases, the typing information from the queried KB
can be used to disambiguate the mapping process. For variables that map to concepts or
roles, however, typing information is usually required and has to be added to the BGP.
For example,

a rdfitype [ rdf:type owl:Restricion ; owl:onProperty ?x ; owl:someValuesFrom ?y ]

could be mapped to either (1) or (2).

ClassAsserion(ObjectSomeVauesFrom(?x ?y) a) 1

ClassAsserion(DataSomeVauesFrom(?x ?y) a) 2)

In such a case, a triple such as ?x rdf:type owl:ObjectProperty can be added to disam-

biguate the mapping process. Although the SPARQL specification uses Turtle, other

query syntaxes can also be defined. Pellet accepts, for example, queries where the BGP
is written in Manchester Syntax [7].

For further details, we refer interested readers to the W3C specification that defines
the mapping between OWL structural objects and RDF graphs [11] and to the SPARQL-
OWL entailment regime® that defines the extension of this mapping between BGPs and
OWL objects with variables.

2.2 SPARQL-OWL Queries

In the following, we directly write BGPs in DL notation extended to allow for variables
in place of concept, role and individual names in axioms. For simplicity, we do not
consider concrete roles (data properties) here.

Anonymous individuals in the query are treated as variables whose bindings do not
appear in the query’s result sequence. This is motivated by the way SPARQL handles
anonymous individuals (known as blank nodes in RDF terminology). This is in con-
trast to conjunctive queries where they are treated as existential variables. Furthermore,
anonymous individuals in the queried KB are treated as (Skolem) constants and can be
returned in a query answer. For brevity, we assume here that neither the query nor the
queried KB contains anonymous individuals.

6 http://www.w3.org/TR/sparql11-entailment/
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Definition 1. Let N¢, Ng, Ni, Vi, Vg, and Vi be countable, infinite, and pairwise dis-
Jjoint sets of concept names, role names, individual names, concept variables, role vari-
ables, and individual variables, respectively. We call S = (N¢, Ng, Ny, Ve, Vg, Vi) a sig-
nature. A SPARQL-OWL query w.r.t. S consists of axiom templates, which are SROIQ
axioms where in place of concept names, one can use names from N¢ U V¢, in place
of role names, one can use names from Ng U Vg, and in place of individual names, one
can use names form N; U V;. A SROIQ knowledge base uses only terms from Nc¢, Ng,
and Nj. The restriction of S to terms that occur in a knowledge base K (a query q) is
denoted as Sx (Sy); we write V(q) to denote the set of all variables in g.

Given a knowledge base K with S = (NZ(,N;Q(,NIW, 0,0,0) and a query q over
(NZ(,NZ( ,N}K , Ve, Vg, Vi), a solution mapping u for g over K is a partial function
u:VeU Ve UV, — NZ( U quf U N}K such that dom(u) = V(q), u(v) € N’é( for each
v € Ve ndom(u), u(v) € quf for each v € Vg N dom(w), and u(v) € qu( for each
v € V;y ndom(u), where dom(u) denotes the domain of p; we write u(q) to denote the
result of replacing each variable v in g with u(v).

The evaluation of q over K yields a set of solution mappings u with

{u | KU u(q) is a SROIQ knowledge base and K = u(q)}

More complex WHERE clauses, which use operators such as UNION for alternative
selection criteria or OPTIONAL to query for optional bindings [12, 5], can be evaluated
simply by combining solution mappings obtained by the BGP/query evaluation. There-
fore, we focus here on BGP evaluation only.

In the remainder, we use K to denote the SROZQ KB obtained from a queried
RDF graph, and ¢ for the query obtained from mapping a BGP into axiom templates.
We further assume that the signature of K is S = (N'K,NZf ,qu(, 0,0,0) and a query
uses symbols from (N'K,NZF,NIW, Ve, Vr, Vo).

3 Evaluation of SPARQL-OWL Queries

A straightforward algorithm to realize the entailment regime simply tests, for each pos-
sible solution mapping u, whether K [ u(g). Since only terms that are used in K can
occur in the range of solution mappings, there are finitely many mappings to test. In the
worst case, however, the number of mappings that have to be tested is still exponential
in the number of variables in the query. Such an algorithm is sound and complete if the
reasoner used to decide entailment is sound and complete since we check all mappings
for variables that can constitute actual solution mappings.

3.1 General Query Evaluation Algorithm

Optimizations cannot easily be integrated in the above sketched algorithm since it uses
the reasoner to check for the entailment of the instantiated query as a whole and, hence,
does not take advantage of relations that may exist between axiom templates. For a
more optimized evaluation, we evaluate the query axiom template by axiom template.
Initially, our solution set contains only the identity mapping, which does not map any
variable to a value. We then pick our first axiom template, extend the identity mapping
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to cover the variables of the chosen axiom template and use the reasoner to check which
of the mappings instantiate the axiom template into an entailed axiom. We then pick the
next axiom template and again extend the mappings from the previous round to cover
all variables and check which of those mappings lead to an entailed axiom. Thus, axiom
templates which are very selective and are only satisfied by very few solutions reduce
the number of intermediate solutions. Choosing a good execution order, therefore, can
significantly affect the performance.

For example, let ¢ = {C(7x), r(?x ?y)} with r € Ng,C € N¢, 7X,?y € V;. The query
belongs to the class of conjunctive queries. We assume that the queried KB contains 100
individuals, only 1 of which belongs to the concept C. This C instance has 1 r-successor,
while we have overall 200 pairs of individuals related with the role r. If we first evaluate
C(7x), we test 100 mappings (since ?x is an individual variable), of which only 1 map-
ping satisfies the axiom template. We then evaluate r(?x ?y) by extending the mapping
with all 100 possible mappings for ?y. Again only 1 mapping yields a solution. For the
reverse axiom template order, the first axiom template requires the test of 100 % 100
mappings. Out of those, 200 remain to be checked for the second axiom template and
we perform 10, 200 tests instead of just 200.

The importance of the execution order is well known in relational databases and cost
based optimization techniques are used to find good execution orders. Ordering strate-
gies as implemented in databases or triple stores are, however, not directly applicable
in our setting. In the presence of expressive schema level axioms, we cannot rely on
counting the number of occurrences of triples. We also cannot, in general, precompute
all relevant inferences to base our statistics on materialized inferences. Furthermore,
we should not only aim at decreasing the number of intermediate results, but also take
into account the cost of checking or computing the solutions. This cost can be very
significant with OWL reasoning.

For several kinds of axiom templates we can, instead of checking entailment, di-
rectly retrieve the solutions from the reasoner. For example, for C(?x), reasoners typi-
cally have a method to retrieve concept instances. Although this might internally trigger
several tests, most methods of reasoners are highly optimized and avoid as many tests
as possible. Furthermore, reasoners typically cache several results such as the computed
concept hierarchy and retrieving sub-concepts can then be realized with a cache lookup.
Thus, the actual execution cost might vary significantly. Notably, we do not have a
straight correlation between the number of results for an axiom template and the actual
cost of retrieving the solutions as is typically the case in triple stores or databases. This
requires cost models that take into account the cost of the specific reasoning operations
(depending on the state of the reasoner) as well as the number of results.

As motivated above, we distinguish between simple and complex axiom templates,
where simple axiom templates are those that correspond to dedicated reasoning tasks.
Complex axiom templates are, in contrast, evaluated by iterating over the compatible
mappings and by checking entailment for each instantiated axiom template. An example
of a complex axiom template is (Ir.?x)(?y).

Algorithm 1 shows how we evaluate queries. We first explain the general outline of
the algorithm and leave the details of the used submethods for the following section.
We first simplify axiom templates where possible (rewrite, line 1). Next, the method
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Algorithm 1 Query Evaluation Procedure

Input: %K the queried knowledge base, which is a SROZQ knowledge base
q: a SROIQ query
Output: a set of solutions for evaluating g over K
1: Axt := rewrite(Kq) {create a list Axt of simplified axiom templates from g}
2: Axt',..., Axt™:=connectedComponents(Axt)
3: for j=1,...,m do

4: Rj:={uo | dom(uo) = 0}
5: axty,...,axt, := reorder(Axt)
6: for i=1,...,n do
7: R :=0
8: for u € R; do
9: if isSimple(axt)) and V(axt;) \ dom(u) # @ then
10: Ruew = Ryew U{(uU ') | ' € callReasoner(u(axt;))}
11: else
12: B :={y’ | i’ extends u, ' is a solution mapping for axt; and K}
13: B := prune(B, axt;, K)
14: while B # 0 do
15: ' := removeNext(B)
16: if K | 1/ (axt) then R,,,, := Ry, U {1/}
17: else B := prune(B, axt;, i)
18: end while
19: end if
20: end for
21: R = Ry
22:  end for
23: end for
24: R:={uyU...Up, | eR;, 1 < j<m}
25: return R

connectedComponents (line 2) partitions the axiom templates into sets of connected
components, i.e., within a component the templates share common variables, whereas
between components there are no shared variables. Unconnected components unneces-
sarily increase the amount of intermediate results and, instead, we can simply combine
the results for the components in the end (line 24). For each component, we proceed as
described below: we first determine an order (method reorder in line 5). For a simple
axiom template, which contains so far unbound variables, we then call a specialized
reasoner method to retrieve entailed results (callReasoner in line 10). Otherwise, we
check which compatible solutions yield an entailed axiom (lines 11 to 19). The method
prune (lines 13 and 17) excludes mappings that cannot lead to entailed axioms.

3.2 Optimized Query Evaluation

Axiom Template Reordering We now explain how we order the axiom templates in
the method reorder (line 5). Since complex axiom templates can only be evaluated
with costly entailment checks, our aim is to reduce the number of bindings before we
check the complex templates. The simple axiom templates are ordered by their cost,
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Table 1. Axiom templates and their equivalent simpler ones, where C; are complex concepts
(possibly containing variables), « is an individual or variable

Cin ﬂC(a)E{C(a)|15| n}
Cl:C1 Ch={CCEGCi|1<i<n}
Ciu uC IZC {(GcCl1<i<n}

which is computed as the weighted sum of the estimated number of required consistency
checks and the estimated result size. These estimates are based on statistics provided
by the reasoner and this is the only part where our algorithm depends on the specific
reasoner that is used. In case the reasoner cannot give estimates, one can still work
with statistics computed from explicitly stated information. We do this for some simple
templates, e.g., queries for domains and ranges of properties, for which the reasoner
does not provide result size estimations. Since the result sizes for complex templates
are difficult to estimate using either the reasoner or the explicitly stated information in
K, we order complex templates based only on the number of bindings that have to be
tested. It is obvious that the reordering of axiom templates does not affect soundness
and completeness of Algorithm 1.

Axiom Template Rewriting Some costly to evaluate axiom templates can be rewrit-
ten into axiom templates that can be evaluated more efficiently and yield an equiva-
lent result. Such axiom templates are shown on the left-hand side of Table 1 and their
equivalent simplified form is shown on the right-hand side. To understand the intu-
ition behind such transformation, we consider a query with only the axiom template:
? C dr.2y 1 C. Its evaluation requires a quadratic number of consistency checks in
the number of concepts (since ?x and ?y are concept variables). The rewriting yields:
?x € C and ?x C 3r.?y. The first axiom template is now evaluated with a cheap cache
lookup (assuming that the concept hierarchy has been precomputed). For the second
one, we only have to check the usually few resulting bindings for ?x combined with
all other concept names for ?y. We apply the rewriting in the method rewrite in line 1
of our algorithm. Soundness and completeness is preserved since instantiated rewritten
templates are semantically equivalent to the corresponding instantiated complex ones.

Concept and Role Hierarchy Exploitation The number of consistency checks required
to evaluate a query can be further reduced by taking the concept and role hierarchies
into account. Once the concepts and roles are classified (this can ideally be done be-
fore a system accepts queries), the hierarchies are stored in the reasoner’s internal
structures. We further use the hierarchies to prune the search space of solutions in
the evaluation of certain axiom templates. We illustrate the intuition with an exam-
ple: Infection C dhasCausalLinkTo.?x If C is not a solution and B C C holds, then B is
also not a solution. Thus, when searching for solutions for ?x, the method removeNext
(line 15) chooses the next binding to test by traversing the concept hierarchy topdown.
When we find a non-solution C, the subtree rooted in C of the concept hierarchy can
safely be pruned, which we do in the method prune in line 17. Queries over knowledge
bases with a large number of concepts and a deep concept hierarchy can, therefore,
gain the maximum advantage from this optimization. We employ similar optimizations
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using the role hierarchies. It is obvious that we only prune mappings that cannot con-
stitute actual solution and instance mappings, hence, soundness and completeness of
Algorithm 1 is preserved.

Exploiting the Domain and Range Restrictions The implicit domains and ranges of the
roles in K (in case the reasoner precomputes and stores them) and/or the explicit ones
can be exploited to reduce the number of entailment checks that need to be performed
in order to evaluate a query.

Let us assume that K contains T C VtakesCourse.Course, expressing a range re-
striction, and g contains GraduateStudent C JtakesCourse.?x. In case at least one so-
lution mapping exists for ?X, the concept Course and its super-concepts can immedi-
ately be considered solution mappings for ?x. Moreover, if the reasoner precomputes
the disjoint concepts, this information can be used to prune the possible concepts for 7x
that are disjoint from the concept Course. This is done in the method prune (line 13),
which again preserves soundness and completeness.

4 System Evaluation

Since SPARQL’s entailment regimes only change the evaluation of BGPs, standard
SPARQL algebra processors can be used to combine the intermediate results, e.g.,
in unions or joins. Furthermore, standard OWL reasoners such as HermiT, Pellet, or
FaCT++ can be used to perform the required reasoning tasks.

4.1 The System Architecture

In our system, the queried KB is loaded into an OWL reasoner and the reasoner per-
forms initial tasks such as concept classification before the system accepts queries. We
use the ARQ library” of the Jena Semantic Web Toolkit for parsing the SPARQL queries
and for the SPARQL algebra operations apart from the BGP evaluation. The BGPs are
mapped to queries (as in Def. 1) and represented in a custom extension of the OWL API
[6]. The query is then passed to a query optimizer, which applies the axiom template
rewriting and then searches for a good query execution plan based on statistics provided
by the reasoner. We use the HermiT reasoner for OWL reasoning, but only the module
that generates statistics and provides cost estimations is HermiT specific.

4.2 Experimental Results

We tested our system with the Lehigh University Benchmark (LUBM) [2] and a range
of custom queries that test complex axiom template evaluation over the more expressive
GALEN ontology. All experiments were performed on a Windows Vista machine with
a double core 2.2 GHz Intel x86 32 bit processor and Java 1.6 allowing 1GB of Java
heap space. We measure the time for one-off tasks such as classification separately
since such tasks are usually performed before the system accepts queries. Whether more

7 http://jena.sourceforge net/ ARQ/
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Table 2. Query answering times in milliseconds for LUBM(1,0) and in seconds for the queries
of Table 3 with and without optimizations

LUBM(1, 0) GALEN queries from Table 3
Query| Time Query |Reordering| Hierarchy |Rewriting Time
Exploitation
1 20 1 2.1
2 46 1 X 0.1
3 19 2 780.6
4 19 2 X 44
5 32 3 >30 min
6 58 3 X 119.6
7 42 3 X 204.7
8 353 3 X X 4.9
9| 4,475 4 X x| >30min
10 23 4 X X 361.9
11 19 4 X x| >30 min
12 28 4 X X X 68.2
13 16 5 X >30 min
14 45 5 X >30 min
5 X X 5.6

costly operations such as the realization of the ABox, which computes the types for all
individuals, are done in the beginning, depends on the setting and the reasoner. Since
realization is relatively quick in HermiT for LUBM (GALEN has no individuals), we
also performed this task upfront. The given results are averages from executing each
query three times. The ontologies and all code required to perform the experiments are
available online.?

We first evaluate the 14 LUBM queries. These queries are simple ones and have
variables only in place of individuals and literals. The LUBM ontology contains 43
concepts, 25 abstract roles, and 7 concrete roles. We tested the queries on LUBM(1,0),
which contains data for one university starting from index 0, and which contains 16,283
individuals and 8,839 literals. The ontology took 3.8 s to load and 22.7 s for classifi-
cation and realization. Table 2 shows the execution time for each of the queries. The
reordering optimization has the biggest impact on queries 2, 7, 8, and 9. These queries
require much more time or are not answered at all within the time limit of 30 min
without this optimization (758.9 s, 14.7 s, >30 min, >30 min, respectively).

Conjunctive queries are supported by a range of OWL reasoners. SPARQL-OWL
allows, however, the creation of very powerful queries, which are not currently sup-
ported by any other system. In the absence of suitable standard benchmarks, we created
a custom set of queries as shown in Table 3. Since the complex queries are mostly based
on complex schema queries, we switched from the very simple LUBM ontology to the
GALEN ontology. GALEN consists of 2,748 concepts and 413 abstract roles. The on-
tology took 1.6 s to load and 4.8 s to classify (concepts and roles). The execution time
for these queries is shown on the right-hand side of Table 2. For each query, we tested

8 http://www.hermit-reasoner.com/2010/sparqlowl/sparglowl.zip
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Table 3. Sample complex queries for the GALEN ontology

Infection C JhasCausallinkTo.?x

Infection C 3?y.7x

?x C Infection 1 dhasCausalAgent.?y
NAMEDLigament £ NAMEDInternalBodyPart r 7x
7x C dhasShapeAnalagousTo?y m 3?z.linear
5 ?x E NonNormalCondition

7z C ModifierAttribute

Bacterium C 3?z.7w

7y C StatusAttribute

2w C AbstractStatus

?x C 3?y.Status

A OND =

the execution once without optimizations and once for each combination of applicable
optimizations from Section 3.

As expected, an increase in the number of variables within an axiom template leads
to a significant increase in the query execution time because the number of mappings
that have to be checked grows exponentially in the number of variables. This can, in
particular, be observed from the difference in execution time between Query 1 and 2.
From Queries 1, 2, and 3 it is evident that the use of the hierarchy exploitation opti-
mization leads to a decrease in execution time of up to two orders of magnitude and, in
combination with the query rewriting optimization, we can get an improvement of up
to three orders of magnitude as seen in Query 3. Query 4 can only be completed in the
given time limit if at least reordering and hierarchy exploitation is enabled. Rewriting
splits the first axiom template into the following two simple axiom templates, which are
evaluated much more efficiently:

NAMEDLigament £ NAMEDInternalBodyPart and NAMEDLigament C ?x

After the rewriting, the reordering optimization has an even more pronounced effect
since both rewritten axiom templates can be evaluated with a simple cache lookup.
Without reordering, the complex axiom template could be executed before the simple
ones, which leads to the inability to answer the query within the time limit of 30 min.
Without a good ordering, Query 5 can also not be answered, but the additional use of
the class and property hierarchy further improves the execution time by three orders of
magnitude.

Although our optimizations can significantly improve the query execution time, the
required time can still be quite high. In practice, it is, therefore, advisable to add as many
restrictive axiom templates for query variables as possible. For example, the addition of
7y C Shape to Query 4 reduces the runtime from 68.2 s to 1.6 s.

5 Discussion

We have presented a sound and complete query answering algorithm and novel op-
timizations for SPARQL’s OWL Direct Semantics entailment regime. Our prototypi-
cal query answering system combines existing tools such as ARQ, the OWL API, and
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the HermiT OWL reasoner. Apart from the query reordering optimization—which uses
(reasoner dependent) statistics provided by HermiT—the system is independent of the
reasoner used, and could employ any reasoner that supports the OWL API.

We evaluated the algorithm and the proposed optimizations on the LUBM bench-
mark and on a custom benchmark that contains queries that make use of the very expres-
sive features of the entailment regime. We showed that the optimizations can improve
query execution time by up to three orders of magnitude.
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Abstract. We show that deciding conjunctive query inseparability for
OWL 2 QL ontologies is PSPACE-hard and in EXPTIME. We give polyno-
mial-time (incomplete) algorithms and demonstrate by experiments that
they can be used for practical module extraction.

1 Introduction

Ontology-based data access (OBDA) has recently emerged as one of the most
interesting and challenging applications of description logic. The key idea is to
use ontologies for enriching data with background knowledge, and thereby en-
able query answering over incomplete and semistructured data via a high-level
conceptual interface. The W3C recognised the importance of OBDA by includ-
ing in the OWL 2 Web Ontology Language the profile OWL 2 QL, which was
designed for OBDA with relational database systems. OWL 2 QL is based on a
description logic that was originally introduced under the name DL-Liter [5, 6]
and called DL-Lite’ _ in the more general classification [1]. It can be described
as an optimal sub-language of SROZQ, underlying OWL 2, which includes most
of the features of conceptual models, and for which query answering can be done
in AC° for data complexity. Thus, DL—Litc?C{me is becoming a major language
for developing ontologies, and a target language for translation and approxima-
tion of existing ontologies formulated in more expressive DLs [11, 4]. One of
the consequences of this development is that DL-Lite’  ontologies turn out to
be larger and more complex than originally envisaged. As a result, reasoning
support for ontology engineering tasks such as composing, re-using, comparing,
and extracting ontologies—which so far has been only analysed for expressive
DLs [7, 12], ££ [10] and DL-Lite dialects without role inclusions [9]—is becoming
increasingly important for DL-Lite’? _ as well.

In the context of OBDA, the basic notion underlying many ontology engi-
neering tasks is X -query inseparability: for a signature (a set of concept and role
names) X, two ontologies are deemed to be inseparable if they give the same
answers to any conjunctive query over any data formulated in Y. Thus, in ap-
plications using X-queries and data, one can safely replace any ontology by a
X-query inseparable one. Note that the relativisation to X is very important
here. For example, one cannot expect modules of an ontology to be query insep-

arable from the whole ontology for arbitrary queries and data sets, whereas this
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should be the case if we restrict the query and data language to the module’s
signature or a specified subset thereof. Similarly, when comparing two versions
of one ontology, the subtle and potentially problematic differences are those that
concern queries over their common symbols, rather than all symbols occurring in
these versions. In applications where ontologies are built using imported parts, a
stronger notion of inseparability is required: two ontologies are strongly X-query
inseparable if they give the same answers to X-queries and data when imported
to an arbitrary context ontology formulated in 3.

The aim of this paper is to (i) investigate the computational complexity of
deciding (strong) Y-query inseparability for DL-Lite’: _ ontologies, (ii) develop
efficient (though incomplete) algorithms for practical inseparability checking,
and (447) analyse the performance of the algorithms for the challenging task of
minimal module extraction.

One of our surprising discoveries is that the analysis of Y-query insepara-
bility for DL—Litel'f)re ontologies requires drastically different logical tools com-
pared with the previously considered DLs. It turns out that the new syntactic
ingredient—the interaction of role inclusions and inverse roles—makes deciding
(strong) query inseparability PSPACE-hard, as opposed to the known CONP and
IT-completeness results for DL-Lite dialects without role inclusions [9]. On the
other hand, the obtained ExPTIME upper bound is actually the first known
decidability result for strong inseparability, which goes beyond the ‘essentially’
Boolean logic and might additionally indicate a way of solving the open problem
of strong Y-query inseparability for ££ [10]. For DL-Lite,q. ontologies (without
role inclusions), strong X-query inseparability is shown to be only NLOGSPACE-
complete. We give (incomplete) polynomial-time algorithms checking (strong)
JY-inseparability and demonstrate, by a set of minimal module extraction exper-
iments, that they are (i) complete for many existing DL-Lite’ _ ontologies and
signatures, and (4i) sufficiently fast to be used in module extraction algorithms
that require thousands of X-query inseparability checks. All omitted proofs can
be found at www.dcs.bbk.ac.uk/~roman/owl2gql-modules.

2 XY-Query Entailment and Inseparability

We begin by formally defining DL—Litei'f,m, underlying OWL 2 QL, and the no-
tions of X-query inseparability and entailment. The language of DL-thel'f)Te
contains countably infinite sets of individual names a;, concept names A;, and
role names P;. Roles R and concepts B of this language are defined by:

R == P | P, B == L1 | T | 4 | 3R

(2

A DL-Lite’

core

TBox, T, is a finite set of inclusions
By E Bs, Ry C Ry, BBy C 1, RiMRy E L,

where By, By are concepts and R1, Ry roles. An ABoz, A, is a finite set of asser-
tions of the form B(a;), R(ai, a;) and a; # a;, where a; and a; are individual
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names, B a concept and R arole. Ind(.A) will stand for the set of individual names
occurring in A. Taken together, 7 and A constitute the DL-Lite’  knowledge

core

base (KB, for short) K = (7, A). The sub-language of DL-Lite’  without role

inclusions R; C Ry is denoted by DL-Liteore [6]. The semantics of DL—Litei'fWe
is defined as usual in DL [2]. We only note that, in interpretations Z = (A%, .T),
we do not have to comply with the UNA, that is, we can have af = CLJZ for
i # j. We write Z |= « to say that an inclusion or assertion « is true in Z. The
interpretation Z is a model of a KB K = (T, A)if T = aforala e TUA Kis
consistent if it has a model. A concept B is said to be T-consistent if (T,{B(a)})
has a model. £ = a means that Z |= « for all models Z of K.

A conjunctive query (CQ) q(z1,...,x,) is a first-order formula

Hyl '"Elym(p(xlw"’Invylv"'7y7ﬂ)7

where ¢ is constructed, using only A, from atoms of the form B(t) and R(¢1,t2),
with B being a concept, R a role, and t; being an individual name or a variable
from the list z1,...,%n,91,...,Ym. The variables in & = z1,...,x, are called
answer variables of g. We say that an n-tuple @ C Ind(A) is an answer to q in
an interpretation Z if Z |= g[d] (here we regard Z to be a first-order structure);
@ is a certain answer to g over a KB K = (T, A) if T = qld] for all models Z of
K; in this case we write K = q[a].

To define the main notions of this paper, consider two KBs K1 = (71, .A) and
Ko = (T2, A). For example, the 7; are different versions of some ontology, or one
of them is a refinement of the other by means of new axioms. The question we
are interested in is whether they give the same answers to queries formulated in
a certain signature, say, in the common vocabulary of the 7; or in a vocabulary
relevant to an application. To be precise, by a signature, X, we understand
any finite set of concept and role names. A concept (inclusion, TBox, etc.) all
concept and role names of which are in X' is called a X-concept (inclusion, etc.).
We say that Ky X-query entails Ky if, for all X-queries (%) and all @ C Ind(A),
Ko E q|d] implies K1 = g[d]. In other words: any certain answer to a X-query
given by Ky is also given by Ky. As the ABox is typically not fixed or known at
the ontology design stage, we may have to compare the TBoxes over arbitrary
JY)-ABoxes rather than a fixed one, which gives our central definition:

Definition 1. Let 7; and 73 be TBoxes and X' a signature. 71 X-query entails
Tz if (T1, A) X-query entails (7z,.A) for any Z-ABox A. 71 and T3 are X-query
inseparable if they X-query entail each other, in which case we write 71 =5 7Ta.
In many applications, X-query inseparability is enough to ensure that 7; can be
safely replaced by 7. However, if they are developed as part of a larger ontology
or are meant to be imported in other ontologies, a stronger notion is required:
Definition 2. 77 strongly X-query entails Tz if 71 UT X-query entails 7o U T,
for all X-TBoxes 7. 71 and T3 are strongly X -query inseparable if they strongly
X-query entail each other, in which case we write 71 =5, Ts.

The following example illustrates the difference between X-query and strong
XY-query inseparability. For further discussion and examples, consult [7, 9].
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Ezample 3. Let T, =0, T = {T CT3IR,IR- T B,BMNAL 1 }and X = {4}.
T1 and T, are X-query inseparable. However, they are not strongly X-query
inseparable. Indeed, for the X-TBox 7 = {T C A}, 71 UT is consistent, while
T>2UT is inconsistent, and so 71 U7 does not X-query entail ToU T, as witnessed
by the query q = L.

3 2XY-Query Entailment and ¥-Homomorphisms

In this section, we characterise X-query entailment between DL-Lite’f,  TBoxes
semantically in terms of (partial) X-homomorphisms between certain canonical
models. Then, in the next section, we use this characterisation to investigate the
complexity of deciding X-query entailment.

The canonical model, My, of a consistent KB K = (7,.A) gives correct
answers to all CQs. In general, M is infinite; however, it can be folded up into
a small generating model G = (Zx,~>x) consisting of a finite interpretation
Ik and a generating relation ~x that defines the unfolding. Let T be the
reflexive and transitive closure of the role inclusion relation given by 7, and let
[R] = {S | RC% S and S T} R}. We write [R] <y [S] if R C% S; thus, <7
is a partial order on the set {[R] | R a role in T}. For each [R], we introduce a
witness wir) and define a generating relation ~x on the set of these witnesses
together with Ind(A) by taking:

— a ~k wig) if a € Ind(A) and [R] is <7-minimal such that K |= 3R(a) and

K|~ R(a,b) for all b € Ind(A);

— wig] ~x wig) if [R] is <s-minimal with 7 = 35~ C 3R and [S™] # [R].
A role R is generating in K if there are a € Ind(A) and Ry,...,R, = R such
that a ~x wr,) ~k -+ ~x wg,]- The interpretation Zx is defined as follows:

AT¢ = Ind(A) U {wp | R is generating in K},

a’* = a, for all a € Ind(A),

AT = {a€nd(A) | K= Ala)} U{wr | T E3IR™ C A},

PIe = {(a,b) € Ind(A) x Ind(A) | there is R(a,b) € A s.t. [R] <7 [P]}U
{(z,wir)) | © ~x wig) and [R] <7 [P]} U
{(wigy, x) | z ~x wigr) and [R] <7 [P7]}.

Gx can be constructed in polynomial time in |K|, and it is not hard to see that
Ix = K. To construct the canonical model My giving the correct answers to
all CQs, we unfold the generating model G = (Z, ~) along ~~. A path in
Gk is a finite sequence awig,] - - - wir,], 7 > 0, such that a € Ind(A), a ~x wig,)
and wg,] ~k W[R,,,], for i < n. Denote by path(Gx) the set of all paths in Gx
and by tail(o) the last element in o € path(Gx). My is defined by taking:

AM< = path(G),
aMr = q, for all a € Ind(A),
{o | tail(c) € A<},
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PMx = {(a,b) € Ind(A) x Ind(A) | (a,b) € PT*} U
{(o.0 - wig) | tail(o) ~x wiry, [R] <7 [P]}U
{(o-wir),0) | tail(o) ~x wir, [R] <7 [P7]}

Ezample 4. For T = {A C 35S, 35~ C 3T, 3IT- C 3T, T C R} and
K1 = (T1,{A(a)}), the models G, and My, look as follows (~x, in Gi, is

shown as —»):
S R, T
Gr, >

My,

Qo 20
95}
=
H
=
|

> > »0

aws awswrt awswrwr

Theorem 5. For all consistent DL-Lite’*
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@ C Ind(A), we have K = q[d] iff Mk [= qla].

KBs K = (T, A), CQs q(%) and

Thus, to decide X-query entailment between KBs K and Ko, it suffices to check
whether My, | g[a] implies M, | g[d] for all X-queries g(Z) and tuples a.
This relationship between My, and My, can be characterised semantically in
terms of finite X-homomorphisms. For an interpretation Z and a signature X,
the Y-types t4(z) and 7% (z,y), for z,y € AL, are given by:

t5(z) = {X-concept B |z € BY}, r%(v,y) = {Z-role R| (z,y) € R*}.

A X-homomorphism from an Z to 7’ is a function h: AT — AT such that
h(a®) = ', for all individual names @ interpreted in Z, t%(z) C t£ (h(z)) and
ri(z,y) CrL (h(z), h(y)), for all z,y € AT

It is well-known that answers to conjunctive X-queries are preserved under
X-homomorphisms. Thus, if there is a X-homomorphism from Mg, to Mg,
then K3 X-query entails Ky. However, the converse does not hold in general.

Ezxample 6. Take T; from Example 4, and let 75 result from replacing R in 7y
with R™. Let X' = {4, R} and K; = (T;,{A(a)}). Then the X-reduct of My,
does not contain a X-homomorphic image of the X-reduct of My,, depicted be-
low. On the other hand, it is easily seen that 77 and 7T are X-query inseparable.

A R™ R™
MICQ °g o »0

Note that the Y-reduct of M, contains points that are not reachable from
the ABox by X-roles. In fact, using Konig’s Lemma, one can show that if every
point in My, is reachable from the ABox by a path of X-roles, then Ky X-query
entails Ko iff there exists a X-homomorphism from My, to M, .

We say that Z is finitely X'-homomorphically embeddable into I’ if, for every
finite sub-interpretation Z; of Z, there exists a X-homomorphism from Z; to Z'.

Theorem 7. Let Ky and Ko be consistent DL-Lite’  KBs. Then K1 X-query

entails Ko iff Mx, is finitely X-homomorphically embeddable into My, .
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Theorem 7 does not yet give a satisfactory semantic characterisation of X-
query entailment between TBoxes, as one still has to consider infinitely many
X-ABoxes. However, using the fact that inclusions in DL-Lite’?, , different from
disjointness axioms, involve only one concept or role in the left-hand side and
making sure that the TBoxes entail the same Y'-inclusions, one can show that it
is enough to consider singleton X-ABoxes of the form {B(a)}. Denote the mod-
els §(7 By and M7 (B} by (]7— and MT7 respectively. We thus obtain

the following characterisation of Y-entailment between DL-Lite’t  TBoxes:

Theorem 8. 71 X-query entails T2 iff

(p) T2 = « implies Ty = «, for all X-inclusions «;
(h) M% is finitely X'-homomorphically embeddable into MBI, for all T1-con-
sistent X -concepts B.

By applying condition (p) to B C L, we obtain that every T;-consistent X-
concept B is also Ta-consistent.

4 Complexity of ¥-Query Entailment

We use Theorem 8 to show that deciding X-query entailment for DL- L1tewrE
TBoxes is PSPACE-hard and in EXPTIME. Recall that subsumption in DL-Lite’?
is NLoGSPACE-complete [6, 1]; so condition (p) of Theorem 8 can be checked in
polynomial time. And, since there are at most 2-|X| singleton X-ABoxes, we can
concentrate on the complexity of checking finite >-homomorphic embeddability
of canonical models for singleton ABoxes.

We begin by considering DL-Lite,,., where the existence of X-homomorph-
isms between canonical models can be expressed in terms of the types of their
points; cf. [9]. Let 71 and T2 be DL-Liteo. TBoxes and X' a signature.

Theorem 9. 71 X-query entails T2 iff (p) holds and, for every Ti- conszstent
Y-concept B and every x € A" T2 there is ' € A% with t 2(z) C t T (2.

The criterion of Theorem 9 can be checked in polynomial time, in NLOG-
SPACE, to be more precise. Thus:

Theorem 10. Checking X -query entailment for TBoxes in DL-Lite .y is com-
plete for NLOGSPACE.

However, if role inclusions become available, the picture changes dramatically:
not only do we have to compare the X-types of points in the canonical models,
but also the X-paths to these points. To illustrate, consider the generating models
G1, Go in Fig. 1, where the arrows represent the generating relations, and the
concept names A, X0, X! and the role names R and T} are all symbols in X.
The model G contains 4 R-paths from a to w, which are further extended by
the infinite Tj-paths. The paths 7 from a to w can be homomorphically mapped
to distinct R-paths h(m) in Gy starting from a. But the extension of such a «
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with the infinite Tj-chain can only be mapped first to a suffiz of h(m) (backward,
along T{)—because we have to map paths in the unfolding Ms of G, to paths
in M;—and then to a T}-loop in G;. But to check whether this can be done, we
may have to ‘remember’ the whole path 7.

G2

A

R

&

Fig. 1. Y-reducts of generating models G2 and G;.

To see that G; and Gy can be given by DL-Lite’ = TBoxes, fix a QBF
Q1 X1...Q. X, /\;n:1 Cj, where Q; €{V ,3} and C4,...,C,, are clauses over the
variables X1, ..., X,. Let ¥ = {A, X2, X}, R, T; | i <n, j <m}, Ti contain the

inclusions

AC 35S, 35, £ 3Q7,
Q)™ E XL, QFC 8, S;CR,
XFC3R; if k=0,-X,€Cjork=1X, € Cj,
HR; C HR]', Rj C Tj, S; C T{,

and let 73 contain the inclusions

ke, —
AL 35, 357, C Q7 ?f Qi =V,
HSi, if Qz :37
H(Qf)_ C Xika Qf C S;, S,C R,
35, E3Fp;, 3P, C 3P P, C Ty,

for all i < n, 5 < m, k = 1,2. The generating models Q% and Q7427 restricted
to X, look like G; and Go in Fig. 1, respectively. Moreover, one can show that
M% is (finitely) X-homomorphically embeddable into M% iff the QBF above
is satisfiable. As satisfiability of QBFs is PSPACE-complete, we obtain:
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Theorem 11. Y-query entailment for DL-Lite TBozes is PSPACE-hard.

On the other hand, the problem whether My, is finitely X-homomorphically
embeddable into M, can be reduced to the emptiness problem for alternating
two-way automata, which belongs to EXPTIME [13]. In a way similar to [13,
8], where these automata were employed to prove ExpTIME-decidability of the
modal p-calculus with converse and the guarded fixed point logic of finite width,
one can use their ability to ‘remember’ paths (in the sense illustrated in the
example above) to obtain the EXPTIME upper bound:

Theorem 12. Y-query entailment for DL-Lite’t = TBozes is in EXPTIME.

core
The precise complexity of X-query entailment for DL—L1't:el'tDTe TBoxes is still
orn 18 CONP-

unknown. Recall that deciding X-query entailment for DL-Litej,
allows (unqualified) number

complete [9]. Compared to DL-Lite!t . DL-Lite),

restrictions and conjunctions in the left-hand side of concept inclusions, but does
not have role inclusions: DL-Lite‘Q{,mﬂDL—Liteifwe = DL-Lite,yr. CQ answering
is in AC for data complexity in all three languages under the UNA. However,
the computational properties of these logics become different as far as X-query
entailment is concerned: NLOGSPACE-complete for DL-Lite.,,., CONP-complete
for DL—L1'te£fom7 and between PSPACE and ExpTIME for DL-Lite”? .. It may be
of interest to note that X-query entailment for DL-Lite;,

allowing full Booleans
as concept constructs, is IT5-complete.

ool

Let us consider strong Y-query entailment. It is easy to construct an expo-
nential-time algorithm checking strong X-query entailment between DL-Litelt
TBoxes T; and 73: enumerate all X-TBoxes T and check whether 7; UT X-query
entails 7o U7T. As there are quadratically many X-inclusions, this algorithm calls
the Y-query entailment checker < 21Z1* times. We now show that one can do
much better than that. First, it turns out that instead of expensive X-query
entailment checks for the TBoxes 7; U T, it is enough to check consistency (in
polynomial time). More precisely, suppose 71 X-query entails 73. One can show
then that 77 does not strongly X-query entail 75 iff there exist a X-TBox T
and a X-concept B such that (T;UT,{B(a)}) is consistent but (T2UT,{B(a)})
is not (cf. Example 3). Moreover, checking consistency for all ¥-TBoxes T can
further be reduced—using the primitive form of DL-Lite’  axioms—to checking
consistency for all singleton X-TBoxes T. Thus, we obtain the following:

Theorem 13. Suppose that T; X -query entails Ts. Then Ty does not strongly X -
query entail Tz iff there is a X-concept B and a X-TBox T with a single inclusion
of the form By T By or Ry T Ry such that (T1 UT,{B(a)}) is consistent but
(T2 UT,{B(a)}) is inconsistent.

So, if we already know that 7; X-query entails 72, then checking whether this
entailment is actually strong can be done in polynomial time (and NLOGSPACE).

5 Incomplete Algorithm for 3-Query Entailment

The interplay between role inclusions and inverse roles, required in the proof of
PSpPACE-hardness, appears to be too artificial compared to how roles are used
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in ‘real-world’ ontologies. Thus, in conceptual modelling, the number of roles is
comparable with the number of concepts, but the number of role inclusions is
much smaller. For this reason, instead of a complete (exponential) X-query en-
tailment checker, we have implemented a polynomial-time correct but incomplete
algorithm, which is based on testing simulations between transition systems.

Let 71 and 73 be DL—L1'teﬁ"C'lOTe TBoxes, X' a signature, B a Y-concept. Denote
Ki = (Ti;,{B(a)}) and Z; = Ix,, i = 1,2. A relation p C AZ2 x ATt is called a
X-simulation of Gic, in Gi, if the following conditions hold:

(s1) the domain of p is A2 and (a®2,a™t) € p;

(s2) t2(z) Cth(2'), for all (z,2') € p;

(s3) if & ~ i, wg) and (z,2') € p, then thereis y’ € A% such that (wig),y’) € p
and S € r5 (2/,y) for every S-role S with [R] <, [S].

We call p a forward X-simulation if it satisfies (s1), (s2) and the condition
(s3’), which strengthens (s3) with the extra requirement: y" = wjyy, for some
role T, with &’ ~x,wip and [T] <7, [S] for every X-role S with [R] <7, [S].

Ezxample 14. In Example 6, there is a X-simulation of Gx, in Gx,, but no forward
Y-simulation. The same applies to Go and G; in the proof of the PSPACE bound.

In contrast to finite X~-homomorphic embeddability of M, in M, , the problem
of checking the existence of (forward) X-simulations of G, in Gk, is tractable
and well understood from the literature on program verification [3]. Consider
now the following conditions, which can be checked in polynomial time:

y) condition (p) holds and there is a forward X-simulation of G2 in G2, for
T2 Ti
every Ti-consistent X-concept B;
n) condition (p) does not hold or there is no X-simulation of G2 in G2, for
T2 T
any 7Ti-consistent X-concept B.

Theorem 15. Let 71, T3 be DL-Lite’  TBoxes and % a signature. If (y) holds,

then Ty X-query entails Ta. If (n) holds, then T1 does not X-query entail Ts.

Thus, an algorithm checking conditions (y) and (n) can be used as a correct
but incomplete X-query entailment checker. It cannot be complete since neither
(y) nor (n) holds in Example 14. On the other hand, condition (n) proves to be
a criterion of Y-query entailment in two important cases:

Theorem 16. Let (a) Ti, Ts be DL-Litecore TBoxes, or (b) T1 = 0 and T3 a
DL-Lite’t . TBoxz. Then condition (n) holds iff Ty does not X-query entail Ta.

core

6 Experiments

Checking (strong) X-query entailment has multiple applications in ontology ver-
sioning, re-use, and extraction. We have used the algorithms, suggested by The-
orems 15 and 13, for minimal module extraction to see how efficient they are
in practice and whether the incompleteness of the (y)—(n) conditions is prob-
lematic. Extracting minimal modules from medium-sized real-world ontologies
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requires thousands of calls of the (strong) X-query entailment checker, and thus
provides a tough test for our approach.
For a TBox T and a signature X, a subset M C T is

— a X-query module of T it M =5 T;

— a strong X-query module of T ift M =3, T;

— a depleting X -query module of T if ) =S Usig(M) T\ M, where sig(M) is the
signature of M.

We are concerned with computing a minimal (w.r.t. C) X-query (MQM), a mini-
mal strong X-query (MSQM), and the (uniquely determined) minimal depleting
Y-query (MDQM) module of 7. The general extraction algorithms, which call
Y-query entailment checkers, are taken from [9]. For MQMs and MSQMs, the
number of calls to the checker coincides with the number of inclusions in 7. For
MDQMs (where one of the TBoxes given to the checker is empty, and so the
checker is complete, by Theorem 16), the number of checker calls is quadratic in
the number of inclusions in 7.

We extracted modules from OWL 2 QL approximations of 3 commercial soft-
ware applications called Core, Umbrella and Mimosa (the original ontologies use
a few axioms that are not expressible OWL 2 QL). Mimosa is a specialisation
of the MIMOSA OSA-EAI specification? for container shipping. Core is based
on a supply-chain management system used by the bookstore chain Ottakar’s
(now merged with Waterstone’s), and Umbrella on a research data validation
and processing system used by the Intensive Care National Audit and Research
Centre.® The original Core and Umbrella were used for the experiments in [9].

ontology Mimosa | Core | Umbrella | IMDB | LUBM
concept inclusions 7101| 1214 1506 45 136
role inclusions 53 19 13 21 9
concept names 106 82 79 14 43
role names 145 76 64 30 31

For comparison, we extracted modules from OWL 2 QL approximations of the
well-known IMDB and LUBM ontologies. For each of these ontologies, we ran-
domly generated 20 signatures X of 5 concept and 5 roles names. We extracted
2-MQMs, MSQMs, MDQMs as well as the TL-module [7] from the whole Mi-
mosa, IMBD and LUBM ontologies. For the larger Umbrella and Core on-
tologies, we first computed the Tl-modules, and then employed them to fur-
ther extract MQMs, MSQMs, MDQMs, which are all contained in the TL-
modules. The average size of the resulting modules and its standard devia-
tion is shown below. Details of the experiments and ontologies are available
at www.dcs.bbk.ac.uk/~roman/owl2ql-modules. Here we briefly comment on
efficiency and incompleteness. Checking Y-query inseparability turned out to be
very fast: a single call of the checker never took more than 1s for our ontologies.
For strong X-query inseparability, the maximal time was less than 1 min. For

4 htpp://www.mimosa.org/?q=resources/specs/osa-eai-v321
® http://www.icnarc.org
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comparisons with the empty TBox, the maximal time for strong X-query insep-
arability tests was less than 10s. In the hardest case, Mimosa, the average total
extraction times were 2.5 mins for MQMs, 140 mins for MSQMs, and 317 mins
for MDQMs. Finally, only in 9 out of about 75,000 calls, the X-query entail-
ment checker was not able to give a certain answer due to incompleteness of the

(¥)-

(n) condition, in which case the inclusions in question were added to the

module.
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Abstract. We propose an extension of SROZQ with nominal schemas
which can be used like “variable nominal concepts” within axioms. This
feature allows us to express arbitrary DL-safe rules in description logic
syntax. We show that adding nominal schemas to SROZQ does not
increase its worst-case reasoning complexity, and we identify a family
of tractable DLs SROELYV,, that allow for restricted use of nominal
schemas.

1 Introduction

A significant body of work has developed investigating the integration of descrip-
tion logics (DLs) and rule languages (typically Datalog). Conceptually, one can
distinguish two approaches. On the one hand, description logics have been ex-
tended with additional “description-logic-style” expressive features which make
it possible to express certain types of rules. For instance, SROZQ role inclusion
axioms (RIAs) can be viewed as a type of rule. By combining RIAs with local
reflexivity (Self) and the universal role U, many rules with a tree-shaped body
can be expressed indirectly [10]. The restriction to tree-shaped rules ensures de-
cidability, but it also excludes many rules. An example is the following rule that
defines a concept C of children whose parents are married:

hasParent(z,y) A hasParent(x,z) A married(y,z) — C(z). (1)

On the other hand, there are approaches of a hybrid nature, in the sense
that both DL axioms and rules are syntactically allowed, and a combined formal
semantics defines how the hybrid language is to be understood. Unfortunately,
such a combination often leads to undecidability. This is the case for the Se-
mantic Web Rule Language SWRL [5,6], which is the most straightforward rule
extension of OWL, and for the combination of OWL DL ontologies and the Rule
Interchange Format RIF (even when restricted to RIF Core) [1,2]. A prominently
discussed idea for retaining decidability is to restrict the applicability of rules
to named individuals, i.e., to logical constants that are explicitly mentioned in
the ontology. Rules that are understood in this sense are called DL-safe, and the
combination of OWL DL and DL-safe rules is indeed decidable [5,14].
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A generalization of DL-safe rules, based on DL-safe variables, has been intro-
duced [11] as part of the definition of the tractable rule language ELP. Rather
than restricting all variables in a (DL-safe) rule to binding only to known indi-
viduals, DL-safe variables allow the ontology engineer to explicitly specify the
variables to be treated this way. This approach was subsequently generalized to
obtain DL+safe Rules as a class of expressive rule languages for which reasoning
is still decidable [9].

In this paper, we expand on the above idea and improve it in several ways.
The key technical innovation is the introduction of nominal schemas as new
elements of DL syntax. While the semantic intuition behind nominal schemas
is the same as that behind DL-safe variables, the difference lies in the fact that
DL-safe variables are tied to rule languages, while nominal schemas integrate
seamlessly with DL syntax. As a consequence, the language which we propose
encompasses DL-safe variable SWRL while staying within the DL/OWL language
paradigm. It thus achieves within the DL framework what has hitherto only been
achieved by hybrid approaches.

To give an initial example, consider again the rule (1) extended by the axioms

hasParent(mary, john) (2)
(FhasParent.3married.{john})(mary) (3)

Axiom (2) asserts that John is a parent of Mary, while axiom (3) states that
Mary belongs to the class of individuals with some (unnamed) parent who is
married to John. Using a first-order logic semantics as in SWRL, rule (1) would
thus entail that Mary belongs to the class C. Interpreting rule (1) as DL-safe,
however, does not allow this conclusion, since John’s spouse is not named by
any constant in the ontology. To retain the conclusion, one can weaken this
restriction to require only z to be DL-safe, while z and y can still take arbitrary
values. This is possible in the rule-based approach of DL+-safe Rules, but cannot
be captured in an axiom of existing description logics.
In contrast, using nominal schemas, rule (1) can be expressed as

JhasParent.{z} M JhasParent.3married.{z} C C. (4)

The desired conclusion again follows. The expression {z} is a nominal schema,
which is to be read as a variable nominal that can only represent nominals (i.e.,
z binds to known individuals), where the binding is the same for all occurrences
of the nominal schema in an axiom.

The main contributions of this paper are as follows:

1. We introduce nominal schemas as a new general constructor for descrip-
tion logics, denoted by the letter V in the DL nomenclature, and define the
expressive DL SROZQV as an extension of SROZQ.

2. We establish the worst-case complexity of reasoning in SROZQV to be
N2ExpPTIME-complete, and thus not harder than for SROZQ.
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3. We define SROELY,, (n > 0) as a new family of DLs with nominal schemas
for which reasoning is possible in polynomial time.

The expressivity of nominal schemas is also witnessed by the fact that it
allows DLs to incorporate arbitrary DL-safe rules, given that concept intersec-
tions, existential role restrictions, and the universal (top) role are available. Since
such rules preclude polytime reasoning, our tractable DLs SROELV,, employ
restrictions on the number of certain occurrences of nominal schemas in each
axiom.

The close relationship to nominals suggests simple ways of introducing nom-
inal schemas into concrete syntactic forms of OWL 2, e.g. by using the existing
syntax for nominal classes with special individual names that represent variables
(using some suitable naming convention). This opens a path for introducing this
feature into practical applications. While the above worst-case complexity result
for SROZQV may seem encouraging, we believe that the tractable ontology
languages SROELY,, are the most promising candidates for implementations.

This paper is a condensed presentation of the main results of [13] where we
develop all results for the slightly more general case of DLs with Boolean role
constructors and concept products [18]. Moreover, [13] also explains how DL-safe
rules (and hence DLs with nominal schemas) can be used to express OWL RL
ontologies, and provides an extended discussion of related approaches which
include description graphs, existential rules and tuple-generating dependencies
(TGDs) in Datalog, and DL Rules.

In this paper, we introduce the syntax and semantics of nominal schemas for
SROIQV, and establish the worst-case complexity of reasoning in Section 2. The
DLs SROELY,, are introduced in Section 3, and their tractability is established
in Section 4. In Section 5 we show how DL-safe rules can be expressed with
nominal schemas, and Section 6 concludes.

2 Nominal Schemas in SROZQ

We start by introducing nominal schemas as an extension of existing description
logics. We first generally introduce the feature for SROZQ to obtain the very
expressive DL SROZQV.

A signature of SROZQYV is a tuple X' = (N;, N¢, N, Ny) of mutually dis-
joint sets of individual names, concept names, role names, and variables. Vari-
ables can be used like individuals in nominal expressions, and concept expressions
of SROZQV are thus defined as follows:

C:=T|L|Ne|{N:}|{Nv}|-C|CnC|CUC|
JR.C | VR.C | 3S.Self | <kS.C | 2k S.C
where k is a natural number, and R (S) is a (simple) SROZQ role as usual.

We use U to denote the universal role. The common axiom types are defined as
usual, but with the extended set of concept expressions. Herein, we restrict our
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attention to SROZQV knowledge bases with regular RBoxes, which are defined
as in SROIQ.

Axiom (4) above is an example of a SROZQV TBox axiom, where {z} is
a nominal schema. Intuitively, each nominal schema appearing in an axiom is
universally quantified, but ranges only over elements that are referred to by an
individual name. We note that it would also be straightforward to introduce
nominal schemas into the normative RDF syntax for OWL 2 [16]. One way to
do this would be to provide URIs for variables in the OWL namespace, used
instead of individuals in owl:oneOf statements (which are used for the RDF
syntax for nominals in OWL 2). Attaching the semantics of nominal schemas to
“reserved” variable URIs would allow the reuse of existing tools for representa-
tion, manipulation, parsing, and serialization.

The semantics of SROZQYV is defined by interpreting variables as placehold-
ers for named individuals, i.e. elements of the interpretation domain that are
represented by individual names in Nj. This can be accomplished by using a
suitably restricted form of variable assignment. Equivalently, one can eliminate
nominal schemas by replacing them with the (finitely many) nominals that they
can represent, and apply the standard SROZQ semantics to the result [13].

Definition 1. The grounding ground(«a) of a SROZQV aziom « is the set of
all axioms that can be obtained by uniformly replacing nominal schemas in «
with nominals of the given signature. Given a SROZQV knowledge base KB, we
define ground(KB) = | ¢ x ground(a).

A DL interpretation T is a model of a SROZQV axiom a, written T = a,
if and only if T is a model of the knowledge base ground(c). Satisfaction and
entailment of SROZQYV axioms and knowledge bases is defined as usual.

Note that grounding does not affect the structural restrictions of simplic-
ity and regularity. Definition 1 provides a direct approach for reasoning with
SROZQV, though not necessarily a very practical one given that each SROZQV
axiom represents an exponential number of SROZQ axioms obtained by ground-
ing. However, this observation already yields an upper bound for the complexity
of reasoning with SROZQV that is exponentially larger than that of SROZQ,
i.e. N3EXPTIME. In the remainder of this section, we prove that this result can
be refined to obtain an N2EXPTIME upper complexity bound, showing that
this reasoning problem must be N2EXPTIME-complete. To accomplish this, we
extend the original proof for the worst-case complexity of SROZQ [8§].

We first recall the complexity proof of [8] which is based on an exponential
reduction of DL knowledge bases to theories of C2, the two-variable fragment of
first-order logic with counting quantifiers, for which satisfiability can be checked
in NExPTIME [17]. The reduction proceeds in three steps: (1) axioms are trans-
formed into a simplified normal form, (2) complex RIAs are eliminated, and (3)
the resulting axioms are expressed as formulae of C2.

Step (1) yields an equisatisfiable knowledge base that contains only axioms
of the following forms:
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ACVR.B [14; T UB; S1 C Sy
AC>nS.B A={a} RiC R~
AC<nSB A = 35 .Self Rio---oR,CR

where R;),S1,52 € Ng with S;,Sy simple, and C' = D is short for {C' C
D,D C C}. This normalization can be done in linear time; see [8] for details.
The only axioms that are not readily expressed in C? are complex RIAs. They
are eliminated next, with exponential effort.

Step (2) applies a technique from [3] using nondeterministic finite automata
(NFA) to represent RIAs that entail non-simple roles. Suitable NFA for SROZQ
were defined in [4,7]. We do not repeat the details of this construction here, and
merely quote the essential results. Proofs for the following facts can be found in
[4] and the accompanying technical report.

Fact 1 Consider a SROZQ knowledge base KB. For each (possibly inverse)
non-simple role R € R, there is an NFA Ag over the alphabet Nr such that for
every model Z of KB, and for every word Sy ...S, accepted by Agr:

If (6:,0i41) € ST foralli=1,...,n, then (61,0,41) € RT.

Moreover, let < denote a strict linear order that witnesses regqularity of KB as
required in [4]. For each non-simple R € Npg, the number of states of Ag is
bounded exponentially in the depth of KB that is defined as:
max{n | there are S1 < ... < S, such that
Elo...OSiO...OTimi ESH_1 S KB}

It suffices to construct the respective NFA for non-simple roles. Now step (2)
proceeds by replacing every axiom of the form A C VR.B by the following set
of axioms, where Ap is the NFA as introduced above, and X, are fresh concept
names for each state g of Ag:

AC X, q is the initial state of Agp
X, CVS. Xy Apg has a transition ¢ 5 q
X,CB q is a final state of Agr

Moreover, all complex RIAs of the form R;0...0R, C R with n > 2 are deleted.
The number of new axioms (and fresh concept names) that are introduced for
each axiom of the form A C VR.B is bounded by the sum of the number of
states and transitions in Ag, and the number of transitions in turn is linear
in the number of role names and states. According to Fact 1, the number of
axioms introduced for each axiom A C VR.B is exponentially bounded in the
depth of the knowledge base. The overall size of the knowledge base after step
(2) therefore is bounded by a function that is linear in the size of the knowledge
base and exponential in the depth of the knowledge base.

Step (3), finally, is a simple rewriting to C? that does not increase the size
of the knowledge base. To obtain the main result of this section, it suffices to
observe that grounding does not increase the depth of the knowledge base:

Theorem 1. The problem of deciding the satisfiability of SROZQV knowledge
bases is N2EXPTIME-complete.
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Proof. The depth of KB is only affected by RBox axioms. RBox axioms are not
affected by grounding, hence the depth of ground(KB) is equal to the depth of
KB.

Since ground(KB) is in SROZQ, one can apply the transformation steps
(1)—(3). This yields a C? theory T that is equisatisfiable to ground(KB) [8] and
thus to KB. The size of T is linear in the size of ground(KB) and exponential
in the depth of KB. Both measures are exponential in the size of KB, and so
is T'. Deciding satisfiability of 7' can be done in NEXPTIME [17], thus deciding
satisfiability of KB in N2EXPTIME.

Hardness follows since SROZQV includes SROZQ, for which deciding sat-
isfiability is N2ExpT1ME-hard [8]. O

3 A Tractable Fragment

The result that reasoning in SROZQV has the same worst-case complexity as
SROIQ is encouraging, yet we are far from a practical reasoning procedure for
this DL. In particular, Theorem 1 is based on a procedure that still takes expo-
nentially longer than the original approach for SROZQ, without this affecting
the worst-case complexity. In this section, we therefore focus on identifying cases
where inferencing is possible in polynomial time. This still leads to a rather ex-
pressive tractable DL. In [13]|, we also further discuss the relationship to the
tractable profiles of OWL 2.

Concretely, we define DLs SROELV,, for each integer n > 0, n restricting
the number of “problematic” occurrences of nominal schemas detailed below. The
DLs are based on the tractable DL SROEL(x), introduced as an extension of
OWL EL [12]. In essence, SROEL(x) is an extension of EL with T, L, nominals,
complex role inclusions, Self, and concept products [18]. Here, we only need the
special concept product T x T, denoted as the universal role U. In particular,
we also omit range restrictions R = T x C' since they do not contribute to our
treatment.

To preserve tractability when adding nominal schemas, we must avoid the
increase in the number of axioms during grounding, which is exponential in
the number of nominal schemas per axiom. Unfortunately, one cannot reduce
the number of nominal schemas by normal form transformations in general,
since they represent complex dependencies that cannot be simplified. But there
are special cases where nominal schemas on the left-hand side of TBox axioms
can be eliminated, or separated using independent axioms. One such case was
identified in [11] for the rule language ELP: if the dependencies expressed in a
rule body are tree-shaped then the rule can always be reduced to a small set
of normalized rules with a limited number of variables in each. For example, a
rule body that consists of a conjunction A(z) A R(x, 2) AS(x,y) AB(y) AT (y, 2)

is not tree-shaped since there are parallel paths x K andz 2 Y L 2in
the corresponding dependency structure. In our case, binary predicates are role
names, unary predicates are concept names, and constant symbols correspond
to nominals. Variables can either be “hidden” in the structure of the DL concept
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expression, or occur explicitly as nominal schemas (the latter are called DL-
safe variables in ELP). For example, the above rule body can be expressed as a
concept AMN3IAR.{z} N3S.(BNIT.{z}).

Here, we do not introduce tree-shaped dependency structures as a general
mechanism for ensuring that normal form transformations are possible, and
merely identify sufficient conditions for which this is the case. An obvious con-
dition that implies tree-shaped dependencies is that a nominal schema occurs
only once, and only on the left-hand side of a TBox axiom. As in [11], the tree-
shape only refers to variables (DL-safe or not), not to constants, in rule bodies.
This means that nominals (our syntax for constants) disconnect a concept’s de-
pendency structure. For instance, if B in the above rule body is replaced by a
nominal {a}, then the concept would be tree-shaped. In such a case, we say that
the nominal {z} occurs in a safe environment, as defined next.

Definition 2. An occurrence of a nominal schema {x} in a concept C is safe
if C has a sub-concept of the form {a} M3R.D for some a € Ny, such that D
contains the occurrence of {x} but no other occurrence of any nominal schema.
In this case, {a}M3R.D is a safe environment for this occurrence of {x}. S(a,x)
will sometimes be used to denote an expression of the form {a} M 3IR.D within
which {x} occurs safely.

A nominal schema {x} is safe for a SROZQV TBox axiom C T D if {z}
does not occur in D, and at most one occurrence of {x} in C is not safe.

Definition 3. Let n > 0. A SROELY,, concept is a SROZQV concept that
may contain T, L, M, 3, Self, the universal role, nominals and nominal schemas,
but which does not contain L, =, ¥V, <k, 2k, or inverse roles.

A SROELY,, TBox axiom is a SROZQV TBox aviom « that uses SROELYV,,
concepts only, and where at most n nominal schemas are not safe for . An RBox
axiom of SROELY,, is an RBox aziom of SROZQV that does not contain in-
verse roles. A SROELV,, knowledge base is a SROZQV knowledge base that
contains only SROELY,, azioms.

Restricting to at most n non-safe nominal schemas per axiom ensures that at
most |N7|™ axioms are introduced during grounding. We will fix n at a constant
small value, so this increase is polynomial. When viewing nominal schemas as a
way of augmenting DL expressivity in existing applications, it seems plausible
that this number remains small. Axiom (4) is an example of a SROELYV; axiom.

4 Reasoning with SROELY,,

If n is constant, the problem of checking satisfiability in SROELV,, is possible in
polynomial time w.r.t. the size of the knowledge base. To show this, we provide
a polynomial transformation to the DL SROEL(x) [12].

Let KB be a SROELY,, knowledge base. We define a SROEL(x) knowledge
base ground™ (K B) as follows. The RBox and ABox of ground™ (KB) are the same
as the RBox and ABox of KB. For each TBox axiom o« = C & D € KB, the
following axioms are added to ground™ (KB):
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1. For each nominal schema {z} safe for «, with safe occurrences in environ-
ments S;(a;,z) for i = 1,...,l, introduce a fresh concept name O, ,. For
every individual b € Ny in KB, ground™ (KB) contains an axiom

l
[ ]30.Si(ai,b) £ 30.({0} N Ox.a),

i=1

where S;(a;,b) denotes S;(a;,x) with {z} replaced by {b}, and the empty
conjunction (I = 0) denotes T.

2. A concept C’ is obtained from C as follows. Initialize C’ := C. For each
nominal schema {z} that is safe for a: (a) replace all safe occurrences S(a, z)
in C’ by {a}; (b) replace the non-safe occurrence (if any) of {z} in C’ by
Og.a; (¢) set C' :== C'M3V.Oy . After these steps, C’ contains only nominal
schemas that are not safe for «, and neither for C' C D.

Now add axioms ground(C’ C D) to ground™ (KB).

Theorem 2. Given a SROELY,, knowledge base KB, the size of ground™ (KB)
is exponential in n and polynomial in the size of KB.

Proof. The size of the RBox and ABox of ground™ (KB) is linear in the size of
KB and does not depend on n. If m is the number of individual names in KB,
then step 1 above introduces at most mk axioms for each axiom « with k nom-
inal schemas. This is polynomial in the size of KB. The second step introduces
|ground(C” C D)| many axioms, and hence at most m”™ axioms for each a. O

As shown in [13], a SROELY,, knowledge base KB is satisfiable if and only
if ground® (KB) is satisfiable. A knowledge base is unsatisfiable if and only if
it entails {a} C L for arbitrary a € Nj. This reduces satisfiability testing to
instance retrieval (checking if a is an instance of ). Using the polynomial time
instance retrieval method for SROEL(x) from [12], we thus obtain the following
result. Hardness for P follows from the hardness of SROEL(%).

Theorem 3. If KB is a SROELV,, knowledge base of size s, satisfiability of
KB can be reduced to instance retrieval w.r.t. a set of Datalog rules of size
proportional to s™ and at most 4 variables per rule. If n is constant, the problem
is P-complete.

5 DL-Safe Rules

An interesting feature of nominal schemas is that they can be used to express
arbitrary DL-safe rules [14]. These are Datalog rules with unary and binary
predicates that are restricted — just like nominal schemas — to apply to domain
elements that are represented by individual names. Identifying unary predicates
with concept names, binary predicates with role names, constants with individual
names, and (DL-safe) variables with the variables in nominal schemas, the syntax
of DL-safe rules can be based on a DL signature. As before, we assume the
signature X' = (N7, N¢, Nr, Ny) to be fixed and omit explicit references to it.
The set of terms T of X is Ny U Ny.
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Definition 4. A concept atom is an expression of the form A(t) witht € T and
A€ Ne U{T,L}. Arole atom is an expression of the form R(s,t) with s,t € T
and R € Ng. An atom is a concept or role atom.

If B is a finite and non-empty conjunction of atoms and H is an atom, then
B — H is a DL-safe rule. B is called the body, and H is called the head. A
DL-safe rule that contains at most n distinct variables is called an m-variable
rule. A 0-variable rule is a ground rule. The grounding ground(B — H) of a
DL-safe rule B — H s the set of all rules that can be obtained by uniformly
replacing variables in B — H with individual names of the signature.

An interpretation T satisfies a ground DL-safe rule B — H, written T =
B — H, if either T = H or I|/= B. An interpretation T satisfies a DL-safe rule
B — H if it satisfies all rules in ground(B — H). A set of rules is satisfied if all
of its elements are. Models, satisfiability, and entailment are defined as usual.

Since DL-safe rules use the same models as SROZQYV, it is easy to combine
DL-safe rules and DL knowledge bases. The entailment relation is immediate: a
DL-safe rule or DL axiom ¢ is entailed by a DL knowledge base KB extended
with a set of rules RB if ¢ is satisfied by all interpretations that satisfy both KB
and RB.

Definition 5. A syntactic transformation dl from atoms and DL-safe rules to
SROLZOV concepts and TBox axioms is defined as follows. For a unary atom
A(t) and binary atom R(s,t), we set

di(A(t)) = U.{t} 1 A)  and  dI(R(s,t)) = 3U.({s} N 3IR{t}).

Given a DL-safe rule B — H, we set d(B — H) = [|pcgdl(F) E dI(H), and
for a set of DL-safe rules RB we define dl(RB) == Ug_, yeprpdl(B — H).

The function dl transforms rules into SROELY,, TBox axioms, where n is
the number of variables in the rule. This ensures that none of the restrictions on
simple and non-simple roles or regularity are violated. In consequence, dl(RB)
is a SROELYV,, knowledge base if RB is a set of n-variable rules. The following
result of [13] is not hard to show:

Theorem 4. The models of a set RB of DL-safe rules are the same as the
models of dl(RB), i.e. RB and dI(RB) are semantically equivalent.

Importantly, this result confirms that nominal schemas are powerful enough
to express arbitrary DL-safe rules. The use of nominal schemas, however, in
SROZQYV is more general than the extension of SROZQ with DL-safe rules,
since the latter correspond to a special form of SROZQYV axioms only. Combin-
ing Theorem 3 with the observation that dl(RB) is linear in the size of RB, we
can state the following:

Theorem 5. The problem of deciding whether a knowledge base RBU KB is
satisfiable, where RB is a set of n-variable rules with n constant, and KB is a
SROELY,, knowledge base, is P-complete.
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6 Conclusions and Future Work

We have introduced nominal schemas as an extension to description logics, giving
DLs sufficient expressivity to incorporate rule-based modeling. In particular,
the use of nominal schemas supports the integration of DL-safe rules into DL
knowledge bases. An important next step is to realize these ideas for the concrete
serialization formats of these languages, and to make the corresponding modeling
features available in practice.

The latter task especially includes the implementation of inference algorithms
to handle nominal schemas more efficiently. We have shown that our extension
does not increase the worst-case complexity of reasoning in SROZQ, and that
versatile tractable sublanguages exist. Whether and how these theoretical re-
sults can be put into efficient reasoning algorithms is an open research question.
Two different approaches to addressing this problem appear viable. On the one
hand, nominal schemas could be implemented by modifying/extending exist-
ing SROZQ implementations that have good support for nominals, such as the
OWL 2 reasoner HermiT [15]. This can be accomplished by treating nominal
schemas like nominals in the deduction procedure, instantiating them with con-
crete individuals only when this enables relevant deduction steps. This can be
viewed as a method of deferred grounding.

On the other hand, our light-weight description logics could be implemented
using rule-based procedures as proposed for SROEL [12]. In this setting, nomi-
nal schemas can be treated like DL-safe variables. Thus, the rule-based deduction
remains similar with the only modification that some variables can only be in-
stantiated with certain constants. Specifically, the approach in [12] introduces
new constant symbols for eliminating existentials, and DL-safe variables must
not be allowed to represent these auxiliary symbols.

In conclusion, the close relationship to nominals is not merely of syntactic
convenience but prepares a path for the further practical adoption of this fea-
ture. Instead of a paradigm shift from ontologies to rules, existing applications
could be augmented with bits of rule-based modeling to overcome restrictions
of classical DLs. Nominal schemas thus may provide an opportunity for enhanc-
ing the expressive power of ontologies without giving up on established tools,
formats, or methodologies.
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Abstract. We consider the problem of characterising relational con-
straints under which TBox reasoning in £L is tractable. We obtain P
vs. CONP-hardness dichotomies for tabular constraints and constraints
imposed on a single reflexive role.

1 Introduction

In recent years, the problem of describing role boxes (aka relational constraints)
under which reasoning is within a given complexity class has become an impor-
tant research topic in description logic (DL). For example, the development of
SROZIQ from SHZQ has mainly been driven by the desire to allow for more ex-
pressive relational constraints for which reasoning is still decidable and tableau
decision procedures can be developed. As a result, in SROZQ one can express,
among others, role inclusions of the form r o s E 7 and s or C r, reflexivity,
transitivity and symmetry of roles [6, 7].

For £L, underlying the OWL 2 EL profile of the OWL 2 Web Ontology Lan-
guage, the complexity of reasoning under relational constraints was investigated
in [1,2,9]. For example, the subsumption problem for general TBoxes in £L is
tractable for any finite set of constraints of the form

ri(z1,22) A Arn(Tn, Tng1) = P (21, Togr) (1)

(the order of the variables is essential). On the other hand, subsumption becomes
ExPTIME-complete in the presence of symmetry or functionality constraints [2].

The aim of this paper is to take a fresh look at how relational constraints
influence the complexity of DL reasoning: rather than putting forward a new
class of role boxes for which reasoning is decidable or within a certain complexity
class, we attempt to classify relational constraints according to whether they lead
to decidable or undecidable reasoning problems, or to reasoning within a given
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complexity bound. The ultimate aim of this approach is to obtain a complete
map of how relational constraints determine the complexity of reasoning for most
important DLs. Apart from its theoretical interest, such a map can also be used
for the selection of role boxes with acceptable computational properties in future
standardisation efforts.

In this paper, which extends [8], we take first steps in this program by starting
to map out the border between tractability and intractability of TBox reasoning
in £L£ under arbitrary relational constraints. One of the fundamental questions
(left unanswered in this paper) is the following

Dichotomy Question: Is it the case that for any relational constraint, TBox
reasoning in £L is either in P or cONP-hard?

By Ladner’s Theorem, unless P = CONP, there exist problems that are CONP-
intermediate (neither in P nor CONP-hard). The existence of relational con-
straints for which TBox reasoning in ££ is CONP-intermediate would indicate
that a general and complete map of the boundary between tractable and in-
tractable is extremely hard to obtain. In contrast, a positive answer would prob-
ably come with an informative description of the tractable constraints.

Our initial findings indicate that informative dichotomy results on P versus
CONP-hardness can indeed be obtained. For example, we show that

(d1) there are only four universal constraints on a single reflexive role r under
which ££ TBox reasoning is in P: (1) r is arbitrary, (2) the domain of r
is a singleton, (3) r is transitive, (4) r is an equivalence relation. All other
universal constraints are either invisible to ££ TBox reasoning or lead to
CONP-hard ££ subsumption.

Here, by ‘invisibility’ we understand the following. It is well known that many
relational constraints do not influence—or are invisible to—TBox reasoning;:
for example, for £L (and even ALC), TBox reasoning over irreflexive relations
coincides with TBox reasoning over arbitrary relations, and similarly for the class
of finite and tree-like relational structures. In fact, one can use dichotomy (d1)
to show that there are uncountably many ‘visible’ universal relational constraints
on a single reflexive role for which ££ subsumption is CONP-hard, but only four
‘visible’ universal constraints for which ££ subsumption is in P.
Another dichotomy we prove in this paper is as follows:

(d2) Consider an arbitrary relational constraint (over a finite number of roles)
such that the size of the domain of all interpretations satisfying this con-
straint is bounded by some natural number n > 0. Then ££ subsumption
over the interpretations satisfying the constraint is in P if all roles in those in-
terpretations are functional. Otherwise ££ subsumption is CONP-complete.

Currently, not much is known about dichotomies for more expressive languages.
We note, however, recent work on an NP vs. PSPACE dichotomy for satisfiability
of classical modal formulas over frame classes definable by Horn sentences [5].
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The paper is structured as follows. In Section 2, we define the extension
EL, of £L with the concept 1 and all the model-theoretic notions we need.
We prove our results for ££, rather than £L£ and show, by a straightforward
reduction in Section 6, that they hold for £L£ as well. In Section 3, we consider
the relation between tractability and convexity (the disjunction property) and
prove two general sufficient conditions for non-tractability. Then, in Sections 4
and 5, we prove the dichotomies (d1) and (d2) mentioned above.

2 Preliminaries

Fix two disjoint countably infinite sets NC of concept names and NR of role
names. We use arbitrary concept names in NC for constructing concepts, but
may restrict the set of available role names to some R C NR. Throughout this
paper, we work with ££ extended with the concept L, denoting the empty set.
Thus, for R € NR, the £L£ | -concepts C' over R are defined inductively as follows:

C u= T | 1L ‘ A | Cl 1 02 | HT.C,

where A € NC, r € R and C, Cy, (5 range over £L | -concepts over R. An R-
TBox is a finite set of concept inclusions (CIs) C C D, where C' and D are
EL | -concepts over R. An R-interpretation is of the form Z = (AZ,.T), where
AT £ () and - is an interpretation function for concept names and role names
in R. Complex concepts over R are interpreted in Z as usual. If CT C D7, we
say that Z satisfies C' C D and write Z = C C D. T is a model of an R-TBox
T,Z T in symbols, if it satisfies all the CIs in 7.

We now define what we understand by relational constraints on interpre-
tations. An R-frame is a structure § = (AS,-5) where A # () and -S is a
map associating with each r» € R a relation 75 C AS x AS. We say that an R-
interpretation Z is based on an R-frame § if AT = AS and rZ = ¢S for all r € R.
An R-constraint is any class K of R-frames closed under isomorphic copies. For
example, a constraint for R = {ry, 7,73} can consist of all R-frames § = (A, -5)
with arbitrary 73, transitive r§ and functional 73. An interpretation Z satisfies
an R-constraint K if Z is based on some § € K.

The subsumption problem for an R-constraint K is to decide, given an R-
TBox T and two concepts C, D over R, whether Z = C' C D for every model
T of T based on an R-frame in K, in which case we write T Ex C C D. For
singleton IC = {F}, we sometimes write 7 =5 C' T D.

Ezample 1. In the extension ELT of £L£ [1], along with a TBox one can define
an RBox containing inclusions of the form ry0---or, C ry41, where r1,...,rp41
are role names. Reasoning with RBoxes R is clearly captured by the frame
condition K containing all NR-frames § such that

SEVr ... Ve, (7“1(1‘1, o) A Arp (T, Trg1) = Thar (2, xn+1))

for all 1y 0---or, C 741 in R. According to [1,9], the subsumption problem
for any such Kx is decidable in P. On the other hand, the subsumption problem
for the class of symmetric frames is EXPTIME-complete [2].

281



We say that R-constraints K1 and Ky are TBoz-equivalent (in EL ) if we have
T =, CCDIiff T Ex, C C D, for all R-TBoxes T and €L -concepts C, D
over R. For example, as is well-known, the class of all frames is TBox equivalent
to the class of all irreflexive frames, and to the class of all finite frames. For an
R-constraint IC, we denote by FrThKC the union of all those R-constraints that
are TBox equivalent in ££, to K. FrThKC and K are TBox equivalent in £,
and FrTh/C is the largest class that is TBox equivalent in ££, to K.

An R-constraint K is TBoz-definable (in EL ) if there exists a set I" of pairs
(T,C C D), where T is an R-TBox and C, D are £L£ -concepts over R, such that
K={§|T 3 CCD, forall (T,CC D) e I'}. Thus, K is TBox-definable iff
K = FrThK, and any class of TBox-equivalent constraints contains exactly one
TBox-definable class. In a similar way we can define TBox-definable classes of
R-constraints for ££ and more expressive DLs, say ALC.

A wuniversal R-constraint is a class of R-frames definable by universal first-
order sentences in the signature R. Equivalently, by [10], a universal constraint
is a first-order definable class of frames closed under taking subframes. The vast
majority of frame constraints considered in modal and description logics are
universal: transitivity, reflexivity, symmetry, weak linearity, just to mention a
few. Typical examples of non-universal (first-order) constraints are the Church-
Rosser property and density. As far as universal R-constraints are concerned,
EL | defines the same R-constraints as ALC (the proof is given in [8]):

Theorem 1. Let K be a universal class of R-frames, for some R C NR. Then
K is TBoz-definable in EL iff it is TBox-definable in ALC.

We conjecture that Theorem 1 can be generalised to arbitrary (not necessarily
first-order definable) classes of R-frames closed under subframes. Note that, with-
out the subframe condition, there are classes of frames that are TBox-definable
in ALC but not in ££ . One example is the Church-Rosser property

Y, y1, Yo (T(JJ, y1) Ar(x,ye) = Jz(r(yr, 2) A r(ys, z)))

3 Tractability and Convexity

In this section, we investigate the relationship between convexity (sometimes also
called the disjunction property) and tractability. To this end, we need (formally
not allowed in ££,) concepts of the form C U D, where C' and D are EL -
concepts, which are interpreted in the obvious way by the union of the extensions
of the disjuncts C' and D. An R-constraint K is said to be convez if, for any R-
TBox 7 and £L | -concepts F', C, D over R,

(conv) if TEx FCCUD then TEx FCC or Tk FCD.

Although convexity is closely related to tractability, they do not imply each
other. It is readily checked that every relational constraint K defined by Horn
sentences is convex. Thus, symmetry and functionality are examples of relational
constraints that are convex but non-tractable [2]. The following example shows
that tractability of ££, subsumption over X does not imply that K is convex:

282



Ezample 2. Consider the smallest class K of R-frames, for R = {s,r, '}, which
is closed under subframes and contains all two-element irreflexive s-chains such
that if s(z,y) then either r(z,y) or r'(x,y). Thus, K is a universal constraint
and ) = Is. T EIrTUI.T. As, O e 3. T E I T and 0 e Is. T C I T,
K is not convex. On the other hand, as will be shown in the next section (see
Theorem 4), £L£, subsumption over K is in P.

We now prove two general conditions, based on non-convexity, that imply non-
tractability. The proofs of CONP-hardness are by reduction of the following set
splitting problem, which is known to be NP-complete [4]:

— given a family I of subsets of a finite set S, decide whether there exists a
splitting of (S, I), i.e., a partition Sy, Se of S such that each set G € I is split
by S1 and Ss in the sense that it is not the case that G C S; for i € {1,2}.

We say that a class IC of R-frames is concept non-convez if, for some R-TBox
T and concepts F, C, D over R, we have T | F C C U D, and there exist
an R-frame § € FrThK, a point x € A% and two models Z; and T, of 7 based
on § such that z € F&1 \ DT and x € FZ2 \ C?2. Our main tool for proving
non-tractability results is the following:

Theorem 2. If a class K of R-frames is concept non-convex, then EL, sub-
sumption over K is CONP-hard.

Proof. Consider T, F, C and D over R for which T =x F C C U D, and there
exist an R-frame § € K with z € A% and two models Z; and Z of 7 based on §
such that # € F71 \ DTt and x € FZ2 \ CZ2. Suppose (S, 1) is an instance of the
set splitting problem. Denote by 7;, F;, C; and D;, for ¢ € S, the copies of T,
F, C and D obtained by replacing every concept name A in them with A;. Let

Tso=JTu{[|BRnCH)CL|Gentu{[ |(BND)C L|GeT},

i€S i€G i€G

where B is a fresh concept name. We show now that there exists a splitting
of (S,1)iffTs 1 Fx [,es(BNEF;) & L. (=) Let S1,52 be a splitting of (5, 1).
Define an interpretation Z on § by taking AZ = ATv ifi € Sy, AT = ATz if i € Sy,
for all concept names A different from B, and B = {z}. One can readily check
that 7 = Ts,; and Z|/=[],c (BT F;) E L. (<) Suppose that 7 |= Ts,; and there
isy € Nieg(BENFE). We thenset Sy ={ie€ S|yeCf}and S, =S\ 5. It is
readily checked that Sy, S is a splitting of (S, I).

An R-constraint K is closed under disjoint unions if, for any §1,82 € K
with A% N AS2 = (), we have F1 UF2 € FrThiC, where AS1Y82 = AS1 U A2 and
r81U82 — 81 U8z We also say that K has a free role r if, for any § € K and any
x,y € AS, the frame obtained by extending 7% in § with the pair (x,y) belongs
to FrThKC. Note that all RBoxes, currently used in DL, correspond to constraints
that are closed under disjoint unions and have infinitely many free roles (since
typically DLs admit infinitely many role names and have finite RBoxes). The
following condition is proved similarly to Theorem 2:
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Theorem 3. Suppose that an R-constraint K is closed under disjoint unions
and has infinitely many free roles. If IKC is not convexr then L subsumption
over KC is CONP-hard.

4 P/coNP Dichotomy for Tabular Constraints

A class K of R-frames is called tabular if there is n > 0 such that |AS| < n for all
§ € K. The aim of this section is to characterise the tabular constraints IC over
which ££, subsumption is tractable, that is, there is an algorithm which, given
a TBox T and concepts C, D over R, can decide, in polynomial time, whether
T Ex C C D. Clearly, ££, subsumption over any tabular K belongs to CONP.

The characterisation of tabular constraints we are about to prove dichotomises
them into functional and non-functional. A class K of R-frames is R-functional
if, for any § € K, r € R and w € A%, we have |[{v € A¥ | (w,v) € r}|< 1. For
R-interpretations Z; and Zs based on a functional frame §, we write Z; < Z5 if
ATv C A%z for all A € NC. Clearly, < is a partial order.

Lemma 1. Suppose that T is an interpretation based on a finite R-functional
frame § and w € AT. Given any R-concept C, one can decide in polynomial time
in |C| whether there exists an R-interpretation J such that T < J and w € CY.
If such an interpretation exists, then there is a unique minimal (with respect
to <) R-interpretation T(w,C) > T with w € CT) : moreover, this minimal
interpretation can be constructed in polynomial time in |C|.

We are now in a position to prove the main result of this section.

Theorem 4. Let K be a tabular class of R-frames for a finite R C NR. If IC s
functional then EL, subsumption over K is in P. Otherwise, EL subsumption
over K is CONP-complete.

Proof. Assume first that K is functional and we are given a TBox 7 and a CI
C'" € D’ over R. Our polynomial time algorithm checking whether 7 = C' C D’
runs as follows. Let §1,...,&y be a list of all frames in K (up to isomorphism).
For each §; and each w € §;, we do the following:

1. Let Z be the R-interpretation based on §; with AZ = () for all A € NC.

2. Compute Z := Z(w, C") if it exists (cf. Lemma 1). If it does not exist, return
‘yes’ and stop.

3. Apply the following rule exhaustively: for C C D € T and v € AL, ifv € C*
and Z(v, D) does not exist, return ‘yes’ and stop; otherwise, if Z(v, D) # Z,
set T =7 (v, D).

4. If w € (D")%, return ‘yes.” Otherwise, return ‘no.’

It is easy to see that 7 =x C’ C D' iff the output is ‘yes’ for all §; and w € AS:.

Suppose K is not R-functional. Then there exists § € K with w € A% such
that [{v | (w,v) € rS}|> 2. Let m be the maximal number for which there exist
r€R,§ €K and w € AY with [{v | (w,v) € r¥}| = m. Fix such r, § and w. We
prove CONP-hardness of ££, subsumption over K using Theorem 2. To show
that K is concept non-convex, consider the {r}-TBox T with the following Cls:
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— AC Ir.B;, for 1 <i < m;

- BB, Cl forl1<i<yj<m
— AC Ir.B

— B, CE for2<i<m.

Clearly, T =x AC 3r.(BMN By) U Ir.(BME). Consider next the interpretations
7, and 7, over § where wy, ..., w,, are the rS-successors of w in § and

— A% = {w} and B% = {w;}, for i = 1,2;
— BY = {w;}, fori=1,2and 1 < j < m;
— Efi ={ws,...,wy}, fori=1,2.

Then we have Z; |= T, w € AT\ (3r.(BNE))* and w € AT\ (3r.(BNBy))%2. By
Theorem 2, £L£, subsumption over K is CONP-hard. And as we have mentioned
above, £L£ subsumption for tabular constraints is in CONP.

The above proof of CONP-hardness goes through for many other constraints:

Theorem 5. Let IC be a class of R-frames such that there are r € R and n > 2
for which (i) no point in frames from K has > n r-successors, and (it) at least

one point in a frame from IC has > 2 r-successors. Then EL) subsumption over
K is CONP-hard.

5 P/coNP-hardness Dichotomy for Universal Reflexive
Constraints

In this section, we assume that R = {r} and consider universal classes of R-
frames § with reflexive 5.

Theorem 6. Let K be a universal constraint for a single reflexive relation. If IC
is not TBox equivalent to any of the following classes:

(sin) the class of all singleton frames,
(tra) the class of all transitive frames,
(equ) the class of all equivalence relations,
(all) the class of all frames,

(sym) the class of all symmetric frames,

then IKC is concept non-convez, and so EL) subsumption over K is CONP-hard.
EL | subsumption over K is also CONP-hard if IC is TBox equivalent to (sym).
However, if K is TBox equivalent to one of (sin), (tra), (equ) or (all), then
EL| subsumption over IC is in P.

Note that there are uncountably many distinct universal TBox definable classes
of frames with a single reflexive relation (see [8], where this is proved for quasi-
orders). Thus, only four out of uncountably many possible constraints lead to
tractable TBox reasoning; for all the rest, ££, subsumption is CONP-hard.
Here we only give a brief sketch of the proof of Theorem 6. Note first that the
polynomial upper bound follows from [1, 8]; non-tractability for (sym) is shown
similarly to Theorem 7 below. To prove the remaining claim, we require

285



Lemma 2. Let K be a universal class of reflexive frames.

— If K is not TBox equivalent to (all), then there exists a finite reflexive tree
§ such that § & FrThKC.

— If K consists of symmetric frames and is not TBox equivalent to (sym), then
there exists a finite reflexive and symmetric tree § such that § & FrThKC.

— If K consists of transitive frames and is not TBoz equivalent to (tra), then
there ezists a finite reflexive and transitive tree § such that § ¢ FrThiC.

Proof sketch. We prove the first claim; the remaining ones are treated similarly.
As K is not TBox equivalent to (all), there are 7, C, D such that T =x C C D
and T)/=x, C C D, where K’ is the class of all frames. By applying standard
unravelling to a witness interpretation for 7[/=x, C' C D, we obtain a (possibly
infinite) reflexive tree § ¢ FrThKC. If § is finite, we are done. Otherwise, using
the fact that K is universal and employing Tarski’s finite embedding property
[10], we can show that there is a finite subtree § of § such that § ¢ FrThrK.

Having Lemma 2 at hand, we can now proceed with a case distinction. Sup-
pose K is a non-empty universal class of reflexive frames that is not TBox equiv-
alent to any of the classes mentioned in Theorem 6. Then, by Lemma 2, there
exists a reflexive tree § such that § ¢ FrThK, § € FrThK, for any proper
subframe §’ of §, and one of the following conditions holds:

1. § is the singleton frame;

2. § is the two-element r-chain;

3. § contains a point w with least two r-successors, and all r-successors of w
are leaves in §;

4. § contains distinct points w,wy,ws such that (w,w;) € 7S, (wy,ws) € r¥
and ws is a leaf, which is the only r-successor of w;.

Case 1. This case is actually impossible because it implies that K is empty
(remember that K is universal, and so closed under subframes).

Case 2. In this case, I is a class of symmetric frames. Since we assume that K
is not TBox equivalent to (sym), one can apply the second claim of Lemma 2
to obtain a finite reflexive and symmetric tree § such that § ¢ FrTh/X. A case
distinction (similar to the one we are currently doing) shows that, since K is not
TBox equivalent to (sin), K is concept non-convex.

Case 3. Let us remove a proper r-successor of w from § and denote by £ the
resulting frame, which belongs to Fr'ThX. Let w; be one of the remaining suc-
cessors of w in §. Denote by $’ the frame obtained from $) by adding a fresh
r-successor wy to w1, and by wg the root of §’. Two cases are possible now.

Case 3.1: either ' € FrThK or the expansion of £’ by adding (w,ws) to 9 s
in FrThKC. Take additional concept names A and A. To show that K is concept
non-convex, we will use C; = 3r2.(A'M3Ir2. A’) and Cy = Ir2.(A'MIr2. A"), where
A=A, NMA, A’ = A, M A and F3r™.C is an abbreviation defined inductively
by taking 3r°.C' = C and Ir"™*1.C = Ir.Ir™.C.

In addition, we require a generic way of describing frames using TBoxes.
Given an R-frame R, let A, be a fresh concept name for every u € A™. Let
Ts(R) be the (possibly infinite) TBox with the following Cls:
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— A, C 3r.A,, for (u,v) € r%;
— A,MNA, C 1L, for u # v;
- A,M3r.A, C L, for (u,v) ¢ r™.

One can show that, for any R-frame R with root w (from which all other points
are reachable via roles) and any R-frame §, we have Tg(R) K5 A T L iff R is
a p-morphic image of a subframe of §.

Returning to Case 3.1., define T to be the TBox with the following Cls:

Ts(®), Ay, EFI*A, A, CEI*A.

Then 7 Ex Aw, & FIr™. (A, N Cr) U Ir™.(A, M Cs), where m is the distance
between wg, w, but T/=x Ay, T Ir"™.(A, N CL), T/=x Aw, T Ir™.(4, NCs).
Case 3.2: suppose that Case 3.1 does not hold. Denote by wq the root of £. Take
a fresh concept name A and consider the TBox T with the following Cls:

- 7:3'(5’.))7

— AnN3r.A, C L, for all v with (w,v) & 9,

- A, N 3Ir.AC L, for all v with both (v,w) € r? and (v, w;) & r¥,

— AN3r.Ay C3IrA,, for (w,w') €9, w #w;,

- Ay C3Ir(AN3Ir.Ay,),

— if w has an 7-predecessor wy, then A, M3r.A E 3r.(A, NIr.(ANIr.Ay)).

Then 7 i Aw, & Ir"™.(Ay M 3Ir. (AN 3r.Ay)) U Ir™. (A, N 3r.(A,, N3r.A)),
but T|/=k Aw, C B for either of the disjuncts B in the right-hand side.

Case 4. A case distinction similar to, but much more tedious than the previous
ones shows that I is concept non-convex if the constraint I is not transitive.
The case where K is a class of transitive frames has been considered in [8], and
one can easily modify the proofs given there to show that all universal classes of
transitive and reflexive frames, which are not TBox equivalent to (sin), (equ)
or the class of all transitive and reflexive frames, are concept non-convex.

Typically, in DL applications one role is not enough. Therefore, the question
is whether the four universal constraints guaranteeing tractability for a single
reflexive relation still ensure tractability if more than one role is considered. This
is well known to be the case for transitivity and reflexivity, and this is trivially
the case for the singleton frame. Equivalence relations behave not so well:

Theorem 7. If K is a constraint consisting of two (or more) equivalence rela-
tions, then EL, subsumption over KC is NP-hard. In particular, tractability of
EL ) subsumption is not preserved under fusions in the sense of [3].

Proof sketch* The proof is by reduction of SAT. Let ¢ be a formula in NNF with
the variables p1,...,pon, and let 1, r2 be equivalence relations. We use T}, Fj,
for the truth-values of the variable py, and L; as a marker for the level j in a
‘tree.” We generate a full binary tree of depth 2n + 1, using the CIs

Loi © 3r1.(Toig1 M Lojy1) M 3ry . (Foigr M L), (2)
Loit1 © 3ro.(Toipa M Lojyo) M 3ra.(Faipo M Lajta), (3)

4 Based on an idea suggested by Carsten Lutz.
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for i < n. Then we propagate the truth-values Ty and Fj to the leaves using

LojM3ra.(Loj_1MQk) EQp, for1<j<n, 1<k<25-1, (4)
Lojy1M3ri (Lo MQk) EQr, for1<j<n, 1<k<2y, (5)

for Qi =Ty, Fy. Take a fresh Xy, for every subformula v of ¢, and the Cls

ka =Ty, Xﬁpk = F}, le/\wz = X¢1 M X¢2, (6)
Xdll - X?lu\/wz’ X¢2 C levw2~ (7)

Let 7 be the TBox containing all the CIs (2)—(7), and Lo, M X, T L. One can
show that 7 E=x Lo C L iff ¢ is satisfiable.

6 EL and EL |

So far, we have considered ££, rather than £L£. The main reason is that 1
makes proofs more transparent. We now show that Theorems 4-7 above hold for
EL.

An R-frame F’ is called a generated subframe of an R-frame § if it is a
subframe of § and, for all u,v € AS and r € R, if (u,v) € 75 and u € A¥
then v € AY'. Given v € AS, the subframe of § generated by v is the smallest
generated subframe of § containing v.

Theorem 8. Let K be an R-constraint closed under generated subframes, for
a finite R. Then EL, subsumption over K is polynomially reducible to EL sub-
sumption over K, and, for any R-constraint K' closed under generated subframes,
K’ is TBoz-equivalent to K in EL, iff K' is TBox-equivalent to K in EL.

Proof. Let 7 and C T D in £L£, be given. We may assume that L occurs
in them only in the form F T 1, with F being an £L-concept. Let B be a
fresh concept name, and let 7’ and D’ result from 7 and D, respectively, by
replacing all L with B. Set 7" = T"U{3r.BC B |r € RFU{B C D'}. We
claim that 7 = C C D iff 7" |=x C T D'. Clearly, if 7)/=x C T D, then
T" e C C D' for if we have a witness model for 7/ =x¢ C T D, then we
can interpret B by the empty set to obtain a model of 7" refuting C C D’.
Conversely, if 7" x C C D', take an interpretation Z based on a frame in
K and v € AT such that Z = 7" but v € CT\ (D')%. Let § be the subframe
generated by v in the underlying frame of Z. Then § € K and BY N AS = 0.
Hence 7)/=5 C C D, as required.

It follows from Theorem 8 that Theorems 6 and 7 hold for ££ in place of
EL ). Theorem 4 can be proved for £L£ as follows. Let I be a non-functional
tabular constraint. Then the class K’ of subframes of frames from K is still
a non-functional tabular constraint and j=x is polynomially reducible to =,
both for ££ and £L£, (using relativisation). Thus, by Theorem 4 for ££, and
Theorem &8, the £L£ subsumption problem for K’ is cONP-hard. Hence it is
CONP-hard for K. Theorem 5 can be proved similarly.
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7 Open Problems and Conjectures

The main open problem in the area is the dichotomy question formulated in
the introduction. If the answer to this question is positive, then the proof will
probably require some new techniques and a great number of case distinctions.

We conjecture that a transparent dichotomy, possibly more involved than
Theorem 6, can be obtained for arbitrary relational constraints on a single re-
flexive relation. Of course, an additional problem in this case is how to deal
with non first-order constraints. A possible approach can be illustrated by the
following result from [8]. Call a constraint subframe if it is closed under the
formation of subframes. A Noetherian partial order is a reflexive and transitive
relation without infinite ascending chains. Let N be the (non-elementary) class
of all Noetherian partial orders. It is proved in [8] that ££, subsumption over
a subframe constraint K C A is tractable iff K is TBox equivalent either to the
single element frame or to \V.

When moving beyond the ‘bounded’ constraints of Theorems 4 and 5, it
seems to be much harder to obtain general results for relations that can be non-
reflexive than for the reflexive ones. For example, in contrast to the reflexive
case, £L£, subsumption is now also in P for the constraints K,, consisting of
(irreflexive) trees of depth < n. Thus, there are infinitely many transitive classes
with a single relation for which ££,; subsumption is tractable.
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Abstract. Recent papers address the issue of updating the instance
level of knowledge bases expressed in Description Logic following a model-
based approach. One of the outcomes of these papers is that the result of
updating a knowledge base K is generally not expressible in the Descrip-
tion Logic used to express K. In this paper we introduce a formula-based
approach to this problem, by revisiting some research work on formula-
based updates developed in the '80s, in particular the WIDTIO (When
In Doubt, Throw It Out) approach. We show that our operator enjoys
desirable properties, including that both insertions and deletions accord-
ing to such operator can be expressed in the DL used for the original
KB. Also, we present polynomial time algorithms for the evolution of
the instance level knowledge bases expressed in DL-Litea ;q, which the
most expressive Description Logics of the DL-Lite family.

1 Introduction

Description Logics (DLs) are logics for expressing knowledge bases (KBs) con-
stituted by two components, namely, the TBox, asserting general properties of
concepts and roles (binary relations), and the ABox, which is a set of assertions
about individuals that are instances of concepts and roles. It is widely accepted
that such logics are well-suited for expressing ontologies, with the TBox cap-
turing the intensional knowledge about the domain of interest, and the ABox
expressing the knowledge about the instance level of the predicates defined in
the TBox. Following this idea, several Knowledge Representation Systems, called
DL systems, have been recently built, providing methods and tools for managing
ontologies expressed in DLs !. Notice that numerous DLs have been studied in
the last decades, with the goal of analyzing the impact of the expressive power of
the DL language to the complexity of reasoning. Consequently, each DL system
is tailored towards managing KB expressed in a specific DL.

By referring to the so-called functional view of knowledge representation [11],
DL systems should be able to perform two kinds of operations, called ASK and
TELL. ASK operations, such as subsumption checking, or query answering, are

! http://www.cs.man.ac.uk/ sattler/reasoners.html
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used to extract information from the KB, whereas TELL operations aim at chang-
ing the KB according to new knowledge acquired over the domain. In other
words, TELL operations should be able to cope with the evolution of the KB.

There are two types of evolution operators, corresponding to inserting, and
deleting chunks of knowledge, respectively. In the case of insertion, the aim is to
incorporate new knowledge into the KB, and the corresponding operator should
be defined in such a way to compute a consistent KB that supports the new
knowledge. In the case of deletion, the aim is to come up with a consistent KB
where the retracted knowledge is not valid. In both cases, the crucial aspect
to take into account is that evolving a consistent knowledge base should not
introduce inconsistencies.

While ASK operations have been investigated in detail by the DL community,
existing DL reasoners do not provide explicit services for KB evolution. Never-
theless, many recent papers demonstrate that the interest towards a well-defined
approach to KB evolution is growing significantly [9,12,7,13,6]. Following the
tradition of the work on knowledge revision and update [10], all the above pa-
pers advocate some minimality criterion in the changes of the KB that must
be undertaken to realize the evolution operations. In other words, the need is
commonly perceived of keeping the distance between the original KB and the
KB resulting from the application of an evolution operator minimal. There are
two main approaches to define such a distance, called model-based and formula-
based, respectively. In the model-based approaches, the result of an evolution
operation applied to the KB K is defined in terms of a set of models, with the
idea that such a set should be as close as possible to the models of K. One basic
problem with this approach is to characterize the language needed to express
the KB that exactly captures the resulting set of models. Conversely, in the
formula-based approaches, the result is explicitly defined in terms of a formula,
by resorting to some minimality criterion with respect to the formula express-
ing KC. Here, the basic problem is that the formula constituting the result of an
evolution operation is not unique in general.

In this paper, we study the problem of DL KB evolution, by focusing our
attention to scenarios characterized by the following elements:

(1) We consider the case where the evolution affects only the instance level
of the KB, i.e., the ABox. In other words, we enforce the condition that the KB
resulting from the application of the evolution operators has the same TBox as
the original KB (similarly to [12,7]).

(2) We aim at a situation where the KB resulting from the evolution can be
expressed in the same DL as the original KB. This is coherent with our goal of
providing the foundations for equipping DL systems with evolution operators:
indeed, if a DL system S is able to manage KBs expressed in a DL L, the result
of evolving such KBs should be expressible in L.

(3) The KBs resulting from the application of an evolution operator on two
logically equivalent KBs should be mutually equivalent. In other words, we want
the result to be independent of the syntactic form of the original KB.
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Assumption (1), although limiting the generality of our approach, captures
several interesting scenarios, including ontology-based data management, where
the DL KB is used as a logic-based interface to existing data sources.

As for item (2), we note that virtually all model-based approaches suffer
from the expressibility problem. This has been reported in many recent papers,
including [12,7, 6], for various DLs. For this reason, we adopt a formula-based
approach, inspired in particular by the work developed in [8] for updating logical
theories. As in [8], we consider both insertions and deletions. However, we differ
from [8] for an important aspect. We already noted that the formula constituting
the result of an evolution operation is not unique in general. While [8] essentially
proposes to keep the whole set of such formulas, we take a radical approach, and
consider their intersection as the result of the evolution. In other words, we follow
the When In Doubt Throw It Out (WIDTIO) [14] principle.

Finally, to deal with item (3), we sanction that the notion of distance between
KBs refers to the closure of the ABox of a KB, rather than to the ABox itself.
The closure of an ABox A with respect to an TBox 7 is defined as the set of all
ABox assertions that logically follows from 7 and A. By basing the definition
of distance on the closure of ABoxes, we achieve the goal of making the result
of our operators independent of the form of the original KB.

After a brief introduction to DLs (Section 2), we provide the definition of
our evolution operators in Section 3. The remaining sections are devoted to
illustrating algorithms for deletion (Section 4), and insertion (Section 5) for
KBs expressed in the DL DL-Litea ;q, which is the most expressive logic in the
DL-Lite family [4]. The DL-Lite family? has been specifically designed to keep
all reasoning tasks polynomially tractable, and we show that this property still
holds for the evolution operators proposed in this paper.

2 Preliminaries

Let S be a signature of symbols for individual (object and value) constants, and
atomic elements, i.e., concepts, value-domains, attributes, and roles. If £ is a
DL, then an £-KB K over S is a pair (7, A), where T, called TBoz, is a finite
set of intensional assertions over S expressed in £, and A, called A Boz, is a finite
set of instance assertions, i.e, assertions on individuals, over S expressed in L.
Different DLs allow for different kinds of concept, attribute, and role expressions,
and different kinds of TBox and ABox assertions over such expressions. In this
paper we assume that ABox assertions are always atomic, i.e., they correspond
to ground atoms, and therefore we omit to refer to £ when we talk about ABox
assertions.

The semantics of a DL KB is given in terms of interpretations. An interpre-
tation is a model of a KB K = (7, A) if it satisfies all assertions in 7 U .4 where
the notion of satisfaction depends on the constructs allowed by the specific DL
in which K is expressed. We denote the set of models of K with Mod(KC).

2 Not to be confused with the set of DLs studied in [2], which form the DL-Litepoor
family.
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Let 7 be a TBox in £, and let A be an ABox. We say that A is 7 -consistent
if (7,.A) is satisfiable, i.e. if Mod((T,A)) # 0, T-inconsistent otherwise. The
T -closure of A with respect to 7T, denoted cl7(A), is the set of all atomic ABox
assertion that are formed with individuals in A, and are logically implied by
(T,A). Note that if (7, .A) is an £L-KB, then (7,cly(A)) is an £-KB as well,
and is logically equivalent to (7, A), i.e., Mod({T, A)) = Mod({T ,cl7(A))). Ais
said to be T -closed if cl7(A) = A. Finally, for an ABox assertion ~y;, we denote
by Subsumee 7 4)(71) the set of atoms 72 € cl7(A) such that (7, A)|= 2 D 7.

The DL-Lite family [4] is a family of low complexity DLs particularly suited
for dealing with KBs with very large ABoxes, and forms the basis of OWL 2 QL,
one of the profile of OWL 2, the official ontology specification language of the
World-Wide-Web Consortium (W3C)3.

We now present the DL DL-Litea ;q, which is the most expressive logic in the
family. Expressions in DL-Litea ;q are formed according to the following syntax:

B— A 3Q | 4U) E — p(U) ¢ —B | -B
Q— P | P V—-U | U R—Q | -Q
T—Tp | T | - | Tn

where A, P, and U are symbols in S denoting respectively an atomic concept
name, an atomic role name and an attribute name, 71, ..., T, are all the value-
domains allowed in the logic (those corresponding to the data types adopted by
Resource Description Framework (RDF)*), T denotes the union of all domain
values, P~ denotes the inverse of P, 3Q) denotes the objects related to by the
role @, — denotes negation, 6(U) denotes the domain of U, i.e., the set of objects
that U relates to values, and p(U) denotes the range of U, i.e., the set of values
related to objects by U.

A DL-Lites ;a TBox 7 contains intensional assertions of three types, namely
inclusion assertions, functionality assertions, and identification assertions [5]
(IDs). More precisely, DL-Litea ;q assertions are of the form:

BCC (concept inclusion) ECT (value-domain inclusion)
QLCR (role inclusion) (funct U) (attribute functionality)
(id B 1, ..., ) (identification)

In the identification assertions, m denotes a path, which is an expression built
according to the following syntax rule:

T — S | B? | T O o

where S denotes an atomic role, the inverse of an atomic role, or an atomic
attribute, m; oo denotes the composition of the paths m; and mo, and B?, called
test relation, represents the identity relation on instances of the concept B. In
our logic, identification assertions are local, i.e., at least one m; € {my, ..., ™, } has
length 1, i.e., it is an atomic role, the inverse of an atomic role, or an atomic
attribute. In what follows, we only refer to IDs which are local.

3 http://www.w3.org/TR/2008/WD-owl2-profiles—20081008/
4 http://www.w3.org/RDF/
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The set of positive (resp., negative) inclusions in 7 will be denoted by 7+
(resp., 7 ), and the set of identification assertions in 7 will be denoted by Z;4.

A concept inclusion assertion expresses that a (basic) concept B is subsumed
by a (general) concept C. Analogously for the other types of inclusion asser-
tions. Inclusion assertions that do not contain (resp. contain) the symbols =’
in the right-hand side are called positive inclusions (resp. negative inclusions).
Attribute functionality assertions are used to impose that attributes are actually
functions from objects to domain values. An ID (id B 1, ..., ) asserts that for
any two different instances a,b of B, there is at least one 7; such that a and b dif-
fer in the set of their m;-fillers. Note that IDs can be used to assert functionality
of roles. Specifically, the assertion (id 3Q~ @~ ) imposes that @ is functional.

Finally, a TBox DL-Litey ;4 7 satisfies the following condition: every role or
attribute that occurs (in either direct or inverse direction) in a path of an ID
a € T;q or in a functional assertion, is not specialized in 77, i.e., it does not
appear in the right-hand side of assertions of the form Q E Q' or U C U’.

A DL-Litey ;o ABox A is a finite set of assertions of the form A(a), P(a,b),
and U(a,v), where A, P, and U are as above, a and b are object constants in S,
and v is a value constant in S.

Ezxample 1. We consider a portion of the Formula One domain. We know that
official drivers (OD) and test drivers (T'D) are both team members (T'M), and
official drivers are not test drivers. Every team member is a member of (mf) a
exactly one team (F'T), and every team has at most one official driver. Finally,
no race director (RD) is a member of a team. We also know that s is the official
driver of team t1, that b is a test driver, and that p is a team member. The
corresponding DL-Litey ;4-KB K is:

7: ODCTMTDCTM ODC -TD RDC -TM TM C 3Imf

TM C ~FT 3mf T TM 3mf~ C FT (id OD mf) (id FT mf~)
A: OD(s) mf(s,t1) TD() TM(p) O

We conclude this section with a brief discussione on the complexity of reason-
ing about a DL-Litea ;4-KB (7', A). Satisfiability can be checked in polynomial
time with respect to |7 \ 7;4| and |A|, and in NP with respect to |7;4|. Moreover,
if (T, .A) is satisfiable, then answering a query g posed to (7, A) can be done
in polynomial time with respect to |7| and |A|, and in NP with respect to |g|.
Finally, cl7(A) can be computed in quadratic time with respect to |7| and |.A].

3 WIDTIO approach to KB evolution in DLs

In this section we first present our semantics for the evolution of DL knowl-
edge bases at the instance level, and then we provide a comparison between our
operator and other work in the literature.

In the rest of this section, £ is a DL, and K = (7, A) is a satisfiable £-KB. In
other words, we do not consider the evolution of unsatisfiable KBs. In addition,
F is a finite set of atomic ABox assertions in L.

The following definition specifies when a set of ABox assertions “realizes”
the insertion or deletion of a set of ABox assertions with respect to .
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Definition 1. Let A’ be an ABox. Then, A" accomplishes the insertion of F into
(T,A) if A" is T-consistent, and (T, A') = F (i.e., F C cly(A’)). Similarly, A’
accomplishes the deletion of F from (T, A) if A’ is T -consistent, and (T, A’) ~
F (i.e., F € cly(A)).

Obviously, we are interested in KBs which accomplish the evolution of a KB
with a minimal change. In order to formalize the notion of minimal change, we
first need to provide some definitions.

Let A; and Ay be two ABoxes. Then, we say that A; has fewer deletions
than Ay with respect to (7, A) if cl7(A) \ clr (A1) C clr(A)\clr(Asz). Similarly,
we say that 4; and As have the same deletions with respect to (7, A) if cl7(A)\
clr(Ay) = cr(A) \ clr(A2). Finally, we say that A; has fewer insertions than
Ay with respect to (7, A) if clr (A1) \ clr(A) C clr(A2) \ clr(A).

Definition 2. Let A; and Az be two ABoxes. Then, Ay has fewer changes
than Ag with respect to (T, A) if Ay has fewer deletions than As with respect
to (T, A), or Ay and Az have the same deletions with respect to (T, A), and A
has fewer insertions than Ay with respect to (T, A).

Now that we have defined the relation of fewer changes between two KBs
w.r.t. another one, we can define the notion of a KB which accomplishes the
insertion (resp. deletion) of a set of facts into (resp. from) another KB minimally.

Definition 3. Let A’ be an ABox. Then A" accomplishes the insertion (deletion)
of F into (from) (T, A) minimally if A" accomplishes the insertion (deletion)
of F into (from) (T,A), and there is no A" that accomplishes the insertion
(deletion) of F into (from) (T, A), and has fewer changes than A’ with respect
to (T, A).

With these notions in place, we can now define our evolution operator.

Definition 4. LetU = {A;,..., A,} be the set of all ABoxes accomplishing the
insertion (deletion) of F into (from) (T, A) minimally, and let A" be an ABox.
Then, (T, A") is the result of changing (T, A) with the insertion (deletion) of F
if (1) U is empty, and (T, clr(A")) = (T, clr(A)), or (2) U is nonempty, and
(T, el (A)) = (T, Ny<se el (A1)

It is immediate to verify that, up to logical equivalence, the result of changing
(T, A) with the insertion or the deletion of F' is unique. In the rest of this
paper, the result of changing K = (7,.4) with the insertion (resp. deletion)
of F according to our semantics will be denoted by K ©Z F (resp. K &% F).
Notice that, by definition of our operator, in the case where F' is 7 -inconsistent,
the result of changing (7,.4) with both the insertion and the deletion of F is
logically equivalent to (7, .A) itself.

Ezample 2. Consider the DL-Lites ;4 KB K of the Example 1, and suppose
that p becomes now a race director, and b becomes the new official driver of
the team t;. To reflect this new information, we change K with the insertion
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of F1 = {RD(p),OD(b),mf(b,t1)}. Since the TBox implies that a race director
cannot be a team member, RD(p) contradicts TM (p). Also, since every team has
at most one official driver, OD(b) and mf(b,t1) contradict mf(s,t). According
to Definition 3, the KBs accomplishing the insertion of F} into K minimally are:

K1 = (T, {RD(p),0D(b),mf(b,t1),TM(s),mf(s,t1)})
Ko = (T, {RD(p),0D(b),mf(b,t1),TM(s),0D(s)})

Thus, K ©F F is:
K3 = (T, {RD(p),0D(b),mf(b,t1), TM(s)}).

Now, suppose that we do not know anymore whether b is a member of ¢, and,
even more, whether b is a team member at all. Then, we change K3 with the
deletion of Fy = {T'M(b), mf(b,t1)}, thus obtaining

Ks ®f, F2 = (T, {RD(p),TM(s),0D(b)}). U

The following theorem is an adaptation to our setting of two results reported
in [8], and will be used in the next two sections.

Theorem 1. Let A’ be an ABox. Then

1. A" accomplishes the deletion of F from (T, A) minimally if and only if
clr(A’) is a mazimal T -closed subset of clr(A) such that F € cly(A').

2. A" accomplishes the insertion of F from (T, A) minimally if and only if
cr (A" = A" Ucly(F), where A” is a mazimal T -closed subset of clr(A)
such that A" UF is T -consistent.

We end this section with a brief discussion on related work. We mentioned
in the introduction several model-based approaches to DL KB evolution, and
noticed that they all suffer from the expressibility problem. This problem is also
shared by [13], that uses features instead of models, and proposes the notion of
approximation to cope with the expressibility problem, similarly to [7].

Related to our proposal are several formula-based approaches presented in
the literature. Perhaps, the closest approach to the one proposed in this paper
is that reported in [6], where formula-based evolution (actually, insertion) of
DL-Lite KBs is studied. The main difference with our work is that we base our
semantics on the WIDTIO principles, and therefore we compute the intersection
of all KBs accomplishing the change minimally. Conversely, in the bold semantics
discussed in [6], the result of the change is chosen non-deterministically among
the KBs accomplishing the change minimally. Another difference is that while
[6] addresses the issue of evolution of both the TBox and the ABox, we only deal
with the case of fixed TBox (in the terminology of [6], this corresponds to keep
the TBox protected). It is interesting to observe that the specific DL considered
in [6] is DL-Litepg, and for this logic, exactly one KB accomplishes the insertion
of a set of ABox assertions minimally. It follows that for instance-level insertion,
their bold semantics coincides with ours. On the other hand, the presence of
identification assertions in DL-Lites ;4 changes the picture considerably, since
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with such assertions in the TBox, many KBs may exist accomplishing the inser-
tion minimally. In this case, the two approaches are indeed different. Finally, [6]
proposes a variant of the bold semantics, called careful semantics, for instance-
level insertion in DL-Litepg. Intuitively, such a semantics aims at disregarding
knowledge that is entailed neither by the original KB, nor by the set of newly
asserted facts. Although such principle is interesting, we believe that the careful
semantics is too drastic, as it tends to eliminate too much information from the
original KB.

Finally, we point out that, to our knowledge, the evolution operator presented
in this work is the first tractable evolution operator based on the WIDTIO
principle.

4 Deletion in DL-Litea ;q

We study deletion under the assumption that the DL language £ is DL-Litea ;q.
Thus, in this section, we implicitly refer to a DL-Litea ;¢-KB K = (7, A), and
we address the problem of changing K with the deletion of a finite set F' of ABox
assertions. We assume that both (7,.A4) and (7, F) are satisfiable.

We first consider the case where the set F' is constituted by just one assertion
f. By exploiting Theorem 1, it is easy to conclude that there is exactly one KB
accomplishing the deletion of {f} from a given KB.

Theorem 2. Let f be an ABozx assertion. Up to logical equivalence, there is
exactly one KB of the form (T, A’) that accomplishes the deletion of {f} from
(T, A) minimally, and such KB can be computed in polynomial time with respect
to |T| and |A|.

Let us now consider the case of arbitrary F, i.e., the case where F =
{fi,-.-, fm}, for m > 0. Suppose that, for every 1 < i < m, A; accomplishes
the deletion of {f;} from (7 ,.A) minimally. One might wonder whether the set
I = {{T,A;) | A; accomplishes the deletion of F' minimally from (7, A)} co-
incides (modulo logical equivalence) with Iy = {(7, Ay),...(T, A;,) }. The next
theorem tells us that one direction is indeed valid: for each KB Ky € I there
exists a KB ICy € Iy such that Mod (K1) = Mod(ICs).

Theorem 3. If (T, A") accomplishes the deletion of {f1,..., fm} from (T, A)
minimally, then there exists i € {1..m} such that (T, A’) accomplishes the dele-
tion of {fi} from (T, A) minimally.

However, the following example shows that the other direction does not hold:
there may exist a Ko € I'; that is not logically equivalent to any X; € I7.

Ezample 8. Let T = {B C C,C C D,F C D}, A = {B(a),E(a)}, and
F = {C(a),D(a)}. Tt is easy to see that the deletion of D(a) from (7,.A)
is accomplished minimally by (7,(), while the deletion of C(a) from (7, .A)
is accomplished minimally by (7,{E(a)}). Therefore, in this case, we have
Iy = {{7,0),(7T,{E(a)})}. Also, one can verify that (7,{F(a)}) is the only
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(up to logical equivalence) KB accomplishing the deletion of F' minimally, i.e.,
It = {{7,{E(a)})}. Thus, there is a KB in Iy, namely (7, (), that is not logi-
cally equivalent to any KB in I7. O

The next theorem characterizes when a given (7, A;) € I'; accomplishes the
deletion of F minimally.

Theorem 4. Let F = {f1,..., fm}, and, for every 1 < i < m, let (T, A;)
accomplish the deletion of {fi} from (T, A) minimally. Then, (T,A;), where
Jj € {1..m}, accomplishes the deletion of F' from (T, A) minimally if and only if
there is no h € {1.m} such that h # j, and (T,{fn})|= f;.

By exploiting Theorems 2, 3, and 4, we can directly prove that K 6% F' can
be computed by the algorithm ComputeDeletion below. It is easy to see that the
time complexity of the algorithm is O(|7|? x |F|? + |A[?).

Input: a satisfiable DL-Litea iq KB I = (7, .A), a finite set of ABox assertions
F such that (T, F) is satisfiable
Output: a DL-Litea ;q KB
begin
F' — F;
foreach f; € I’ and f; € F such that i # j do
if (T, {/;})|= /i then F' — F'\ {f:}
return (7 ,clz(A) \ {« € Subsumeex(f) | f € F'});
end

Algorithm 1: ComputeDeletion((T, A), F)

Theorem 5. ComputeDeletion((T, A), F) terminates, and computes (T, A) &%
F' in polynomial time with respect to |T|, |A| and |F|.

5 Insertion in DL-Litey ;q

In this section, we refer to a DL-Litey ;q-KB K = (7, A), and address the prob-
lem of changing K with the insertion of a finite set F' of ABox assertions. As in
the previous section, we assume that both (7,.4) and (7, F') are satisfiable.
Theorem 1 tells us that, in principle, we can compute the KB resulting from
the insertion of F' into (7,.A4) by building all maximal subsets of A which are
T -consistent with F', and then computing their intersection. The main problem
to be faced with this method is that, depending on the DL used, there can
be an exponential number of maximal subsets A" of clr(A) such that A" U
{f} is T-consistent®.In particular, in DL-Litea ;4, building all maximal subsets
of A which are 7-consistent with F', and then computing their intersection is
computationally costly. Fortunately, we show in the following that X &2 F can
be computed without computing all maximal consistent subsets of A with F'.

5 Note that this cannot happen in those DLs of the DL-Lite family which do not admit
the use of identification assertions (such as the DL studied in [6]).
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To describe our method, we need some preliminary notions. A set V' of ABox
assertions is called a T -violation set fort € T\T if (TTU{t}, V) is unsatisfiable,
while for every proper subset V' of V, (T+ U {t},V’) is satisfiable. Any set V
of ABox assertions that is a 7-violation set for a t € 7 \ 7 is simply called a
T -violation set.

We know from Theorem 1 that the ABox A’ accomplishes the insertion of
F from (7, A) minimally if and only if clz(A") = A” Ucly(F), where A” is a
maximal 7 -closed subset of cl7(A) such that A” U F is T-consistent. Since we
must compute the intersection of all such ABoxes A’, it is sufficient to compute
those assertions in cl7(.A) that are not in the intersection, and remove them from
clr (A) Ucly(F). All the assertions in cly (F') are obviously in the intersection of
the ABoxes A’. As for the ABox assertions in cly(A) \ cl7(F), it is easy to see
that one such assertion « is not in the intersection of the ABoxes A’ if and only
if there exists a maximal subset X' of cly(A) such that X' U F' is T-consistent,
and X does not contain «.

Taking into account the above observation, the next theorem is the key to
our solution.

Theorem 6. Let o be an assertion in cly(A) \ clr (F'). There exists a mazimal
subset X of clr(A) such that X U F is T -consistent, and X does not contain o
if and only if there is a T -violation set V in cly(A) U clr(F) such that « € V,
and FU(V\ {«a}) is T-consistent.

Theorem 6 suggests immediately the algorithm Computelnsertion below for
computing K @% F.

Input: a satisfiable DL-Lites iq KB K = (7, .A), a finite set of ABox assertions
F such that (T, F') is satisfiable
Output: a DL-Lites ;0 KB.
begin
F' =
foreach a € clr (A) \ cl7 (F') do
if 3 a T-violation set V in cl7(A) Uclr(F) s.t. o € V and
(T,F U (V\{a})) is satisfiable
then F' — F' U{a};
return (7, F Uclzr(A) \ F');
end

Algorithm 2: Computelnsertion({T, A), F)

Algorithm Computelnsertion requires to compute all 7-violation sets in clz(.A)
U cly(F). It can be shown that this can be done by computing the results of
suitable conjunctive queries posed to clz(A) Uclr(F). Such queries are built out
of the negative inclusion assertions and the identification assertions 7Z;4 in 7,
and essentially look for tuples that satisfy the negation of such assertions. From
this observation, one can derive the following theorem.

Theorem 7. Computelnsertion((T, A), F) terminates, and computes (T, A) &L
F in polynomial time with respect to |T \ Tial, |Al, and |F|, and in NP with
respect to |T;ql.

299



6

Conclusions

We plan to continue our work along several directions. First, we aim at extending
our approach to the problem of evolution of the whole KB, as opposed to the
ABox only. Also, we will add the notion of protected part to our approach, to
model situations where one wants to prevent changes on specific parts of the
KB when applying insertions or deletions. Finally, we aim at studying the case
where the KB contains other kinds of constraints, so as to capture the scenario
where updates are expressed on a conceptual model used as a global schema in
a data integration system [3]. In this context, one of the major challenges is to
deal with the problem of pushing the updates to the data sources.
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1 Introduction

In recent years, the use of ontologies to access instance data has become increasingly
popular. The general idea is that an ontology provides a vocabulary or conceptual model
for the application domain, which can then be used as an interface for querying instance
data and to derive additional facts. In this emerging area, called ontology-based data
access (OBDA), it is a central research goal to identify ontology languages for which
query answering scales to large amounts of instance data. Since the size of the data is
typically very large compared to the size of the ontology and the size of the query, the
central measure for such scalability is provided by data complexity—the complexity of
query answering where only the data is considered to be an input, but both the query
and the ontology are fixed.

In description logic (DL), ontologies take the form of a TBox, instance data is stored
in an ABox, and the most important class of queries are conjunctive queries (CQs).
A fundamental observation regarding this setup is that, for expressive DLs such as
ALC and SHZQ, the complexity of query answering is coNP-complete [12] and thus
intractable (when speaking of complexity, we always mean data complexity). The most
popular strategy to avoid this problem is to replace ALC and SHZQ with less expres-
sive DLs that are Horn in the sense that they can be embedded into the Horn fragment
of first-order (FO) logic and have minimal models that can be exploited for PTIME
query answering. Horn DLs in this sense include, for example, logics from the ££ and
DL-Lite families as well as Horn-SHZ Q, a large fragment of SHZQ for which CQ-
answering is still in PTIME [12]. While CQ-answering in Horn-SHZQ and the £L£
family of DLs is also hard for PTIME, the problem has even lower complexity in DL-
Lite. In fact, the design goal of DL-Lite was to achieve FO-rewritability, i.e., that any
CQ ¢ and TBox T can be rewritten into an FO query ¢’ such that the answers to ¢
w.r.t. T coincide with the answers that a standard database system produces for ¢’ [6].
Achieving this goal requires CQ-answering to be in ACC.

It thus seems that the data complexity of query answering in a DL context is well-
understood. However, all results discussed above are on the level of logics, i.e., each
result concerns a class of TBoxes that is defined syntactically through expressibility in a
certain logic, but no attempt is made to identify more structure inside these classes. The
aim of this paper is to advocate a fresh look on the subject, by taking a novel approach.
Specifically, we advocate a non-uniform study of the complexity of query answering
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by considering data complexity on the level of individual TBoxes. For a TBox T, we
say that CQ-answering w.r.t. T is in PTIME if for every CQ g, there is a PTIME algo-
rithm that, given an ABox .4, computes the answers to ¢ in .A w.r.t. 7. In a similar way,
we can define coNP-hardness and FO-rewritability on the TBox level. The non-uniform
perspective allows us to investigate more fine-grained questions regarding the data com-
plexity of query answering such as: given an expressive DL £ such as ALC or SHIZQ,
how can one characterize those £-TBoxes 7 for which CQ-answering is in PTIME?
How can we do the same for FO-rewritability? Is there a dichotomy for the complexity
of query answering w.r.t. TBoxes formulated in £, such as: for any £-TBox 7T, CQ-
answering w.r.t. 7 is either in PTIME or coNP-hard?

In this paper, we consider TBoxes formulated in the expressive DL ALCFZ, answer
some of the above questions, and take some steps towards others. Our main results are:

1. there is a dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALC-TBoxes if, and only if, Feder and Vardi’s dichotomy conjecture that “con-
straint satisfaction problems (CSPs) with finite template are in PTIME or NP-
complete” [10] is true; the same holds for ALCZ-TBoxes;

2. there is no dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALCF-TBoxes, unless PTIME = NP; moreover, PTIME-complexity of CQ an-
swering and many related problems are undecidable for ALCF.

3. there is a dichotomy between PTIME and coNP-complete for CQ-answering w.r.t.
ALCFI-TBoxes of depth one, i.e., TBoxes where concepts have role depth < 1;

4. FO-rewritability is decidable for Horn-ALC FZ-TBoxes of depth two and all Horn-
ALCF-TBoxes;

It should be noted that there has been steady progress regarding the dichotomy con-
jecture of Feder and Vardi over the last fifteen years and though the problem is still
open, a solution does not seem completely out of reach [4, 5]. Our proof of Point 1 is
based on a novel connection between CSPs and query answering w.r.t. ALCZ-TBoxes
that can be exploited to transfer numerous results from the CSP world to query answer-
ing w.r.t. ALCZ-TBoxes and related problems. For example, together with [16, 5] we
obtain the following results on ‘FO-rewritability of ABox consistency’:

5. Given an ALCZ-TBox T, it can be decided in NEXPTIME whether there is an FO-
sentence @7 such that for all ABoxes A, A is consistent w.r.t. 7 iff A viewed as an
FO-structure satisfies (. Moreover, such a sentence (7 exists iff ABox consis-
tency w.r.t. 7 can be decided in non-uniform ACP. Finally, if no such sentence @7
exists, then ABox consistency w.r.t. 7 is LOGSPACE-hard (under FO-reductions).

To prove our results, we introduce some new notions that are relevant for studying
the questions raised and prove some additional results of general interest. A central
such notion is materializability of a TBox 7T, which formalizes the existence of mini-
mal models as known from Horn-DLs. We show that, in the case of TBoxes of depth
one, materializability characterizes PTIME CQ-answering, which allows us to establish
Point 2 above. For TBoxes of unrestricted depth, non-materializability still provides a
sufficient condition for coNP-hardness of CQ-answering. We also develop the notion
of unraveling tolerance of a TBox T, which provides a sufficient condition for query

302



answering to be in PTIME. The resulting upper bound strictly generalizes the known
result that CQ-answering in Horn-ALCFZ is in PTIME. Our framework also allows
to formally establish some common intuitions and beliefs held in the context of CQ-
answering in description logics. For example, we show that for any ALCFZ-TBox T,
CQ-answering is in PTIME iff answering positive existential queries is in PTIME iff
answering £LZ-instance queries is in PTIME and likewise for FO-rewritability. An-
other observation in this spirit is that an ALCFZ-TBox is materializable (has minimal
models) iff it is convex (a notion related to the entailment of disjunctions).

Most proofs in this paper are deferred to the (appendix of the) long version, which
is available at http://www.csc.liv.ac.uk/™ frank/publ/publ.html.

2 Preliminaries

We use standard notation for the syntax and semantics of ALCFZ and other well-
known DLs. Our TBoxes are finite sets of concept inclusions C' = D, where C' and D
are potentially compound concepts, and functionality assertions func(r), where r is a
potentially inverse role. ABoxes are finite sets of assertions A(a) and r(a,b) with A a
concept name and r a role name. We use Ind(.A) to denote the set of individual names
used in the ABox A and sometimes write 7~ (a, b) € A instead of (b, a) € A. For the
interpretation of individual names, we make the unique name assumption.

A first-order query (FOQ) q(x) is a first-order formula with free variables & con-
structed from atoms A(¢), 7(¢,t'), and ¢ = ¢’ (where ¢, ¢’ range over individual names
and variables) using negation, conjunction, disjunction, and existential quantification.
The variables in @ are the answer variables of q. A FOQ without answer variables is
Boolean. We say that a tuple @ C Ind(A) is an answer to q(x) in an interpretation T if
7 E qla], where g[a] results from replacing the answer variables « in ¢(x) with a. A
tuple @ C Ind(A) is a certain answer to q(x) in A given T , in symbols 7, A = ¢(a),
if Z = g[a] for all models Z of A and T. Set certr (¢, A) = {a | T, A E q(a)}.
A positive existential query (PEQ) q(x) is a FOQ without negation and equality and
a conjunctive query (CQ) is a positive existential query without disjunction. If C is
an ELZ-concept and a € N, then C(a) is an ELZ-query (ELIQ). £ L-queries (ELQs)
are defined analogously. Note that £L£Z-queries and £ L-queries are always Boolean. In
what follows, we sometimes slightly abuse notation and use FOQ to denote the set of
all first-order queries, and likewise for CQ, PEQ, ELIQ, and ELQ.

Definition 1. Let T be an ALCFZ-TBox. Let Q € {CQ, PEQ,ELIQ, ELQ}. Then

— Q-answering w.r.t. T is in PTIME if for every q(x) € Q, there is a polytime algo-
rithm that computes, given an ABox A, the answer certr(q, A);

— Q-answering w.r.t. T is coNP-hard if there is a Boolean q € Q such that, given an
ABox A, it is coNP-hard to decide whether T, A = q;

— T is FO-rewritable for Q iff for every q(x) € Q one can effectively construct an
FO-formula ¢ (x) such that for every ABox A, certr(q, A) = {a | Z4 = ¢'(a)},
where I 4 denotes A viewed as an interpretation.

The above notions of complexity are rather robust under changing the query language:
as we show next, neither the PTIME bounds nor FO-rewritability depend on whether
we consider PEQs, CQs, or ELIQs.
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Theorem 1. For all ACCFZI-TBoxes T, the following equivalences hold:

1. CQ-answering w.r.t. T is in PTIME iff PEQ-answering w.r.t. T is in PTIME iff
ELIQ-answering w.r.t. T is in PTIME;

2. T is FO-rewritable for CQ iff it is FO-rewritable for PEQ iff it is FO-rewritable
for ELIQ.

If T is an ALCF-TBox, then we can replace ELIQ in Points 1 and 2 with ELQ.

The proof is based on Theorems 2 and 3 below. Theorem 1 allows us to (sometimes)
speak of the ‘complexity of query answering’ without reference to a query language.

3 Materializability

An important tool we use for analyzing the complexity of query answering is the notion
of materializability of a TBox 7, which means that computing the certain answers to
any query g and ABox A w.r.t. T reduces to evaluating ¢ in a single model of A and 7.

Definition 2. Let T be an ALCFI-TBox and Q € {CQ,PEQ,ELIQ,ELQ}. T is Q-
materializable if for every ABox A that is consistent w.r.t. T, there exists a model T of

T and A suchthat T = qla] iff T, A |= q(a) for all ¢(x) € Q and a C Ind(A).

We show that PEQ, CQ, and ELIQ-materializability coincide (and for ALC-TBoxes, all
these also coincide with ELQ-materializability). Materializability is also equivalent to
the following disjunction property (sometimes also called convexity): a TBox T has the
ABox disjunction property if for all ABoxes A and ELIQs Ci(a1),...,Cr(ay,), from
T,AE Ci(a1) V...V Cy(ay) it follows that T, A = C;(a;), for some i < n.

Theorem 2. Let T be an ALCFZL-TBox. The following equivalences hold: T is PEQ-
materializable iff T is CQ-materializable iff T is ELIQ-materializable iff T has the
ABox disjunction property.

If T is an ALC-TBox, the above are equivalent to ELQ-materializability.

Because of Theorem 2, we sometimes use the term materializability without reference
to a query language. We call an interpretation Z that satisfies the condition formulated
in Definition 2 for PEQs a minimal model of T and A. Note that in many cases, only an
infinite minimal models exists. For example, for 7 = {A C 3r.A} and A = {A(a)}
every minimal model Z of 7 and .A comprises an infinite r-chain starting at aZ. Every
TBox that is equivalent to an FO Horn sentence (in the general sense of [7]) is mate-
rializable: to construct a minimal model for such a TBox 7 and some ABox .4, one
can take the direct product of all at most countable models of 7 and A (for additional
information on direct products in DLs, see [17]). Conversely, however, there are simple
materializable TBoxes that are not equivalent to FO Horn sentences.

Example 1. Let T = {Ir. (AN =B MN-E) C Ir.(mAMN-BMN-E)}. One can easily
show that 7 is not preserved under direct products; thus, it is not equivalent to a Horn
sentence. However, one can construct a minimal model Z for 7 and any ABox A by
taking the interpretation Z 4 obtained by viewing A as an interpretation and then adding,
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for any a € Ind(A) with a € (Ir.(AN—=BMN=E))T4, a fresh d, such that (a,d,) € r*
and d, is not in the extension of any concept name. PEQ-answering w.r.t. 7 is FO-
rewritable since for any PEQ ¢, cert(q, .A) consists of precisely the answers to ¢ in Z 4
(i.e., no query rewriting is necessary). Thus, PEQ-answering w.r.t. 7 is also in PTIME.

We show that materializability is a necessary condition for query answering being in
PTIME.

Theorem 3. Ifan ALCFZ-TBox T (ALCF-TBox T ) is not materializable, then ELIQ-
answering (ELQ-answering) is cONP-hard w.r.t. T.

The proof uses the violation of the ABox disjunction property stated in Theorem 2 and
generalizes the reduction of 2+2-SAT used in [19] to prove that instance checking in a
variant of £L is coNP-hard.

Materializability is not a sufficient condition for query answering to be in PTIME. In
fact, we show that for any non-uniform constraint satisfaction problem, there is a mate-
rializable ALC-TBox for which Boolean CQ-answering has the same complexity, up to
complementation of the complexity class. For two finite relational FO-structures R and
R’ over relation symbols X, we write Hom(R', R) if there is a homomorphism from
R’ to R. The non-uniform constraint satisfaction problem for R, denoted by CSP(R),
is the problem to decide, for every finite R’ over X, whether Hom(R', R). Numer-
ous algorithmic problems, among them many NP-complete ones such as k-SAT and
k-colourability of graphs, can be given in the form CSP(R). It is known that every
problem of the form CSP(R) is polynomially equivalent to some CSP(R’) with R’ a
digraph [10]. Thus, in what follows we can restrict ourselves to considering CSPs of
the form CSP(Z), where Z is a DL interpretation. A signature X is a set of concept and
role names. The signature sig(7") of a TBox 7 is the set of concept and role names that
occur in 7. A X-TBox is a TBox that uses symbols from X only. Similar notation is
used for ABoxes, concepts, and interpretations. For an ABox .4, we denote by A% the
subset of A containing symbols from 3 only. We will often not distinguish between
ABoxes and finite interpretations.

Theorem 4. For every non-uniform constraint satisfaction problem CSP(Z), one can
compute in polytime a materializable ALC-TBox T such that for all ABoxes A,

1. Hom(A* ), with X = sig(Z), iff A is consistent w.r.t. T
2. for any Boolean CQ q, answering q w.r.t. T is polynomially reducible to the com-
plement of CSP(T).

The proof Theorem 4 relies on the existence of ALC-concepts H whose value HZ in
interpretations Z cannot be detected directly using CQs, but which can be used in a
TBox to influence the values AL of concept names A and, therefore, have an indirect
effect on the answers to CQs. From the viewpoint of CQ query answering, they thus
behave similarly to second-order variables. More precisely, let, for a finite set V' of
indices, Z,, 1, S, be concept and role names, respectively. Let

Tv={TCIr, T, TC3s,.Zy |vEV}, H,=Vr,.35,.77Z,.

Lemma 1. For any ABox A and sets I, C Ind(A), v € V, one can construct a minimal
model T of (Ty, A) such that HE = I, for allv € V. Ty is FO-rewritable for PEQ.

305



To prove Theorem 4, one extends the TBox Ty,. Assume CSP(Z) is given. Let V = AZ
and assume, for simplicity, that sig(Z) = {r}. Define

T=TyU{H,N3IrH,C L |v,weV,(v,w)grr}u
{HDI_IHwEL|v,wEV,U7éw}U{|_|—\HUEJ_}
veV

Based on Lemma 1, it is possible to verify Points 1 and 2 of Theorem 4. For Point 2, it
can be seen that for all Boolean CQs ¢ and ABoxes A, (T, A) | ¢ iff (Ty, A) = qor
not Hom(AE ,Z); since Ty is FO-rewritable, the former can be checked in PTIME.

4 (Towards) Dichotomies

We start with a reduction of Boolean CQ-answering w.r.t. ALCZ-TBoxes to CSPs that
yields, together with Theorem 4, a proof of Point 1 in the introduction: the dichotomy
problem for CSPs is equivalent to the dichotomy problem for CQ answering w.r.t. ALC-
(and ALCZ-) TBoxes.

Theorem 5. Let T be an ALCZ-TBox and C(a) an ELIQ. Then one can construct, in
time exponential in |T| + |C

’

1. a X-interpretation Z, X = (sig(T) Usig(C)) W { P}, with P a concept name, such
that for all ABoxes A,
(a) there is a polynomial reduction of answering C(a) w.r.t. T to the complement
of CSP(Z);
(b) there is a polynomial reduction from the complement of CSP(Z) to Boolean
CQ-answering w.r.t. T ;
2. a XY-interpretation I, X = sig(T), such that for every ABox A, A is consistent
w.rt. T iff Hom(A* | T).

For Point 1, 7 is in fact the interpretation that is obtained by the standard type elimi-
nation procedure for ALCZ-TBoxes 7 and concepts C. More specifically, let S be the
closure under single negation of all subconcepts of 7 and C. A type t is a maximal
subset of S that is satisfiable w.r.t. 7. Then AZ is the set of all types, t € AT iff A e t,
and (¢,¢') € rZ iff Vr.D € t implies D € ¢’ and Vr—.D € t' implies D € t. For the
special concept name P, set PZ = {t | C ¢ t}. With the type elimination algorithm,
can be constructed in exponential time. The mentioned reductions are then as follows:

(@ (T,A) E C(a) iff not Hom(Ag(a),I), where Ap,) results from A by adding
P(a) to A and removing all other assertions using P from A;

(b) not Hom(A* 7) iff (T, A) = Jv.(P(v) A C(v)).

Result 1 from the introduction can be derived as follows. Let CSP(Z) be an NP-inter-
mediate CSP, i.e., a CSP that is neither in PTIME nor NP-hard. Take the TBox 7
from Theorem 4. By Point 1 of that theorem and since consistency of ABoxes w.r.t. T
can trivially be reduced to the complement of answering Boolean CQs w.r.t. 7, CQ-
answering w.r.t. 7 is not in PTIME. By Point 2, CQ-answering w.r.t. 7 is not coNP-
hard either. Conversely, let 7 be a TBox for which CQ-answering w.r.t. 7 is neither in
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PTIME nor coNP-hard. Then by Theorem 1 and since every ELIQ is a CQ, the same
holds for ELIQ-answering w.r.t. 7. Thus, there is a concrete ELIQ C(a) such that an-
swering C'(a) w.r.t. 7 is coNP-intermediate. Let Z be the interpretation constructed
in Point 1 of Theorem 5 for 7 and C(a). By Point la, CSP(Z) is not in PTIME; by
Point 1b, it is not NP-hard either.

Result 5 from the introduction can be derived as follows. It is proved in [16, 5] that
the problem to decide whether the class of structures {Z’ | Hom(Z’, Z)} is FO-definable
is NP-complete. We obtain a NEXPTIME upper bound since the template Z associated
with 7 can be constructed in exponential time. The claims for AC® and LOGSPACE
follow in the same way from other results in [16, 5].

We now develop a condition on TBoxes, called unraveling tolerance, that is suf-
ficient for PTIME CQ-answering and strictly generalizes Horn-ALCFZ, the ALCFZ-
fragment of Horn-SHZ Q. For the case of TBoxes of depth one, we obtain a PTIME/coNP
dichotomy result. The notion of unraveling tolerance is based on an unraveling oper-
ation on ABoxes, in the same spirit as the well-known unraveling of an interpretation
into a tree interpretation. This is inspired by (i) the observation that, in the proof of
Theorem 3, the non-tree-shape of ABoxes is essential; and (ii) by Theorem 5 together
with the known fact the non-uniform CSPs are tractable when restricted to tree-shaped
input structures. The unraveling A, of an ABox A is the following ABox:

— the individual names Ind(.A4,,) of A, are sequences bgroby - - - y—1bp, bo, - . ., by €
Ind(A) and 7o, ...,r,—1 (possibly inverse) roles such that for all i < n, we have
ri(bi,biy1) € Aand b;y1 # b;—1 (whenever i > 0);

— for each C(b) € A and o = byroby - - - Tp—1by, € Ind(A,) with b, = b, we have
Cla) € Ay;

— for each boroby - - - rn_1b, € Ind(A,), we have r,,_1(bp—1,b,) € A,.

For all 8 = borg - - - rn—1b, € Ind(A,), we write tail(/3) to denote b,,. Note that the
condition b; 11 # b;_1 is needed to ensure that functional roles can still be interpreted
in a functional way after unraveling, despite the UNA.

Definition 3. A TBox T is unraveling tolerant if for all ABoxes A and ELIQs q, we
have that T, A |= q implies T, A, = q.

It is not hard to prove that the converse direction ‘7,4, = ¢ implies 7, A | ¢
is true for all ALCFI-TBoxes. We now show that the class of unraveling tolerant
ALCFI-TBoxes generalizes Horn-ALCFZ. This is based on the original and most
general definition of Horn-SHZQ in [12] and thus also captures weaker variants as
used e.g. in [13,9]. The TBox in Example 1, which is unraveling tolerant but not a
Horn-ALC FZ-TBox, demonstrates that the generalization is strict.

Lemma 2. Every Horn-ALCFZ-TBox is unraveling tolerant.

It is interesting to note that unraveling tolerance implies materializability. We shall see
that the converse is, in general, not true.

Lemma 3. Every unraveling-tolerant ALCFZ-TBox is materializable.
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We now show that unraveling tolerance yields a class of ALCFZ-TBoxes for which
query answering is in PTIME. By Lemma 2 and since we actually exhibit a uniform
algorithm for query answering w.r.t. unraveling tolerant TBoxes, this also reproves the
known PTIME upper bound for CQ-answering in Horn-ALCFZ [9]. This result is not
a consquence of Theorem 4 and known results for CSPs since we capture full ALCFZ.

Theorem 6. If an ALCFZI-TBox T is unraveling tolerant, then PEQ-answering w.r.t.
T is in PTIME.

To see that unraveling tolerance does not capture all ALCFZ-TBoxes for which query
answering is in PTIME, we can invoke Theorem 4. For example, taking a CSP for
2-colorability, we obtain a TBox 7 for which CQ-answering is in PTIME and such
that an ABox A with sig(A) = {r} is consistent w.r.t. 7 iff A is 2-colorable. Thus,
A, T = X(a), X afresh concept name, iff A is not 2-colorable. It follows that T is not
unraveling tolerant. We conjecture that it is possible to generalize Theorem 6 to larger
classes of TBoxes by relaxing the operation of ABox unraveling such that it yields
ABoxes of bounded treewidth instead of tree-shaped ABoxes. Such a generalization
would still not capture 2-colorability.

We now turn to TBoxes of depth one. The central observation is that for this special
case, we can prove a converse of Lemma 3.

Lemma 4. Every materializable ALCFZI-TBox of depth one is unraveling tolerant.

This brings us into the position where we can establish the announced dichotomy result
for ALCFZI-TBoxes of depth one. If such a TBox 7 is materializable, then Lemma 4
and Theorem 6 yield that PEQ-answering w.r.t. 7 is in PTIME. Otherwise, ELIQ-
answering w.r.t. 7 is coNP-complete by Theorem 3. We thus obtain the following.

Theorem 7 (Dichotomy). For every ALCFZL-TBox T of depth one, one of the follow-
ing is true:

— Q-answering w.r.t. T is in PTIME for any Q € {PEQ,CQ.ELIQ},
— Q-answering w.r.t. T is coNP-complete for any Q € {PEQ,CQ.ELIQ}.

S Deciding FO-Rewritability

The results of this section are based on the observation that for materializable TBoxes of
depth one, FO-rewritability for CQ follows from FO-rewritability for aromic concepts,
i.e., concept names and |. We say that an atomic concept A is FO-rewritable w.r.t. a
TBox T and a signature X if there exists an FO-formula ¢ 4 such that for all X’-ABoxes
Aand a € Ind(A): T,A E A(a) iff Z4 |E @ala). Clearly, if T is FO-rewritable
for CQ, then every atomic concept is FO-rewritable w.r.t. 7 and any signature. For
materializable TBoxes of depth one, the converse is also true.

Lemma 5. A materializable ALCFZ-TBox of depth one is FO-rewritable for CQs iff
all atomic concepts are FO-rewritable w.r.t. T and sig(T).

Based on Lemma 5, we can use Theorem 5 and results from [16] to obtain the following
result, in a similar (but slightly more involved) way as in the proof of Result 5 from the
introduction.
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Theorem 8. FO-rewritability for CQs is decidable in NEXPTIME, for any of the fol-
lowing classes of TBoxes: materializable ALCZ-TBoxes of depth one, Horn-ALC-
TBoxes, and Horn- ALCZ-TBoxes of depth two.

Theorem 5 does not apply to DLs with functional roles. To analyze FO-rewritability
in the presence of functional roles, we associate with every materializable TBox 7 of
depth one a monadic datalog program I/ such that 7 and I1+ give the same answers
to queries A(a), A atomic. We then show that 7 is FO-rewritable if, and only if, [T+ is
equivalent to a non-recursive datalog program. The latter property is known as bound-
edness of a datalog program and has been studied extensively for fixpoint logics [3, 18]
and datalog programs [8]. Using existing decidability results for boundedness, we can
then establish a counterpart of Theorem 8 for the case of ALCFZ.

For our purposes, a monadic datalog program II consists of rules A(z) «+ X,
where A is a concept name and X is a finite set consisting of assertions of the form
B(x), r(x1,x2), and inequalities x1 # x2, where B is a concept name, r a role, and
T, X1, To range over variables. Inequalities are required to model functional roles. We
also use a special unary predicate | and rules L () < X stating that X is inconsistent.
For an ABox A, we denote by IT%(.A) the set of all assertions A(a) that can be derived
using 7 applications of rules from I7 to A. We set I1*°(A) = |J,~ ' (A).

Definition 4 (Boundedness). Let II be a datalog program and X a signature. An
atomic concept A is bounded in IT for X-ABoxes if there exists a k > 0 such that
for all X-ABoxes A and all a € sig(A): A(a) € IT*°(A) iff A(a) € IT*(A).

Let 7 be a materializable TBox of depth one. A >'-neighbourhood ABox (X-NH) con-
sists of a 2-ABox A with a distinguished individual name f such that .4 consists of
assertions of the form r(f, a) with r a role and a # f and A(b) such that

— foreach b # f with b € Ind(.A) there is exactly one r such that r(f,b) € A;
— if r(f,b1) and r(f, b2) € A and by # bo, then there exists A(b1) € A with A(by) &
A or vice versa.

The ABox A in which each individual b is replaced by a variable x; is denoted by 4.
Now define a monadic datalog program associated with 7, where 3 = sig(7T):

II+ = {A(z,) < A" | AisaX-NH,a € Ind(A),Ae X, (T,A) E A(a)} U
{L(x) <~ A" | Aisa X-NH that is not consistent w.r.t. 7 } U
{L(@) « r(y,y1),7(y, y2), 51 # y2 | func(r) € T} U
{A(z) + L(x) | Ae X},
The following lemma states that I7;- behaves as intended.

Lemma 6. For every materializable ALCFI-TBox T of depth one, every A € sig(T),
every ABox A, and every a € Ind(A), (T, A) = A(a) iff A(a) € II5°(A). Moreover,
L(a) € II(A) iff A is not consistent w.r.t. T.

Using unfolding tolerance of materializable TBoxes of depth one, one can show the
following equivalence for FO-rewritability and boundedness.
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Lemma 7. For every materializable ALCFIZ-TBox T of depth one and signature X':
an atomic concept A is bounded in 11+ for X-ABoxes iff A is FO-rewritable w.rt. T
and 3.

Unfortunately, decidability results for boundedness of monadic datalog programs are
not directly applicable to I1 since they assume programs without inequalities [8, 11].
However, using unfolding tolerance, one can employ instead recent decidability results
on boundedness of least fixed points over trees [18] to obtain the following theorem.

Theorem 9. FO-rewritability for CQs is decidable, for any of the following classes
of TBoxes: materializable ALCFI-TBoxes of depth one, Horn-ALCF-TBoxes, and
Horn-ALCFI-TBoxes of depth two.

6 Non-Dichotomy and Undecidability in ALCF

The aim of this section is to show that the addition of functional roles significantly com-
plicates the problems studied in the previous sections. More precisely, we show that
(i) for CQ-answering w.r.t. ALCF-TBoxes, there is no dichotomy between PTIME and
coNP unless PTIME = NP; and (ii) CQ-answering in PTIME is undecidable for ALCF-
TBoxes, and likewise for coNP-hardness, materializability and FO-rewritability. Point (i)
is a consequence of the following result.

Theorem 10. For every language L in coNP, there is an ALCF-TBox T and query
rej(a), rej a concept name, such that the following holds:

1. there exists a polynomial reduction of deciding v € L to answering rej(a) w.rt. T;
2. forevery ELIQ q, answering q w.r.t. T is polynomially reducible to deciding v € L.

Ladners theorem [15] states that unless PTIME = NP, coNP intermediate problems
exist. Suppose to the contrary of Point (i) that for every ALCF-TBox T, CQ answering
w.r.t. 7 is in PTIME or coNP-hard. Take a coNP-intermediate language L and let T
be the TBox from Theorem 10. By Point 1 of the theorem, CQ-answering w.r.t. 7 is
not in PTIME. Thus it must be coNP-hard. By Theorem 1 and since a dichotomy for
CQ-answering w.r.t. 7 also implies a dichotomy for ELIQ-answering w.r.t. 7, ELIQ-
answering w.r.t. 7 is also coNP-hard. By Point 2 of Theorem 10, this is impossible.
The proof of Theorem 10 combines the ‘hidden’ concepts H, from the proof of
Theorem 4 with ideas from a proof in [1] which establishes undecidability of a certain
query emptiness problem in ALCF. Using a similar strategy, we establish the undecid-
ability results announced as Point (ii) above, summarized by the following theorem.

Theorem 11. For ALCF-TBoxes T, the following problems are undecidable (Points 1
and 2 are subject to the side condition that PTIME # NP):

1. CQ-answering w.r.t. T is in PTIME;
2. CQ answering w.r.t. T is coNP-hard;
3. T is materializable.

In the appendix, we also prove that FO-rewritability for CQ is undecidable in ALCF,
for a slightly modified definition of FO-rewritability that only considers consistent
ABoxes.
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7

Conclusions

We have have introduced non-uniform data complexity of query answering w.r.t. de-
scription logic TBoxes and proved that it enables a more fine-grained analysis than the
standard approach. Many questions remain. In particular, the newly established CSP-
connection should be exploited further. We believe that the techniques introduced in
this paper can be extended to richer DLs such as SHZ Q.

Acknowledgments. C. Lutz was supported by the DFG SFB/TR 8 “Spatial Cognition”.
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1 Introduction

One of the most important current issues in Description Logic (DL) ontology man-
agement is dealing with inconsistency, that is, the presence of contradictory informa-
tion in the ontology [7]. It is well-known that the classical semantics of DLs is not
inconsistency-tolerant, i.e., it does not allow for using in a meaningful way any piece
of information in an inconsistent ontology. On the other hand, the size of ontologies
used by real applications is scaling up, and ontologies are increasingly merged and
integrated into larger ontologies: the probability of creating inconsistent ontologies is
consequently getting higher and higher.

In this paper we focus on ABox inconsistency, i.e., the case of inconsistent KBs
where the TBox is consistent while the ABox is inconsistent with the TBox, i.e., a
subset of the assertions in the ABox contradicts a TBox assertion (or a subset of the
TBox). In particular, we are interested in defining a form of automatic ABox cleaning,
ie., given K = (7, A), we want to identify an ABox .A’ such that (7, A’} is consistent
and A’ is “as close as possible” to A.

The kind of ABox cleaning we adopt is formally based on inconsistency-tolerant se-
mantics, which overcome the limitations of the classical DL semantics in inconsistency
management. In particular, we consider inconsistency-tolerant semantics for general
DLs recently proposed in [4], called AR semantics and ICAR semantics, for which
reasoning has been studied in the context of the Description Logics of the DL-Lite fam-
ily. The notion of ABox repair in the JA R semantics is very simple: the ABox repair of
a DL ontology is the intersection of all the maximal subsets of the ABox that are con-
sistent with the TBox. The notion of ABox repair in the JCAR semantics is a variant
of the TA R semantics that is based on a notion of “equivalence under consistency” of
ABoxes inconsistent with respect to a given TBox. In [4] it was proved that computing
the ABox repair of a DL-Lite 4 ontology is tractable both under /AR semantics and
ICAR semantics.

We argue that the results of [4] are very important from the practical viewpoint,
for the following reasons: (i) they provide (to the best of our knowledge) the first
formally grounded notion of ABox cleaning. In other words, JAR and ICAR are the
first inconsistency-tolerant semantics that allow for expressing ABox repairs in terms
of a single ABox; (ii) they identify (to the best of our knowledge) the first tractable
inconsistency-tolerant semantics in DLs. This paper starts from the above results, and
tries to provide an experimental validation that ABox cleaning based on the above se-
mantics is actually feasible. More precisely, we provide the following contributions:
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(1) We present effective techniques for ABox cleaning in DL-Lite 4 under IAR and
ICAR semantics. To this aim, we present the Quonto ABox Cleaner (QUAC), which
implements, within the Quonto system,' techniques for the computation of the ABox
repair of a DL-Lite 4 knowledge base under the above semantics. QUAC constitutes
(to the best of our knowledge) the first implementation of a tractable ABox cleaning
algorithm for DL ontologies. Moreover, since Quonto delegates the management of
the ABox to a relational database system (DBMS), all modifications of the ABox are
delegated to the DBMS through SQL queries and updates. This potentially allows for
handling and cleaning very large ABoxes.

(2) We report on the experimental analysis that we are actually conducting using QUAC.
Our first results are allowing us to understand the actual impact, w.r.t. the efficiency of
ABox cleaning, of the different aspects involved in the computation of the ABox repair,
and the limits and possibilities of the approach implemented in QUAC.

The paper that is closer to our work is [3], which also presents a technique for ABox
cleaning in DL ontologies. However, there are two main differences with our approach:
(i) [3] considers the very expressive DL SHZAN , in which all the semantics considered
by our approach are intractable ([6]); (ii) the two approaches are based on different se-
mantics: in particular, the ABox cleaning algorithm of [3] computes a consistent subset
of the ABox which in general is uncomparable with the ABox repair defined by the
ITAR semantics (and the ICAR semantics).

The rest of the paper is organized as follows. In Section 2, we give some prelimi-
naries, and in particular we introduce DL-Lite 4 and the definition of the AR and the
ICAR semantics. In Section 3, we present detailed algorithms for ABox cleaning in
DL-Lite 4. In Section 4 we present the QUAC system and report on the experiments we
are currently conducting with QUAC. Finally, in Section 5 we conclude the paper.

2 Preliminaries

2.1 The DL DL-Lite o

In this paper we consider DL ontologies (knowledge bases) specified in DL-Lite 4, a
member of the DL-Lite family of tractable Description Logics [2, 1], which is at the
basis of OWL 2 QL, one of the profile of OWL 2, the official knowledge base speci-
fication language of the World-Wide-Web Consortium (W3C). DL-Lite 4 distinguishes
concepts from value-domains, which denote sets of (data) values, and roles from at-
tributes, which denote binary relations between objects and values. Concepts, roles,
attributes, and value-domains in this DL are formed according to the following syntax:

B— A | 3Q | §U) E — p(U)

C—B|-B F—Tp | T | - | Tn
Q—P| P V—U | -U
R—Q | -Q

In such rules, A, P, and U respectively denote an atomic concept (i.e., a concept name),
an atomic role (i.e., a role name), and an attribute name, P~ denotes the inverse of an
atomic role, whereas B and @ are called basic concept and basic role, respectively.

"http://www.dis.uniroma.it/ quonto
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Furthermore, §(U) denotes the domain of U, i.e., the set of objects that U relates to
values; p(U) denotes the range of U, i.e., the set of values that U relates to objects;
T p is the universal value-domain; 771, . . ., 7T;, are n pairwise disjoint unbounded value-
domains.

A DL-Lite 4 knowledge base (KB) is a pair K = (7, A), where 7 is the TBox and
A the ABox. The TBox 7 is a finite set of assertions of the form

BCC QCR ECF UCV (funct Q) (funct U)

From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact, in DL-Lite 4 TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). Let B; and Bs be basic concepts, and
let @1 and - be basic roles. We call positive inclusions (Pls) assertions of the form
B C By, and of the form Q1 = @2, whereas we call negative inclusions (NIs) asser-
tions of the form B; C =B and Q1 C —Q)s.

A DL-Lite 4 ABox A is a finite set of membership assertions (ABox assertions) of
the forms A(a), P(a,b), and U(a,v), where A, P, and U are as above, a and b belong
to I, the subset of I containing object constants, and v belongs to I'y,, the subset of
I'c containing value constants, where {Io, Iy} is a partition of .

The semantics of a DL-Lite 4 knowledge base is given in terms of first-order logic
(FOL) interpretations in the usual way. An interpretation Z satisfying a knowledge base
K a called a model for K. In the following Mod ({7, A)) will indicate the set of models
of the KB K = (7, A). A knowledge base K is satisfiable if it has at least a model,
otherwise it is called unsatisfiable. Given an assertion « (which is either a TBox or
ABox assertion), we write K = « if « is satisfied in every model for K.

Given a TBox 7 and an ABox A’, A’ is called a minimal conflict set for T if the KB
(T, A is unsatisfiable and, for every ABox A" such that A” C A’, the KB (7, A”)
is satisfiable. A minimal conflict set for 7 is called unary if its cardinality (that is, the
number of assertions it contains) is 1 and is called binary if its cardinality is 2.

2.2 Inconsistency-tolerant semantics for DLs

In this section we recall the inconsistency-tolerant semantics for general DL knowledge
bases defined in [4].2 We assume that, for a knowledge base K = (T, A), T is sat-
isfiable, whereas A may be inconsistent with 7, i.e., the set of models of K may be
empty.

AR-semantics The first notion of repair that we consider, called A R-repair, is a very
natural one: a repair is a maximal subset of the ABox that is consistent with the TBox.
Thus, an A R-repair is obtained by throwing away from .4 a minimal set of assertions
to make it consistent with 7.

Definition 1. Let K = (7, A) be a DL KB. An AR-repair of K is a set A’ of member-
ship assertions such that: (i)A’ C A; (ii) Mod({T , A")) # 0, (iii) there does not exist

2 Due to space limitations, we refer the reader to [4] for introductory examples illustrating these
semantics.
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A" such that A’ ¢ A” C A and Mod({T, A")) # 0. The set of AR-repairs for K is
denoted by AR-Rep(K). Moreover, we say that a first-order sentence ¢ is A R-entailed
by IC, written K \=ar ¢, if (T, A') = ¢ for every A’ € AR-Rep(K).

CAR-semantics We start by formally introducing a notion of “equivalence under con-
sistency” for inconsistent KBs.

Given a KB IC, let Sk denote the signature of KC, i.e., the set of concept, role,
and individual names occurring in K. Given a signature S, we denote with HB(S) the
Herbrand Base of S, i.e. the set of ABox assertions (ground atoms) that can be built
over the signature S. Then, given a KB K = (7, A), we define the consistent logical
consequences of K as the set clc(K) = {a | a € HB(Sk) and there exists A" C
A such that Mod((T, A')) # 0and (7, A’) E «}. Finally, we say that two KBs
(T,A) and (T, A’) are consistently equivalent (C-equivalent) if clc({(T,A)) =
cle({(T,A").

We argue that the notion of C-equivalence is very reasonable in settings in which
the ABox (or at least a part of it) has been “closed” (in a complete or partial way) with
respect to the TBox, e.g., when (some or all) the ABox assertions that are entailed by
the ABox and the TBox have been added to the original ABox. This may happen, for
example, when the ABox is obtained by integrating different (and locally consistent)
sources, since some of these sources might have been locally closed with respect to
some TBox axioms: this is very likely, for instance, if a source is an RDF graph with
RDEFS predicates, since many RDF systems materialize in the RDF graph the implicit
triples due to the RDFS predicates.

In settings where C-equivalence makes sense, the AR-semantics is not
suited to handle inconsistency. In fact, we would expect two C-equivalent
KBs to produce the same logical consequences under inconsistency-
tolerant semantics. Unfortunately, the AR-semantics does mnot have this

property. A simple example is the following: let 7 =  {student C
young, student T —worker} and let A = {student(mary), worker(mary)},
A" = {student(mary), worker(mary), young(mary)}. It is immediate to verify

that if ' = (T, A’), then cle(K) = cle(K') = A’, thus K and K’ are C-equivalent,
however K’ |=4r young(mary) while K|/=ar young(mary).

To overcome the above problem, the CAR-semantics has been defined in [4],
through a modification of the A R-semantics.’

Definition 2. Let K = (T, A) be a DL KB. A CAR-repair for K is a set A’ of member-
ship assertions such that A" is an AR-repair of (T ,clc(K)). The set of CAR-repairs
for K is denoted by CAR-Rep(T , A). Moreover, we say that a first-order sentence ¢ is
CAR-entailed by IC, written K =car ¢, if (T, A") | ¢ for every A’ € CAR-Rep(K).

Going back to the previous example, it is immediate to see that, since K and K’
are C-equivalent, the set of C'A R-repairs (and hence the set of C'AR-models) of K and
K’ coincide. As the above example shows, there are sentences entailed by a KB under
C'A R-semantics that are not entailed under A R-semantics. Conversely, it is shown in

? The definition provided here of the C'A R-semantics is a slight simplification of the one ap-
pearing in [4]: this modification, however, does not affect any of the computational results
presented in [4].
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[4] that the A R-semantics is a sound approximation of the C'A R-semantics, i.e., for
every KB K and every FOL sentence ¢, K |=4r ¢ implies K =car ¢.

IAR-semantics and ICAR-semantics We then recall the /A R-semantics and /CAR-
semantics, which are sound approximations of the AR-semantics and the CAR-
semantics, respectively [4].

Definition 3. Let K = (7, A) be a DL KB. Then: (i) The IAR-repair for K, denoted
by IAR-Rep(K) is defined as IAR-Rep(K) = (| g car-repcy A'- (i) The ICAR-repair
for K, denoted by ICAR-Rep(K) is defined as ICAR-Rep(K) = (1 grccar rep(ic) A - (iii)
We say that a first-order sentence ¢ is IAR-entailed (respectively, ICAR-entailed) by

K, and we write K |=1ar ¢ (respectively, K \=1car @), if (T,IAR-Rep(K)) = ¢
(respectively, (T ,ICAR-Rep(K)) = ¢).

Example 1. Let us consider the KB K = (7, A) where the TBox 7 is the following:
T={ACC,BCC,3RC B,3R C D, AC —B, (funct R)}

and the ABox A is A = {A(a), B(a),C(a), R(a,b)}. Such a KB is unsatisfiable, due
to the presence of the assertions A(a) and B(a) which violate the disjointness assertion
in 7. The following are the standard AR-repairs of .A:

Aar' ={B(a),C(a),R(a,b)}, Aagr®={A(a),C(a)}

Then, we have clc(A) = {A(a),B(a),C(a), R(a,b), D(a)}. Therefore, the CAR-
repair of A are as follows:

Acar' = {B(a),C(a),R(a,b), D(b)}, Acar® = {A(a),C(a),D(b)}
Consequently, the [AR-repair and ICAR-repair are the following:
Aiar = Aar' N Aar”® = {C(a)}, Arcar = Acar' N Acar” = {C(a),D(a)}

Example 2. One might conjecture that the /A R semantics collapses into a simple ABox
cleaning technique which deletes from the ABox all the assertions that participate in
conflicts with the TBox. This is actually not the case, because, as explained in [4], the
TA R-repair actually deletes only the assertions that participate in minimal conflict sets.
Here is an example: given the KB X = (T, A) with 7 = {AC - R, RC -R™},
A = {A(a), R(a,a)}, the IAR-repair of K is {A(a)}. That is, the assertion A(a)
belongs to the IAR-repair even if it participates in the conflict set {A(a), R(a,a)}
caused by the concept disjointness A =—3 R: the reason is that such a conflict set is
not minimal because of the unary conflict set { R(a, a)} caused by the role disjointness
RC-R™.

3 Algorithms for ABox cleaning
The technique for computing the ICAR-repair of a DL-Lite 4 ontology (7, A) is based

on the idea of deleting from A all the membership assertions participating in minimal
conflict sets for 7. As shown in [4], this task is relatively easy (in particular, tractable)

316



in DL-Lite 4 because the following property holds: for every DL-Lite 4 TBox 7, all the
minimal conflict sets for 7 are either unary conflict sets or binary conflict sets.

This property is actually crucial for tractability of reasoning under /AR and ICAR
semantics. As shown in [6] this property is not shared by other tractable DLs (e.g.£L | ),
in which the size of minimal conflict sets is not bound by a constant but depends on the
size of the ABox.

We now present detailed algorithms for computing the /A R-repair and the /CAR-
repair of a DL-Lite 4 ontology. These algorithms exploits the techniques presented in
[4], whose aim was only to provide PTIME upper bounds for the problem of computing
such repairs. In particular, the present algorithms specify efficient ways of detecting
minimal conflict sets and computing consistent logical consequences. Instead, the pre-
vious techniques check all unary and binary subsets of the ABox for these purposes.

In the following, we call annotated ABox assertion an expression £ of the form
{a,y ) where « is an ABox assertion and + is a value in the set {cons, ucs, bes}. Fur-
thermore, we call annotated ABox a set of annotated ABox assertions. The intuition
behind an annotated ABox assertion £ is that its annotation v expresses whether the
associated ABox expression « does not participate in any minimal conflict set (cons) or
participates in a unary conflict set (ucs) or to a binary conflict set (bcs).

The following algorithm QuAC-ICAR computes the ICAR-repair of a DL-Lite 5
KB. For ease of exposition, the algorithm does not report details on the treatment of
attributes, which are actually handled in a way analogous to roles.

Algorithm QuAC-ICAR(K)
input: DL-Litea KB K = (7, A), output: IC'A R-repair of K
begin
/I STEP 1: create annotated ABox A gnn
Amm - @;

for each o € Ado Aasnn = Aann U (e, cons);
/I STEP 2: detect unary conflict sets in Agpy,
for each concept name Ast. 7 = AC —Ado
for each £ = (A(a), cons) € Aann do Agnn = Aann — {€} U{{ A(a), ucs)};
for each role name Rs.t.7 = RC —-Rdo
for each f = (R(a, b), cons> S A(),'n,'n, do A(I,’N,’N, = -Arm,'n, - {‘5} U{< R(CL, b)a MCS>};
for each role name Rst. 7 = RC —-R  or7 =3RC—-3 R do
for each 5 = <R(a, CL)7 COI’!S> S Amm do Aann = Aann - {f} U{( R(a7 a)7 MCS)};
/I STEP 3: compute consistent logical consequences in Agn,
for each inclusion A C B with A, B atomic concepts such that 7 = A T B do
for each (A(a),7) € Aann such that v # ucs do Agnn = Aann U{{ B(a), cons)};
for each inclusion 3R C A with A atomic concept such that 7 |= IR C A do
for each (R(a,b),7) € Aann such that v # ucs do Aann = Aann U{{ A(a), cons)};
for each inclusion 3R~ C A with A atomic concept such that 7 = 3R~ C A do
for each (R(a,b),7) € Aann and v # ucs do Aann = Aann U { A(b), cons)};
for each inclusion R C S with R, S atomic roles such that 7 = R C S do
for each (R(a,b),7) € Aann and v # ucs do Agnn = Aann U { (S(a, ), cons)};
for each inclusion R~ C S with R, S atomic roles such that 7 = R~ C S do
for each (R(b,a),v) € Aann and v # ucs d0 Aann = Aann U { S(a, b), cons) };
/I STEP 4: detect binary conflict sets in Aqny,
for each disjointness A C —B with A, B atomic concepts
suchthat 7 = A C -B do
for each pair &1 = (A(a), 1), & = (B(a),12) € Aum

317



such that y1,v2 # ucs do
Aann = Aann — {&1, &2} U{( A(a), bes), (B(a), bes) };
for each disjointness A C—3 R with A atomic concept
suchthat 7 = A C—3 R do
for each pair 51 = <A(a)» 71>7 §2 = <R(a7 b)7 ’72> € -A/mm
such that y1,v2 # ucs do
Aun = Aunn — €1, €2} UL A(a), bes), (R(a,b), bes) )
for each disjointness A C—3 R~ with A atomic concept
suchthat 7 = A C—3 Rdo
for each pair &1 = (A(a), 1), & = (R(b,a),72) € At
such that y1, y2 # ucs do
Aann = Aann — {517 52} U{< A(a)7 bCS>, <R(b7 a)7 bCS)};
for each disjointness R C —S with R, .S atomic roles
suchthat 7 = R C —S do
for each pair & = (R(a,b),71),&2 = (S(a,b),72) € Abnn
such that y1,v2 # ucs do
Aann = Aann — {&1, &} U{( R(a,b), bes), (S(a,b), bes) }s
for each disjointness R = =S~ with R, .S atomic roles
suchthat 7 = RC =S~ do
for each pair & = (R(a,b),71), &2 = (S(b,a),72) € Al
such that 1, y2 # ucs
do Aunn = Aann — {&1, &2} U{{ R(a,b), bes), (S(b,a), bes) }s
for each functionality assertion (funct R) € 7 with R atomic role do
for each pair 51 = <R(a7 b)7 ry1>7 62 = <R(a7 C), ry2> € A/ann
such that b # c and 1,2 # ucs do
Aann = Aann — {&1, &2} U{( R(a,b), bes), (R(a, c), bes) }s
for each functionality assertion (funct R™) € 7 with R atomic role do
for each pair &1 = (R(b, a),71), &2 = (R(c,a),72) € Aunn
such that b # ¢ and 1, y2 # ucs do
Aann = Aann — {&1, &} U{( R(b, a), bes), (R(c, a), bes) }s
/I STEP 5: extract the ICAR repair from A qnr,
A =0,
for each («, cons) € Agnn do A" = A" U {a};
return A’
end

The algorithm QuAC-ICAR consists of five steps which can be informally described
as follows.

step 1 copy of A into an annotated ABox A, . In this step, the value of the annotation
is initialized to cons for all ABox assertions.

step 2 detection of the unary conflict sets in Agy,,. For every assertion of the form
& = (a, cons), such that {«} is a unary conflict set for 7, Aunn = Aann — {£} U
{{a, ucs)}, i.e., the annotation relative to « is changed to ucs. Unary conflict sets
are actually detected through TBox reasoning, by looking at empty concepts and
roles in 7, as well as asymmetric roles, i.e., roles disjoint with their inverse.

step 3 computation of the consistent logical consequences in A ., . Here, the task is to
compute all ABox assertions that are entailed by 7 together with any 7 -consistent
subset of \A. In DL-Lite 4, this actually corresponds to computing the ABox asser-
tions that are entailed by 7 together with the ABox obtained from .4 by deleting all
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unary conflict sets for 7. Hence, what the algorithms does is computing the ABox
assertions that are logical consequence of 7 and of the assertions of A, which
have not been annotated as unary conflict sets in the previous step.

step 4 detection of the binary conflict sets in Ay, . For every pair of assertions of the
form & = (a1,71), & = (aa,72) such that v; # ucs and v2 # ucs and {a,3 } is a
binary conflict set for 7, Aunn = Aann — {&1, &} U{{ , bes), (B, bes) }, ie., the
annotation relative to o and ( is changed to bcs. As in the case of unary conflict
sets, to find binary conflict sets the algorithm looks for disjoint concepts and roles
in 7, as well as functional roles.

step 5 extraction of the ICAR-repair from Ay, . The ICA R-repair can be now simply
extracted from the annotated ABox A, , by eliminating both unary conflict sets
and binary conflict sets. Therefore, for every assertion of the form («, cons) in
Aann, 0 is copied into the (non-annotated) ABox A’ which is finally returned by
the algorithm.

The algorithm QuAC-IAR is very similar to QuAC-ICAR: the only difference is that
it does not execute step 3, i.e., computation of consistent logical consequences. Cor-
rectness of the above algorithms can be proved starting from the results in [4].

Theorem 1. Let K be a DL-Litex KB and let A’ be the ABox returned by
QuAC-ICAR(K). Then, A’ = ICAR-Rep(KC). Moreover, let A" be the ABox returned
by QuAC-IAR(K). Then, A" = IAR-Rep(K).

4 Implementation and experiments

We have implemented the above algorithms QuAC-ICAR and QuAC-IAR within the
Quonto system, in a module called QUAC (the Quonto ABox Cleaner). Essentially,
QuUAC is a Java implementation of the above algorithms where operations on the in-
volved ABoxes are delegated to a relational database system (DBMS). In fact, in the
Quonto architecture, the management of the ABox is delegated to a DBMS: therefore,
all the operations on ABox assertions of the algorithms for computing repairs are exe-
cuted in QUAC by the DBMS used by Quonto, through appropriate SQL scripts.

We are currently experimenting QUAC in order to answer several open questions,
among which:

— the computational cost of the various steps of the algorithm QuAC-IAR and
QuAC-ICAR,

— the scalability of such algorithms;

— measuring the difference in terms of computational costs of the A R semantics and
the ICAR semantics;

— the impact of the “degree of inconsistency” of the ABox on the computational cost
of the algorithms.

The tables reported in Figure 1 and Figure 2 present some of the experimental results
that we have obtained so far. The TBox used in the experiments has 30 concept names,
20 role names, 10 attribute names, and about 200 TBox assertions. The various ABoxes
used have been automatically generated.
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The first table presents the experimental results for a version of Quonto that uses a
main memory database (H2) to handle the ABox, while the second table presents the
same results when Quonto uses a standard (disk-resident) database (PostgreSQL). The
results have been conducted on a Pentium i7 (2.67 GHz) CPU with 6GB RAM under
Windows 7 (64 bit) operating system. We have also executed the same tests using the
MySQL DBMS, with results analogous to those obtained with PostgreSQL.

In the tables, the first column reports the number of assertions in the ABox, while
the second column reports the percentage of ABox assertions that participate in minimal
conflict sets for the considered TBox. Moreover:

— A denotes the time to create the annotated ABox;

— AT denotes the time to detect unary and binary conflict sets;

- A§AR denotes the time to extract the A R-repair from the annotated ABox;

— ALPAR denotes the time to detect unary conflict sets, compute consistent logical
consequences and detect binary conflict sets;

— ALCAR denotes the time to extract the ICA R-repair from the annotated ABox;

— A!4E 5 the total time to compute the I4 R-repair, i.e., Ay + AIAR  AIAR,

— AICAE jg the total time to compute the /CA R-repair, i.e., Ay + AICAR + AICAR

— all times are expressed in milliseconds.

ABox size|% incons.|| A1 | A" | AzP A A7 Ag A
1,000 1% 188| 296 | 109 | 593 | 749 | 250 | 1,187
1,000 5% 188] 358 | 78 | 624 | 749 | 250 | 1,187
1,000 10% ||188] 296 | 94 | 578 | 749 | 266 | 1,203
3,000 1% 359| 670 | 251 [1,280| 1,997 | 266 | 2,622
3,000 5% 359( 795 | 234 [1,388] 1,997 | 251 | 2,607
3,000 10% |[359| 717 | 126 |1,202| 1,997 | 282 | 2,638
10,000 1% 515| 874 | 141 |1,530| 3,495 | 1,424 | 5434
10,000 5% 515 781 | 171 |1,467| 3,495 | 1,376 | 5,386
10,000 10% ||515] 982 | 172 [1,669| 3,495 | 1,156 | 5,166
30,000 1% 812(3,075| 422 (4,309|22,635| 3,559 {27,006
30,000 5% 812(3,355| 418 [4,585|22,635| 2,498 |25,945
30,000 10% ||812|3,417| 344 [4,573|22,635| 2,748 26,195

Fig. 1. Results for main memory database (H2)

The above experimental results show that:

(i) with both the main memory DB and the disk-resident DB, the computation of the
TAR-repair (A% column) seems really scalable, while the computation of the
ICAR-repair suffers from the additional step of computing logical consequences,
which is computationally very expensive: its cost actually dominates the cost of all
the other steps;

(ii) the percentage of inconsistency, i.e., the fraction of ABox assertions that participate
in minimal conflict sets, does not have a significant impact on the execution time of
both algorithms;
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[ABox size[% incons ]| A1 [AP7 AP ] AR | AR [ AR ATAR |

1,000 1% 718 | 516 | 5,117 |6351 | 1,358 | 6,314 | 7,672
1,000 5% 718 | 515 | 5258|6491 | 1,358 | 6,070 | 7428
1,000 10% 718 | 531 | 4,680 |5929| 1,358 | 5929 | 7,287
3,000 1% 1,840 | 688 | 5444|7972 | 4011 | 8,747 | 12,758
3,000 5% 1,840 | 750 5,366 | 7956 | 4011 | 7,317 | 11,328
3,000 10% 1,840 | 797 | 5304 | 7,941 | 4011 | 8,284 | 12,295
10,000 1% 5,850 |1,17110,235|17,256| 16,990 [19,115| 36,105
10,000 5% 5,850 |1,49910,297|17,646| 16,990 | 19,424 | 36,414
10,000 10% 5,850 [1,561] 9,923 |17,334]| 16,990 | 17,926| 34,916
30,000 1% 16,255|3,823|20,702(40,780(134,286| 65,959 (200,245
30,000 5% 16,255|4,790|20,999(42,044(134,286/61,170|195 456
30,000 10% (]16,255]5,539|20,281|42,075|134,286|63,736{198,022

Fig.2. Results for PostgreSQL

(iii) using the main memory DB, most of the computation time for the /A R-repair is
devoted to the detection of minimal conflict sets (i.e., AéAR); conversely, using the
disk-resident DB, a very large percentage of the execution time (always more than
80%) is devoted to the generation of the annotated ABox and to the extraction of
the JA R-repair. This is of course due to the fact that such steps require to create
and write a large number of records on the disk. On the other hand, RAM size is
a bottleneck for the main memory DB (we were not able to process ABoxes with
100,000 assertions).

5 Ongoing and future work

As above observed, most of the execution time of the algorithm QuAC-IAR using a disk-
resident DB is due to the creation of the annotated ABox (step 1) and to the creation
of the IA R-repair (step 5). Thus, avoiding these steps would dramatically improve the
efficiency of this algorithm.

To this aim, we observe that both the above steps could be completely skipped if the
database schema used for representing the ABox would present an additional attribute
for storing annotations in every relation (the usual DB representation of an ABox uses a
unary relation for every concept and a binary relation for every role). This corresponds
to the idea of directly using an annotated ABox instead of a standard ABox in the
system. In this case, the computation of the /A R-repair could only consist of the steps
2,3 and 4 of the algorithm QuAC-IAR. However, the choice of using an annotated ABox
instead of an ABox affects query answering, since the queries evaluated on an annotated
ABox should be able to filter out the assertions whose annotation is equal to cons.

We are currently experimenting whether this choice is actually feasible. Below we
present a table showing the evaluation time of four queries of increasing complexity
on the ABoxes considered in the previous section (in particular, the ABoxes with 5%
inconsistent assertions). We show the cost of both evaluating the query on the IAR-
repair (represented as a standard ABox) and directly on the annotated ABox (with the
further selection condition on the annotations).
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query ans.on| query ans.on |difference|difference
ABox size|query| IA R-repair |annotated ABox| (msec) (%)
(nsec) (nsec)
1,000 | ql 123,577 105,868 -17 -17%
1,000 | q2 216,740 226,750 10 4%
1,000 | q3 1,179,561 295275 -884 -299%
1,000 | q4 421,161 600,174 179 30%
3,000 [ ql 138,591 229,060 90 39%
3,000 | q2 210,581 355,716 145 41%
3,000 | g3 1,348,179 490,842 -857 -175%
3,000 | g4 507,396 653,685 146 22%
10,000 | ql 164,384 339,932 175 52%
10,000 | g2 267,172 499,696 232 47%
10,000 | q3 1,347,024 592 475 -754 -127%
10,000 | q4 491,612 664 465 172 26%
30,000 | ql 199417 724,521 525 72%
30,000 | q2 398,448 905,074 506 56%
30,000 | q3 1,519,493 944,726 -574 -61%
30,000 | q4 485,067 1,096,021 610 56%

These first experimental results show that, in Quonto, evaluating queries on the
annotated ABox often seems computationally not much harder (and sometimes even
easier) than evaluating them on the standard ABox. Therefore, a more detailed experi-
mental analysis is needed in order to understand the conditions under which it could be
convenient to only work with an annotated representation of the ABox.

Finally, it would be very interesting to compare the performance of QUAC with
a query rewriting approach. Indeed, techniques for the perfect rewriting of unions of
conjunctive queries over DL-Lite 4 KBs under both JAR and ICAR semantics have
been recently defined [5]. Such techniques are able to reduce query answering over a
KB K = (T, A) to answering a FOL query over the ABox .A. So, the ABox is not
repaired at all by this approach: rather, the ABox repair is virtually considered during
query answering through a suitable reformulation of the query. We plan to implement
such query rewriting techniques, with the aim of comparing such an approach with the
approach of QUAC.
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Abstract. In this paper, we present a reasoner capable of epistemic
inferences in SROZQ knowledge bases. We first identify some counter
intuitive effects of imposing the traditional semantics in epistemic exten-
sions of expressive description logics (DLs). Thus, we provide a revised
downward compatible semantics with a more intuitive behavior in such
cases. Based on the new semantics, we present a reduction method for
epistemic queries to standard DL reasoning. This enables us to deploy
state-of-the-art DL reasoners for such non-standard inferences. Addi-
tionally, we provide an implementation of our approach and present first
evaluation results.

1 Introduction

In the early 1980s, Hector J. Levesque questioned the adequateness of
the query language in knowledge formalisms [6]. He proposed the idea
of embedding the epistemic operator K into a query language, thereby
achieving the capabilities of knowledge base introspection. A similar line
of research was initiated by R. Reiter in the context of databases [9].
Due to the extended reasoning capabilities, epistemic extensions have also
been investigated (cf. e.g. [3,2,4]) in the context of Description Logics
(DLs, cf. [1]).

To see the usefulness of the K operator for epistemic querying, con-
sider the following example. Assume we want to query for “known white
wines that are not known to be produced in a French region” which can
be solved by performing instance retrieval w.r.t. the epistemic DL concept
K White Wine - IKlocatedIn.{FrenchRegion }. This query will not only retrieve
the wines that are explicitly excluded from being French wines but also
those for which there is just no evidence that they are French (neither
directly nor indirectly via deduction). For a knowledge base containing
{ White Wme(MountadamRiesling), located]n(MountadamRieslmg, AustmlianRegz’on)}
as a subset, the query would yield MountadamRiesling as a result, whereas
the same query without epistemic operators would produce an empty re-
sult. Moreover, by adding additional information such as MountadamRiesling
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being located in a French region, the answer to the epistemic query would
also become empty, which illustrates that introducing the epistemic op-
erator into a logic brings about non-monotonicity.

Another typical use case for epistemic querying is integrity constraint
checking: testing whether the axiom

KWine C dKhasSugar.{Dry} LI AKhasSugar.{ OffDry} LI AKhasSugar.{ Sweet}

is entailed allows to check whether for every named individual in the
knowledge base that is known to be a wine it is also known (i.e. it can
be logically derived from the ontology) what degree of sugar it has. Note
that this cannot be taken for granted even if Wine T JhasSugar.{Dry} LI
JhasSugar.{ OffDry} L FhasSugar.{ Sweet} is stated in (or can be derived from)
the ontology.

These examples illustrate an obvious added value of epistemic ex-
tensions of description logics in practical applications. However former
research — focused on extending tableaux algorithms for less expressive
languages — has not paced up with the development of reasoners for very
expressive DLs. In fact, as we will discuss in the course of this paper,
some expressive features like nominal concepts require special care when
combined with the idea of introspection by epistemic operators.

This paper investigates the epistemic extension of the very expres-
sive DL SROZQ [5]. When applying a semantics along the lines of [4] to
SROIQ we observe effects that clearly contradict natural requirements
for epistemic reasoning (that we call backward compatibility). This di-
rectly leads to the question for an altered semantics that “behaves well”
also for SROZQ. We introduce such a semantics and show that it com-
plies with the proposed requirements. With the more adequate semantics
at hand, we then turn to the question of efficient algorithms for the specific
problem of answering queries to classical (i.e., K-free) SROZQ ontolo-
gies. We solve this problem by providing a sound and complete reduction
from epistemic querying to standard DL reasoning; our approach reduces
occurrences of the K operator to intermediate calls to a standard DL rea-
soner. Employing this technique, existing reasoners for non-epistemic DLs
can be reused in a black-box fashion for the task of answering epistemic
queries. Based on this algorithm, we implemented a reasoner capable of
answering epistemic queries to SROZQ knowledge bases. For the com-
plete proofs and technical details, we refer the interested reader to the
accompanying technical report [7].
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2 Epistemic DLs and the Classical Semantics

We consider SROZQ as the underlying DL (for details see [5] ). The ex-
tension of SROZQ with the epistemic operator K, denoted by SROZQOK,
allows K to appear in front of concept or role expressions. We call a
SROIZQK-role an epistemic role if K occurs in it. An epistemic role is
simple if it is of the form KS where § is a simple SROZQ-role.
Following the way epistemic semantics for DLs have been hitherto
defined (see, e.g., [4] ), the classical semantics of SROZQK is given as
possible world semantics in terms of epistemic interpretations. Thereby
the following two central assumptions are made. (1) Common Domain
Assumption: all interpretations are defined over a fixed countably infinite
domain A. (2) Rigid Term Assumption: for all interpretations, the map-
ping from individuals to domains elements is fixed (it is just the identity
function). Due to these assumptions, we can w.l.o.g. stipulate A := NjUN.
Essentially, these assumptions are imposed in order to ensure that (sets
of) domain elements can be referred to and dealt with uniformly in a
cross-domain manner.
Next, we provide the definition of epistemic interpretations. The main
difference to the non-epistemic case, is that we provide a “context” of rel-
evant models which are inspected whenever the extension of an epistemic
concept or role is to be determined.

Definition 1. An epistemic interpretation for SROZQK is a pair (Z, W)
where 7 is a SROZQ-interpretation and W is a set of SROZ Q-interpre-
tations, where 7 and all of W have the same infinite domain A with
N; C A. The interpretation function -2 is then defined as follows:

atW = q for a € Ny
XW=XT for X € NoUNrU{T, 1}
{al,..., an}ZW = {Cll,---a an}
(KO =, W (CTY)  (KRYPW =, (RTM)
(C M D)YEW = CTWN DV (C' U D)PW = CTWy DEW
(—C)ZW = A\ cTwW
(3R.Self) 2V = {z | (x,x) € REW}
(AR.C)YEW = {z | Jy.(z,y) € REW Ay € CTWV}
(VR.C)PW = {z | Yy.(x,y) € REW — y € CTWV}
(<nR.C)PW = {x | #{y € CPV | (x,y) € RPV} <n}
(>nR.C)PW = {z | #{y € CTW | (z,y) € REW} > n}

where C' and D are SROZOK-concepts and R is a SROZOK-role.
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From the above, one can see that KC'is interpreted as the set of objects
that are in the extension of C' under every interpretation in WW. This also
makes clear why the common domain and rigid term assumption have
to be imposed; otherwise the respective extension intersections would be
empty. Note that the rigid term assumption implies the unique name
assumption (UNA), i.e., for any epistemic interpretation Z € W and for
any two distinct individual names a and b, we have that a # b”.

The notions of knowledge base, TBox, RBox and Abox, their respec-
tive axioms, and their interpretations can be extended from SROZQ to
SROIOQK in the obvious way.

An epistemic model for a SROZQK-knowledge base X' is a mazimal
non-empty set W of SROZ Q-interpretations such that (Z, W) satisfies X
for each Z € W. A SROTZQK-knowledge base X is said to be satisfiable if
it has an epistemic model. The knowledge base X (epistemically) entails
an axiom « (written X |= «), if for every epistemic model W of X, we
have that for each Z € W, the epistemic interpretation (Z, V) satisfies a.
By definition, every SROZQ-knowledge base is a SROZQK-knowledge
base. Note that a given SROZ Q-knowledge base X' has up to isomorphism
only one unique epistemic model which is the set of all models of 2 having
infinite domain and satisfying the unique name assumption. We denote

this model by M(X).

3 Problems with the Classical Semantics

Following the intuition that led to the introduction of the K operator as
an extension of K-free standard DL reasoning, a rather intuitive basic
requirement to an epistemic DL semantics is arguably the following.

Definition 2. For a given DL £, an epistemic DL semantics represented
by an entailment relation ke is called L-backward-compatible if it coincides
with the (non-epistemic) standard semantics (represented by =) on non-
epistemic axioms, i.e. for an £ knowledge base J' and an £ axiom « both
of which not containing K, we have X' k& a exactly if X' = a. Moreover, K
is called L£-UNA-backward-compatible, if ¥ k& a exactly if X' = « under
the unique name assumption. O

We can show that |= is SRZQ\U-UNA-backward-compatible, where
SRZQ\U denotes the description logic SROZQ without nominal con-
cepts and the universal role. The main ingredient for this is the insight
that for any finite interpretation of a given SRZQ\U knowledge base, we
can come up with an infinite interpretation such that both interpretations
behave in exactly the same way in terms of satisfaction of axioms.
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Lemma 3. Let X be a SRIQ\U knowledge base. For any interpreta-
tion T there is an interpretation I, with infinite domain such that T =
Y if and only if T, = X.

As a consequence, the restriction to infinite models imposed by the
common domain assumption turns out to be not essential in the case
of SRZQ\U. However, this situation changes drastically once nominals
or the universal role are involved. To see this, consider the axioms T C
{a,b,c} or T C <3U.T. Each of these axioms considered as a knowl-
edge base X' has only models with at most three elements. Consequently,
in both cases we have that Y is unsatisfiable w.r.t. the classical epis-
temic semantics and consequently by ex falso quodlibet we, e.g., obtain
Y |E T C L whereas we clearly have X £ T C L even under the UNA.
So we conclude that | is not UNA-backward-compatible for any descrip-
tion logic that features nominals or simultaneously number restrictions
and the universal role; in particular, it is not SROZQ-UNA-backward-
compatible.

While the imposed UNA may be a deliberate decision, we believe that
non-SROZQ-UNA-backward-compatibility of classical epistemic entail-
ment is not intended but rather a side effect of a semantics crafted for
and probed against less expressive description logics; it contradicts the
intuition behind the K operator. This motivates our quest for a more
appropriate, “domain-flexible” epistemic semantics. In [8], another ap-
proach, based on first-order logic (FOL), has been presented which cir-
cumvents the described problem by treating the equality as a congruence
relation with minimized extension. However, the solution we present is
closer to the original DL setting as it extends the standard definition of
DL interpretations.

4 A Revisited Semantics

In order to allow for the necessary flexibility, we need to relinquish the
common domain assumption and the rigid term assumption in the epis-
temic semantics: The domains we consider in the possible worlds should
be allowed to have arbitrary (yet non-empty) size and be composed of
arbitrary elements. An individual name may refer to different elements in
different possible worlds. Also, individuals denoted by different individual
names may coincide in some worlds but not in others.

Still, due to the reasons discussed before, we have to find a substi-
tute for the common domain and rigid term assumptions as otherwise,
every epistemic role or concept would have the empty set as extension.
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We solve the problem by introducing one abstraction layer that assigns
abstract individual names to domain elements. These abstract individual
names are elements from N;UN and hence common to all interpretations,
thus they can serve as the “common ground” for different interpretations
with different domains. We require that every domain element is associ-
ated with at least one abstract name, however, we also allow for different
names denoting the same domain element (thus allowing for the possibil-
ity of finite domains). This intuition leads to the definition of extended
interpretations.

Thereby, an extended SROZLQ-interpretation J is a tuple (A, -7, 5)
such that

— (Ajy,-7) is a standard DL interpretation,
— ¢5: NTUN — A? is a surjective function from N7 UN onto A%, such
that for all a € N; we have that ¢5(a) = a”.

Note that the function ¢ returns the actual interpretation of an indi-
vidual, given its (abstract) name, under the interpretation J. We lift ¢5 to
sets of names and let ¢3! denote the corresponding inverse. Based on the
notion of extended interpretations, we define an extended epistemic inter-
pretation for SROZQK as a pair (J,20), where J is an extended SROZ Q-
interpretation and 20 is a set of extended SROZ Q-interpretations. Sim-
ilar to epistemic interpretations, we define an extended interpretation

function ->¥ as T in Definition 1 with the following modifications:

(KO = 5 (Nyea €3 (Cf 7))
(KR = 03 (Nyea 3 ' (RYY))

Again, we set [(KR)™]J%¥ := (KR™)¥¥ for an epistemic role (KR)~

The semantics of TBox, RBox and ABox axioms follows exactly that
for the classical semantics. Here, instead of |=, we use the symbol |5
where e indicates that the relation is w.r.t. the extended semantics.

Like in case of the traditional (epistemic) semantics, we can define
the notions of extended epistemic modelhood and the satisfiability of a
SROZQOK-knowledge base by considering extended interpretations in-
stead of the standard DL interpretations. Similarly, the entailment (under
the new semantics) of an axiom from a knowledge base can be defined.

We now first note that the newly established semantics has the desired
compatibility property.

Theorem 4. | is SROZQ-backward-compatible.
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Proof sketch: First note that every satisfiable K-free knowledge base X
has exactly one extended epistemic model

m(2> = {(Aja'ja 903) | (A37'5) |: 2p = 'j|NI U f:fN_»Aﬂ}

Hence we have X | a exactly if every J € M(X) satisfies «, which
(presuming « being K-free) is the case exactly if X | a. O

Consequently, this new semantics is more adequate for very expressive
DLs such as SROZQ. Yet, as will be shown later in the paper, it is also
generic in the sense that for SRZQ\U knowledge bases it behaves similar
to the (classical) epistemic interpretation introduced earlier. With this
new semantics, we avoid the aforementioned problems arising from nomi-
nals and the universal role in the language of a knowledge base. Arguably,
this makes the revisited semantics a more suitable and appropriate choice
for K-extensions of expressive description logics, like SROZQK.

5 Reducing Epistemic Querying to Standard DL
Reasoning

We next introduce a novel technique for answering epistemic queries to
SROIQ knowledge bases under the revised semantics. More precisely, we
provide a way of checking whether a given knowledge base entails concept
assertions, role assertions or concept subsumptions where the involved
concepts and roles may contain K. Our method reduces this problem to
a number of iterative entailment checks for K-free axioms. To justify the
translation, we establish two lemmata (c.f., Lemma 25 and Lemma 27
in the technical report) that characterize possible instances of epistemic
concepts and roles, respectively. The idea is that the extension of a con-
cept that is preceded by K can only contain named individuals unless it
comprises the whole domain. For roles we get a more intricate case dis-
tinction, however, it boils down to characterizing the set of “(inverse) role
neighbors” of a fixed individual as the whole domain or a set of named
individuals. As an “exceptional case” to this, we might get the diagonal
of A7 x A7 as additional instances of an epistemic role.

Based on these characteristics of epistemic concepts and roles, we
present a translation of epistemic concept expressions into equivalent K-
free ones. Note that the translation itself requires to check entailment of
(K-free) axioms, hence it is not strictly syntactical and it depends on the
underlying knowledge base.

Definition 5. (Translation Function [-]x)
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Let X be a SROZQ-knowledge base. For a SROZQ concept A and
a SROZQ role R, let trgg’R denote the nominal concept {ai,...,an}
containing all a; for which X' = A C 3R.{a;} and let trgg’R = 1 if there

are no such a;. We recursively define the function [-] » mapping SROZQOK
concept expressions to SROZQ concept expressions:

[Cls=C if C'is from N;yU{ T, L}, a nominal,
or a K-free self concept;

[[Cl [l Cz]]z = [[01]]2 r [[CQ]]Z
[[C1 ] CQ]]E = [[Cl]]z,‘ U [[CQ]]ZJ
[-Clz =-[C]s

[ER.D]s = ZR.[D]= for £ € {¥Y3,>2n,<n}, R K-free
T f YE[D]s=T
[KD]» = {{a € Nr | Y E[D]=(a)} otherwise
[3KSSelf] s = [K3S.Self] =
[EKR.D]x = ER.[D]x for =€ {Y3,>2n,<n} and ¥ = R=U

[VKP.D]x = —[3KP.~D] s
[BKP.D]s = 3P.(trg,” M [D]s) U (trgy” M3P[D]x)
U wen, {a} M 3P (g7 N [D]5)) U [D]s
N——

only if Z|=TLC3P.Self
[<nKP.D]s = -[>(n+1)KP.D] s

[>nKP.D]s = >nP.(trg;” N [D]s) U (trg’” M >nP.[D]s)

Ul aen, ({a} N =nP.(trglth " N [D]s}))
U (={a | aeN;} N [D]s N =(n—1)P.(trg" M [D]x))

only if X|=TLC3P.Self O

Observe that by definition, the result of applying this function to an
epistemic concept indeed yields a concept not containing K. Moreover the
following lemma, which can be proved by structural induction over the
concept expression, ensures that the translation function preserves the
concept extension.

Lemma 6. Let X be a SROZQ-knowledge base and C be a SROZOK

concept. Then for any extended interpretation J € IM(X), we have that
CIM(E) — [[C]]EIEW(E)_

Consequently this lemma can be employed to prove our main result
justifying our approach of deciding entailment of epistemic axioms based
on non-epistemic standard reasoning.

Theorem 7. For a SROZQ-knowledge base Y, SROZOK concept C,
D, and an individual a, the following hold:
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1. X |EC(a) if and only if X = [C]s(a).
2. X|ECCED if and only if ¥ = [C]s C [D]s.

Finally, we are also able to establish the correspondence that the classical
and the newly introduced semantics coincide, as far as epistemic querying
on SRZQ\U knowledge bases is concerned. This result further substan-
tiates our claim that our semantics is a natural extension of the original
intuition behind epistemic DLs.

Theorem 8. Let X' be a SRZQ\U knowledge base, C' and D SROZQK

concepts, and a an individual name. Then, the following hold:

1. ¥ | C(a) under the unique name assumption if and only if X |=
C(a).

2. X |EC C D under the unique name assumption if and only if X |
CCD.

This can be proved by providing a transformation function similar to
[-]s for the classical semantics, proving its correctness and showing that
it coincides with [-]x on SRZQ\U knowledge bases.

6 A System

Based on the results established in the preceding section, we have imple-
mented a preliminary prototype. The system takes an epistemic concept
as input and translates it into an equivalent non-epistemic one according
to Definition 5. A detailed system description is provided in the techni-
cal report. A running system has been uploaded and shared on google-
code!. For the purpose of testing, we consider two versions of the wine
ontology? with 483 and 1127 individuals. As a measure, we consider the
translation time of an epistemic concept to a non-epistemic equivalent
one and the instance retrieval time of the translated concept. We con-
sider different epistemic concepts. For each such concept C, we consider
a non-epistemic concept obtained from C by dropping the K-operators
from it (see Table 1). Given a concept C, t() and [C;| represent the
time in seconds required to compute the instances and the number of
instances computed for C;. Finally for an epistemic concept ECy, tt(gc,)
represents the time required to translate EC; to its non-epistemic equiv-
alent. Table 2 provides our evaluation results. From Table 2, the time

! http://code.google.com /p/epistemicdl/
% http://www.w3.org/ TR /owl-guide/wine.rdf
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Table 1. Concepts used for instance retrieval experiments.

C |FhasWineDescriptor. WineDescriptor

EC1FKhasWineDescriptor.K WineDescriptor

Cy |VYhasWineDescriptor. WineDescriptor

ECyVKhasWineDescriptor.K WineDescriptor

Cs |3hasWineDescriptor. WineDescriptor M AmadeFromFruit. WineGrape
ECs3IKhasWineDescriptor.K WineDescriptor M dKmadeFromFruit. K WineGrape

Cy | White Wine M — JocatedIn.{ FrenchRegion}

EC4 K White Wine M — KlocatedIn.{ FrenchRegion}

Cs | Wine M = hasSugar.{ Dry} M = FhasSugar.{ Off Dry} N = ThasSugar.{ Sweet}

ECH KWine M — KhasSugar.{ Dry} N = KhasSugar.{ Off Dry} M ~K3hasSugar.{ Sweet}

Table 2. Evaluation

[Ontology[| Concept [ tc,) | [Ci| || Concept [ trzc,) | twey [ 1ECH |

Ch 2.13 159 EC, 46.98 0.04 3
Wine 1 Co 0.01 483 EC, 0.18 0.00 0
Cs 28.90 159 ECs 79.43 6.52 3
Cy 0.13 0 EC, 95.60 107.82 72
Cs 52.23 80 ECs 60.78 330.49 119
C 8.51 371 EC, 351.78 0.13 308
Wine 2 Co 0.30 1127 EC, 0.127 0.00 0
Cs 227.10 | 371 ECs 641.24 19.58 7
Cy 0.34 0 ECy 865.04 840.97 168
Cs 295.87 | 240 ECs 381.41 | 2417.65 331

required to compute the number of instances is feasible; it is roughly in
the same order of magnitude as for non-epistemic concepts. Note also that
the runtime comparison between epistemic concepts EC; and their non-
epistemic counterparts C; should be taken with a grain of salt as they are
semantically different in general, as also indicated by the fact that there
are cases where retrieval for the epistemic concept takes less time than
for the non-epistemic version. As a general observation, we noticed that
instances retrieval for an epistemic concept where a K-operator occurs
within the scope of a negation, tends to require much time.

7 Conclusion and Outlook

We argued how the traditional semantics for epistemic DLs causes prob-
lems and thus suggested a revision to the semantics. We proved that
this revised semantics solves the aforementioned problem while coinciding
with the traditional semantics on less expressive DLs (up to SRZQ\U).
Focusing on the new semantics, we provided a way of answering epistemic
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queries to SROZQ knowledge bases via a reduction to a series of stan-
dard reasoning steps. Finally, we presented an implementation allowing
for epistemic querying in SROZQ.

Avenues for future research include the following: First, we will inves-
tigate to what extent the methods described here can be employed for
entailment checks on SROZOK knowledge bases, i.e., in cases where K
occurs inside the knowledge base. In that case, stronger non-monotonic
effects occur and the unique-epistemic-model property is generally lost.
On the more practical side, we aim at further developing our initial pro-
totype. We are confident that by applying appropriate optimizations such
as caching strategies and syntactic query preprocessing a significant im-
provement in terms of runtime can be achieved. In the long run, we aim
at demonstrating the added value of epistemic querying by providing an
appropriate user-front-end and performing user studies. Furthermore, we
will propose an extension of the current OWL standard by epistemic con-
structs in order to provide a common ground for future applications.
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Implementing completion-based inferences for
the £L-family

Julian Mendez and Andreas Ecke and Anni-Yasmin Turhan
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Abstract. Completion algorithms for subsumption are investigated for
many extensions of the description logic ££. While for several of them
subsumption is tractable, this is no longer the case, if inverse roles are
admitted. In this paper we present an optimized version of the comple-
tion algorithm for ELHZ fr+ [11], which is implemented in JCEL. The
completion sets computed during classification are a good substrate for
implementing other reasoning services such as generalizations. We re-
port on an extension of JCEL that computes role-depth bounded least
common subsumers and most specific concepts based on completion sets.

1 Introduction

The lightweight Description Logic (DL) ££ and many of its extensions enjoy the
nice property that computing concept subsumption and classification of ontolo-
gies written in these Description Logics is tractable [1]. Prominent bio-medical
ontologies are expressed in extensions of £L for which reasoning can still be done
in polynomial time. The Gene ontology (GO) is an £LH ontology and SNOMED
is written in ££7. However, the GALEN ontology uses the DL ELHZ fzr+—a DL
with inverse roles, which are known to make subsumption w.r.t. general ontolo-
gies EXPTIME-complete [2]. While the polynomial time completion algorithms
work on graph structures that are static and have simple labellings, the algo-
rithm for £LT requires dynamic nodes sets and uses complex labels. In [11] a
completion algorithm for ELHZ fr+ has been devised. Since the node set gen-
erated by this method can grow exponentially, it is important to use a good
completion strategy, that determines the next node label to which a completion
rules is applicable. We present in this paper an optimized version of the algo-
rithm for ELHT fr+ with such a completion strategy, which is implemented in
the reasoner JCEL.

Recently, the completion sets computed during classification have been em-
ployed to compute (approximations for) generalization inferences such as the
least common subsumer (Ics) or most specific concept (msc). The lcs generalizes
a collection of concept descriptions into a single concept description that is the
least w.r.t. subsumption. The msc generalizes a description of an individual into
a concept description. Intuitively, the msc delivers the most specific concept de-
scription that the input individual belongs to. Both of these services are useful
for the building of knowledge bases. In the bio-medical field in particular the lcs
is employed to define similarity measures between concept descriptions. Since for
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H Syntax ‘ Semantics ‘

conjunction cnc ctnD*

existential restr.]| 3Ir.C | {d € AT |3e € AT : (d,e) e rT Ne € CT}
role inclusion rCs ey

functional role f(r) |[Vdi € Az:]{ds€ Az | (d1,d2) €77} [ <1
inverse role r- {(d1,d2) € AT x AT | (da,dy) € T}
transitive role  |[ror Cr| {(d1,ds),(d2,d3)} C 1% — (d1,d3) C ¥

Table 1. ELHT fr+-concept and role constructors.

general £L-TBoxes neither the lcs nor the msc need to exist, an algorithm for
role-depth bounded lcs and -msc was devised in [8]. These algorithms are now
implemented for £LH on top of JCEL.

2 Preliminaries

Starting from two disjoint sets N¢ and Ngr of concept and role names, respec-
tively, ELHL fr+-concept descriptions are built using concept and role construc-
tors shown in Table 1 and the top-concept (T). The DL EL is the ELHT fr+-
fragment that only allows for the concept constructors conjunction and existen-
tial restrictions. £ELH extends £L by role inclusion statements.

The semantics of ELHT fr+ is defined by interpretations Z = (AZ,-Z) con-
sisting of a non-empty domain AT and an interpretation function -I that assigns
binary relations on A% to role names and subsets of A to concepts. The in-
terpretation function is extended to complex concept descriptions and roles as
described in the last column of Table 1.

A TBox is a set of concept inclusion axioms of the form C T D, where
C, D are concept descriptions. An interpretation Z satisfies the concept inclusion
C C D, denoted as Z = C C D iff CT C DT. T is a model of a TBox T if it
satisfies all axioms in 7. A concept C is subsumed by a concept D w.r.t. T
(denoted C C+ D) if, for every model Z of T it holds that Z = C C D.

Let Nj be a set of individual names. An ££-ABoz is a set of assertions of the
form C(a),r(a,b), where C is an £L-concept description, r € Ng, and a,b € N;.
A knowledge base K = (T,.A) consists of a TBox 7 and an ABox A.

Finally, an individual a € N; is an instance of a concept description C' w.r.t.
K (written K = C(a)) if Z = C(a) for all models Z of K. ABoz realization is to
compute for each individual a in A the set of named concepts from C that have
a as an instance.

3 Completion algorithm for ELHT fr+

Classification of TBoxes is the computation of all subsumption relations between
all named concepts of a TBox. For several extensions of £L£ classification can be
performed in polynomial time [1,2]. These classification algorithms typically
proceed in three steps:
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NR-1 c=D ~ CCD,DCC
NR-2 Cim---1CM---MNC,ED ~ CCAC---MAM---MCr T D
NR-3 I CCD ~ CCAI.ACD
NR-4 CC¥'.D ~ CCAACH.D
NR-5 BC3'.C ~ BCI.AACC
NR-6 DCCinCy ~ DEC,,DCC,
NR-7 CCIr .D ~ CCTuD,uCr ,r Cu
NR-8 I~ CCED ~ FuCCDulr,r Cu
where 7:role; r': (inverse) role; C, C;, D: concept descriptions;
C , D: complex concept descriptions;  B: concept name;
A: fresh concept name; wu: fresh role name.

Table 2. Normalization rules.

1. normalization of the TBox
2. apply completion rules to the completion graph
3. read off subsumptions relations from the saturated completion graph

The basic completion algorithm represents the completion graph by two kinds
of completion sets: S(C) and S(C,r) for each concept name C and role name
r from the TBox. The sets contain concept names from the TBox and T .
The sets S(C') represent the labelled nodes, while the sets S(C,r) represent the
edges of the completion graph. The idea of the classification algorithm is that
completion rules make implicit subsumption relationships explicit. In fact, the
following invariants hold:

— D € S(C) implies that C Ty D,
— D € S(C,r) implies that C T 3r.D.

For extensions of £L£ that also offer inverse roles, testing subsumption is not
polynomial, but it is EXpTIME-complete [2]. In [11] Vu has devised a completion
algorithm for ELHT fr+ (and some of its sublanguages). In contrast to the basic
completion algorithm, this one works on completion graphs with more complex
nodes. Moreover, the set of nodes grows dynamically during completion. We
describe now an optimized version of Vu’s algorithm given in [7].

Normalization. An ELHT fr+-TBox T is in normal form if all concept inclu-
sions have one of the following forms, where A;, Ay, B are concept names:
AlgB, Alﬂ...ﬂAnEB, A1EE|T.A2 or HTAlgB

Each ELHZ fr+-TBox can be transformed into this normal form by applying
the rules shown Table 2, where the axioms on the left-hand side are replaced by
the axiom(s) on the right-hand side. The implicit information on (functional)
roles is made explicit by applying the following saturation rules to the TBox:
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rcCs ~ r- Cs™ rCs,sCt ~ rCt
rorCr ~ r-or- Cor™ rCs, f(s) ~ f(r)

In addition, auxiliary role names are added to Ng to allow a mapping where each
role s has an inverse role 7~ such that s = r~. In this way, the algorithm applies
the completion rules to role names and inverse roles.

Completion rules. Once the TBox is normalized and saturated, the com-
pletion sets are initialized and the completion rules are applied. Based on the
two sets = := {Ir.A | r € Ng, A € Nc} and 2 := {(A,0) | A 