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1 Introduction

In some knowledge domains, a correct handling of vagueness and imprecision is
fundamental for adequate knowledge representation and reasoning. For example,
when trying to diagnose a disease, medical experts need to confront symptoms
described by the patient, which are by definition subjective, and hence vague.
Moreover, a single malady may present a diversity of clinical manifestations in
different patients, which leads to imprecise (partial) diagnoses.

Fuzzy logic [15] is a prominent approach for dealing with imprecise knowl-
edge. It is based on the notion of fuzzy sets [25], where elements are assigned
a membership degree from the real interval [0, 1]. So-called t-norms are used
to define the interpretation of the logical connectives. The notion of member-
ship degrees and the operators used can be generalized to lattices, giving rise to
L-fuzzy sets [13] and lattice-based t-norms [26, 12].

During the last two decades, several fuzzy DLs have been defined by enriching
classical DLs first with fuzzy set semantics [24, 20, 19] and then t-norms [16,
7, 11]. Attempts have also been made at using L-fuzzy set semantics [21, 17].
However, all these approaches either disregard the terminological knowledge, or
allow only for a limited class of TBoxes. In fact, it is still unknown whether
standard reasoning in fuzzy DLs with general TBoxes is decidable [5, 3]. To the
best of our knowledge, the only approaches capable of dealing with full fuzzy
TBoxes are based on a finite total order with the  Lukasiewicz t-norm [6, 8] or
finite De Morgan lattices with the minimum t-norm [9].

In this paper we introduce the lattice-based fuzzy DL ALCL, where L is
a complete De Morgan lattice equipped with a t-norm operator. We show that
satisfiability in this logic is undecidable if L is infinite. Undecidability holds even
if L is a countable, residuated total order. On the other hand, if L is finite, then
satisfiability becomes decidable and, under some conditions on the lattice and
the t-norm, ExpTime-complete, i.e. not harder than satisfiability in crisp ALC.

Our reasoning procedure is in fact general enough to handle any kind of
truth-functional semantics, as long as the functions defining the connectives are
computable.

2 Lattices

We now give a brief introduction to lattices and t-norms. For a more compre-
hensive description of these notions, see e.g. [14, 12].
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Fig. 1. The De Morgan lattice L2 with ∼ `a = `a and ∼ `b = `b. This lattice was first
considered by Belnap [4] for reasoning with incomplete and inconsistent knowledge.

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with two
binary operations supremum ∨ and infimum ∧ that are idempotent, associative,
and commutative and satisfy the absorption laws ` ∨ (` ∧m) = ` = ` ∧ (` ∨m)
for all `,m ∈ L. The order ≤ on L is defined by ` ≤ m iff ` ∧ m = ` for all
`,m ∈ L. A lattice is distributive if ∨ and ∧ distribute over each other, finite if
L is finite, and bounded if it has a minimum and a maximum element, denoted
as 0 and 1, respectively. It is complete if suprema and infima of arbitrary subsets
T ⊆ L exist; these are denoted by

∨
t∈T t and

∧
t∈T t, respectively. Notice that

every finite lattice is also bounded and complete. Whenever it is clear from the
context, we will simply use the carrier set L to represent the lattice (L,∨,∧).

A De Morgan lattice is a bounded distributive lattice extended with an in-
volutive and anti-monotonic unary operation ∼, called (De Morgan) negation,
satisfying the De Morgan laws ∼(`∨m) = ∼ `∧∼m and ∼(`∧m) = ∼ `∨∼m
for all `,m ∈ L. Figure 1 shows a simple De Morgan lattice.

In fuzzy logics, conjunctions and disjunctions are interpreted with the help
of t-norms and t-conorms. Given a De Morgan lattice L, a t-norm on L is an
associative and commutative binary operator ⊗ : L × L → L which has the
unit 1, and is monotonic in both arguments. Given a t-norm ⊗, its associated
t-conorm ⊕ is constructed using the negation as follows: `⊕m := ∼(∼ `⊗∼m).
For example, the infimum operator `⊗m := `∧m defines a t-norm; its associated
t-conorm is then given by `⊕m := ` ∨m.

Another important operator is the residuum, which is used for interpreting
implications in the logic. The residuum of a t-norm ⊗ on a complete lattice L is
the binary operator⇒ defined by `⇒ m :=

∨
{x | `⊗x ≤ m}. If `⊗(`⇒ m) ≤ m

for all `,m ∈ L (that is, if the supremum in the definition of residuum is always
a maximum), then ⊗ is called residuated and L a residuated lattice.1

In the following we will use two important properties of the residuum: for
every `,m ∈ L, (i) 1 ⇒ ` = `, and (ii) if ` ≤ m, then ` ⇒ m = 1. Additionally,
if ⊗ is residuated, then `⇒ m = 1 implies that ` ≤ m.

In the next section, we describe the multi-valued description logic ALCL,
whose semantics uses the residuum ⇒ and the De Morgan negation ∼. We
emphasize, however, that the reasoning algorithm presented in Section 5 can be
used with any choice of operators, as long as these are computable. In particular
this means that our algorithm could also deal with other variants of multi-valued
semantics, e.g. [9, 21].

1 Residua are usually only defined for residuated lattices. However, as `⇒ m is well-
defined for t-norms on complete De Morgan lattices, we remove this restriction.



3 The Fuzzy Logic ALCL

In the following, we will assume that L is a complete De Morgan lattice and ⊗ is
a t-norm on L. The multi-valued description logic ALCL is a generalization of the
crisp DLALC that allows the use of the elements of a complete De Morgan lattice
as truth values, instead of just the Boolean values true and false. The syntax
of concept descriptions in ALCL is the same as in ALC; that is, ALCL concept
descriptions are built from a set of concept names and role names through the
constructors u,t,¬,>,⊥,∃ and ∀.

The semantics of this logic is based on interpretation functions that not
simply describe whether an element of the domain belongs to a concept or not,
but give a lattice value describing the membership degree of the element to this
concept; more formally, the semantics is based on L-fuzzy sets.

Definition 1 (semantics of ALCL). An interpretation is a pair I = (∆I , ·I)
where ∆I is a non-empty (crisp) domain and ·I is a function that assigns to
every concept name A and every role name r functions AI : ∆I → L and
rI : ∆I × ∆I → L, respectively. The function ·I is extended to ALCL concept
descriptions as follows for every x ∈ ∆I :

– >I(x) = 1, ⊥I(x) = 0,
– (C uD)I(x) = CI(x)⊗DI(x), (C tD)I(x) = CI(x)⊕DI(x),
– (¬C)I(x) = ∼CI(x),
– (∃r.C)I(x) =

∨
y∈∆I rI(x, y)⊗ CI(y),

– (∀r.C)I(x) =
∧
y∈∆I rI(x, y)⇒ CI(y).

Notice that, unlike crisp ALC, the existential and universal quantifiers are
not dual to each other, i.e. in general ¬∃r.C and ∀r.¬C have different semantics.

The axioms in a TBox are also associated to a lattice value, allowing for a
general notion of subsumption between concepts that is based on the residuum.

Definition 2 (TBox). A TBox is a finite set of (labeled) general concept in-
clusions (GCIs) of the form 〈C v D, `〉, where C,D are ALCL concept descrip-
tions and ` ∈ L.

An interpretation I satisfies a GCI 〈C v D, `〉 if
∧
x∈∆I CI(x)⇒ DI(x) ≥ `.

I is called a model of the TBox T if it satisfies all axioms in T .

We emphasize here that ALC is a special case of ALCL, where the underlying
lattice contains only the elements 0 and 1, which may be interpreted as false
and true, respectively, and the t-norm and t-conorm are just conjunction and
disjunction, respectively. Accordingly, one can think of generalizing the reasoning
problems for ALC to the use of other lattices. We will focus on the problem of
deciding satisfiability of a concept. We are further interested in computing the
highest degree with which an individual may belong to a concept.

Definition 3 (satisfiability). Let C,D be ALCL concept descriptions, T a
TBox and ` ∈ L. C is `-satisfiable w.r.t. T if there is a model I of T such that∨
x∈∆I CI(x) ≥ `. The best satisfiability degree for C w.r.t. T is the largest `

such that C is `-satisfiable w.r.t. T .



Notice that if C is `-satisfiable and `′-satisfiable w.r.t. T , then C is also `∨`′-
satisfiable. Hence, the notion of the best satisfiability degree is well defined.

In some cases, however, this definition of satisfiability turns out to be too
weak, since a concept C may be `-satisfiable even if no element of the domain
may ever belong to C with a value ≥ `. Consider the following example.

Example 4. We use the lattice L2 from Figure 1 with t-norm `⊗ `′ := `∧ `′ and
the TBox T = {〈> v (A u ¬A) t (B u ¬B),1〉}. The concept A is 1-satisfiable
w.r.t. T since the interpretation I0 = ({x1, x2}, ·I0) with

AI0(x1) = BI0(x2) = `a and BI0(x1) = AI0(x2) = `b

is a model of T and `a ∨ `b = 1. However, since `∧∼ ` 6= 1 for every ` ∈ L2, the
axiom can only be satisfied for any y ∈ ∆I if {AI(y), BI(y)} = {`a, `b}. Thus,
we always have AI(y) < 1.

For this reason, we consider a stronger notion of satisfiability that requires
at least one element of the domain to satisfy the concept with the given value.
A concept C is strongly `-satisfiable w.r.t. a TBox T if there is a model I of T
and an x ∈ ∆I such that CI(x) ≥ `. Obviously, strong `-satisfiability implies
`-satisfiability. As shown in Example 4, the converse does not hold.

Recall that the semantics of the quantifiers require the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. If the lattice is finite, then this is in fact a computation
over a finite set of values, but it may be a costly one. If the lattice is infinite,
then the problem is more pronounced. For that reason, it is customary in fuzzy
description logics to restrict reasoning to witnessed models [16].

Definition 5 (witnessed model). Let η ∈ N. A model I of a TBox T is called
η-witnessed if for every x ∈ ∆I and every concept description of the form ∃r.C
there are η elements x1, . . . , xη ∈ ∆I such that

(∃r.C)I(x) =

η∨
i=1

rI(x, xi)⊗ CI(xi),

and analogously for the universal restrictions ∀r.C. In particular, if η = 1, then
the suprema and infima from the semantics of ∃r.C and ∀r.C become maxima
and minima, respectively. In this case, we simply say that I is witnessed.

As we will show, `-satisfiability, even w.r.t. η-witnessed models, is undecidable
in general. For finite De Morgan lattices, however, this problem is decidable
and belongs to the same complexity class as deciding satisfiability of crisp ALC
concepts, if the lattice operations are easily computable.

4 Undecidability

Consider the lattice L∞ over the domain ([0, 1] ∩Q) ∪ {−∞,∞} with the usual
total order, the De Morgan negation ∼ ` = 1 − ` if ` ∈ [0, 1], ∼∞ = −∞, and



∼(−∞) =∞, and the t-norm ⊗ defined by

`⊗m :=


max{`+m− 1, 0} if `,m ∈ [0, 1] and `+m 6= 0,

−∞ if ` = m = 0, and

min{`,m} otherwise.

That is, ⊗ is the  Lukasiewicz t-norm on the rationals in (0, 1] extended with
two extreme elements −∞ and ∞. One can easily confirm that this is in fact a
residuated lattice and its t-conorm ⊕ is given by

`⊕m :=


min{l +m, 1} if `,m ∈ [0, 1] and `+m 6= 2,

∞ if ` = m = 1, and

max{`,m} otherwise.

We will reduce the well-known undecidable Post Correspondence Problem [18]
to decidability of ∞-satisfiability. Notice that for every T ⊆ L∞,

∨
t∈T t = ∞

iff ∞ ∈ T . Thus, a concept is ∞-satisfiable iff it is strongly ∞-satisfiable and it
suffices to prove that strong ∞-satisfiability is undecidable.

Definition 6 (PCP). Let v1, . . . , vp and w1, . . . , wp be two finite lists of words
over an alphabet Σ = {1, . . . , s}. The Post Correspondence Problem (PCP)
asks whether there is a non-empty sequence i1, i2, . . . , ik, 1 ≤ ij ≤ p such that
vi1vi2 · · · vik = wi1wi2 · · ·wik . Such a sequence, if it exists, is called a solution of
the problem instance.

For a word ν = i1i2 · · · ik ∈ {1, . . . , p}∗ we will use vν , wν to denote the words
vi1vi2 · · · vik and wi1wi2 · · ·wik , respectively. Given an instance P of PCP, we will
construct a TBox TP and a concept name S such that S is strongly∞-satisfiable
iff P has no solution. For doing this, we will encode words w from the alphabet
Σ as rational numbers 0.w in [0, 1] in base s+ 1; exceptionally, the empty word
will be encoded by the number 0. The two concept names V and W will store
the encoding of the concatenated words vν and wν , respectively.

Given two ALCL concept descriptions C,D and a role name r, the expression
〈C ≡ D〉 abbreviates the two axioms 〈C v D,∞〉,〈D v C,∞〉 and the expression

〈C r
 D〉 abbreviates the two axioms 〈C v ∀r.D,∞〉, 〈¬C v ∀r.¬D,∞〉. For

an interpretation I, 〈C ≡ D〉 expresses that CI(x) = DI(x) for every x ∈ ∆I ,

while 〈C r
 D〉 expresses that, for every x, y ∈ ∆I such that rI(x, y) = ∞,

it holds that CI(x) = DI(y). We will also use n · C as abbrevation for the
n-ary disjunction C t · · · t C, which is interpreted at x ∈ ∆I as the value
min{CI(x) + · · ·+ CI(x), 1} = min{n · CI(x), 1} whenever CI(x) ∈ [0, 1].

We now define the TBoxes T iP for 0 ≤ i ≤ p as follows:

T 0
P := {〈S v V, 0〉, 〈S v ¬V, 1〉, 〈S vW, 0〉, 〈S v ¬W, 1〉} ∪

{〈S v Vi, 0.vi〉, 〈S v ¬Vi, 1− 0.vi〉,
〈S vWi, 0.wi〉, 〈S v ¬Wi, 1− 0.wi〉 | 1 ≤ i ≤ p},



T iP := {〈> v ∃ri.>,∞〉, 〈V t Vi
ri V 〉, 〈W tWi

ri W 〉} ∪
{〈Vj ≡ (s+ 1)|vi| · Fij〉, 〈Wj ≡ (s+ 1)|wi| ·Gij〉,
〈Fij

ri Vj〉, 〈Gij
ri Wj〉 | 1 ≤ j ≤ p}.

Intuitively, T 0
P initializes a search tree for a solution of P, by setting both V and

W to the empty word, and describing each pair (vi, wi) by the concepts Vi and
Wi. Each TBox T iP then extends the search tree by concatenating each pair of
words v, w produced so far with vi and wi, respectively. More formally, consider
the interpretation IP = (∆IP , ·IP ) where

– ∆IP = {1, . . . , p}∗,
– V IP (ν) = 0.vν ,W

IP (ν) = 0.wν , V
IP
i (ν) = 0.vi

(s+1)|vν | ,W
IP
i (ν) = 0.wi

(s+1)|wν |

– rIPi (ν, νi) =∞ and rIPi (ν, ν′) = −∞ if ν′ 6= νi, and
– SIP (ε) =∞.

It is easy to see that IP is in fact a model of the TBox T0 :=
⋃p
i=0 T iP . More

interesting, however, is that every model of this TBox where S is ∞-satisfiable
must include IP , as stated in the following lemma.

Lemma 7. Let I be a model of T0 such that SI(x) = ∞ for some x ∈ ∆I .
There exists a function f : ∆IP → ∆I such that CIP (ν) = CI(f(ν)) holds for
every concept name C occurring in T0 and ν ∈ ∆IP .

Proof (Sketch). The function f is constructed by induction on the length of ν.
We can define f(ε) := x since SI(x) =∞ and I is a model of T 0

P . Let now ν be
such that f(ν) is already defined. The axioms 〈> v ∃ri.>,∞〉 ensure that, for
every i, 1 ≤ i ≤ p there is a γ ∈ ∆I such that rIi (f(ν), γ) = ∞. The definition
f(νi) := γ satisfies the required property. ut

This lemma shows that every model of T0 must include a search tree for
a solution of P. Thus, in order to know whether a solution exists, we need to
decide if there is a node of this tree where the concept names V and W are
interpreted by the same value. Notice that, for any two values `,m ∈ [0, 1],
` 6= m iff (∼ `⊕m)⊗ (`⊕∼m) < 1. Moreover, ` < 1 iff `⊕` ≤ 1 or, equivalently,
∼ `⊗∼ ` ≥ 0. Thus, as IP always interprets the concept names V and W in the
interval [0, 1], it is a model of the TBox

T ′ := {〈E ≡ (¬A tB) u (A t ¬B)〉} ∪ {〈> v ∀ri.¬(E t E), 0〉 | 1 ≤ i ≤ p}

iff AIP (ν) 6= BIP (ν) holds for every ν ∈ {1, . . . , p}+.

Theorem 8. The instance P of the PCP has a solution iff S is not∞-satisfiable
w.r.t. TP := T0 ∪ T ′.

Notice that the interpretation IP is witnessed, which means that undecid-
ability holds even if we restrict reasoning to η-witnessed models, for any η ∈ N.

Corollary 9. (Strong) satisfiability is undecidable, even if the lattice is a count-
able, residuated total order and reasoning is restricted to η-witnessed models, with
η ∈ N.



5 Deciding Strong Satisfiability

In the previous section, we have shown that satisfiability is undecidable in gen-
eral. We now show that if we consider only finite De Morgan lattices L, then
satisfiability in ALCL can be effectively decided. As the following lemmata show,
in this case we can restrict to strong `-satisfiability w.r.t. η-witnessed models.

Lemma 10. The best satisfiability degree for C w.r.t. T is the supremum of all
` such that C is strongly `-satisfiable.

Proof (Sketch). If C is strongly `-satisfiable and strongly `′-satisfiable, there are
two models I, I ′ of T and x ∈ ∆,x′ ∈ ∆′ with CI(x) ≥ ` and CI

′
(x′) ≥ `′. The

disjoint union of I and I ′ gives a model J where
∨
y∈∆J CJ (y) ≥ ` ∨ `′. ut

We can then find out whether C is `-satisfiable by comparing ` to the best
satisfiability degree of C. We will thus focus on finding all the lattice elements
that witness the strong `-satisfiability of a given concept.

Lemma 11. If L has width η ∈ N, i.e. the cardinality of the largest antichain
of L is η, then ALCL has the η-witnessed model property.

To simplify the description, we consider η = 1 only. The algorithm and the
proofs of correctness can be easily adapted for any other η ∈ N.

Our approach reduces strong `-satisfiability to the emptiness problem of an
automaton on infinite trees. Before giving the details of this reduction, we present
a brief introduction to these automata. The automata work over the infinite k-
ary tree K∗ for K := {1, . . . , k} with k ∈ N. The positions of the nodes in this
tree are represented through words in K∗: the empty word ε represents the root
node, and ui represents the i-th successor of the node u.

Definition 12 (looping automaton). A looping automaton (LA) is a tuple
A = (Q, I,∆) consisting of a finite set Q of states, a set I ⊆ Q of initial states,
and a transition relation ∆ ⊆ Q × Qk. A run of A is a mapping r : K∗ → Q
assigning states to each node of K∗ such that (i) r(ε) ∈ I and (ii) for every
u ∈ K∗ we have (r(u), r(u1), . . . , r(uk)) ∈ ∆. The emptiness problem for LA is
to decide whether a given LA has a run.

The emptiness problem for LA can be solved in polynomial time [23]. It is
worth to point out that this procedure not only decides emptiness, but actually
computes all the states that can be used as initial states to accept a non-empty
language. We will later exploit this for computing the best satisfiability degree.

The following automata-based algorithm uses the fact that a concept is
strongly `-satisfiable iff it has a well-structured tree model, called a Hintikka
tree. Intuitively, Hintikka trees are abstract representations of tree models that
explicitly express the membership value of all “relevant” concept descriptions.
The automaton we construct will have exactly these Hintikka trees as its runs.
Strong `-satisfiability is hence reduced to an emptiness test of this automaton.



We denote as sub(C, T ) the set of all subconcepts of C and of the concept
descriptions D and E for all 〈D v E, `〉 ∈ T . The states of the automaton will be
so-called Hintikka sets. These are L-fuzzy sets over the domain sub(C, T )∪ {ρ},
where ρ is an arbitrary new element.

Definition 13 (Hintikka set). A function H : sub(C, T ) ∪ {ρ} → L is called
a (fuzzy) Hintikka set for C, T if the following four conditions are satisfied:

(i) H(D u E) = H(D)⊗H(E) for every D u E ∈ sub(C, T ),
(ii) H(D t E) = H(D)⊕H(E) for every D t E ∈ sub(C, T ),

(iii) H(¬D) = ∼H(D) for every ¬D ∈ sub(C, T ), and
(iv) H(D)⇒ H(E) ≥ ` for every GCI 〈D v E, `〉 in T .

The arity k of our automaton is determined by the number of existential
and universal restrictions, i.e. concept descriptions of the form ∃r.D or ∀r.D,
contained in sub(C, T ). Intuitively, each successor will act as the witness for one
of these restrictions. The additional domain element ρ will be used to express
the degree with which the role relation to the parent node holds. Since we need
to know which successor in the tree corresponds to which restriction, we fix an
arbitrary bijection ϕ : {E | E ∈ sub(C, T ) is of the form ∃r.D or ∀r.D} → K.
The following conditions define the transitions of our automaton.

Definition 14 (Hintikka condition). The tuple (H0, H1, . . . ,Hk) of Hintikka
sets for C, T satisfies the Hintikka condition if:

(i) H0(∃r.D) = Hϕ(∃r.D)(ρ) ⊗ Hϕ(∃r.D)(D) for every existential restriction
∃r.D ∈ sub(C, T ), and additionally H0(∃r.D) ≥ Hϕ(F )(ρ) ⊗Hϕ(F )(D) for
every restriction F ∈ sub(C, T ) of the form ∃r.E or ∀r.E,

(ii) H0(∀r.D) = Hϕ(∀r.D)(ρ) ⇒ Hϕ(∀r.D)(D) for every universal restriction
∀r.D ∈ sub(C, T ), and additionally H0(∀r.D) ≤ Hϕ(F )(ρ)⇒ Hϕ(F )(D) for
every restriction F ∈ sub(C, T ) of the form ∃r.E or ∀r.E.

A Hintikka tree for C, T is an infinite k-ary tree T labeled with Hintikka sets
where, for every node u ∈ K∗, the tuple (T(u),T(u1), . . . ,T(uk)) satisfies the
Hintikka condition. The definition of Hintikka sets ensures that all axioms are
satisfied at any node of the Hintikka tree, while the Hintikka condition makes
sure that the tree is in fact a witnessed model.

The proof of the following theorem uses arguments similar to those in [2]. The
main difference is that one also has to find witnesses for the universal restrictions.

Theorem 15. Let C be a concept description and T a TBox. Then C is strongly
`-satisfiable w.r.t. T (in a witnessed model) iff there is a Hintikka tree T for C, T
such that T(ε)(C) ≥ `.

Proof (Sketch). A Hintikka tree can be seen as a witnessed model with do-
main K∗ and interpretation function given by the Hintikka sets. The conditions
satisfied by the Hintikka sets and the Hintikka condition ensure that this in-
terpretation is well-defined. Thus, if there is a Hintikka tree T for C, T with
T(ε)(C) ≥ `, then C is strongly `-satisfiable w.r.t. T .



On the other hand, every witnessed model I with a domain element x ∈ ∆I
for which CI(x) ≥ ` holds can be unraveled into a Hintikka tree T for C, T
as follows. We start by labeling the root node by the Hintikka set that records
the membership values of x for each concept from sub(C, T ). We then create
successors of the root by considering every element of sub(C, T ) of the form
∃r.D or ∀r.D and finding the witness y ∈ ∆I for this restriction. We create a
new node for y which is an r-successor of the root node with degree rI(x, y).
By continuing this process, we construct a Hintikka tree T for C, T for which
T(ε)(C) ≥ ` holds. ut

Thus, strong `-satisfiability w.r.t. witnessed models is equivalent to the non-
emptiness of the following automaton.

Definition 16 (Hintikka automaton). Let C be an ALCL concept descrip-
tion, T a TBox, and ` ∈ L. The Hintikka automaton for C, T , ` is the LA
AC,T ,` = (Q, I,∆) where Q is the set of all Hintikka sets for C, T , I contains all
Hintikka sets H with H(C) ≥ `, and ∆ is the set of all (k+1)-tuples of Hintikka
sets that satisfy the Hintikka condition.

The runs of AC,T ,` are exactly the Hintikka trees T having T(ε)(C) ≥ `.
Thus, C is strongly `-satisfiable w.r.t. T iff AC,T ,` is not empty.

The size of the automaton AC,T ,` is exponential in C, T and polynomial in L.
Hence, the emptiness test for this automaton uses time exponential in C, T and
polynomial in the complexity of the lattice operations on L. Notice however
that in general the encoding enc(L) of a lattice L may be much smaller than the
whole lattice L. For this reason we need to consider the complexity of the lattice
operations w.r.t. this encoding.

Theorem 17. If |L| is at most exponential in |enc(L)| and the lattice operations
are in a complexity class C w.r.t. the size of enc(L),2 then strong `-satisfiability
(w.r.t. witnessed models) is in ExpTimeC.

Furthermore, the emptiness test of AC,T ,` can be used to compute the set of
all Hintikka sets that may appear at the root of a Hintikka tree. From this set
we can extract the set of all values ` such that T(ε)(C) ≥ ` for some Hintikka
tree T. From the presented results it follows that the best satisfiability degree
can also be computed in ExpTimeC.

Corollary 18. If L is fixed or of size polynomial in |enc(L)| and ∼, ⊗ can be
computed in time polynomial in |L|, then (strong) `-satisfiability (w.r.t. witnessed
models) is ExpTime-complete.

Proof. ExpTime-hardness follows from ExpTime-hardness of concept satisfia-
bility in crisp ALC [1]. By assumption, all lattice operations can be computed
in at most polynomial time by several nested iterations over L. Applying Theo-
rem 17 yields inclusion in ExpTimePTime = ExpTime. ut
2 More formally, deciding ` ≤ m, `⊗m = n, etc. for given `,m, n ∈ L is in C.



Notice that the definitions of Hintikka sets and Hintikka trees are independent
of the operators used. One could have chosen the residual negation 	 ` := `⇒ 0
to interpret the constructor ¬, or the Kleene-Dienes implication `⇒ m := ∼ `∨m
instead of the residuum. The only restrictions are that the semantics must be
truth functional, i.e. the value of a formula must depend only on the values of
its direct subformulas, and the underlying operators must be computable.

As a last remark, we want to point out that the algorithm can be modified
for reasoning w.r.t. η-witnessed models with η > 1. One needs only extend the
arity of the Hintikka trees to account for η witnesses for each quantified formula
in sub(C, T ). The emptiness test of the automaton, and hence also satisfiability
w.r.t. η-witnessed models, is exponential in η.

6 Conclusions

We have introduced the fuzzy DL ALCL whose semantics is based on arbitrary
complete De Morgan lattices and t-norms. To the best of our knowledge, all
previously existing approaches for fuzzy ALC, either based on total orders or on
lattices, are special cases of ALCL.

We showed that reasoning in this logic is undecidable, even if restricted to a
very simple infinite lattice and t-norm. This result suggests, but does not prove,
that reasoning with the  Lukasiewicz t-norm over the interval [0, 1] may, contrary
to previous claims [22], be undecidable.

For the special case of finite lattices, we showed decidability by presenting
an automata-based decision procedure that runs in exponential time, assuming
a polynomial-time oracle for computing the lattice and t-norm operations. An
advantage of our decision procedure is that it can easily be adapted to deal with
different kinds of truth-functional semantics, and hence is useful for different
applications. Given the promising first steps towards an automata-based imple-
mentation of ALC reasoning shown in [10], we believe that our algorithm not
only yields an interesting theoretical result, but may be useful for a future im-
plementation. We intend to further study this possibility by developing adequate
optimizations and analyzing low-complexity instances of lattice operators.

There are three issues that we will pursue in future work. The first is to
explore the limits of undecidability: are there classes of infinite lattices and t-
norms in which reasoning is decidable? As said before, it is still unknown whether
reasoning in fuzzy ALC with continuous t-norms over [0, 1] is decidable.

The second issue is to explore the expressivity of DLs. We believe that our
approach can easily be adapted to fuzzy SI. Additionally, if we restrict to acyclic
TBoxes, we may be able to obtain a PSpace upper bound as in [2].

Finally, we want to develop an algorithm for deciding `-subsumption. Notice
that the residuum cannot, in general, be expressed using the t-norm, t-conorm
and negation. Thus, the usual idea of reducing subsumption to satisfiability by
constructing an equivalent concept cannot be applied.
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