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Abstract. A combination of open and closed-world reasoning (usually
called local closed world reasoning) is a desirable capability of knowledge
representation formalisms for Semantic Web applications. However, none
of the proposals made to date for extending description logics with local
closed world capabilities has had any significant impact on applications.
We believe that one of the key reasons for this is that current proposals
fail to provide approaches which are intuitively accessible for applica-
tion developers and at the same time are applicable, as extensions, to
expressive description logics such as SROZQ, which underlies the Web
Ontology Language OWL.

In this paper we propose a new approach which overcomes key limitations
of other major proposals made to date. It is based on an adaptation of cir-
cumscriptive description logics which, in contrast to previously reported
circumscription proposals, is applicable to SROZQ without rendering
reasoning over the resulting language undecidable.
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1 Introduction

The semantics of the Web Ontology Language OWL [16] (which is based on the
description logic SROZQ [17]) adheres to the Open World Assumption (OWA).
This means that statements which are not logical consequences of a given knowl-
edge base are not necessarily considered false. The OWA is reasonable in a World
Wide Web context (and thus for Semantic Web applications), however situations
naturally arise where it would be preferable to use the Closed World Assumption
(CWA), that statements which are not logical consequences of a given knowl-
edge base are always considered false. The CWA is applicable, e.g., when data is
being retrieved from a database, or if data can otherwise be considered complete
with respect to the application at hand (see, e.g., [14, 34]).

As a consequence, efforts have been made to combine OWA and CWA mod-
eling for the Semantic Web (see Section 4), and knowledge representation lan-
guages which have both OWA and CWA modeling features are said to adhere to
the Local Closed World Assumption (LCWA). Most of these combinations are
derived from non-monotonic logics which have been studied in logic program-
ming [18] or on first-order predicate logic [28, 29, 35]. Furthermore, many of them



have a hybrid character, meaning that they achieve the LCWA by combining,
e.g. description logics with (logic programming) rules.

Of the approaches which provide a seamless (non-hybrid) integration of OWA
and CWA, there are not that many, and each of them has its drawbacks. This
is despite the fact that the modeling task, from the perspective of the applica-
tion developer, seems rather simple: Users would want to specify, simply, that
individuals in the extension of a predicate should be exactly those which are
necessarily required to be in the extension, i.e., extensions should be minimized.
Thus, what is needed for applications is a simple, intuitive approach to closed
world modeling, which can be easily picked up by application developers.

Among the primary approaches to non-monotonic reasoning, there is exactly
one approach which employs the minimization idea in a very straightforward
and intuitively simple manner, namely circumscription [28]. However, a naive
transfer of the circumscription approach to description logics, which was done
in [4,5,15], appears to have three primary drawbacks.

1. The approach is undedicable for expressive description logics (e.g., for the
description logic SROZ Q) unless awkward restrictions are put in place. More
precisely, it is not possible to have non-empty TBoxes plus minimization of
roles if decidability is to be retained.

2. Extensions of minimized prediates can still contain elements which are not
named individuals (or pairs of such, for roles) in the knowledge base, which
is not intuitive for modeling (see also [14]).

3. Complexity of the approach is very high.

The undecidability issue (point 1) hinges, in a sense, also on point 2 above.
In this paper, we provide a modified approach to circumscription for description
logics, which we call grounded circumscription, which remedies both of points 1
and 2. We are not yet addressing the complexity issue; this will be done in future
work. Our idea is simple yet effective: we modify the circumscription approach
from [4, 5, 15] by adding the additional requirement that extensions of minimized
predicates may only contain named individuals (or pairs of such, for roles). In a
sense, this can be understood as porting a desirable feature from (hybrid) MNKF
description logics [9, 20, 21, 32] to the circumscription approach. In another (but
related) sense, it can also be understood as employing the idea of DL-safety [33],
respectively of DL-safe variables [24] or nominal schemas [22, 23].

Note that we do not claim that our approach is the only road to take—we
rather view it as one step on the quest of designing suitable LCWA languages for
the Semantic Web. Indeed, we mainly intend to highlight that there is a plethora
of methods how to obtain local closed world versions of description logics (and
thus of OWL), see e.g. [25,26], and all of them are potential alternatives to the
big three (circumscription [28], autoepistemic logic [29], and default logic [35]).
The Semantic Web community needs a systematic investigation of options for
modeling local closed world aspects, which are not ideologically bound to ap-
proaches which have been developed for different purposes in the KR community.

The paper is structured as follows. In Section 2 we introduce the semantics
of grounded circumscription. In Section 3 we show that the resulting language is



decidable. In Section 4 we discuss related work, and conclude with a discussion
of further work in Section 5.

2 Grounded Circumscription

We now describe a very simple way for ontology designers to model local closed
world aspects in their ontologies: simply use a description logic (DL) knowledge
base (KB) as usual, and augment it with meta-information which states that
some predicates (concept names or role names) are closed. Semantically, those
predicates are considered minimized, i.e. their extensions contain only what is
absolutely required, and furthermore only contain known (or named) individ-
uals, i.e., individuals which are explicitly mentioned in the KB. In the case of
concept names, the idea of restricting their extensions only to known individuals
is similar to the notion of nominal schema [23] (and thus, DL-safe rules [24, 33])
and also the notion of DBox [38], while the minimization idea is borrowed from
circumscription [28], one of the primary approaches to non-monotonic reasoning.

In the earlier efforts to carry over circumscription to DLs [4, 5, 14, 15], circum-
scription is realized by the notion of circumscription pattern. A circumscription
pattern consists of three disjoint sets of predicates (i.e., concept names and role
names) which are called minimized, fized and varying predicates, and a prefer-
ence relation on interpretations. The preference relation allows us to pick min-
tmal models as the preferred models with respect to inclusion of the extension
of the minimized predicates.

Our formalism simplifies the circumscription approach by restricting our at-
tention to models in which the extension of the minimized predicates may only
contain known individuals from the KB. Moreover, we divide predicates in the
KB only into two disjoint sets of minimized and non-minimized predicates.!
The non-minimized predicates would be viewed as varying in the more general
circumscription formalism mentioned above.

Let N¢, N,., and N; be disjoint, countably infinite sets of concept names,
role names, and individual names, resp. Let £ be a standard description logic
whose concepts and roles are formed based on the signature that consists of N,
Ng, and Ny, together with a set of standard DL (concept and role) constructors
[2]. The only non-standard DL constructor that is needed in this paper is the
role constructor concept product, written C x D with C, D concepts in £, which
allows a role to be constructed from the Cartesian product of two concepts [23,
37]. In addition, we define an £-KB as a set of concept inclusion axioms C' C D
where C; D € N¢, role inclusion axioms r C s where 7, s € N, and assertions of
the form C'(a) and r(a,b) where C € N¢,r € N, and a,b € Nj.

The semantics for £ is defined in terms of interpretations T = (AT, -T) where
AT is a non-empty set called the domain and - is an interpretation function

! Fixed predicates can be simulated in the original circumscriptive DL approach if
negation is available, i.e., for fixed class names, class negation is required, while for
fixed role names, role negation is required. The latter can be added to expressive
DLs without jeopardizing decidability [23, 40].



that maps each concept name to a subset of AT, each role name to a subset of
AT x AT and each individual name to an element of AZ. An interpretation 7 is
extended to complex concepts and roles in the usual way for £, and for concept
products, (C x D)t = {(z,y) | z € C%,y € D*}. We say that T satisfies (is a
model of ): a concept inclusion axiom C C D if CT C DZ; a role inclusion axiom
r C s if rT C sT; a concept assertion C(a) if aZ € CZ; and a role assertion r(a, b)
if (aT,b?) € rZ. We also say that T satisfies (is a model of) an L-KB K if it
satisfies every axioms in K.

The non-monotonic feature of the formalism is given by restricting models
of an £-KB such that the extension of closed predicates may only contain in-
dividuals (or pairs of them) which are explicitly occurring in the KB, plus a
minimization of the extensions of these predicates. We define a function Ind that
maps each £-KB to the set of individual names it contains, i.e., given an £-KB
K, Ind(K) = {b € Ny | b occurs in K'}. Among all possible models of K that are
obtained by the aforementioned restriction to Ind(K’), we then select a model
that is minimal w.r.t. concept inclusion or role inclusion.

Definition 1. A GC-L-knowledge base (KB)—GC stands for grounded cir-
cumscription—is a pair (K, M) where K is an L-KB and M C {A € N¢ |
A occurs in K} U {r € N, | r occurs in K}. For every concept name and role
name W € M, we say that W is closed with respect to K. For any two models
T and J of K, we furthermore say that Z is smaller than J w.r.t. M, written
T <m T, iff all of the following hold: (i) AT = A7 and o = a7 for every
al € A7, (ii) WE C WY for every W € M; and (iii) there exists a W € M
such that Wt c W7

‘We now define models of GC-£L-KBs as follows.

Definition 2. An interpretation Z is a GC-model of a GC-L-KB (K, M) if all
of the following hold: (i) T is a model of K ; (ii) for each concept name A € M,
AT C {b? | b € Ind(K)}; (iii) for each role name r € M, rT C {bT | b €
Ind(K)} x {b7 | b € Ind(K)}; and (iv) T is minimal w.r.t. M, i.e., there is no
model J of K such that J <p; L.

The notion of logical consequence is defined as usual: An axiom « is a logical
consequence (a GC-inference) of a given GC-L-KB (K, M) if and only if « is
true in all GC-models of (K, B).

Our formalism here is inspired by one of the approaches described by Makin-
son in [26], namely restricting the set of valuations to get more logical conse-
quences than what we can get as classical consequences. Intuitively, this approach
is a simpler version of the circumscription formalism for DLs as presented in [5,
15] in the sense that concept names and role names are either varying or min-
imized, i.e., no predicate is considered fixed. Indeed, every GC-model of a KB
is also a circumscriptive model,? hence every circumscriptive inference is also a
valid GC-inference.

2 This can be seen, e.g., by a straightforward proof by contradiction.



To give an example, consider the knowledge base K consisting of the axioms

hasAuthor(paperl, authori) hasAuthor(paperl, author2)
hasAuthor(paper?2, author3) T C VhasAuthor.Author.

Then (<2 hasAuthor.Author)(paper1) is not a logical consequence of K under
the classical description logic semantics. However, if we assume that we have
complete information on authorships relevant to the application under consid-
eration, then it would be reasonable to close parts of the knowledge base in the
sense of the LCWA. In the original approach to circumscriptive DLs, we could
close the class name Author, but to no avail. But if we close hasAuthor, we ob-
tain (<2 hasAuthor.Author)(paper1) as a logical consequence. However, closure
of roles in the original circumscriptive DL approach leads to undecidability [5].
The GC-semantics, in contrast, is decidable even under role closure (see Section
3 below), and also yields the desired inferences.

Are there inferences which hold with respect to the GC-semantics but not
with respect to the original circumscriptive DL approach? There are, but it seems
difficult to find a convincing example which might indicate practical relevance.
If this is indeed the case, then we could argue that the original circumscriptive
approach is too sceptical with respect to application requirements, in addition
to the decidability issue already noted.

The following is an academic example, adapted from [15], which shows the
different inferencing capabilities of the GC-semantics versus the original cir-
cumscriptive DL semantics. Consider the knowledge base K consisting of the
following axioms, where EndangeredSpecies is a minimized class name.

Bear(polarBear)

JisHabitatFor.(Bear M EndangeredSpecies)(arcticSea)

In the original circumscriptive DL approach, there is a model in which the
extensions of both Bear and EndangeredSpecies share a common element dis-
tinct from polarBear, hence it cannot be concluded that polarBear is an
EndangeredSpecies. Under the GC-semantics, however, this can be concluded.
This is due to the fact that there are no individuals other than polarBear in
the knowledge base. Indeed, if we assume that there is another individual, say,
blueWhale, then the conclusion no longer holds even under the GC-semantics.

Is the conclusion under the GC-semantics desirable, that polarBear is an
EndangeredSpecies? We believe so, because we are essentially restricting our
world to one individual. Le., if we would like to reject the conclusion, we should
rather question the adequacy of our modeling, than of the semantics. However,
this discussion seems to be quite academic, since the situation above is not that
of a realistic knowledge base, where we could reasonably assume the presence of
other individuals, such as blueWhale, such that the arguable inference no longer
holds even with respect to the GC-semantics.> And indeed it should not hold

3 The situation might be different with respect to knowledge bases under development,
but this would rather be an interface issue.



in this case under an intuitive reading of the knowledge base: If there is also a
second individual blueWhale, then we have no reason to assume that it must
be polarBear which is an EndangeredSpecies (unless, of course, we also state
that blueWhale must not be a Bear).

3 Decidability Considerations

As noted earlier, circumscription in many expressive DLs is undecidable [5].
Undecidability even extends to the basic DL ALC when non-empty TBoxes are
considered and roles are allowed as minimized predicates. Such a bleak outlook
would greatly discourage useful application of circumscription, despite the fact
that there is a clear need of such a formalism to model LCWA.

Our formalism aims to fill this gap by offering a simpler approach to cir-
cumscription in DLs that is decidable provided that the underlying DL is also
decidable. The decidability result is obtained due to the imposed restriction of
minimized predicates to known individuals in the KB as specified in Definition 2.
Let £ be any standard DL. We consider the following reasoning task of GC-KB
satisfiability: “given a GC-L-KB (K, M), does (K, M) have a GC-model?” and
show in the following that this is decidable. Note that other basic reasoning tasks
can usually be reduced to this task [5,15].

Assume that £ is any (standard) DL, e.g., ALCOB(x), featuring nominals,
concept disjunction, concept products and role disjunctions.* We show that GC-
KB satisfiability in £ is decidable if satisfiability in £ is decidable.

Let (K, M) be a GC-L-KB. We assume that M = M4 U M, where M4 =
{41,..., A, } is the set of minimized concept names and M, = {r1,...,ry} is
the set of minimized role names. Now define a family of (n 4+ m)-tuples as

GrM) = {(X1,....X,,)71,...,Y,,) | X; CInd(K),Y; CInd(K) x Ind(K)}
with 1 <17 <n,1 <j <m. Note that there are

<2||nd(1<)|)” ) <2Ind(K)2>m — onelInd(K)|+me-|Ind (K)|? (1)

of such tuples; in particular note that Gk i) is a finite set.

Now, given (K, M) and some G = (X1,..., X, Y1,...,Y) € Gk ), let
K¢ be the £-KB consisting of all axioms in K together with all of the following
axioms, where the A; and r; are all the predicates in M —note that we require
role disjunction and concept products for this.

A; E|_|{a} for every a € X; andi=1,...,n
T = |_|({a} x {b}) for every pair (a,b) €Y and j=1,...,m

Then the following result clearly holds.

4 For concept products, see [23]—they can be eliminated if role constructors are avail-
able. For role disjunctions, see [40], where it is shown, amongst other things, that

ALCOTOB is decidable.



Lemma 1. Let (K, M) be a GC-L-KB. If (K, M) has a GC-model Z, then there
exists G € Q(K7M) such that Kg has a (classical) model J which coincides with
T on all minimized predicates. Likewise, if there exists G € G ary such that Kg
has a (classical) model J, then (K, M) has a GC-model T which coincides with
J on all minimized predicates.

Observe that class disjunction, nominals, concept products, and role dis-
junction are needed to obtain Lemma 1. From [40] we know that adding role
disjunction to ALCQZO retains decidability. Now consider the set

Gy = 1G € Gy | K has a (classical) model},

and note that this set is finite and computable in finite time since Gk ar) is
finite and £ is decidable. Furthermore, consider G/ (K, M) to be ordered by the
pointwise ordering < induced by C. Note that the pointwise ordering of the
finite set g( K,M) is also computable in finite time.

Lemma 2. Let (K,M) be a GC-L-KB and let
Gy =G € Gy | G is minimal in (G pr) <)}
Then (K, M) has a GC-model if and only if gEIKM) is non-empty.

Proof. This follows immediately from Lemma 1 together with the following ob-
servation: Whenever K has two GC models Z and J such that Z is smaller than
J, then there exist Gz,G 7 € gEK,M) with Gz < G 7 such that Kq, and Kg,
have (classical) models Z' and J’, respectively, which coincide with Z, respec-
tively, J, on the minimized predicates.

Theorem 1. GC-KB-satisfiability is decidable.

Proof. This follows from Lemma 2 since the set QE’K M) for any given GC-KB
(K, M), can be computed in finite time, i.e., it can be decided in finite time
whether QE’K Ay 1S empty.

Some remarks on complexity are as follows. Assume that the problem of
deciding KB satisfiability in £ is in the complexity class C. Observe from equa-
tion (1) that there are exponentially many possible choices of the (n +m)-tuples
in Gk ar) (in the size of the input knowledge base). Computation of QEKyM) is
thus in Exp®, and subsequent computation of QE'K M) is also in Exp. We thus
obtain the following upper bound.

Proposition 1. GC-KB satisfiability is in EXpC, where C is the complexity
class of the DL under consideration.

Observe that the decidability proof gives rise to a straightforward imple-
mentation procedure, however this is certainly not a smart algorithm. As future
work, it should be possible to adjust the tableaux algorithm from [15], which
may also give rise to a sharpening of the upper bound on complexity.



4 Related Work

In this paper we have presented a new approach to DL reasoning under the Local
Closed World Assumption (LCWA). There are several approaches described in
the literature for LCWA which combine the OWA and CWA semantics, and in
the following we briefly discuss some of the most important proposals.

Autoepistemic Logic [29, 30] is an approach followed by a number of authors.
The semantics of autoepistemic logic have been defined using an autoepistemic
operator K [7,8] and has been studied for ALC and also for more expressive
DLs. [7,9] further provide an epistemic operator A related to negation-as-failure
which allows for the modeling of default rules and integrity constraints.

Circumscription [28] is another approach taken to develop LCWA exten-
tions of DLs [5,14,15]. [5] evaluates the complexities of reasoning problems in
variations of DLs with circumscription. [14] provides examples to stress the im-
portance of LCWA to provide an intuitive notion of matchmaking of resources
in the context of Semantic Web Services. [15] provides an algorithmization for
circumscriptive ALCO by introducing a preferential tableaux calculus, based on
previous work on circumscription [4]. [19] proves a method to eliminate fixed
predicates in circumscription patterns by adding negation of fixed predicates to
the minimized set of predicates.

Some significant proposals involve the use of hybrid MKNF knowledge bases
[32] which are based on an adaptation of the Stable Model Semantics [12] to
knowledge bases consisting of ontology axioms and rules, thereby combining
both open world and closed world semantics. A variant of this approach using
the well-founded semantics, i.e., with a lower complexity, has also be presented
[20,21], and algorithms and implementations have been developed [1, 13].

[10] takes a hybrid approach to combine ontologies and rules by keeping the
semantics of both parts separate, but also at the same time allowing for building
rules on top of ontologies and vice versa with some limitations, again following
the Stable Model Semantics. [11] provides a related well-founded semantics.

Some of the work related to LCWA also involves the use of integrity con-
straints (ICs) and of the Unique Name Assumption (UNA). An approach ex-
tending OWL ontologies to add ICs such that it adds non-montonicity to the
DL is [31]. [39] provides semantics for OWL axioms to allow for IC and UNA to
achieve local closed world reasoning.

In [38], the notion of DBoz is introduced. A DBox consists of a set of (atomic)
assertions such that the extension of a DBox predicate under any interpretation
is exactly as defined by this set of assertions. In a sense, grounded circumscrip-
tion encompasses this expressive feature but goes beyond it, while, as expected,
loosing some of the desirable features of the more specialized DBox approach.

There are a number of other approaches which have been attempted in the
past, but without follow-up work, e.g. [3,6, 27, 36]. For some further pointers to
the literature, please refer to [22].



5 Conclusion and Outlook

We have provided a new approach for incorporating the LCWA into description
logics. Our approach, grounded circumscription, is a variant of circumscriptive
description logics which avoids two major issues of the original approach: Ex-
tensions of minimized predicates can only contain named individuals, and we
retain decidability even for very expressive description logics while we can allow
for the minimization of roles.

A primary theoretical task is to investigate the complexity of our approach,
but it can be expected that it is not going to be worse than the previous cir-
cumscription proposal. In fact, lower complexities should result in some cases,
which may yield to tractable or data-tractable fragments.

Likewise, it should be possible to adapt the tableaux algorithm for circum-
scriptive description logics from [15] to our setting, and there may even be more
efficient procedures.

From a more general perspective, it should be worthwhile to investigate fur-
ther alternatives for incorporating closed world modeling into description logics.
Preferably, one would like to obtain a language which is intuitively very simple,
appeals to ontology engineers, and is computationally effective. Whether such a
language exists, however, is an open question.

Acknowledgements. This work was supported by the National Science Foun-
dation under award 1017225 “IIT: Small: TROn—Tractable Reasoning with On-
tologies,” and by State of Ohio Research Incentive funding in the Kno.e.CoM
project. The first named author acknowledges support by a Fulbright Indonesia
Presidential Scholarship PhD Grant 2010.

References

1. Alferes, J.J., Knorr, M., Swift, T.: Queries to Hybrid MKNF Knowledge Bases
through Oracular Tabling. In: Proc. of the 8th International Semantic Web Con-
ference. pp. 1-16. ISWC 09, Springer-Verlag (2009)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edn. (2007)

3. Baader, F., Hollunder, B.: Embedding Defaults into Terminological Knowledge
Representation Formalisms. Journal of Automated Reasoning 14(1), 149-180
(1995)

4. Bonatti, P.A., Lutz, C., Wolter, F.: Expressive Non-Monotonic Description Logics
Based on Circumscription. In: Proc. of the 10th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR’06). pp. 400-410. AAAT Press (2009)

5. Bonatti, P.A., Lutz, C., Wolter, F.: The Complexity of Circumscription in Descrip-
tion Logic. Journal of Artificial Intelligence Research 35, 717-773 (2009)

6. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A Semantical Framework
for Hybrid Knowledge Bases. Knowledge and Information Systems 25(1), 81-104
(2010)

7. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A., Nutt, W.: An Epistemic Op-
erator for Description Logics. Artificial Intelligence 100(1-2), 225-274 (1998)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Donini, F.M., Nardi, D., Rosati, R.: Autoepistemic Description Logics. In: Proc. of
the 15th Int. Joint Conf. on Artificial Intelligence (IJCAI-97). pp. 136-141 (1997)
Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and
Negation as Failure. ACM Trans. on Computational Logic (TOCL) 3(2), 177-225
(April 2002)

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining
Answer Set Programming with Description logics for the Semantic Web. Artificial
Intelligence 172(12-13), 1495-1539 (August 2008)

Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-Founded Semantics
for Description Logic Programs in the Semantic Web. In: Antoniou, G., Boley, H.
(eds.) Rules and Rule Markup Languages for the Semantic Web: 3rd International
Workshop, RuleML 2004. Lecture Notes in Computer Science, vol. 3323, pp. 81-97.
Springer (2004)

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365-385 (1991)

Gomes, A., Alferes, J., Swift, T.: Implementing Query Answering for Hybrid
MKNF Knowledge Bases. In: Carro, M., Pena, R. (eds.) Practical Aspects of
Declarative Languages, Lecture Notes in Computer Science, vol. 5937, pp. 25-39.
Springer Berlin / Heidelberg (2010)

Grimm, S., Hitzler, P.: Semantic Matchmaking of Web Resources with Local
Closed-World Reasoning. International Journal of Electronic Commerce 12(2), 89—
126 (December 2007)

Grimm, S., Hitzler, P.: A Preferential Tableaux Calculus for Circumscriptive
ALCO. In: Polleres, A., Swift, T. (eds.) Proc. of the 3rd Int. Conference on Web
Reasoning and Rule Systems (RR’09). Lecture Notes in Computer Science, vol.
5837, pp. 40-54. Springer Berlin (2009)

Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.):
OWL 2 Web Ontology Language: Primer. W3C Recommendation 27 October 2009
(2009), available from http://www.w3.org/TR/owl2-primer/

Hitzler, P., Krétzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

Hitzler, P., Seda, A.K.: Mathematical Aspects of Logic Programming Semantics.
CRC Press (2010)

Kleer, J.D., Konolige, K.: Eliminating the Fixed Predicates from a Circumscription.
Artificial Intelligence 39(3), 391-398 (1989)

Knorr, M., Alferes, J., Hitzler, P.: Local Closed-World Reasoning with Description
Logics under the Well-founded Semantics. Artificial Intelligence 175(9-10), 1528—
1554 (2011)

Knorr, M., Alferes, J.J., Hitzler, P.: A Coherent Well-founded Model for Hybrid
MKNF Knowledge Bases. In: Ghallab, M., et al. (eds.) Proceedings of the 18th
European Conference on Artificial Intelligence,Patras, Greece, July 21-25, 2008.
Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 99-103. IOS Press,
Amsterdam, The Netherlands (2008)

Krisnadhi, A., Maier, F., Hitzler, P.. OWL and Rules. In: Reasoning Web 2011.
Lecture Notes in Computer Science, Springer, Heidelberg (2011), to appear
Krotzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL:
Nominal schemas for integrating rules and ontologies. In: Sadagopan, S., et al.
(eds.) Proceedings of the 20th International World Wide Web Conference,
WWW2011, Hyderabad, India, March/April 2011. pp. 645-654. ACM, New York
(2011)



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

Krotzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable Rules for OWL 2. In: Sheth,
AP, et al. (eds.) Proceedings of the 7th International Semantic Web Conference,
ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Lecture Notes in Computer
Science, vol. 5318, pp. 649-664. Springer (2008)

Makinson, D.: Bridges between Classical and Nonmonotonic Logic. Logic Journal
of the IGPL 11(1), 69-96 (2003)

Makinson, D.: Bridges from Classical to Nonomonotonic Logic, Texts in Comput-
ing, vol. 5. King’s College Publications (2005)

Matzner, T., Hitzler, P.: Any-world access to OWL from Prolog. In: Hertzberg, J.,
Beetz, M., Englert, R. (eds.) Proceedings of the 30th Annual German Conference
on Artificial Intelligence, Osnabriick, Germany, September 2007. Lecture Notes in
Artificial Intelligence, vol. 4667, pp. 84-98. Springer (2007)

McCarthy, J.: Circumscription — A Form of Non-Monotonic Reasoning. Artificial
Intelligence 13(1-2), 27-39 (1980)

Moore, R.: Possible-worlds Semantics for Autoepistemic Logic. In: Proceedings of
the 1984 Non-monotonic Reasoning Workshop. AAAI, Menlo Park, CA (1984)
Moore, R.: Semantical Considerations on Nonmonotonic Logic. Artificial Intelli-
gence 25(1) (1985)

Motik, B., Horrocks, I., Sattler, U.: Adding Integrity Constraints to OWL. In:
Golbreich, C., Kalyanpur, A., Parsia, B. (eds.) Proceedings of the OWLED 2007
Workshop on OWL: Experiences and Directions. vol. 258 (2007)

Motik, B., Rosati, R.: Reconciling Description Logics and Rules. Journal of the
ACM 57(5), 1-62 (2010)

Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules.
Journal of Web Semantics 3, 41-60 (July 2005)

Patel, C., Cimino, J.J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A.,
Ma, L., Schonberg, E., Srinivas, K.: Matching Patient Records to Clinical Trials
Using Ontologies. In: Aberer, K., et al. (eds.) The Semantic Web, 6th International
Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 +
ASWC 2007, Busan, Korea, November 11-15, 2007. Lecture Notes in Computer
Science, vol. 4825, pp. 816-829. Springer (2007)

Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13, 81-132 (1980)
Ren, Y., Pan, J.Z., Zhao, Y.: Closed world reasoning for OWL2 with NBox. Journal
of Tsinghua Science and Technology 15(6) (2010)

Rudolph, S., Krétzsch, M., Hitzler, P.: All Elephants are Bigger than All Mice.
In: Baader, F., Lutz, C., Motik, B. (eds.) Proceedings of the 21st International
Workshop on Description Logics (DL2008), Dresden, Germany, May 13-16, 2008.
CEUR Workshop Proceedings, vol. 353 (2008)

Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies over
DBoxes. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17,
2009. pp. 923-925 (2009)

Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In: Fox,
M., Poole, D. (eds.) Proc. of the 24th AAAT Conference on Artificial Intelligence,
AAAT 2010. AAAT Press (2010)

Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. Ph.D. thesis, RWTH Aachen, Germany (2001)



