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Abstract. The preferential and rational consequence relations first stud-
ied by Lehmann and colleagues play a central role in non-monotonic
reasoning, not least because they provide the foundation for the deter-
mination of the important notion of rational closure. Although they can
be applied directly to a large variety of logics, these constructions suf-
fer from the limitation that they are largely propositional in nature.
One of the main obstacles in moving beyond the propositional case has
been the lack of a formal semantics which appropriately generalizes the
preferential and ranked models of Lehmann et al. In this paper we pro-
pose a semantics to fill that gap for description logics, an important
class of decidable fragments of first-order logic. Our semantics replaces
the propositional valuations used in the models of Lehmann et al. with
structures we refer to as concept models. We prove representation re-
sults for the description logic ALC for both preferential and rational
consequence relations. We argue that our semantics paves the way for
extending preferential and rational consequence, and therefore also ra-
tional closure, to a whole class of logics that have a semantics defined in
terms of first-order relational structures.

1 Introduction

There has by now been quite a substantial number of attempts to incorporate
defeasible reasoning in logics other than propositional logic. One such endeavor,
and the broad focus of this paper, has been to extend the influential version
of preferential reasoning first studied by Lehmann et al. [7, 9] to logics beyond
the propositional. A stumbling block to this end has been that research on pref-
erential reasoning has really only reached maturity in a propositional context,
whereas many logics of interest have more structure. A generally accepted se-
mantics for first-order preferential reasoning, with corresponding syntactic proof
system or characterization, does not yet exist. The first tentative exploration of
preferential predicate logics by Lehmann et al. didn’t fly (pun intended), primar-
ily because propositional logic was sufficiently expressive for the non-monotonic
reasoning community at the time, and first-order logic introduced too much com-
plexity [8]. But this changed with the surge of interest in description logics as
knowledge representation formalism. Description logics (DLs) [1] are decidable



fragments of first-order logic, and are ideal candidates for the kind of extension
to preferential reasoning we have in mind: the notion of subsumption present
in all DLs is a natural candidate for defeasibility, while at the same time, the
restricted expressivity of DLs ensures that attempts to introduce preferential
reasoning are not hampered by the complexity of full first-order logic. The aim
of this paper is to extend the work of Lehmann et al. [7, 9] beyond propositional
logic without moving to full first-order logic. We restrict our attention to the
description logic ALC here, but the results are broadly applicable to other DLs,
as well as other similarly structured logics such as logics of action and logics of
knowledge and belief.

The central question answered in this paper is how the existing semantics
for both preferential and rational propositional non-monotonic consequence rela-
tions should be generalized to languages with more structure, and in particular,
to ALC. Specifically, what is the meaning of a preferential (or rational) sub-
sumption statement C @∼D — what properties should it have, and what is its
corresponding formal semantics? The main results of this paper, and our answers
to these questions, are the two representation results presented in Theorems 3
and 4, respectively. Key to the establishment of these results are the notions of
a concept model, which gives a reading of the meaning of concepts suitable for
our purposes, and a DL preferential model, giving meaning to non-monotonic
subsumption statements. The latter generalizes the notion of a propositional
preferential model in terms of concept models.

The rest of the paper is structured as follows. In Section 2 we give a brief
account of the work on preferential and rational subsumption for the proposi-
tional case as developed by Lehmann and colleagues. Section 3 is the heart of
the paper in which we define the semantics for both preferential and rational
subsumption for ALC and prove representation results for both. Importantly,
the representation results provided here are with respect to the corresponding
propositional properties. From this we conclude that the semantics we present
here forms the foundation of a semantics for preferential and rational conse-
quence for a whole class of DLs and related logics and provides a natural and
intuitive semantic framework on which to base such work. In Section 4 we use the
fundamental results of the previous section to show that the notions of proposi-
tional preferential entailment and rational closure can be ‘lifted’ to the case for
DLs, specifically ALC. In Section 5 we discuss related results. We conclude with
Section 6 in which we also discuss future work.

We assume that the reader is familiar with description logics. For more details
on description logics in general, and the description logic ALC in particular, the
reader is referred to the DL handbook [1].

2 Propositional Preferential Consequence

In this section we give a brief introduction to propositional preferential and
rational consequence, as initially defined by Kraus et al. [7]. A propositional
defeasible consequence relation |∼ is defined as a binary relation on formulas



α, β, γ, . . . of an underlying (possibly infinitely generated) propositional logic
equipped with a standard propositional entailment relation |= [7]. |∼ is said to
be preferential if it satisfies the following set of properties:

(Ref) α |∼ α (LLE)
α ≡ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ
α |∼ β ∧ γ

(RW)
α |∼ β, β |= γ

α |∼ γ
(Or)

α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(CM)
α |∼ β, α |∼ γ
α ∧ β |∼ γ

The semantics of (propositional) preferential consequence relations is in terms
of preferential models; these are partially ordered structures with states labeled
by propositional valuations. We shall make this terminology more precise in
Section 3, but it essentially allows for a partial order on states, with states
lower down in the order being more preferred than those higher up. Given a
preferential model P, a pair α |∼ β is in the consequence relation defined by P
iff the minimal states (according to the partial order) of all those states labeled
by valuations that are propositional models of α, are also labeled by propositional
models of β. The representation theorem for preferential consequence relations
then states:

Theorem 1 (Kraus et al. [7]). A defeasible consequence relation is a prefer-
ential consequence relation iff it is defined by some preferential model.

If, in addition to the properties of preferential consequence, |∼ also satisfies the
following Rational Monotony property, it is said to be a rational consequence
relation:

(RM)
α |∼ β, α 6|∼ ¬γ

α ∧ γ |∼ β
The semantics of rational consequence relations is in terms of ranked prefer-

ential models, i.e., preferential models in which the preference order is modular :

Definition 1. Given a set S, ≺ ⊆ S × S is modular iff ≺ is a partial order on
S, and there is a ranking function rk : S 7→ N s.t. for every s, s′ ∈ S, s ≺ s′ iff
rk(s) < rk(s′).

The representation theorem for rational consequence relations then states:

Theorem 2 (Lehmann and Magidor [9]). A defeasible consequence relation
is a rational consequence relation iff it is defined by some ranked model.

3 Semantics for DL Preferential Consequence

It has been argued elsewhere that description logics are ideal candidates for the
extension of propositional preferential consequence since the notion of subsump-
tion in DLs lends itself naturally to defeasibility [3, 6, 4]. The basic idea is to



reinterpret defeasible consequence of the form α |∼ β as defeasible subsumption
of the form C @∼D, where C and D are DL concepts, and classical entailment |=
as DL subsumption v. The properties of preferential consequence from Section 2
are then immediately applicable.

Definition 2. A subsumption relation @∼ ⊆ L×L is a preferential subsumption
relation iff it satisfies the properties (Ref), (LLE), (And), (RW), (Or), and
(CM), with propositional entailment replaced by classical DL subsumption. @∼ is
a rational subsumption relation iff in addition to being a preferential subsumption
relation, it also satisfies the property (RM).

However, up until now it has not been clear how to best generalize the propo-
sitional semantics for the DL case. Since DLs have a standard first-order seman-
tics, the obvious generalization from a technical perspective is to replace the
propositional valuations in preferential models with first-order interpretations.
Intuitively, this also turns out to be a natural generalization of the proposi-
tional setting, with the notion of normal first-order interpretation characterizing
a given concept replacing the propositional notion of normal worlds satisfying a
given proposition. Formally, our semantics is based on the notion of a concept
model, which is analogous to that of a Kripke model in modal logic [2]:

Definition 3 (Concept Model). A concept model is a tuple M = 〈W,R,V〉
where W is a set of possible worlds, R = 〈R1, . . . ,Rn〉, where each Ri ⊆W×W,
1 ≤ i ≤ |NR|, and V : W 7→ 2NC is a valuation function.

Observe that the valuation function V can be viewed as a propositional val-
uation with propositional atoms replaced by concept names. From the definition
of satisfaction in a concept model below it is then clear that, within the con-
text of a concept model, a world occurring in that concept model is a proper
generalization of a propositional valuation.

Definition 4 (Satisfaction). Given M = 〈W,R,V〉 and w ∈W:

• M , w  >;
• M , w  A iff A ∈ V(w);
• M , w  C uD iff M , w  C and M , w  D;
• M , w  ¬C iff M , w 6 C;
• M , w  ∃ri.C iff there is w′ ∈W s.t. (w,w′) ∈ Ri and M , w′  C.

Let U denote the set of all pairs (M , w) where M = 〈W,R,V〉 is a concept
model and w ∈W.

Worlds are, loosely speaking, interpreted DL objects. And while this corre-
spondence holds technically (from the correspondence between ALC and mul-
timodal logic K [13]), a possible worlds reading of the meaning of a concept is
also more intuitive in the current context, since this leads to a preference order
on rich first-order structures, rather than on interpreted objects. This is made
precise below.



Let S be a set, the elements of which are called states. Let ` : S 7→ U be a
labeling function mapping every state to a pair (M , w) where M = 〈W,R,V〉
is a concept model s.t. w ∈ W. Let ≺ be a binary relation on S. Given C ∈ L,
we say that s ∈ S satisfies C (written s |≡ C) iff `(s)  C, i.e., M , w  C. We

define Ĉ = {s ∈ S | s |≡ C}. Ĉ is smooth iff each s ∈ Ĉ is either ≺-minimal in

Ĉ, or there is s′ ∈ Ĉ s.t. s′ ≺ s and s′ is ≺-minimal in Ĉ. We say that S satisfies
the smoothness condition iff for every C ∈ L, Ĉ is smooth.

We are now ready for our definition of preferential model.

Definition 5 (Preferential Model). A preferential model is a triple P =
〈S, `,≺〉 where S is a set of states satisfying the smoothness condition, ` is a
labeling function mapping states to elements of U , and ≺ is a strict partial
order on S, i.e., ≺ is irreflexive and transitive.

These formal constructions closely resemble those of Kraus et al. [7] and of
Lehmann and Magidor [9], the difference being that propositional valuations are
replaced with elements of the set U .

Definition 6 (Preferential Subsumption). Given concepts C,D ∈ L and a
preferential model P = 〈S, `,≺〉, we say that C is preferentially subsumed by D

in P (denoted C @∼PD) iff every ≺-minimal state s ∈ Ĉ is s.t. s ∈ D̂.

We are now in a position to prove one of the central results of this paper.

Theorem 3. A defeasible subsumption relation is a preferential subsumption
relation iff it is defined by some preferential model.

The significance of this is that the representation result is proved with respect
to the same set of properties used to characterize propositional preferential con-
sequence. We therefore argue that preferential models, as we have defined them,
provide the foundation for a semantics for preferential (and rational) subsump-
tion for a whole class of DLs and related logics. We do not claim that this is
the appropriate notion of preferential subsumption for ALC, but rather that it
describes the basic framework within which to investigate such a notion.

In order to obtain a similar result for rational subsumption, we restrict our-
selves to those preferential models in which ≺ is a modular order on states (cf.
Definition 1):

Definition 7 (Ranked Model). A ranked model Pr is a preferential model
〈S, `,≺〉 in which ≺ is modular.

Since ranked models are preferential models, the notion of rational subsump-
tion is as in Definition 6. We can then state the following result:

Theorem 4. A defeasible subsumption relation is a rational subsumption rela-
tion iff it is defined by some ranked model.



4 Rational Closure

One of the primary reasons for defining non-monotonic consequence relations of
the kind we have presented above is to get at a notion of defeasible entailment :
Given a set of subsumption statements of the form C @∼D or C v D, which
other subsumption statements, defeasible and classical, should one be able to
derive from this? It can be shown that classical subsumption statements of the
form C v D can be encoded as defeasible subsumption statements of the form
Cu¬D @∼⊥. For the remainder of this paper we shall therefore concern ourselves
only with finite sets of defeasible subsumption statements, and refer to these
as defeasible TBoxes, denoted T . We permit ourselves the freedom to include
classical subsumption statements of the form C v D in a defeasible TBox, with
the understanding that it is an encoding of the defeasible subsumption statement
C u ¬D @∼⊥.

Our aim in this section is to show that the results for the propositional
case [9] with respect to the question above can be ‘lifted’ to ALC. We provide
here appropriate notions of preferential entailment and rational closure. It must
be emphasized that the results obtained in this section rely heavily on similar
results obtained by Lehmann and Magidor [9] for the propositional case, and
the semantics for preferential and rational subsumption presented in Section
3. Similar to the results of that section, our claim is not that the versions of
preferential and rational closure here are the appropriate ones for ALC. In fact,
our conjecture is that they are not, due to their propositional nature. However,
we claim that they provide the appropriate springboard from which to investigate
more appropriate versions, for ALC, as well as for other DLs and related logics.

The version of rational closure defined here provides us with a strict gen-
eralization of classical entailment for ALC TBoxes in which the expressivity of
ALC is enriched with the ability to make defeasible subsumption statements.
For example, consider the defeasible ALC TBox:

T = {BM vM,VM vM,M @∼ ¬F,BM @∼ F},

where BM abbreviates the concept BacterialMeningitis, M stands for Menin-
gitis, VM for viralMeningitis, and F abbreviates FatalDisease. One should be
able to conclude that viral meningitis is usually non-fatal (VM @∼ ¬F ). On the
other hand, we should not conclude that fatal versions of meningitis are usually
bacterial (F uM @∼BM), nor, for that matter, that fatal versions of meningitis
are usually not bacterial ones (F uM @∼ ¬BM).

Armed with the notion of a preferential model (cf. Section 3) we define pref-
erential entailment for ALC as follows.

Definition 8. C @∼D is preferentially entailed by a defeasible TBox T iff for
every preferential model P in which E @∼PF for every E @∼ F ∈ T , it is also the
case that C @∼PD.

Firstly, we can show that preferential entailment is well-behaved and coincides
with preferential closure under the properties of preferential subsumption (i.e.,



the intersection of all preferential subsumption relations containing a defeasible
TBox). More precisely, let T be a defeasible TBox. Then the set of defeasible
subsumption statements preferentially entailed by T , viewed as a binary relation
on concepts, is a preferential subsumption relation. Furthermore, a defeasible
subsumption statement is preferentially entailed by T iff it is in the preferential
closure of T .

From this it follows that if we use preferential entailment, the meningitis
example can be formalized by letting T = {BM v M VM v M , M @∼ ¬F,
BM @∼ ¬F}. However, VM @∼ ¬F is not preferentially entailed by T above (we
cannot conclude that viral meningitis is usually not fatal) and preferential en-
tailment is thus generally too weak. We therefore move to rational subsumption
relations.

The first attempt to do so is to use a definition similar to that employed for
preferential entailment: C @∼D is rationally entailed by a defeasible TBox T iff for
every ranked model Pr in which E @∼Pr

F for every E @∼ F ∈ T , it is also the case
that C @∼Pr

D. However, this turns out to be exactly equivalent to preferential
entailment. Therefore, if the set of defeasible subsumption statements obtained
as such is viewed as a binary relation on concepts, the result is a preferential
subsumption relation and is not, in general, a rational consequence relation.

The above attempt to define rational entailment is thus not acceptable. In-
stead, in order to arrive at an appropriate notion of (rational) entailment we
first define a preference ordering on rational subsumption relations, with rela-
tions further down in the ordering interpreted as more preferred.

Definition 9. Let @∼ 0 and @∼ 1 be rational subsumption relations. @∼ 0 is prefer-
able to @∼ 1 (written @∼ 0 � @∼ 1) iff

• there is C @∼D ∈ @∼ 1 \ @∼ 0 s.t. for all E s.t. E t C @∼ 0¬C and for all F s.t.
E @∼ 0F , we also have E @∼ 1F ; and

• for every E,F ∈ L, if E @∼ F is in @∼ 0\ @∼ 1, then there is an assertion G @∼H
in @∼ 1 \ @∼ 0 s.t. G tH @∼ 1¬H.

Space considerations prevent us from giving a detailed motivation for� here,
but it is essentially the motivation for the same ordering for the propositional
case provided by Lehmann and Magidor [9]. Given a defeasible TBox T , the idea
is now to define rational entailment as the most preferred (w.r.t. �) of all those
rational subsumption relations which include T .

Lemma 1. Let T be a (finite) defeasible TBox and let R be the class of all
rational subsumption relations which include T . There is a unique rational sub-
sumption relation in R which is preferable to all other elements of R w.r.t. �.

This puts us in a position to define an appropriate form of (rational) entail-
ment for defeasible TBoxes:

Definition 10. Let T be a defeasible TBox. The rational closure of T is the
(unique) rational subsumption relation which includes T and is preferable (w.r.t.
�) to all other rational subsumption relations including T .



It can be shown that VM @∼ ¬F is in the rational closure of T (we can con-
clude viral meningitis is usually not fatal), but that neither F uM @∼BM nor
F uM @∼ ¬BM is.

We conclude this section with a result which can be used to define an algo-
rithm for computing the rational closure of a defeasible TBox T . For this we
first need to define a ranking of concepts w.r.t. T which, in turn, is based on a
notion of exceptionality. A concept C is said to be exceptional for a defeasible
TBox T iff T preferentially entails > @∼ ¬C. A defeasible subsumption statement
C @∼D is exceptional for T if and only if its antecedent C is exceptional for T .

It turns out that checking for exceptionality can be reduced to classical sub-
sumption checking.

Lemma 2. Given a defeasible TBox T , let T v be its classical counterpart in
which every defeasible subsumption statement of the form D @∼ E in T is replaced
by D v E. C is exceptional for T iff > v ¬C is classically entailed by T v.

Let E(T ) denote the subset of T containing statements that are exceptional
for T . We define a non-increasing sequence of subsets of T as follows: E0 = T ,
and for i > 0, Ei = E(Ei−1). Clearly there is a smallest integer k s.t. for all j ≥ k,
Ej = Ej+1. From this we define the rank of a concept w.r.t. T : rT (C) = k − i,
where i is the smallest integer s.t. C is not exceptional for Ei. If C is exceptional
for Ek (and therefore exceptional for all Es), then rT (C) = 0. Intuitively, the
lower the rank of a concept, the more exceptional it is w.r.t. the TBox T .

Theorem 5. Let T be a defeasible TBox. The rational closure of T is the set
of defeasible subsumption statements C @∼D s.t. either rT (C) > rT (C u¬D), or
rT (C) = 0 (in which case rT (C u ¬D) = 0 as well).

From this result it is easy to construct a (näıve) decidable algorithm to deter-
mine whether a given defeasible subsumption statement is in the rational closure
of a defeasible TBox T . Also, if checking for exceptionality is assumed to take
constant time, the algorithm is quadratic in the size of T . Given that excep-
tionality reduces to subsumption checking in ALC which is ExpTime-complete,
it immediately follows that checking whether a given defeasible subsumption
statement is in the rational closure of T is an ExpTime-complete problem. This
result is closely related to a result by Casini et al. [4] which we refer to again in
the next section.

5 Related Work

Quantz and Ryan [11, 12] were probably the first to consider the lifting of non-
monotonic reasoning formalisms to a DL setting. They propose a general frame-
work for Preferential Default Description Logics (PDDL) based on an ALC-like
language by introducing a version of default subsumption and proposing a se-
mantics for it. Their semantics is based on a simplified version of standard DL
interpretations in which all domains are assumed to be finite and the unique



name assumption holds for object names. Their framework is thus much more
restrictive than ours. They focus on a version of entailment which they refer to
as preferential entailment, but which is to be distinguished from the version of
preferential entailment we have presented in this paper. We shall refer to their
version as Q-preferential entailment.

Q-preferential entailment is concerned with what ought to follow from a set of
classical DL statements, together with a set of default subsumption statements,
and is parameterised by a fixed partial order on (simplified) DL interpretations.
They prove that any Q-preferential entailment satisfies the properties of a pref-
erential consequence relation and, with some restrictions on the partial order,
satisfies Rational Monotony as well. Q-preferential entailment can therefore be
viewed as something in between the notions of preferential consequence and pref-
erential entailment we have defined for DLs. It is also worth noting that although
the Q-preferential entailments satisfy the properties of a preferential consequence
relation, Quantz and Ryan do not prove that Q-preferential entailment provides
a characterisation of preferential consequence.

Britz et al. [3] and Giordano et al. [6] use typicality orderings on objects in
first-order domains to define versions of defeasible subsumption for ALC and ex-
tensions thereof. Both approaches propose specific non-monotonic consequence
relations, and hence their semantic constructions are special cases of the more
general framework we have provided here. In contrast, we provide a general se-
mantic framework which is relevant to all logics with a possible worlds semantics.
This is because our preference semantics is not defined in terms of orders on in-
terpreted DL objects relative to given concepts, but rather in terms of a single
order on relational structures. Our semantics for defeasible subsumption yields a
single order at the meta level, rather than ad hoc relativized orders at the object
level.

Casini and Straccia [4] recently proposed a syntactic operational characteri-
zation of rational closure in the context of description logics, based on classical
entailment tests only, and thus amenable to implementation. Their work is based
on that of Lehmann and Magidor [9], Freund [5] and Poole [10], and represents
an important building block in the extension of preferential consequence to de-
scription logics. However, this work lacks a semantics, and we can only at present
conjecture that the rational closure produced by their algorithm coincides with
the notion of the rational closure of a defeasible TBox presented in this paper.

6 Conclusion and Future Work

The main contribution of this paper is the provision of a natural and intuitive
formal semantics for preferential and rational subsumption for the description
logic ALC. We claim that our semantics provides the foundation for extending
preferential reasoning in at least three ways. Firstly, as we have seen in Section 4,
it allows for the ‘lifting’ of preferential entailment and rational closure from the
propositional case to the case for ALC. Without the semantics such a lifting
may be possible in principle, but will be very hard to prove formally. Secondly,



it paves the way for defining similar results for other DLs, as well as other
similarly structured logics, such as logics of action and belief. We are at present
investigating similar notions for logics of action. And thirdly, it provides the
tools to tighten up the versions of preferential and rational subsumption for
ALC presented in this paper in order to truly move beyond the propositional.
The latter point is the obvious one to pursue first when it comes to future work.
Below we provide some initial ideas on moving beyond propositional properties.
The value added by the semantics is the ability it provides to test whether
appropriate constraints on the orderings in ranked models can be found that
matches the new properties.

Consider the following defeasible TBox, which is a slightly modified version
of our previous meningitis example:

T = {BM vM,M @∼ ¬F,BM @∼ F,> v ∀cm.F},

where BM , M , and F are as before, and cm abbreviates the role causaMortis.
The last statement encodes the classical subsumption statement that all causes
of death are fatal.

It is easily verified that ∃pc.BM v ∃pc.M is in the rational closure of T
(where pc abbreviates the role potentiallyCauses), and so it should be since it
is entailed by BM v M . We would also expect to conclude ∃pc.M @∼ ∃pc.¬F
from T since it contains M @∼ ¬F . However, there is no propositional property
to guarantee the latter. This prompts us to consider the following property:

C @∼D

∃r.C @∼ ∃r.D
(Näıve Role Introduction)

Arguably, then, if meningitis is usually non-fatal, then potential causes of
meningitis are usually potential causes of something non-fatal.

But there are problems with this reasoning. The following example makes
this explicit: From M @∼ ¬F , Näıve Role Introduction also allows us to conclude
that ∃cm.M @∼ ∃cm.¬F . So usually, fatal cases of meningitis are fatal cases of
something non-fatal. This is clearly counter-intuitive. Intuitively, cm usually
relates to an abnormal type of meningitis, such as bacterial meningitis, which is
usually fatal. An additional blocking mechanism is therefore needed to prevent
the rule from being applied when the entire range of the role r is abnormal with
respect to C. In order to provide such a mechanism, we need to go beyond ALC,
and include the ability to express role inverses.3 We then have the following Role
Introduction property:

(RI)
C @∼D, C 6@∼ ∀r−.⊥
∃r.C @∼ ∃r.D

The effect of the premise C 6@∼ ∀r−.⊥ is to block application of the rule if C is
normally disjoint from the range of r. On the other hand, if normally C overlaps
with the range of r, it follows that ∃r.C @∼ ∃r.D.

3 Given a role name r, the role inverse of r is denoted by r−. For an interpretation I,

(r−)
I

= {(y, x) | (x, y) ∈ rI}.



Now consider again the example above. The intention of role cm is modeled
by > v ∀cm.F , the intuition being that only something fatal can be the cause
of death. It then follows classically that ¬F v ∀cm−.⊥, and by (RW) that
M @∼ ∀cm−.⊥. This property (RI) is therefore blocked for the statement M @∼ ¬F .
Note that (RI) applied to pc is not blocked, as we do not have that M @∼ ∀pc−.⊥.
(RI) applied to cm is also not blocked for BM @∼ F . The interesting thing about
(RI) is that it does not hold for the preferential closure of a TBox, whereas it
does hold for the rational closure.

This illustrates that there are intuitively appealing properties characterizing
rational DL-entailment that merit further investigation.
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