Goal-oriented Query Rewriting for OWL 2 QL

Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

School of Electrical and Computer Engineering,
National Technical University of Athens,
Zografou 15780, Athens, Greece
{achort, gstam}@cs.ntua.gr, despoina@image.ntua.gr

Abstract. We present an optimized query rewriting algorithm for OWL
2 QL that computes the rewriting set of a user query by avoiding un-
necessary inferences and extended clause subsumption checks. The eval-
uation shows a significant performance improvement in comparison to
other similar approaches. Alternatively, instead of a rewriting set, the
algorithm can produce an equivalent non-recursive datalog program.

1 Introduction

The problem of answering conjunctive queries (CQ) over expressive DL ontolo-
gies suffers from high worst-case complexity. The DL-Liter language [1], which
underpins the OWL 2 QL profile, overcomes this problem by allowing a limited
expressivity. In DL-Liteg, the CQ answering problem is tractable from the data
point of view, and can be solved by splitting the answering procedure in two
steps [5, 1, 6]: the query rewriting, in which the CQ is expanded into a union of
CQs (UCQ), and the ezecution of the UCQ over the database. Apart from hav-
ing the advantage of using the mature relational database technology, rewriting
can be based on first order resolution-based reasoning algorithms [4]. The main
restriction is that, for large terminologies and/or large queries, the exponential
complexity in the query size may result in a very large number of rewritings.

Several CQ answering algorithms for DL-Liter have been proposed. In [2,
7], the rewriting strategy is based on reformulating the conjuncts of the query
according to the taxonomic information of the ontology. Although the strategy
is effective, some of the ontology axioms must be rewritten in terms of auxiliary
roles. This restriction is lifted in [4], which proposes a resolution-based rewriting
strategy, called RQR. However, its strategy may get tangled in long inference
paths leading to unnecessary or to non function free rewritings. Such rewritings
are discarded in the end, but their participation in the inference process and
the increased number of required subsumption checks degrades performance.
Another approach, called Presto, is proposed in [6] which, instead of a UCQ,
computes a non-recursive datalog program, deferring thus part of the complexity
to the database system, where it can be handled using disjunctive views.

In this paper we present Rapidy, a goal-oriented query rewriting algorithm
for queries posed over DL-Liter ontologies. Instead of exhaustively performing
resolution, it performs a restricted sequence of inferences that lead directly to

2 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

rewriting sets with, hopefully, no unnecessary rewritings. In this way, we avoid
a large number of blind inference paths and the need for extended query sub-
sumption checks. Rapid improves the Rapid algorithm [3] by supporting the full
syntactic expressivity of DL-Liteg (i.e. axioms of the form A C 3P.B, 3P C 35,
3P C 3R.B), all types of queries, and by further refining the unfolding step and
reducing the need for subsumption checks. We describe also a simple modifica-
tion of Rapidy, called Rapidg, which, instead of the complete set of rewritings,
outputs an equivalent non recursive datalog program, similarly to [6].

2 Preliminaries

A DL-Liteg ontology is a tuple (T,.A), where T is the terminology and A the
assertional knowledge. Formally, 7 is a set of axioms of the form shown in
Table 1, where A, B are atomic concepts and P, .S atomic roles. A is a finite set
of assertions of the form A(a) or P(a,b), where a,b are individuals.

A CQ @ has the form A <« B, where atom A is the head, and the set of
atoms B (seen as a conjunction) is the body of Q. We denote B by body @, and
A by head Q. A CQ Q is posed over an ontology (T, .A) if the predicates of all
atoms B € body @ are entities of 7 and have arities 1 or 2, if the entity is a
concept or a role, respectively. Hence, B is a concept atom B(t) or a role atom
S(t,s). terms B (vars B, cons B) are the sets of terms (variables, constants) that
appear in B. For a set of atoms B we have terms B = | g terms B, for a CQ Q
we have terms () = terms ({head @} Ubody Q) and similarly for vars Q, cons Q. An
atom or CQ is function free if it contains no functional terms. User queries are
always function free. Given a function free CQ @, a term t € terms @ is called
distinguished if it appears in head @), and non distinguished otherwise; bound if it
is a constant, or a distinguished variable, or a variable that appears at least twice
in body @, and unbound otherwise. We denote the set of bound terms, bound
and unbound variables of Q by terms® Q, vars® @ and varsYB Q, respectively. For
an atom A we also write vars® A and varsVB A instead of vars A N vars® Q and
vars A \ vars®), respectively, if it is clear that A € body @, for some Q.

A tuple of constants a is a certain answer of a CQ @ posed over the ontology
O =(T,A) iff Z(0)U{Q} = C(a), where C is the predicate of head Q and =(O)
the clausification of O into first order clauses (see Table 1, where it is assumed
that each axiom introduces a distinct function f). The set that contains all
answers of @ over O is denoted by cert (Q,O). It has been proved [5,1] that
for any CQ @ and DL-Liter ontology O, there is a set Q of function free CQs
(called query rewritings) such that cert(Q, (T, A)) = Ugrcg cert(Q’, (0, A)).

Formally, a function free CQ Q' is a rewriting of a CQ Q posed over ontology
O, iff @ and Q' have the same head predicate and Z(O)U{Q} = Q’'. Nevertheless,
not all possible rewritings are needed for the complete computation of cert (Q, O),
since some of them may be equivalent or subsumed by others. We say that a CQ
Q subsumes a CQ Q' (or Q' is subsumed by Q) and write @ 1> Q' iff there is a
substitution # such that head (Q6) = head Q" and body (Q8) C body Q'. If Q and
Q' are mutually subsumed, they are equivalent. If Q is a set of CQs and for some

Goal-oriented Query Rewriting for OWL 2 QL 3

CQ Q there is a Q" € Q equivalent to @, we write Q € Q. A set rewr (Q,0) is
a rewriting set of the CQ Q over O iff for each rewriting Q' of Q over O, either
Q' € rewr (Q,O) or there is a Q" € rewr (Q, O) such that Q" > Q’. Given a CQ
Q, let Q" be the CQ head Q <+ {B}gep for some B C body Q. If B is a minimal
subset of body @ such that Q > Q’, Q' is called condensed or a condensation
of @, and is denoted by cond Q. Since a CQ is equivalent to its condensation,
we can find cert (Q,O) by computing a rewriting set of @ that contains only
condensed rewritings and no two rewritings @, Q" such that Q > Q’. Hence, we
say that Q' is a core rewriting of a CQ @Q over O, iff it is a rewriting of @ over
0, it is condensed, and there is no (non equivalent) rewriting Q" of @ over O
such that Q" > Q'. The core rewriting set rewr® (Q,O) of Q over O is the set of
all the core rewritings of @) over O.

Axiom Clause Axiom Clause

ACB B(x) + A(z)

SCP P(z,y) + S(z,y) SC P~ P(y,z) < S(z,y)

STCP P(z,y) < S(y,x) STC P P(y,z) < S(y,x)

JSC A A(z) + S(z,y) ISTC A A(z) + S(y,x)

AC3P P(z, f(z)) + A(x) AC 3P~ P(f(z),z) + A(x)
P(z, f(z)) + A(z) - P(f(z),z) « A(z)

ACIPE By —aw | PEFTE] B@) < A@w)

s CJpP P(z, f(z)) + S(z,y) || IS T3P~ P(f(z),x) « S(z,y)

iS5~ C 3P P(z, f(x)) + S(y,z) || IS~ C3IP~ P(f(x),z) « S(y,x)
P(z, f(z)) < S(z,y) - P(f(z),z) < S(z,y)

WEIE | B@) < S@y) | PETTP | BUG) « Sey)

- P(z, f(z)) < S(y,) - - P(f(z),z) < S(y,)
EIE BU@) < swa) | 0 57T P | BUG) « Sw.e)
Table 1. Translation of DL-Liter axioms into clauses of =(0O).

3 Goal-oriented Query Rewriting

Rapids computes rewr® (Q, O) for a user query @ in an efficient way. Its strategy
is based on the distinguishing property of the bound variables, namely that
whenever a CQ @ is used as the main premise in a resolution rule in which
an atom A € body @ unifies with the head of the side premise and the mgu 6
contains a binding v/t for some variable v € vars®), the application of 6 affects
several atoms of the query apart from A.

Rapidy consists of the following steps: (1) The clausification step, in which
O is transformed into =(0). (2) The shrinking step, in which the clauses of
Z(O) are selectively used as side premises in resolution rule applications in or-
der to compute rewritings which differ from the user query @ in that they do
not contain one or more variables in vars® Q, because the application of the res-
olution rule led to their unification with a functional term which subsequently
was eliminated. (3) The unfolding step, which uses the results of the previous
step to compute the remaining rewritings of @), by applying the resolution rule

4 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

without that the bound variables of the main premise are affected. In principle,
only unbound variables are eliminated or introduced at this step. However, some
bound variables of the main premise may also be eliminated, not through the
introduction and subsequent elimination of functional terms, but while condens-
ing the conclusion. Obviously, the same can happen at the shrinking step. (4)
The subsumption check step, in which subsumed rewritings are removed.

For efficienty, Rapids does not implement the shrinking and unfolding steps
by applying directly the resolution rule. Instead, a shrinking and unfolding in-
ference rule are defined, which combine a series of several successful resolution
rule application steps into one. In this way, the resolution rule is used only if it
eventually leads to a function free and hopefully also non subsumed rewriting,
and a large number of unnecessary inferences is avoided. The rules of Rapidy
make use of the unfolding and function sets of atom.

3.1 Atom Unfolding Sets

The saturation of Z(O) w.r.t. the resolution rule contains clauses of the form

A(z) « B(z), Alx) < S(z,y), Plr,y) < S(z,y),
P(a, f(z)) < B(z), Pz, f(2)) < S(z,y),
P(g(x), f9(x))) « B(x), P(g(x), fg(x))) < S(z,y),
P(g(h(x)), f(g(h(x)))) « B(z), Pg(h(z)), f(g(h(2)))) < S(z,y),

as well as the respective clauses with the role atom arguments inverted. We note
that in the clauses of the first two rows, the non functional terms of the head
appear also in the body. Based on this remark, and given that in the unfolding
step we want the bound variables not to unify with functional terms but be
preserved in the conclusion, we define the unfolding of an atom as follows:

Definition 1. Let A be a function free atom and T a subset of terms A. Atom
BO' is an unfolding of A w.r.t. T iff Z(0) Fr A6 < B for some substitution
6 on a (possibly empty) subset of vars A\ T to functional terms, where 6 is a
renaming of vars B\ T such that for v € varsB\ T we have v’ ¢ vars A.

In the above, - denotes derivability under the first-order resolution rule.
Essentially, Bf' is an unfolding of A w.r.t. T if it is the body of a clause inferrable
from Z(O) that has in its head an atom A’ (of the same predicate as A), and
both B and A’ contain unaltered all terms in T (which should contain the bound
terms in A). Since the variable renaming 6’ contains no essential information, we
collect all unfoldings and define the unfolding set of atom A for T w.r.t. Z(O)
as the set D(A;T) = {B | 5(O) U{A} -7y B}, where J(T') are the inference
rules shown in Table. 2, in the form %. Given T, A (the main premise) and a
clause C € Z(0O) (the side premise), by applying the respective rule we get atom
B (the conclusion). We also define the set D(A;T) = D(A;T) U {A}. It is easy
to prove that given A and T # () we have Z(0) Fr A + B iff B¢’ € D(A;T),
for 0,0’ as defined in Def. 1.

Goal-oriented Query Rewriting for OWL 2 QL 5

r rule T rule
Do | SO ADCBE) v | AT AT EE)

g | A A e Sy o | AU AGE) S
ooy | AU Aé@;b‘(m,y) 0| AW Aéfi,; S(y,2)
0, {0 P(t,v) P(g(figw))eB(w) 00 P(v,t) P(j;(é))7:c)<—B(ag)
0 | PE) Pet@ CSen | g gy | POD PUG.S S
010 P(t,v) P(ag(gf)))es(y,x) 00 P(v,t) P(J;((z)j,tg)g)es(y,m)
| P P (DL Shihl Py Pe.y) S0

Table 2. The J(T') inference rules (w and z are any newly introduced variables).

3.2 Atom Function Sets

As we have already seen, the closure of Z(0) contains clauses of the form
Pz, f(x)) « B(z), P(f(z),x) + B(x) and A(f(z)) < B(z), as well as of
the form P(g(z), f(g(z))) < B(z) and P(g(z), f(g9(x))) < S(z,y). Unlike in
the unfolding case, now we are interested in the behavior of the functional term
f(z), which appears in the head but not in the body, because if f(x) appears in
the body of a rewriting, it may be possible to eliminate it by using such clauses.
Let funcs Z(O) be the set of all functions in Z(0O). According to Table 1, each
DL-Liter axiom that has an existential quantifier in the RHS introduces a dis-
tinct function f. Hence, each function f € funcs £(0O) is uniquely associated with
the concept or role that appears in the LHS of the axiom that introduces f. Let
atom f[z] denote the atom that (a) has as predicate the entity associated with f,
(b) has the variable x in the place of the bound variable of the respective axiom
of Table 1 which introduces f, and (c) has a distinct variable (not elsewhere
used, as needed) in the place of the unbound variable, if any. E.g. if the axiom
A C 3P.B introduces function f; then atom fi[z] is the atom A(z), and if the
axiom 35S~ C 3P.B introduces function f then atom fs[x] is the atom S(z, z),
where z is some variable not used elsewhere. We define the set of all functions
that may appear in the place of a bound variable v of an atom A when resolving
any of its unfoldings with a non function free clause in =(0O) as follows:

Definition 2. Let A be a function free atom, T a non empty subset of terms A
and v a variable in vars ANT. The function set F,(A;T) of all functions asso-
ciated with A in variable v w.r.t. T is defined as follows:

{f | B(v) € D(A;T) and B(f(x)) + atom flz] € 5(O)} U
Fo(A;T) = {f | S(v,t) € D(A;T) and S(f(x),z) < atom f[z]
{f|S(t,v) e DIA;T) and S(x, f(x)) < atom f[z] €

6 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

It follows that (a) if A = P(v,t) then f € F,(A;T) iff Z(O) b P(f(t),s)
atom f[t], (b) if A = P(t,v) then f € F,(A;T) ifft Z(0) Fr P(s, f(t))
atom f[t], where in both cases s = t if t € T otherwise either s = ¢, or s = g(f(
for some function g, and (c) if A = A(v) then f € F,(A;T) iff Z(0)
A(f(t)) + atom f[t]. Again, T stands for the set of bound terms in A.

=17

T

R

3.3 Query Shrinking

The shrinking step computes rewritings that can be inferred from the user query
@ by eliminating one or more of its bound variables through their unification
with a functional term. Given that the rewritings in rewr (@, O) are function free,
if a function is introduced in some rewriting during the standard resolution-based
inference process, subsequently it must be eliminated. However, we know that
each function appears in at most two clauses of Z(0), both of which have as
body the atom atom f[z]. Now, the functional term f(z) can be introduced in a
CQ only if some inference led to the substitution of a bound variable v by f(x).
Hence, in order for f(x) to be eliminated, all atoms in which f(z) has been
introduced must contain f in their function sets, for the appropriate argument.
Moreover, if @ contains the terms say P(z,v) and P(v,y) and v is eliminated
this way by unifying with f(z), variables x and y must be unified. If in place of
x, y there are constants, these should coincide in order for the inference to be
possible. This is the intuition behind the following shrinking inference rule:

Definition 3. Let Q be a CQ and v a non distinguished bound variable of Q.
Write Q in the form A < Bq,...,Bg,Cq,...,C,, where B; are the atoms in
body Q that contain v, and C; the remaining atoms. Let also C = Ule consB;

and X = Ule(varsB B;) \ v. The shrinking rule S on Q is defined as follows:

A+ By,...,By,Cy,...,C, feNr, Fu(BistermsB By) A[C| < 1
cond (A6 + atom f[t],C10,...,C,0)

where 0 = J,cp{2/t}, and t = a if C = {a} otherwise t is a variable ¢ vars Q.

3.4 Query Unfolding

Let S*(Q) be the closure of cond @ under application of the inference rule S,
for any CQ Q. By construction, $*(Q)) contains a ‘representative’ for all query
structures that can result from @ by eliminating one or more variables in vars® Q
by using functional terms. This representative can be considered as a ‘top’ query,
in the sense that in can produce several more CQs with no further structural
changes due to bindings of bound variables with functional terms. Hence, the
remaining rewritings can be obtained by computing, for each @' € S*(Q), all
CQs that can be inferred from @’ by replacing one or more of its atoms by one
of their unfoldings. In this way we can eventually compute all rewritings of Q.
This can be achieved by applying the following unfolding inference rule:

Goal-oriented Query Rewriting for OWL 2 QL 7

Definition 4. An unfolding of CQ @ : A < By,...,B,, is the conclusion of
any application of the following unfolding rule W:

A+ B,...,B, CiEf)(Bi;termsBBi)fori:l...n
cond (A < Ci71,...,Cpyn)

where v; is a renaming of vars® C; such that x; ¢ U?=1 i Vars (Cj~;) for all
x € varsUB C,.

Let W*(Q) be the closure of a cond Q under application of the inference rule
W, for any Q. The strategy by which Rapid; computes the core rewriting set of
a user query @ is justified by the following theorem:

Theorem 1. Let QQ be a CQ over a DL-Liteg ontology O.
If Q" € Ugres-g W (Q") then Q" € rewr (Q,0) (soundness), and if Q" €
rewr® (Q, O) then Q' & Ugres-qy W (Q") (completeness).

3.5 Query Unfolding Optimization

If we apply exhaustively the W rule in order to compute W*(Q), we may end
up with many subsumed rewritings. Because the subsumption check operation
needed to remove them is very costly, Rapid; applies W in a cleverer way, so as
to get as few as possible subsumed rewritings. In fact, it restates the unfolding
problem as follows: Given a CQ @ of the form A < By,...,B,, find the non
subsumed CQs that are conclusions of all possible applications of W on Q.
For convenience, define B; = ﬁ(Bi;termsB B;), so that we get the sequence
of the possibly non disjoint unfolding sets By, ..., B,. For simplicity, we drop
the substitutions ; in Def. 4 by assuming that each time a rule of J(T") that
introduces a new variable is applied, this variable does not appear elsewhere.
For any B € [J;_, B;, define the set ind B = {j | B € B;} of the indices
of all unfolding sets that contain B. We call the set C = {Cy,...,Cy} with
k < n a selection for Q iff (a) Ule ind C; = N,,, where N,, = {1,...,n}, and (b)
indC; \ind C; # 0 for all 4, j € Ny, i.e. if C contains at least one atom from each
unfolding set and no two sets ind C; overlap fully. Clearly, a selection corresponds
to an unfolding of @, in particular to A < C. However, of interest are the minimal
selections, which can produce non subsumed rewritings. We call a selection C for
Q@ minimal, iff there is no selection C’ for @ such that C’ C C, i.e. if condition

(b) above is replaced by the stronger condition ind C; \ (U?ZM# ind Cj) £ 0
for all ¢ € Ng, i.e. if all atoms C; need to be present in set C in order for
Ule ind C; = N,, to hold. If this were not the case, we could form the selection
C'={Cq,...,Ci-1,Ci41,Ci} C C, hence C would not be minimal.

In this computation of minimal selections only equality between the elements
of the sets B; is taken into account, and not subsumption relations. However,
an unfolding set may contain an atom with an unbound variable (e.g. P(z,),
where #* is unbound) which unifies with an atom of another unfolding set that
contains only bound variables (e.g. P(z,y)). The unfoldings of a CQ @ resulting

8 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

after such unifications are made may subsume or be subsumed by several of the
unfoldings given directly by other minimal selections for). In order to take into
account atom subsumption relations, we compute all possible bindings for the
unbound variables that appear in the sets B; in advance and enrich the respective
sets B; with the respective atoms, before computing the minimal selections. In
particular, if for some i,j € N,, we have C € B; and C' € B; and there is a
substitution 6 on varsY® C’ such that C'6 = C, we add C to B;. The presence of
any such two atoms C’ and C in any pair B;, B;, regardless of whether they were
present from the beginning or introduced at the enrichment phase, establishes a
parent-child relationship between C’ and C. Let parents C and children C denote
the set of parent and child atoms of atom C across all the sets B;. Obviously,
a child can have several parents in different unfolding sets, possibly distinct
between each other, and the same holds for the children of a parent.

In order to avoid the production of subsumed rewritings due to such atom
subsumptions, for each candidate unfolding @ : A <+ C obtained from a minimal
selection C, Rapidy performs two checks: (1) For each parent C of an atom in
C, it constructs a candidate rewriting with body C' = {C} U (C \ children C), i.e
it replaces all children of C by their parent. If C’ is a minimal selection, then
Q is discarded because it is subsumed by A «+ C'. E.g. Q(z) + S(z,y),T(z,y)
is subsumed by Q(x) < S(x,*),T(z,z) where S(z,y) is a child of S(z,). (2)
For each atom C that is a child of an atom in C it constructs the candidate
body ¢’ = {C} U{D | D € C and indD ¢ ind C}, i.e. it replaces the parent by
its child C and keeps all the remaining atoms of C that are not ‘covered’ (in
terms of their indices) by C. If cond (A « C’) > @ then @ is discarded because
it is subsumed. E.g. Q(z,y) < R(z,y),S(y,w),T(y,2),S(v, z) is subsumed by
Q(z,y) « R(x,y),S(y, z), where S(y, z) is child of both S(y,w) and S(v, 2).

The only case an unfolding Q)" of) obtained in this way may subsume another
unfolding of @ is when the condensation of @’ does not contain one or more of
the variables in vars® @; this implies that a structural change has happened
to cond Q. To cover this case, we always compute the condensation of each
unfolding given by the above procedure. If the condensation does not contain a
bound variable of @) it is marked as impure, otherwise as pure. Given that the
unfolding step is executed for each rewriting produced by the shrinking step, the
final step is the check for subsumed rewritings within the results of the entire
unfolding process. The check is done after first grouping the results into sets that
are known not to contain subsumed rewritings. As explained, these are the sets
of pure unfoldings obtained during the unfolding step for each rewriting given
by the shrinking step. Each impure unfolding is considered to be a separate set.

The overall structure of Rapid for a user query () is shown in Algorithm 1.
Procedure SHRINK computes S$*(Q), by iteratively applying Def 3. For each
rewriting computed by SHRINK, procedure UNFOLD computes its minimal se-
lections and discards any subsumed unfoldings as described above. Finally, the
unfoldings, grouped into sets of pure unfoldings and singleton sets of impure
unfoldings, are processed by procedure CHECKSUBSUMPTION, which checks for
subsumptions across sets only and removes any subsumed rewritings.

Goal-oriented Query Rewriting for OWL 2 QL 9

Algorithm 1 The Rapid; algorithm

procedure RaPID;(CQ Q, ontology O)
Q=10
for all Q, € SHRINK(Q, O) do
Q]
for all Q' € UNFOLD(Qs,O) do
if vars® Q C vars (cond Q) then
Qr + Q:U{Q'}
else
Qr QU {{cond @'}}
end if
end for
Qr < Qr U{Q+}
end for
return CHECKSUBSUMPTION(Q¢)
end procedure

3.6 Rapidg: Rewritings as a non-recursive Datalog program

The side premises C; € ﬁ(Bi7termsB B;) of the unfolding rule W may be seen
as the clauses C; + D, for some D; € f)(Bi,termsB B;). Hence, similarly to
[6], given a user CQ @, instead of applying exhaustively the unfolding rule on
S*(Q), in order to produce all unfoldings and then check for subsumptions among
them so as to get rewr (Q, O), we can produce a non-recursive datalog program
Pg, which contains the rewritings produced at the shrinking step plus the side
premises of the W rules that can possibly be applied. Rapidg works exactly this
way: The clausification and shrinking steps are as in Rapidy, but the unfolding
and subsumption check steps are replaced by a single step which rewrites the
unfolding of all atoms that appear in the body of the rewritings in $*(Q) in
the form of a set of clauses U, which are then appended to the set of rewritings
obtained at the shrinking step so that P is produced. Before doing this however,
the rewritings in $*(Q) need to be modified in two ways, as in [6].

First, we can remove from the body of the several Q' € §*(Q) the atoms
that will certainly produce only subsumed rewritings (in the case we were to
apply exhaustively the W rule, as before, in order to compute all rewritings);
this happens if there are two atoms A, B € body Q' and a 6 such that A = C#
for some C € D(terms® B), i.e. if A is subsumed by C. In this case we just
remove B from body Q’. Let rr (§*(Q)) be the set of clauses obtained in this way
from §*(Q) and also after removing from it any subsumed clauses.

Next, we must construct the set of clauses . This is straightforward, but we
must take into account the different bindings that bound and unbound variables
can have during the unfolding. So, for all atoms A that appear in the clauses of
rr (S*(Q)) we compute the set D(A;vars® A) and then we construct from A a
new atom A’ by removing from the arguments of A all unbound variables and
replacing the predicate p of A by a new predicate p;, or p;,¢,, if A is a concept
or role atom, respectively, and ¢; = 0 if the i-th argument of A is unbound and

10 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

t; = 1 otherwise. Finally we normalize the clauses in rr (§*(Q)) by replacing all
appearances of A by A’, and add to U the clause A’ <~ A as well as the clause
A’ + D for all D € D(A;vars® A).

Pg is the union of I and the normalized version of all clauses in rr (5*(Q)).

4 Evaluation

We evaluated Rapidy by comparing it with Rapid and Requiem, the implemen-
tation of RQR. We used the same datasets as in [4], namely the V, S, U, A,
P5, UX, AX, P5X ontologies. (V models European history, S European financial
institutions, and A information about abilities, disabilities and devices. U is a
DL-Liteg version of the LUBM benchmark ontology. P5 is synthetic and models
graphs with paths of length 5. UX, AX and P5X are obtained by rewriting U,
A and P5 without qualified existential restrictions). The results are shown in
Table 3. T is the rewriting computation time and R the number of rewritings.
For Rapidy (Rapys), Rapid (Rap) and Requiem (Req), one number is given for
the rewritings, since all these algorithms compute the same core rewriting set.
For Rapidg (Rapg), the column R is the number of clauses in Pg.

Rapy| Rap Req Rapg Rap; Rap Req Rapg

olQ T T T| R T| R O |1Q T T T R T| R
1 001|.001 .001] 15]|.001| 16 1 001 001 .001 6(/.001| 7

2 .001]|.001 .001| 10]|.001|13 2 001 001 .015 10]{| .001| 16
V|3 .001]|.015 .016| 72|/ .001|29|| P5 |3 001 001 .047 13|/ .001| 19
4 015|.031 062| 185|| .001| 44 4 015 015 .688 15/ .001| 21

5 016|.016 .015| 30]|.001| 13 5 015 015 16.453 16| .001| 22

1 001|.001 001 6(.001| 7 1 001 001 .001 14| .001| 15

2 001|.001 062 2| .001| 3 2 001 001 .031 25(|.001| 31
S|3 001|.001 515 4]/ .001| 5||P5X| 3 016 031 297 58|| .001| 34
4 001|.001| 1.047| 4| .001| 5 4 078 172 7.375 179(| .001| 36

5 001|.001| 17.984 8|| .001| 7 5| 1.234| 2.625 3:48.690 718|| .001| 37

1 001|.001 001 2([.001| 4 1 001 001 .001 5[/ .001| 7

2 001|.001 047 1|/ .001| 2 2 .001 .001 .078 1||.001| 2

Ul 3 001|.001 109| 4| .001] 8|| UX |3 .001 .001 1.125 12(|.001| 10
4 .001|.001| 2.031 2| .001| 3 4 .001 .001 19.375 5[/ .001| 6

5 .001|.001| 7.781| 10]{|.001| 8 5 .001 .015 57.672 25(|.001| 11

1 .001].001 .047| 27| .001| 54 1 .001 .015 .063 411[.001| 69

2 .001]|.001 .047| 50]|.001| 33 2 .109 141 2.781| 1,431(.001|51

Al 3 .016|.016 .063] 104|| .001| 33|| AX | 3 .375 .469 29.109| 4,466(| .001|57
4 .015].031 .156| 224(| .001| 60 4 .265 .641 23.516| 3,159(|.001| 85

5 .062|.078 .610| 624|| .001| 38 51| 3.375[49.984| 1:56:21.585| 32,921|| .001| 72

Table 3. Evaluation results. The times T are in hh.mm.ss.msec format The results
for Requiem are for its greedy modality, which applies forward query subsumption,
dependency graph pruning and greedy unfolding.

The results show clearly the efficiency of Rapidy. It is always faster than
Rapid, and much faster than Requiem; in several cases the improvement is sig-
nificant. The most striking case is ontology AX and query 5, in which Rapidy
completes the computation of the 32,921 core rewritings in less than 4 seconds,
while Rapid needs 50 seconds and Requiem about 2 hours. The more detailed

Goal-oriented Query Rewriting for OWL 2 QL 11

study of this particular case showed that Rapid; computes directly the final
core rewriting set and performs no subsumption checks at all. On the other
hand, Rapid spends about 45 seconds checking for subsumptions and Requiem
about 1.5 hours.

Table 3 also shows, as expected, that Rapidy is always much faster than any
of the other algorithms, since it does not include the unfolding step, which is
the main source of complexity, even for the optimized Rapid; algorithm. For
the same ontologies and query pairs tested in [6], similar times and numbers of
rewritings are reported. Note, however that the rewriting sizes do not coincide,
because Rapid,; and Presto do not produce the same datalog programs. This is
due to the fact that the Split and EliminateEJVars steps of Presto are performed
in a different way by the shrinking step of Rapidy. The expansion of the datalog
program to a UCQ is of course the same, for both algorithms.

5 Conclusions

We presented Rapidy, an efficient algorithm for the computation of the core
rewriting set of queries posed over DL-Liter ontologies. Rapid; optimizes the
inference process by replacing the application of the first order resolution rule
by specialized shrinking and unfolding rules, which save the algorithm from
many unnecessary rewritings, subsumption checks and blind inference paths.
We presented also Rapidg a modification of Rapids, which does not unfold the
rewritings, but encodes the unfoldings into a datalog program similarly to [6].
The experimental evaluation of Rapid; showed a significant performance benefit
if compared to RQR and Rapid, which in several practical cases can alleviate
the exponential behavior. The performance of Rapidy is similar to Presto, but
Rapidy supports the full syntactic expressivity of DL-Liteg.

References

1. A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev. The DL-Lite family
and relations. J. of Artificial Intelligence Research, 36:1-69, (2009).

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati. Tractable rea-
soning and efficient query answering in description logics: The DL-Lite Family. J.
of Automated Reasoning, 39:385-429, (2007).

3. A. Chortaras, D. Trivela, G. Stamou. Optimized query rewriting for OWL 2 QL, In
Procs of CADE 2011 (accepted), (2011).

4. H. Perez-Urbina, I. Horrocks, B. Motik. Efficient query answering for OWL 2. In
Procs of ISWC 2009, LNCS 5823:489-504, (2009).

5. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati. Linking
data to ontologies. J. on Data Semantics, 10:133-173, (2008).

6. R. Rosati, A. Almatelli. Improving query answering over DL-Lite ontologies. In
Procs of KR 2010, pp. 290-300, (2010)

7. M. Stocker, M. Smith. Owlgres: A scalable OWL reasoner. In Procs of OWLED
2008, CEUR-WS.org Vol-432, (2008).

