
Extracting Finite Sets of Entailments
from OWL Ontologies

Samantha Bail, Bijan Parsia, Ulrike Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL

{bails,bparsia,sattler@cs.man.ac.uk}

Abstract. The canonical standard description logic reasoning service is
classification, that is, the generation of the set of atomic subsumptions
which are entailed by some ontology. While this consequence relation is
well defined and finite, there is significant variance in the composition of
that set. For example, it is common (in tools and in discussion) to exclude
some tautologies (e.g., A v >, A v A). While for many purposes such
divergences are harmless, there are many for which precision about what
appears in the classification is essential, for example, estimating differ-
ences in logical content. In this paper, we propose definitions for different
types of finite entailment sets of an OWL ontology based on the tran-
sitive closure and transitive reduction of its asserted and inferred class
graphs. The purpose of this work is to introduce a flexible and extensible
specification for selecting a particular set of entailments, with the aim of
ensuring the correctness and replicability of OWL-based applications.

1 Introduction and Motivation

The Web Ontology Language OWL 2 DL is based on the expressive description
logic SROIQ [6]. It is designed to ‘facilitate ontology development and sharing
via the Web’,1 with OWL development tools aiming at users with little or no
knowledge in description logics. Entailment is regarded as the ‘key inference’ of
the Semantic Web [12], and while the entailment relation |= is well defined for
OWL ontologies [7], misleading nomenclature in ontology tools and anecdotal
evidence show that there exist common misconceptions about entailments: first,
it is often assumed that the set of entailments of an ontology is finite, and it
is possible to extract the set of all entailments of an ontology. Second, it is as-
sumed that only non-trivial information is contained in the set of entailments,
and tautologies such as A v A are not entailments. Third, the term entailments
is used interchangeably with inferences, and the information that is asserted in
the ontology is often not considered to be an entailment itself. While the prob-
lem of reasoning with and extracting meaningful entailments from inconsistent
ontologies has been previously discussed in the literature [8,4], we focus on con-
sistent ontologies for the purpose of this paper, and limit the definitions and
examples to atomic subsumptions and equivalences.

1 http://w3.org/TR/owl2-overview



The ontology editor Protégé 42 for instance comes with a ‘selected entail-
ments’ tab which shows a list of atomic SubClassOf, SubPropertyOf and Type
(class assertion) axioms. The tool also offers the option to ‘Save inferred axioms
as ontology’ which saves asserted and inferred axioms as a new OWL ontology.
Similarly, Top Braid Composer3 offers to ‘Save [the] inference graph’ as a new
file. In all cases, it is not clear how the entailments are generated, what the se-
lection criteria is for entailments (inferences), and how the user can modify the
ontology to affect these entailments. For example, given an ontology containing
only subsumptions and equivalences between named classes, Protégé 4 exports
all direct and strict subsumptions between the classes, but offers no options to
export the indirect or non-strict subsumptions explicitly. Top Braid Composer,
however, does not include (direct or indirect) atomic subsumptions at all in the
exported ‘inference graph’.

Ontologies that are available on the web may be published as ‘compiled’
versions, which include the ontology and its entailments of some description. The
OWL version of the National Cancer Institute (NCI) Thesaurus, for example,
‘includes inferred relationships’.4 There is, however, no definition of what is
regarded as an inferred relationship, how these relationships are determined,
and what the selection criteria is. This may leave users wondering what kinds
of information they are dealing with, and what implications this has for their
understanding of the ontology.

Analytical applications that are based on justifications (minimal subsets of
the ontology that are sufficient for the entailment to hold) extract the entailed
atomic subsumptions of an ontology and compute the justifications therefore
[3,5]. Again, transparency of the entailment extraction process is vital for these
applications in order to ensure correct and meaningful results. For instance, the
number of entailments, as well as the number and properties of their justifi-
cations, can be skewed by including or excluding subsumptions caused by un-
satisfiable classes, not distinguishing between direct and indirect subsumptions,
whether unsatisfiable classes are treated as a subclass or equivalent to bottom,
and similar selection criteria. Furthermore, imported ontologies add to the com-
plexity of the problem: computing entailments from the imports closure of an
ontology also considers the entailments and justifications of imported ontologies.
This may distort the actual number and types of entailments, while also adding
a computational overhead to entailment extraction procedures.

The above examples demonstrate how the notion of entailments is widely
used in OWL applications, however without a clear understanding of how the
entailment relation relates to the set of axioms that is obtained from an ontology.
In order to ensure the correctness and replicability of data based on the entail-
ments of an ontology, it is necessary to explicitly specify which (finite) subset of
the set of all entailments should be extracted from the ontology. In this paper,
we discuss the different aspects of extracting entailments of OWL ontologies and

2 http://protege.stanford.edu
3 http://topquadrant.com/products/TB Composer.html
4 http://evs.nci.nih.gov/ftp1/NCI Thesaurus/ReadMe.txt



provide definitions for practical entailment sets. We propose ways of dealing with
imported entailments based on the justifications for the entailment. Rather than
providing an exhaustive definition for all possible entailment sets of a SROIQ
ontology, the focus of this paper is to encourage clarity when using the term
‘entailments’ in the context of OWL ontology applications.

2 Applications

2.1 Inferred Ontology Generation in the OWL API

The OWL API5 provides the convenience class InferredOntologyGenerator,
which allows users to ‘fill’ a new ontology with the desired type of entail-
ments, such as inferred atomic SubClass axioms and ClassAssertions. By de-
fault, this method only retrieves the direct superclasses of a named class when
using InferredSubClassOfAxiomGenerator. For each class that does not have
any direct superclasses other than OWL:Thing, the reasoner returns a node la-
belled OWL:Thing. While this method provides a common basis for computing
the inferred ontology, it does not offer any flexibility for the user to specify which
relationships should be included in the output. We propose the implementation
of more specific and flexible entailment generation methods in the OWL API
as an addition to or extension of existing methods, in order to allow users to
conveniently extract clearly defined finite entailment sets from an OWL ontology.

2.2 Presenting Entailments to End-Users

The OWL ontology editor Protégé 4 provides a view of ‘selected entailments’ of
the ontology. As the editor offers no further explanation to how these entailments
were extracted in the classification process, this view does not support under-
standing of the ontology. It may even seem surprising to the end-user that some
trivial axioms, such as A v OWL:Thing, are displayed in the panel while others
are missing. A more detailed and modifiable view could support users in explor-
ing the class hierarchy when attempting to understand entailment relations in
the ontology.

2.3 Explanation of Entailments

Explanation of entailments for the purpose of debugging a description logic on-
tology has been the focus of research since the early applications of description
logics for modelling domain knowledge [9,10,11]. Most OWL ontology editors
provide explanation facilities presenting the part of the ontology which causes
the entailment to hold. It may be argued that, from a user perspective, a crucial
part of understanding why an entailment holds in an ontology is to have a clear
understanding of the notion of entailments, while also being able to control the
method of extracting the entailment.

5 http://owlapi.sourceforge.net



2.4 Metrics

Analytical applications that consider the number and type of entailments in or-
der to infer semantic ontology metrics benefit from clearly defined entailment sets
in two ways: first, the basis of the measurements, i.e. what exactly is measured, is
well defined and transparent, therefore ensuring consistent measurements which
are independent from a particular implementation or individual modifications
of the results provided by the OWL API. Second, greater flexibility allows to
extract entailments that are fit for a specific purpose. For instance, when de-
scribing the inferential power of an ontology, it is not necessary to consider the
asserted entailments as they hold no information value. On the other hand, to
explore the justificatory structure of an OWL ontology, we need to consider that
there may be non-obvious and possibly complex reasons for entailments that are
asserted in the ontology; this makes it necessary to compute the justifications
for both inferred and asserted entailments in order to capture these ‘hidden’
justifications.

3 Extracting and Counting Entailments

In this section we present different criteria for defining the set of entailments of
an OWL ontology. We provide four definitions for finite entailment sets based on
the class graph of the ontology, which we then illustrate with examples. In each
case, we expect the input to be an OWL 2 DL ontology O, with the output being
a set of OWL 2 DL axioms α. Please note that for the purpose of demonstrating
our approach, we only focus on atomic entailments, i.e. relations between named
atomic classes in the ontology.

3.1 Entailments of Description Logic Ontologies

In the remainder of this paper the letters A, B denote class names, C,D (possibly
complex) concepts, a an individual,O = (T ,A) a description logic ontology which
is the union of a TBox T and an ABox A, α an axiom in O, and I = (∆I , ·I)
an interpretation of an ontology O. The notations for > and OWL:Thing, and ⊥
and OWL:Nothing are used interchangeably.

The term finding entailments of a DL ontology summarises different reason-
ing tasks, such as the subsumption problem, equivalence and satisfiability check-
ing with respect to a TBox T , and instance checking with respect to an ABox
A.

Entailment relations in SROIQ are defined based on the formal semantics
given by an interpretation I [2]. An ontology O = (T ,A) entails that a (possibly
complex) concept C is subsumed by a concept D, written as O |= C v D, if
CI ⊆ DI for every model I of O. Similarly, O entails that C is equivalent to D if
CI = DI for every model I of O. A concept C is entailed to be unsatisfiable, i.e.
O |= C ≡ ⊥ (commonly expressed as O v C ≡ ⊥) if CI = ∅ for every model I
of O. Regarding instance checking for the ABox A, O entails that an individual



{Puma, MountainLion, Cougar}

NorthAmericanCougar

Cat

Mammal

Animal

(a) Asserted Class Graph

{Puma, MountainLion, Cougar}

NorthAmericanCougar

Cat

Mammal

Animal

(b) Inferred Class Graph

Fig. 1. Asserted and Inferred Class Graphs

a is an instance of a concept C (O |= C(a)) if aI ∈ CI for every model I of O.
The set of entailments of an ontology is therefore the set of all axioms α such
that O |= α.

3.2 Inferred and Asserted Class Graphs

The asserted class graph of an ontologyO is a labelled directed acyclic graph G =
(V,E, L) with nodes labelled with (a non-empty set of) class names, including
> and ⊥, from the signature of O. The graph is initialised by creating a node
u for each class name in the signature of O, with the class name being in the
label L(u) of the node. An edge (u, v) is added if it is asserted in O that A v B
for some A ∈ L(u), B ∈ L(v), where A and B are class names, >, or ⊥. For
any two nodes u, v in the graph with L(u) = {A}, L(v) = {B}, the nodes are
collapsed into a single node w if the ontology contains the two subsumption
axioms A v B and B v A, or the equivalence class axiom A ≡ B. This leads to
existing edges (u, x), (v, y) for some node x, y in the graph, being replaced by
the corresponding edges (w, x), (w, y).

The inferred class graph G′ = (V ′, E′, L′) of the ontology contains an edge
(u, v) if O |= A v B for some A ∈ L(u), B ∈ L(v). A class name A is in the
label L(u) of a node u in the inferred class graph if O |= A ≡ Bi for all Bi in
L(u).

The asserted and inferred class graphs in Figure 1 are based on the following
toy ontology:



Example 1 (Toy ontology)

NorthAmericanCougar v Cougar Mammal v Animal

Cougar ≡ MountainLion Puma ≡ Cougar

Puma v Cat Cat v Mammal

3.3 Generating Axioms From the Transitive Reduction and
Transitive Closure

The inferred and asserted class graphs of an ontology are uniquely defined. Re-
trieving these class graphs may be sufficient for counting entailments, as every
subsumption relationship between nodes is represented by a single edge, and the
arity of a node label (i.e. the number of distinct class names in the node) is
equal to the number of equivalent classes. OWL applications however generally
present the asserted and inferred class hierarchy as sets of OWL axioms, which
need to be generated from the relationships in the respective class graphs.

Generating axioms from the transitive closure of the inferred class graph is
straightforward: a SubClassOf axiom is created for each pair of class names in
the label of the sub- and superclass node respectively, and an EquivalentClasses
axiom for each pair of class names in the label of a node. Example 2 demonstrates
how this method can quickly lead to a large set of entailments. In some situations
however it is sufficient and more economical to use a subset of these relations
based on the transitive reduction of the graph.

The transitive reduction of a directed acyclic graph is a canonical represen-
tation for the paths in the graph [1]. The main challenge here is: how can we
express, in one single axiom, an edge between nodes which are labelled with
multiple class names? Furthermore, if a node is labelled with several equivalent
classes, we would like the number of axioms generated from this node to reflect
how many equivalent classes the label contains; therefore, multiple nodes that
contain different numbers of class names in their labels cannot be represented
by a single EquivalentClasses axiom.

For the purpose of expressing subsumptions in the transitive reduction, a
function Rep(u) is introduced which selects a single class name from the label of
a node u to act as a representative for the node. This function is intended to be
user-defined and may retrieve a randomly selected element, the first element in
a lexicographical ordering, or even a freshly generated class name (such as the
concatenation of the class names in the node), to name a few examples.

In order to generate EquivalentClasses axioms from a node with arity n, where
n > 2, we apply a function Pairwise(u) to the node label. This introduces an
ordering < on the class names in the label of the node (such as a lexicographical
order) and returns a set of pairs of class names (Ai, Ai+1) where Ai < Ai+1.
While OWL 2 allows EquivalentClasses axioms with an arity greater than two,
we choose to express equivalences in binary axioms, which corresponds to the
description logic notation of Ai ≡ Ai+1.



3.4 Top, Bottom, and Tautologies

While an unsatisfiable class is generally referred to as being a subclass of Bottom,
the class is in fact equivalent to the bottom node OWL:Nothing, as discussed
above. We consider this in our definitions and treat an unsatisfiable named class
not as a subsumption, but as an atomic equivalence. Likewise, a universal class,
i.e. a class that is equivalent to OWL:Thing, is not treated as superclasses of Top,
but as an equivalent class.

Furthermore, tautologies such as A v >, ⊥ v A and A v A for all named
classes A are not included in the entailment set, as they do not hold any infor-
mation value.

3.5 Different Types of Entailment Sets

We define the set of inferred atomic entailments of an ontology O as the union
of the inferred atomic subsumptions Sub and the inferred atomic equivalences
Equiv for the asserted and inferred class graphs G = (V,E, L) and G′ =
(V ′, E′, L′) respectively. The following definitions are ordered by two aspects:
whether they are based on the transitive closure Tc(E′) or transitive reduction
Tr(E′) of the inferred class graph, and whether they include (A+) or exclude
(A−) asserted subsumptions and equivalences respectively.

Transitive closure, inferred, including asserted

SubTcA+(O) :={A v B | there is (u, v) ∈ E′, A ∈ L′(u), B ∈ L′(v),

A 6= B,A 6= ⊥, B 6= >}
EquivTcA+(O) :={A ≡ B | there is u ∈ V ′, A,B ∈ L′(u), A 6= B}

Transitive closure, inferred, not including asserted

SubTcA−(O) :={A v B | there is (u, v) ∈ E′, A ∈ L′(u), B ∈ L′(v)

(u, v) 6∈ E,A 6= B,A 6= ⊥, B 6= >}
EquivTcA−(O) :={A ≡ B | there is u ∈ V ′, A,B ∈ L′(u), A 6= B,

there is no v ∈ V s.t. A,B ∈ L(v)}

Transitive reduction, inferred, including asserted

SubTrA+(O) :={A v B | there is (u, v) ∈ TR(E′),

A = Rep(u), B = Rep(v), A 6= B,A 6= ⊥, B 6= >}
EquivTrA+(O) :={A ≡ B | there is u ∈ V ′, (A,B) ∈ Pairwise(u), A 6= B}



Transitive reduction, inferred, not including asserted

SubTrA−(O) :={A v B | there is (u, v) ∈ TR(E′),

A = Rep(u), B = Rep(v), (u, v) 6∈ E,A 6= B,A 6= ⊥, B 6= >}
EquivTrA−(O) :={A ≡ B | there is u ∈ V ′, (A,B) ∈ Pairwise(u), A 6= B,

there is no v ∈ V s.t. A,B ∈ L(v)}

3.6 Examples

The properties of different entailment sets are demonstrated using the above toy
ontology as an example.

Example 2 (Transitive closure, including asserted, 18 axioms)

Cougar ≡ MountainLion Cougar ≡ Puma

MountainLion ≡ Puma Puma v Cat

Puma v Mammal Puma v Animal

MountainLion v Cat MountainLion v Mammal

MountainLion v Animal Cougar v Cat

Cougar v Mammal Cougar v Animal

NorthAmericanCougar v Puma NorthAmericanCougar v MountainLion

NorthAmericanCougar v Cougar NorthAmericanCougar v Cat

NorthAmericanCougar v Mammal NorthAmericanCougar v Animal

The transitive closure, including asserted, makes explicit the relationships be-
tween every single class in the ontology. It is the largest finite entailment set
to be extracted from the class graph. The alternative variant of this set exclud-
ing asserted entailments simply discards the axioms that occur in the original
ontology, yielding a set of 12 axioms.

Example 3 (Transitive reduction, including asserted, 6 axioms)

NorthAmericanCougar v Cougar Cougar ≡ MountainLion

MountainLion ≡ Puma Puma v Cat

Cat v Mammal Mammal v Animal

The entailment set based on the transitive reduction of the class graph uses
representative elements from each node to produce a minimal representation
of the class hierarchy. In this example, the function selects the class names
that are asserted to be in SubClassOf relationships in the ontology, otherwise it
selects a random class name from the node. The function Pairwise(u) applies a
lexicographical ordering on the class names in each node, as described above.



3.7 Counting Entailments

Having translated the class graph into a set of OWL axioms based on the above
definitions, the number of entailments can be computed in an unambiguous way.
By choosing a representative class name for each node in the transitive reduction,
the number of entailed atomic subsumptions is equal to the number of edges in
the graph, i.e. one edge in the graph is represented by one axiom.

For the transitive closure of the class graph, the number of entailed subsump-
tion axioms is the sum of all n(u) ∗ n(v) for each edge (u, v) in the graph, with
n(u) the number of class names in a node u. The number of entailed binary
equivalence class axioms is n(u) ∗ (n(u)− 1)/2 for each node u in the graph.

3.8 Implementation

We have implemented the entailment extractor methods using the OWL API.6

The code is intended to be used with any OWL reasoner that is compatible with
the current version of the OWL API. Preliminary tests with large ontologies such
as the NCI Thesaurus show that all types of entailment sets can be extracted in
practical time.

4 Dealing with Imports

Another issue that needs to be dealt with when extracting and counting entail-
ments from an ontology is its import structure. An OWL ontology O (the ‘root’
ontology) that imports another OWL ontology O’ can have different kinds of en-
tailments: those that hold in O \ O’ (native entailments), those that are entirely
from the imported ontology, i.e. they hold in O’ \ O (imported entailments),
and those that hold in O ∪ O’ but not in O \ O’ (mixed entailments). When
performing analytical tasks on the root ontology such as analysing its inferen-
tial power, it may be considered misleading to include the number of imported
entailments. Furthermore, if the imported ontology itself imports another ontol-
ogy (and so on), we will almost certainly obtain data that is not relevant to our
original root ontology. While this may not be problematic for some tasks, the
origin of entailments needs to be at least made obvious in a way such that the
user can make their own judgements on how to handle them.

4.1 Classification of Imported Entailments

We propose a classification of these three types of entailments in an ontology
which is based on the notion of justifications for an entailment. A justification is
a minimal subset of the ontology that is sufficient for the entailment to hold [10].
The ‘origin’ of an entailment given an ontology imports structure is determined
by the set of its justifications.

6 The source code is available for download and modification at
http://code.google.com/p/owl-entailment-extractor.



Type 1: Native entailments We may want to restrict the entailment extrac-
tion to the root ontology and discard all entailments that originate partly or
entirely from the imported ontologies. In this case, the class graph construction
and reasoning process is limited to the root ontology axioms only. Computing
justifications is not necessary for this type of entailments.

Type 2: Imported entailments While the entailments that originate purely
from the imported ontology may not be relevant to application, an analysis of the
type and numbers provides information about the computational overhead they
may cause when not excluding them from the entailment set. Type 2 entailments
are extracted by computing the inferred class graph for axioms that are contained
in the imported ontology only. Computing justifications is not necessary for this
type of entailments.

Type 3: Mixed entailments In this type, we gather all entailments that are
considered ‘mixed’ for at least one of the following reasons: first, an entailment
that has at least one justification which contains axioms from both O and O’ is
considered mixed. Second, an entailment that has some justification that com-
prises axioms from O, and some justification that comprises axioms from O’.7

Type 3 entailments are computed by extracting all entailments from the union
of the imports closure of the root ontology, then sequentially generating justi-
fications for these entailments. If the set of justifications contains axioms from
both the root and the import ontologies, the entailment is marked as ‘mixed’
and no further justifications need to be found.

5 Conclusions and Future Work

Due to the ambiguous use of the term ‘entailments’ in the OWL community, it
is necessary to explicitly specify the selection criteria for entailments in both an-
alytical and user-oriented applications. The methods for extracting entailments
from OWL ontologies currently provided by the OWL API and ontology devel-
opment tools provide little flexibility and do not support understanding of the
entailment relationships in the ontology. We have presented well-founded and
extensible definitions for different types of entailment sets of an OWL ontology,
based on its class graph. Depending on the purpose, users can extract entail-
ments from the transitive reduction or the transitive closure of the ontology,
and decide whether the asserted entailments should be included. We have also
introduced different ways of dealing with entailments that are partly or entirely
caused by imported ontologies. The proposed methods offer flexibility and trans-
parency when handling entailments, which may support ontology understanding
as well as clarify analytical tasks.

7 While this distinction is not relevant to the classification of entailments, it does
matter in the context of analysing the structure of justifications in an ontology.



Thus far, we have discussed definitions and examples for entailed subsump-
tions between atomic classes. In order to capture the wide range of entailments
from an expressive description logic such as SROIQ and to provide exten-
sive information about an ontology, these definitions can be extended in two
directions: first, to cover the expressivity of OWL 2 DL ontologies beyond sub-
sumptions between named classes, such as class assertions, object property hi-
erarchies and data property hierarchies. Second, we may also want to capture
non-atomic entailments, such as literals (disjointness of classes) and subsump-
tions and equivalences between complex class expressions (e.g. existential and
universal restrictions on atomic class names). In the case of complex class expres-
sions, it will be necessary to identify which complex entailments are of interest
to users, depending on the needs of a particular application.

References

1. A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131–137, 1972.

2. F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and D. Nardi. The
description logic handbook: theory, implementation, and applications. Cambridge
University Press, 2003.

3. S. Bail, B. Parsia, and U. Sattler. The justificatory structure of OWL ontologies.
In Proc. of OWLED-10, 2010.

4. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A frame-
work for handling inconsistency in changing ontologies. volume 3729 of Lecture
Notes in Computer Science, pages 353–367. Springer, 2005.

5. M. Horridge, B. Parsia, and U. Sattler. The state of bio-ontologies. In To be
published in Proc. of ISMB-11, 2011.

6. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
of KR-06, pages 57–67, 2006.

7. I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to description logic
satisfiability. J. of Web Semantics, 1(4):345–357, 2004.

8. Z. Huang, F. Van Harmelen, and A. Teije. Reasoning with inconsistent ontologies.
In Proc. of IJCAI-05, volume 19, page 454. Citeseer, 2005.

9. D. McGuinness and A. Borgida. Explaining subsumption in description logics. In
Proc. of IJCAI-95, volume 14, pages 816–821, 1995.

10. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In Proc. of
WWW-05, pages 633–640, 2005.

11. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. In Proc. of IJCAI-03, pages 355–362, 2003.

12. E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. of Web Semantics, 5(2):51–53, 2007.


