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Abstract. For a number of problems, such as ontology learning or image label-
ing, we need to handle uncertainty and inconsistencies in an appropriate way.
Fuzzy and Probabilistic Description Logics are the two major approaches for
performing reasoning with uncertainty in Description Logics, but modeling prob-
lems such as image labeling still remains difficult and handling inconsistencies
is only supported to a limited extent. In this paper, we propose Max-DL-SAT
and Weighted Max-DL-SAT as new reasoning services for Description Logics
knowledge bases, which applies the idea behind Weighted Max-SAT to Descrip-
tion Logics and leads to a more intuitive representation of certain problems. It
supports handling of uncertainty and inconsistencies. The contribution of this
paper is threefold: We define a novel reasoning service on Description Logics
knowledge bases, introduce an algorithm for solving such problems, and show
the application of it to the problem of image labeling.

1 Introduction

Solutions to a number of real world problems are often subject to a set of potentially
contradicting constraints, for which a completely satisfying solution does not exist, e.g.,
in Computer Aided Design or information extraction from text. In Max-SAT, these
problem are modeled as a boolean a formula for which one seeks an assignment of
truth values that satisfies a maximal number of clauses. In Weighted Max-SAT clauses
are associated with weights that model the importance or reliability of certain clauses
and the goal is to maximize the accumulated weight of the satisfied clauses in a solution.
However, Max-SAT and Weighted Max-SAT are both limited to propositional logic and
finding an appropriate problem representation is often hardly intuitive. Ontologies, on
the other hand, allow for modeling domains in a more intuitive manner. Description
Logics have widely been adopted to model ontologies and to provide reasoning ser-
vices in a variety of domains. In problems like image labeling [13, 2], we encounter
assertions that are associated with a degree and we have to cope with many, potentially
contradicting assertions produced by automatic and not fully reliable methods. In order
to apply ontological reasoning to such problems, we require new reasoning services.
State of the art extensions to Description Logics, such as Fuzzy [15] or Probabilistic
Description Logics [8] cover most of these aspects, but other problems still need to
be solved. Reasoning on Probabilistic Description Logics still has difficulties regarding



the efficiency of the reasoning process. Fuzzy Description Logics can be reasoned about
efficiently under min/max co-norm.

In this paper, we introduce a novel reasoning service for handling uncertainty and
inconsistencies in Description Logic knowledge bases, called Weighted Max-DL-SAT.
We consider Description Logic knowledge bases containing a set of weighted and po-
tentially contradicting axioms. Based on this, we compute a set of consistent axioms
with a maximal, accumulated weight. Weighted Max-DL-SAT allows for the almost di-
rect reuse of existing ontologies and provides a very intuitive way of modeling problems
that have a Max-SAT like structure, e.g., the aforementioned image labeling problem.
In summary, the paper provides a threefold contribution:

1. We define a novel type of reasoning problem, called Weighted Max-DL-SAT.
2. We introduce an algorithm for solving Weighted Max-DL-SAT problems based on

the Hitting Set Tree algorithm [12, 6].
3. We apply Weighted Max-DL-SAT to the problem of image labeling.

The rest of the paper is structured as follows: In the next section we give a for-
mal introduction to the Description Logic ALC and extend its definition to weighted
ontologies. Then, we introduce the problem of Weighted Max-DL-SAT. Based on this
formalizations, we introduce our approach to solve Weighted Max-DL-SAT problems.
Afterwards, we introduce an example where we applied Weighted Max-DL-SAT to the
domain of spatial reasoning in the context of image labeling, and finally discuss the
related work and conclude the paper.

2 Knowledge Representation Using Description Logics

Description Logics constitutes a class of knowledge representation languages that allow
for expressing complex concepts in terms of a set of basic constructors. In this section,
we specifically introduce the Description Logic ALC, the Attributive Concept Lan-
guage with Complements. Let NC and NR be two disjoint sets of symbols, called the
set of concept and role names, respectively. We will write A,B for concept names, and
R for role names. > and ⊥ are special concepts, called Top and Bottom, respectively. A
concept description C in ALC is syntactically defined by the following abstract syntax
rule:

C → >|⊥|A|∀R.C|∃R.C|C uD|C tD|¬C}. (1)

The semantics of a concept description is given by an interpretation I = (∆I , ·I),
where ∆I = {ai, . . . , an} is called the domain of I and ·I is called the interpretation
function. The interpretation function maps each concept nameA to a setAI ⊆ ∆I , and
each role name to a binary relation RI ⊆ ∆I ×∆I .

The semantics of the constructors are defined as follows.

– >I = ∆I

– ⊥I = ∅
– (C uD)I = CI ∩DI
– (C tD)I = CI ∪DI
– (¬C)I = ∆I \ CI
– (∀R.C)I = {x ∈ ∆I |∀y ∈ ∆I : (x, y) ∈ RI → y ∈ CI}



– (∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}

Furthermore, we define a T-Box T as a set of terminological axioms of the form
C v D, whereby C and D are concepts. We say that D subsumes C, and an interpre-
tation I satisfies an axiom C v D iff CI ⊆ DI . We define a disjointness between
two axioms C and D as C||D = C v ¬D. The A-Box A is defined as a set of con-
cept assertions a : C, where a is an individual name and C a concept description, and
role assertions (a, b) : R with a, b individual names and R a role name. Both concept
and role assertions area also called assertional axioms. A Description Logics ontology
O = T ∪ A consists of a T -Box T and an A-Box A.

We extend this definition of an ontology to a weighted ontology:

Definition 1 (Weighted ontology). A weighted ontology is an ontology O :=
{α1, . . . , αn} such that for every T -Box or A-Box axiom α ∈ O an associated weight
wα ∈ R+ exists. In case of concrete axioms, we specify the weight in square brackets,
i.e., C v D[w] for T -Box axioms, a : C[w] for concept assertions, and (a, b) : R[w]
for role assertions.

We can now define the reasoning problem Weighted Max-DL-SAT. Our basis is a
weighted Description Logic ontology O = T ∪ A. Each axiom in O is associated with
a weight, which represents the importance or reliability of this axiom to be satisfied.

The problem is to find a consistent subset of the ontology with a maximal summed
weight. Formally, we define the Weighted Max-DL-SAT problem as an optimization
problem as follows:

argmaxS⊆O s.t. S consistent(
∑
α∈S

wα) (2)

The result isOr = Tr ∪Ar, a maximal consistent sub-ontology, such thatOr ⊆ O,Or
is consistent, and the accumulated weight of all axioms αi ∈ Or is maximal. In Or we
call Ar the consistent Sub-A-Box and Tr the consistent Sub-T -Box.

3 Solving Weighted Max-DL-SAT Problems

In order to obtain a consistent sub-ontology, we need to resolve all inconsistencies inO.
To do so, we have to calculate the weight-minimal set of axioms O−, such that Or =
O \ O− is consistent. This problem has strong relations to axiom-pinpointing [14],
which identifies and eliminates inconsistencies in ontologies. Axiom-pinpointing algo-
rithms compute a minimal set of axioms causing a single inconsistency in an ontology
O. Such a set, we call a minimal inconsistent sub-ontology [3] M and it is defined as
follows:

Definition 2 (Minimal Inconsistent Sub-Ontology). A Minimal Inconsistent Sub-
Ontology (M ) of an ontology O, is defined as a subset M ⊆ O, such that M is in-
consistent and ∀α ∈M :M \ {α} is consistent.

Every M causes a single inconsistency in a particular O. If we remove one axiom of
such a M from O, we eliminate this cause of inconsistency in O.



We can formulate this problem as a Weighted Hitting Set Problem. We first give the
definition of this set of problems and then explain how Weighted Max-DL-SAT maps
to a Weighted Hitting Set Problem:

Definition 3 (Weighted Hitting Set Problem [12]). Given a set G and a set of subsets
M1,M2, ...,Mn ⊆ G Each element in G has a positive weight wa, a ∈ G We are
looking for a hitting setH ⊆ G such that

– H ∩Mi 6= ∅, i = 1, ..., n

–
∑
a∈H wa is minimal

Now letO be our ground set,M1,M2, ...,Mn the set of all minimal inconsistent sub-
ontologies, and the hitting setH the setO− of axioms to be removed fromO. Obviously
Or is weight maximal, when O− is weight minimal.

To calculateO− for inconsistent ontologies, we propose an adaptation of the Hitting
Set Tree (HST) algorithm. The HST algorithm produces a tree T starting with ourO as
root node N1. It calculates a minimal inconsistent Sub-Ontology (MISO) Mj for every
node Nj ∈ T . For every axiom αi in Mj of Nj the algorithm introduces a new sub-
node Nji ∈ T . The edge to Nji is labeled with αi and wαi

and the current ontology
for a node Nji is Oj \ {αi}. To solve our Weighted Max-DL-SAT problem, we have to
calculate the cheapest path w.r.t the accumulated weights from the root to a leaf in T .
The accumulated axioms of this path represent O−.

Algorithm 1 Weighted Hitting Set Tree algorithm for computing a solution to Weighted
Max-DL-SAT problems.
1: O− ← ∅ . initialize result with empty set
2: wO− ←∞ . set upper bound to infinity
3: function WHST(O, P )
4: wP ←

∑
α∈P wP . accumulate path weight

5: if wP < wO− then . check upper bound
6: M ← calcSingleMISO(O) . calculate M for current ontology
7: if M 6= ∅ then
8: M ′ ←M
9: . ∀α ∈M in decreasing order call WHST

10: . for O \ {α}, P ∪ {α}
11: while M ′ 6= ∅ do
12: Select α ∈M ′ s.t. ∀α′ ∈M ′ → wα′ > wα
13: M ′ ←M ′ \ {α}
14: WHST(O \ {α}, P ∪ {α})
15: end while
16: else . if current path weight < upper bound
17: O− ← P . set result to path
18: wO− ← wP . set upper bound to path weight
19: end if
20: end if
21: end function



In [6] Kalyanpur et. al have shown the completeness of the Hitting Set Tree algo-
rithm regarding the calculation of all justifications for an ontology. Algorithm 1 depicts
the concrete WHST algorithm used in our implementation. To increase efficiency, we
use a branch & bound like strategy to prune subtrees where no further improvements of
the results could be achieved. We use the accumulated weight of an already calculated
root-to-leaf path as upper bound, line 19. Initially this bound is set to infinity, line 2.
With this lower bound, we can prune any branch of the subtree that could not contain a
smaller total path weight. Only if the weight of the current path is lower than this upper
bound, a branch has to be considered, line 5.

Algorithm 2 depicts the minimal inconsistent sub-ontology (MISO) calculation [3].
It iteratively adds the axioms α with the smallest weight wα to the intermediate on-
tology O until it becomes inconsistent, lines 3 − 6. Then, we shrink O by iteratively
removing the axioms α with the biggest weight wα if this does not turn O consistent
again, lines 8− 14. Thus, we are guaranteed to end up with an M , a small, still incon-
sistent set of axioms in O.

Algorithm 2 Black-box algorithm for computing a minimal inconsistent sub-ontology
for O.
1: function CALCSINGLEMISO(O)
2: O ← ∅ . initialize intermediate ontology
3: while O is consistent do . grow intermediate ontology until inconsistency
4: Select axiom α ∈ O \O s.t. ∀α′ ∈ O \O → wα′ ≥ wα
5: O ← O ∪ {α}
6: end while
7: O′ ← O
8: while O′ 6= ∅ do . shrink intermediate ontology to minimal inconsistent set
9: Select axiom α ∈ O′ s.t. ∀α′ ∈ O′ → wα′ ≤ wα

10: O′ ← O′ \ {α}
11: if O \ {α} is inconsistent then
12: O ← O \ {α}
13: end if
14: end while
15: return O
16: end function

4 Applying Weighted Max-DL-SAT to Automatic Image Labeling

As an example, we present the application of Weighted Max-DL-SAT to the interesting
problem of automatically assigning labels to image regions. Typically, these labels refer
to ”semantic” concepts and provide the means to index regions within an image based
on terms understandable for humans. Determining the right labels for a given region
is a hard problem, since there is no direct mapping of computable low-level features
to the meaning of a region. Automatic methods model regions within images using a
set of features and then usually apply machine learning methods in order to learn and
subsequently detect a set of possible semantic concepts.



These methods exploit only low-level features extracted from regions of the image,
but do not take any context, e.g., spatial context, into account. However, context and
background knowledge play a crucial role in automatic image labeling [13, 2]. In our
experiments, we utilize spatial relations between image regions as background knowl-
edge to validate the semantic concepts given for specific region.

Figure 1 shows an example of an image (a) and the associated regions with simpli-
fied, but still ambiguous hypotheses (b) produced by a classifier. The output of the
machine-learning-based classification is used as input to our reasoning process. As
background knowledge, we consider knowledge about feasible spatial relations between
the semantic concepts, such as above, below, left, right. For example, a valid relation
might be that sea is never depicted above sky.

(a) input image (b) output from ML-based classification

Fig. 1. Input to the reasoning process

4.1 Data Set

The data set consists of 922 images depicting outdoor scenes and was split into 400
training and 522 test images. These images have been segmented using an automatic
segmentation algorithm and manually assigned a label from the set of concepts: Sky,
Sea, Sand, Road, Building, Foliage, Person, Boat, Mountain, Snow. This dataset has
been published1 and used in previous experiments [13, 10] for the task of spatial reason-
ing. In addition, the data set also contains different low-level features for each region,
different hypotheses generated based on the training data using different classification
methods, and a set of extracted fuzzy spatial relations. For our experiment, we used the
labels produced by the maximum-likelihood classifier as input to our reasoner.

4.2 Representing Image Labeling with Weighted Max-DL-SAT

The background knowledge is depicted as a T -Box. For each label, we create an
atomic concept L. Furthermore, we make all label concepts disjoint and add an axiom
L1|| . . . ||Ln[wn].

The background knowledge about spatial relations has been modeled as a set of
binary constraints defining for each label L to which other labels L′1, . . . , L

′
n it might

be related by the spatial relation S. To present such knowledge about spatial relations

1 http://mklab.iti.gr/project/scef



in a Description Logic T -Box, we use universal quantification, like L v ∀S.(L′1 t
. . .tL′n)[wn]. Thus, for the two labels Sky and Sea used in figure 1, we would add two
axioms sky v ∀above.(seatskytsandt . . .)[wm] and sea v ∀above.(seatsandt
. . .)[wm]. These axioms assure, that sea might only be depicted above other sea regions,
while sky might be depicted above sky or sea regions. They are all associated with an
very high weight, since we consider the background knowledge as crisp, and therefore
do not accept any solutions where any of these axioms is removed. Obviously, this
requires that the T -Box is consistent, which is the case in our experiments. Furthermore,
the axioms are learned following the approach presented in [13].

Each image i is modeled in a separate A-Box. To generate the A-Box, we use the
hypothesis generated by the machine-learning classification process. For each region,
we create a single individual ri. Now, let wi,l be the degree of confidence in the dataset
for region ri labeled with label l. Then we add the concept assertion ri : L[wi,l] to
the knowledge base for each label produced by the classifier for the region. For the
two regions region1 and region2 depicted in figure 1 this will result in: region1 :
sky[wregion1,sky], region1 : sea[wregion1,sea], region2 : sky[wregion2,sky] and
region2 : sea[wregion2,sea]. Additionally to the hypothesis about associated seman-
tic concepts the classification process also generates knowledge about spatial relations
between the single regions. To present the spatial knowledge in our ontology, we add
for all known relations role assertions like (ri, rj) : S[wm] to the knowledge base.
We set the weight of such assertions to very high value, because we do not the accept
a solution where one of the spatial relations was removed in order to find a solution.
For the regions region1 and region2 from figure 1, this will lead to the two role as-
sertion (region1, region2) : above[wm] and (region2, region1) : below[wm]. To-
gether with the T -Box depicting the background knowledge, this A-Box results in an
individual ontology Oi for each image i. As we can see this ontology contains contra-
dicting statements with: sea v ∀above.(sea)[wm], (region1, region2) : above[wm],
region1 : sea[wregion1,sea] and region2 : sky[wregion2,sky]. Such an inconsistent
ontology Oi is the input to our reasoning process.

4.3 Results

In Table 4.3, we have summarized the accuracy of the classifier, Weighted Max-DL-
SAT, and the binary integer programming approach presented in [13]. Using Weighted
Max-DL-SAT, we can significantly improve the classification rate as provided by the
classifier based solely on low-level features. However, we also see that a more spe-
cialized method performs clearly better. The latter observation was expected. The BIP
approach can employ a more specialized objective function that incorporate the degree
of confidence provided with the fuzzy spatial relations, and it employ all fuzzy spatial
relations available, not only the one with the highest degree. This information is not
used in our modeling of the problem.

Nevertheless, the experiments show that a generic approach based on Description
Logics can be applied to a problem like spatial reasoning and leads to a clear improve-
ment. Furthermore, the difference between the specialized method and Weighted Max-
DL-SAT is not very large. Specifically, the parameters used for the knowledge extrac-
tion have not been optimized in our experiments for Weighted Max-DL-SAT, while



Classifier Max-DL-SAT BIPs
building 0.92 0.90 0.96
foliage 0.70 0.85 0.90
mountain 0.74 0.92 0.91
person 0.58 0.77 0.84
road 0.75 0.56 0.92
sailing-boat 0.49 0.47 0.93
sand 0.67 0.69 0.63
sea 0.71 0.78 0.75
sky 0.17 0.52 0.51
snow 0.71 0.81 0.85
overall 0.62 0.75 0.79

Table 1. Per concept and overall accuracy of the classifier, Weighted Max-DL-SAT, and the
Binary Integer Programming approach [13].

in [13] experiments with optimized parameters were reported. The gained generality of
the approach comes at the cost of a loss in accuracy.

The figures in 2 show the system performance results from our experiment. In each
figure, we compare two different values (left and right y-axies) per image (x-axis). We
sorted the images in increasing order by the first value (left). In figure 2 (a), we show the
relation between the over all calculation time per image and the number of nodes per
image. In our Experiments, we limited the calculation time per image to 300sec. We can
observe only a weak relationship between calculation time and the number of visited
nodes, a tendency towards the more nodes are visited the longer the calculation takes.
We can observe multiple outliers especially images with a relative small number of
visited sodes compared to the calculation time. Due to the heuristic character of Branch
& Bound and because of the calculation of an NP-complete problem like the Weighted
Hitting Set Tree, we have to expect such outliers. Figure 2 (b) shows the number of
A-Box axioms per image in increasing oder and over all calculation time. Again we
can observe multiple outlier but the relation seems to be stronger. Images with more
axioms in the A-Box more often tend to exceed the calculation time cap. In figure 2
(c), we show the relation between the over all system performance per image and the
time consumption for MISO calculation per image. The MISO calculation time seems
to represent a relatively large proportion of the over all system performance. This could
be a interesting point for further optimizations. The system could benefit from more
detailed studies to increase the efficiency of the MISO calculation. The last figure, 2
d shows the relation between the time consumption for MISO calculation per image
and the number of MISOs per image. Here we can also observe an clear relationship.
This observation also indicates that where is a potential for further optimizations of the
MISO calculation.

All these behavior result give clear hints about further optimizations of the systems
performance. A promising starting point for further optimizations seems to be the MISO
calculation. The MISO calculation takes an important part of the over all calculation
time and the calculation time for all MISO increases similar to the number of MISOs.

5 Related Work

The issues of integrating uncertainty into Description Logics and reasoning with such
uncertainty in Description Logics have already been addressed in different ways by
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Fig. 2. System performance

several researchers. [5, 8, 7] present probabilistic extensions to OWL or investigations
on reasoning services for such extension. Some of these approaches allow only for ter-
minological knowledge like [5] others for terminological as well as assertional knowl-
edge [8]. The approaches also differ in the underlying probabilistic reasoning formal-
ism. Two reasoning formalisms could be found in these publications, a formalism based
on reasoning in probabilistic logics [5, 8] and a formalism based on inferencing in
Bayesian networks [7]. But unfortunately all of these approaches suffer from serve
problems regarding the efficiency of reasoning on such knowledge bases. Another ap-
proach to uncertainty extension to Description Logics is the use of fuzzy set theory to
express the uncertainty. In [16, 15] Straccia presents a general approach to a fuzzy ver-
sion of SHOIN (D), the underlying Description Logic of OWL−DL. He shows the
representation and reasoning capabilities of fuzzy SHOIN (D). As mentioned in the
introduction, reasoning on fuzzy Description Logics can be performed quite efficiently.
However, the fuzzy semantics are often mislead by single axioms with a high or low
weight, repsectively. In general, both approaches are able to handle degrees associated
with axioms, but they are not suitable for handling inconsistencies in every respect.



Reasoning under inconsistency plays a role in the field of ontology learning [4]
and ontology debugging [3]. One important method, about finding explanations for a
given consequence, e.g., a minimal subset of an ontology that has a particular incon-
sistency in that ontology as consequence, is axiom pinpointing. Generally, we can dis-
tinguish axiom pinpointing methods into two different categories glass-box approaches
and black-box approaches. In [1] Baader et al. introduce a glassbox approach for axiom
pinpointing. In this paper, we focus on a black-box approach inspired by the work of
Kalyanpur et. al. [6].

Interpreting images and extraction of deep-level semantics, can not be done suffi-
ciently only on low-level features. Images often show scenes illustrating abstract con-
cepts like events. To perceive such an event concept, additional background knowledge
about the whole scene is required. In [11] Möller et .al introduced abduction as a new
inferencing service on Description Logic A-Boxes that enables able to reason from
effects (observations/features) to causes (explanations/semantics). In contrast to the ap-
proach of Möller where new knowledge is extracted through abduction, our approach
focuses on verification of knowledge against a specific model. The approach presented
in [2] aims to enhance the semantic image description with the use of fuzzy Description
Logics. Based on fuzzy Description Logic knowledge bases specialized reasoning ser-
vices are used to, e.g. solve inconsistencies resulting from the classification process or
extract implicit semantics but all these approaches suffer from the particularities coming
with the use of fuzzy Description Logics.

6 Conclusions

We have introduced Weighted Max-DL-SAT as a service for modeling and solving
problems with inconsistencies and uncertainty using Description Logics. A core fea-
ture of our approach is the ability to handle uncertainty similar to fuzzy or probabilistic
Description Logics whereas inconsistency is handled like in a crisp Description Logics
manner. This combination of features is useful to many different problems, like ontol-
ogy learning, semantic information extraction or image labeling. The evaluation on im-
age labeling indicates that we achieve a slightly improvement of the results compared to
a classifier based solely on low-level features. Compared to a highly specialized method
Weighted Max-DL-SAT looses a bit of accuracy but this was the expected price for the
gain of generality of the method. With optimized parameters used for the knowledge
extraction and a adjusted modeling, we expect further improvements.

In our future work, we will concentrate on the improvement of the performance of
maximal consistent sub-ontology calculation. Our experience has shown that it could
be promising to improve the MISO calcualtions in this context. The multiple outlier
observed in our results showed us that it might be useful to consider approaches other
than out WHST based black box method. On this account, we work on an glass box
approach to be able to compare it to our black box method. Some of our results also
indicate that the consistency checking in approach is a large cost factor, so the integra-
tion of Description Logic approximation techniques, like in [9] could be promising. In
the next implementations, we will focus on these three promising optimization strate-
gies for Weighted Max-DL-SAT. In addition, we will apply Weighted Max-DL-SAT to
different other interesting problems.
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