
Integrity Constraints for Linked Data

Alan Jeffrey and Peter F. Patel–Schneider

Alcatel–Lucent Bell Labs

Abstract. Linked Data makes one central addition to the Semantic
Web principles: all entity URIs should be dereferenceable to provide an
authoritative RDF representation. URIs in a linked dataset can be par-
titioned into the exported URIs for which the dataset is authoritative
versus the imported URIs the dataset is linking against. This partition-
ing has an impact on integrity constraints, as a Closed World Assumption
applies to the exported URIs, while a Open World Assumption applies
to the imported URIs. We provide a definition of integrity constraint
satisfaction in the presence of partitioning, and show that it leads to a
formal interpretation of dependency graphs which describe the hyper-
linking relations between datasets. We prove that datasets with integrity
constraints form a symmetric monoidal category, from which the sound-
ness of acyclic dependency graphs follows.

1 Introduction

Motivation. In the Semantic Web, entities are named by URIs, and are de-
scribed by RDF documents. Linked Data [5] adds the constraint that entity
URIs should be dereferenceable (HTTP URIs which accept GET requests), and
dereferencing an entity URI returns an RDF representation of that entity. The
W3C web architecture [8] calls such representations authoritative.

The RDF triples contained in an entity representation will generally refer
to entities for which the representation is not authoritative. Such hyperlinks
between datasets are often visualized as a dependency graph, such as the popular
Linking Open Data cloud diagram [6] shown in Figure 1.

Linked Data puts a new spin on the open world stance of the Semantic Web:
from the point of view of a given URI owner, the world is partitioned into local
entities, for which the owner is authoritative, and imported entities, for which
the owner is not authoritative. In this paper, we provide a formal model of this
partitioning which includes:

– a partitioning of entities into imported and exported nodes, in addition to
the familiar blank nodes,

– a definition of what it means for a dataset to satisfy its integrity constraints,
based on the minimal models of Motik et al. [13], but adapted to partitioning,

– a model of acyclic dependency graphs, which can be built compositionally,
and where integrity constraint satisfaction can be performed locally, and

– a proof that graphical reasoning for datasets is sound, by showing that
datasets form a symmetric monoidal category.

2 Alan Jeffrey and Peter F. Patel–Schneider

Fig. 1. Linking Open Data cloud diagram (detail)

This paper gives the first formal treatment of authoritative resource, integrity
constraints for linked data, dependency graphs, and the categorical structure of
semantic data. In this introduction, we provide informal examples to motivate
our model, which are made precise in Sections 4 and 5.

Authoritative representations, imports and exports. The W3C web ar-
chitecture [8] recommends as good practice that a URI owner “should provide
authoritative representations of the resource it identifies”. Typically, these are
HTTP URIs, which respond to GET requests. Linked Data [5] applies this prac-
tice to the Semantic Web: URI owners provide authoritative representations of
their URIs in RDF (for datasets) or OWL (for ontologies).

Semantic reasoners can make deductions from Linked Data. For example,
consider a URI bob: (in examples, we will use URI prefixes such as alice: and
bob:) which dereferences to the Turtle [4] representation:

bob: foaf:primaryTopic bob:me .

bob:me foaf:knows [foaf:homepage alice:] .

Now, if alice: dereferences to:

alice: foaf:primaryTopic alice:me .

then a reasoner can deduce (using the FOAF [2] specification’s definitions):

bob:me foaf:knows alice:me .

In Linked Data, the entities in a dataset can be partitioned into:

– exported nodes (enodes): local entities, which the representation is authori-
tative for, with a publicly defined name that other datasets may link against,

– blank nodes (bnodes): local entities, which the representation is authoritative
for, but without a publicly defined name, and

– imported nodes (inodes): all other entities.

For example, the RDF representation of bob: given above contains inode alice:,
enodes bob: and bob:me, and an anonymous bnode (called _:anon below).

Integrity Constraints for Linked Data 3

Ontologies and integrity constraints. A consumer of Linked Data may
wish to assume a notion of correctness of the data it is consuming. Rather than
considering integrity constraints to be given in a separate formalism such as a
rules engine [14] or epistemic logic [15], we will use ontologies to express both
deductive reasoning (the standard ontology), and the correctness criteria (the
constraint ontology). A similar approach was taken by Motik et al. [13] and Tao
et al. [17]. For example, consider the standard ontology:

homepage
.
= primaryTopic−

PersonalHomePage v Document

Document v ≤1 primaryTopic

and the constraint ontology:

PersonalHomePage v ∃primaryTopic . Person

Person v ∀knows . Person

The above example is correct with respect to the exported interface:

Person(bob:me) PersonalHomePage(bob:)

under the assumption of the imported interface:

PersonalHomePage(alice:)

We reason informally as follows (this will be made formal in later sections).

– The constraint PersonalHomePage v ∃primaryTopic . Person is satisfied be-
cause the only new PersonalHomePage entity is bob:, and we have a witness
bob:me for the role primaryTopic.

– The constraint Person v ∀knows . Person is satisfied because the only new
Person entity is bob:me, and the only entity which bob:me knows is _:anon.
Now, in any world where PersonalHomePage(alice:), there must be some
individual i such that primaryTopic(alice:, i) and Person(i). We can then
reason using the standard ontology that i = _:anon and so Person(_:anon).

This example, shows the use of two different styles of reasoning.

– When reasoning about exported or blank nodes, we can assume that the
only properties are ones which can be deduced from information we have
asserted, using the standard ontology. For example, this form of reasoning is
used in “because the only new PersonalHomePage entity is bob:” and “the
only entity in a knows role with bob:me is _:anon.”

– We reason differently about imported nodes. All we know about the imported
world is that it satisfies the imported interface, the standard ontology and
the constraint ontology. For example, this form of reasoning is used in “in
any world where PersonalHomePage(alice:), there must be some individual
i such that primaryTopic(alice:, i) and Person(i).”

More succinctly, we use a Closed World Assumption for blank and exported
nodes, and an Open World Assumption for imported nodes.

4 Alan Jeffrey and Peter F. Patel–Schneider

Dependency graphs. Dependency graphs such as Figure 1 are a common way
of visualizing linked data, but have, until now, remained informal. We propose a
formalization of such graphs as directed graphs where nodes are datasets such as
ALICE (the authoritative representation of alice:) and BOB (the authoritative
representation of bob:), and edges indicate the existence of hyperlinks between
datasets. These edges are labeled by interfaces to make the contract between
datasets explicit, for example:

ALICE BOB
PersonalHomePage(alice:)

Dependency graphs can be regarded as datasets, given by taking the union of all
their constituent datasets (with a bit of bookkeeping to rename nodes to ensure
no name clashes). Since dependency graphs form datasets, they can be nested,
for example a GROUP which includes ALICE and BOB might be built:

GROUP

ALICE BOB

Ensuring correctness should be compositional, for example knowing that ALICE
and BOB are correct should ensure correctness of GROUP. Moreover, nested
graphs should respect equivalence of datasets: if ALICE is replaced by an equiva-
lent ALICE′, then GROUP should be equivalent to GROUP′. Finally, isomorphic
graphs should be equivalent, irrespective of how they are composed, for example:

DEPT CHARLIE

GROUP

ALICE BOB

≡

DEPT GROUP

CHARLIE

ALICE BOB

Symmetric monoidal categories. Our goals for dependency graphs are:

– Nodes describe datasets, edges describe hyperlink relationships.
– Graphs can be built compositionally, with local checking of correctness.
– Graph construction respects equivalence of datasets.
– Isomorphism of dependency graphs implies equivalence of datasets.

Proving these properties directly would be difficult, but fortunately there is
an existing structure which guarantees these properties: a symmetric monoidal
category. Category theory forms a foundational framework for mathematics, but
our need of it is quite pragmatic: the equational theory of a symmetric monoidal
category is precisely that of direct acyclic graphs (shown by Joyal and Street [10],
see, for example, Selinger [16]). Figure 2 sketches how directed acyclic graphs
form a symmetric monoidal category:

Integrity Constraints for Linked Data 5

... F
...

...
...

...
...

... F
... G

...
... G

...
...

...

1 F ;G σF ⊗G

Fig. 2. Directed acyclic graphs form a (strict) symmetric monoidal category.

– The identity graph 1 just connects its source and target edges.
– The composition F ;G of graphs takes the disjoint union of F and G, and

unifies the target edges of F with the source edges of G.
– The tensor F ⊗G of graphs takes the disjoint union of F and G.
– The symmetry graph σ just permutes its source and target edges.

Since the equational theory of a symmetric monoidal category is precisely that
of directed acyclic graphs, we can replace our goals for dependency graphs by
the goal of showing that datasets form a symmetric monoidal category. This is a
matter of proving a handful of equations, which is a easier than proving directly
that graph isomorphism implies dataset equivalence.

Summary. The remainder of this paper will make this motivational section
precise. We will define a notion of integrity constraint suitable for partitioning,
and show that datasets with integrity constraints form a symmetric monoidal
category, and hence can be formalized by dependency graphs. This is the first
such investigation of integrity constraints for Linked Data. All results presented
in this paper have been mechanically verified, using the Agda [1] mechanical
proof assistant; all proofs are publicly available [9].

2 Preliminaries

In this paper, we consider a Description Logic SHIN+
1 , which includes role

hierarchies, role inverses, disjoint, reflexive, irreflexive and transitive roles, and
singleton cardinality restrictions. We expect the results to apply to other descrip-
tion logics. Spelling this out, roles and concepts are defined by the grammars
(where r and c are drawn from sets of atomic role names and concept names):

R ::= r | r−
C ::= c | ¬c | ⊥ | > | C1 u C2 | C1 t C2 | ∀R . C | ∃R . C | ≤1R | >1R

A TBox is a finite set of axioms of the form:

C1 v C2 or R1 v R2 or Dis(R1, R2) or Ref(R) or Irr(R) or Tra(R)

6 Alan Jeffrey and Peter F. Patel–Schneider

Following Motik et al. [13], we assume ambient TBoxes S (the standard TBox)
and T (the constraint TBox). For any finite set X, an ABox over X is a finite
set of assertions of the form:

c(x) or r(x, y) or x ≈ y where x, y ∈ X

Note that ABoxes are restricted to contain only positive statements, and so have
a monotone semantics. In many cases, this does not impact expressivity, as S
can give names for arbitrary concepts, and T can introduce an irreflexive role
differentFrom used in place of 6≈ assertions. In practice, RDF is limited to positive
atomic statements.

An interpretation I over X consists of a set ∆I , together with cI ⊆ ∆I for
each concept name c, rI ⊆ ∆I ×∆I for each role name r, and xI ∈ ∆I for each
x ∈ X. The satisfaction relations I � A (for an ABox A over X) and I � T (for
a TBox T) are standard. Note that if I is an interpretation over X ⊇ Y , then I
can be regarded as an interpretation over Y .

In the following, we will write X] Y for the disjoint union of X and Y : for
simplicity, we will assume that X and Y are disjoint, and so X ⊆ X] Y ⊇ Y .
In the mechanized proofs [9], we use explicit tagging to ensure disjointness.

3 Initial interpretations

Consider ABoxes A over X, B over Y , and F over (X] V] Y). We can think
of A as the imported interface (where X is the set of inodes), B as the exported
interface (where Y is the set of enodes) and F as the dataset (where V is the
set of bnodes). Now, what does it mean for F to import A and export B, in the
presence of ambient TBoxes S and T?

F can be thought of as a recipe for adding new assertions to an existing
interpretation. Given any interpretation I over X which satisfies (S, T,A), we
require there to be a canonical interpretation J over (X]V]Y) which extends
I with (S, F), and we require J to satisfy (T,B).

Motik et al. [13] use a similar notion of constraint satisfaction, although they
consider all minimal J , rather than a canonical J , with respect to subset or-
der on Herbrand models of Skolemized formulae. As they note, Skolemization
has an impact on the notion of equivalence of TBoxes, for example (c v ∃r . d)
is not equivalent to (c v ∃r . d, c v ∃r . d) because they Skolemize differently
(each existential quantifier introduces a new Skolem function, which may be in-
terpreted differently). We avoid Skolemization by considering initial interpreta-
tions (relative to homomorphisms between interpretations) rather than minimal
interpretations (relative to subset order).

Tao et al. [17] also consider minimal models, with respect to a partial or-
der ≺= which preserves concept membership, role membership and equality of
named individuals. They avoid Skolemization by an alternate semantics, where
quantification only ranges over named individuals.

Integrity Constraints for Linked Data 7

A homomorphism between interpretations I and J over X is a function
h : ∆I → ∆J such that, for all x, i and j:

h(xI) = xJ (i ∈ cI)⇒ (h(i) ∈ cJ) ((i, j) ∈ rI)⇒ ((h(i), h(j)) ∈ rJ)

We will write I . J whenever there is a homomorphism from I to J . Consider
an interpretation I, and a family of interpretations Ji with a chosen family
of homomorphisms hi : I → Ji. An initial Ji is one with a unique family
of homomorphisms: gj : Ji → Jj such that gj ◦ hi = hj . Note that initial
interpretations do not always exist, but that when they do they are unique up
to isomorphism.

Definition 1. For any interpretation I over X and ABox F over Z ⊇ X, let
I ⊕ (S, F) be the initial interpretation J over Z such that I . J and J � S, F .

Note that I ⊕ (S, F) does not always exist, as S may contain existentials or
disjunctions which do not have canonical witnesses. For example there is no
initial extension of ∅ by:

Bool v True t False True t False v Bool Bool(x)

since there are two incomparable extensions, one with True(x) and one with
False(x). However, there is a syntactic restriction which guarantees the existence
of initial interpretations. Let S be minimizable whenever any axiom C v D has
C built from atoms, ⊥, >, t, u and ∃, and D built from atoms, >, u, ∀ and ≤.

Proposition 1. If S is minimizable, then I ⊕ (S, F) exists.

4 Integrity constraints

Having defined initiality, we can now define constraint satisfaction. This is a
variant of Motik et al.’s definition: rather than considering all minimal interpre-
tations, we require a canonical initial interpretation to exist, and for it to satisfy
the integrity constraints.

Definition 2. For ABoxes A over X, B over Y and F over (X]V]Y), define
F : A⇒ B whenever, for any interpretation I over X such that I � S, T,A, we
have I ⊕ (S, F) � T,B.

For example, in the example from Section 1 we have that in any I which satisfies
the ambient TBoxes and PersonalHomePage(alice:), there must be some i such
that (alice:I , i) ∈ primaryTopicI , so we can pick fresh j and k and define J as
the smallest extension of I where:

bob:J = j bob:meJ = k :anonJ = alice:I

j ∈ PersonalHomePageJ j ∈ DocumentJ k ∈ PersonJ

(j, k) ∈ primaryTopicJ (k, j) ∈ homepageJ (k, i) ∈ knowsJ

8 Alan Jeffrey and Peter F. Patel–Schneider

and so we have:
PersonalHomePage(bob:),
Person(bob:me),
primaryTopic(bob:, bob:me),
knows(bob:me, :anon),
homepage(:anon, alice:)

 : (PersonalHomePage(alice:))⇒
(

PersonalHomePage(bob:),
Person(bob:me)

)

5 Symmetric monoidal category

Having defined our notion of integrity constraints for Linked Data, we give our
main result, which is that ABoxes with integrity constraints form a symmetric
monoidal category, and hence (as shown by Joyal and Street [10] and surveyed,
for example, by Selinger [16]) can be modeled formally by directed acyclic graphs.

A symmetric monoidal category C consists of:

– A collection Obj(C) of objects, including:
• a chosen object I, and
• for each pair of objects A and B, an object A⊗B.

– For each pair of objects, A and B, a collection of morphisms C[A,B], in-
cluding (where we write f : A→ B whenever f is in C[A,B]):
• for each f : A→ B and g : B → C, a morphism (f ; g) : A→ C,
• for each f : A → C and g : B → D, a morphism (f ⊗ g) : (A ⊗ B) →

(C ⊗D), and
• chosen families of morphisms:

1A : A→ A σAB : (A⊗B)→ (B ⊗A)

αABC : ((A⊗B)⊗ C)→ (A⊗ (B ⊗ C)) λA : (A⊗ I)→ A

α−1ABC : (A⊗ (B ⊗ C))→ ((A⊗B)⊗ C) λ−1A : A→ (A⊗ I)

satisfying certain equations (see, for example Mac Lane [12] for details).

The objects of our symmetric monoidal category ABox will be ABoxes, which
we will think of as interfaces.

– Obj(ABox) is the collection of all ABoxes.
– The chosen object I is the empty ABox.
– Given two ABoxes A over X and B over Y , the object (A⊗B) is the ABox

(A,B) over (X] Y).

The morphisms of the category ABox will also be ABoxes, this time thought of
as datasets satisfying integrity constraints.

– ABox[A,B] is the collection of all ABoxes F such that F : A⇒ B.
– Given two ABoxes F over (X]V]Y) and G over (Y]W]Z), the morphism

(F ;G) is the ABox (F,G) over (X] (V] Y]W)] Z).
– Given two ABoxes F1 over (X1] V1] Y1) and F2 over (X2] V2] Y2), the

morphism (F1⊗F2) is the ABox (F1, F2) over ((X1]X2)](V1]V2)](Y1]Y2)).

Integrity Constraints for Linked Data 9

To verify that this definition is well-formed, we have to verify that checking
integrity constraints is compositional, that is we only have to check integrity
locally, and know it is preserved by composition and tensor.

Proposition 2.

1. If F : A⇒ B and G : B ⇒ C, then (F ;G) : A⇒ C.
2. If F1 : A1 ⇒ B1 and F2 : A2 ⇒ B2, then (F1⊗F2) : (A1⊗A2)⇒ (B1⊗B2).

Note that the composition (F ;G) may introduce bnodes, since the intermediate
names which are exported by F and imported by G become bnodes (indeed, this
is why bnodes are present in this model). For example:

(knows(alice:me, bob:me)); (knows(bob:me; charlie:me))

≡ (knows(alice:me, :anon), knows(:anon, charlie:me))

As well as composition of ABoxes, we have to provide the “wiring” combinators
for identity, symmetry, unit and associativity. These are all constructed in the
same way: given any function f : Y → X on finite sets, we define the ABox
wiring(f) over (X]Y) as containing f(y) ≈ y for each y ∈ Y . We can then show
that wiring(f) respects renaming of ABoxes. Given any ABox A over Y , let f [A]
be the ABox over X given by replacing any individual y in A by f(y).

Proposition 3. If f : Y → X and B ⊆ f [A], then wiring(f) : A⇒ B.

This suffices to define the combinators of a symmetric monoidal category, for
example 1A : A⇒ A is given by wiring the identity function.

Finally, we have to prove the equations of a symmetric monoidal category.
These equations are not true up to syntactic equality of ABoxes, due to intro-
duction of bnodes, for example a counter-example to 1;F = F is:

(alice:me ≈ alice:me′); (knows(alice:me′, bob:me))

≡ (alice:me ≈ :anon, knows(:anon, bob:me))

6= (knows(alice:me, bob:me))

The equations are true when we consider ABoxes up to equivalence (in the
presence of S, T and A), that is:

F ≡ G : A⇒ B whenever S, T,A, F � G and S, T,A,G � F

We therefore consider the morphisms of ABox up to equivalence, which requires
us to show that composition and tensor respect equivalence:

Proposition 4.

1. If F ≡ F ′ : A⇒ B and G ≡ G′ : B ⇒ C then (F ;G) ≡ (F ′;G′) : A⇒ C.
2. If F1 ≡ F ′1 : A1 ⇒ B1 and F2 ≡ F ′2 : A2 ⇒ B2

then (F1 ⊗ F2) ≡ (F ′1 ⊗ F ′2) : (A1 ⊗A2)⇒ (B1 ⊗B2).

10 Alan Jeffrey and Peter F. Patel–Schneider

Fig. 3. Example of Agda proof mechanization

The proofs that ABoxes satisfy the equations of a symmetric monoidal category
are then direct. The coherence properties (which only involve compositions of
wiring morphisms) follow because wiring respects composition and tensor:

wiring(f); wiring(g) ≡ wiring(f ◦ g) wiring(f)⊗ wiring(g) ≡ wiring(f] g)

Theorem 1. ABox forms a symmetric monoidal category.

The proof of this theorem, including the definitions it relies on, is approximately
3,000 lines of Agda code [9]. An example lemma is shown in Figure 3.

6 Conclusions and further work

We have presented the first treatment of integrity constraints for Linked Data
which makes use of a partition between local entities, for which a dataset is
authoritative, and imported entities, where complete information is not known.
We have given the first categorical presentation of datasets, and as a consequence,
we have the first formal treatment of acyclic dependency graphs.

There are open questions raised by this model, of which the most important
is its algorithmic properties: is integrity constraint satisfaction decidable, and if
so, what is its complexity, and can it be reduced to existing decision problems?

Our model only treats acyclic dependency graphs, via symmetric monoidal
categories. A categorical treatment of cyclic graphs uses traced monoidal cate-
gories (introduced by Joyal, Street and Verity [11], and discussed by Selinger [16]).
Cyclic graphs require the existence of fixed points which unfortunately do not re-
spect integrity constraint satisfaction, for example the fixed point of the identity
morphism is equivalent to an empty dataset, which will not satisfy existential

Integrity Constraints for Linked Data 11

or disjunctive integrity constraints. The situation is similar to that of complete
metric spaces: not all functions have fixed points, but contraction maps do.

Our model assumes the existence of ambient TBoxes S and T , which must
be agreed upon by all datasets. This requirement is quite strong, and the model
would be improved by allowing authoritative ontologies as well as datasets. This
is related to the notion of modularity of ontologies [7].

The mechanized proofs of our model [9] are given in Agda [1], which as well
as a proof assistant is a programming language which compiles to Haskell [3].
We hope to extend our proofs to a Semantic Web library, which will support the
development of provably correct programs to process Linked Data.

References

1. The Agda programming language. http://wiki.portal.chalmers.se/agda/
2. The friend of a friend (FOAF) project, http://www.foaf-project.org/
3. The Haskell programming language. http://haskell.org/
4. Beckett, D., Berners-Lee, T.: Turtle - terse RDF triple language (2008), http:

//www.w3.org/TeamSubmission/turtle/

5. Berners-Lee, T.: Linked data (2006), http://www.w3.org/DesignIssues/

LinkedData.html

6. Cyganiak, R., Jentzsch, A.: Linking open data cloud diagram, http://lod-cloud.
net/

7. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. J. Artificial Intelligence Research 31, 273–318 (2008)

8. Jacobs, I., Walsh, N.: Architecture of the World Wide Web, volume one. W3C
Recommendation (2004), http://www.w3.org/TR/webarch/

9. Jeffrey, A.S.A.: Agda libraries for the semantic web. https://github.com/agda/
agda-web-semantic/ (2011)

10. Joyal, A., Street, R.: The geometry of tensor calculus I. Advances in Mathematics
88(1), 55–112 (1991)

11. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cam-
bridge Phil. Soc. 3, 447–468 (1996)

12. Mac Lane, S.: Categories for the Working Mathematician. Springer, 2nd edn. (1998)
13. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational

databases. J. Web Semantics 7(2), 74–89 (2009)
14. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. J. ACM 57(5),

1–62 (2010)
15. Reiter, R.: What should a database know? J. Log. Program. 14, 127–153 (1992)
16. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke,

B. (ed.) New Structures for Physics, Lecture Notes in Physics, vol. 813, chap. 4,
pp. 289–356. Springer (2011)

17. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Extending OWL with integrity con-
straints. In: Proc. Workshop on Description Logics. pp. 137–148 (2010)

