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Abstract. Evolution of Knowledge Bases expressed in Description Logics (DLs)
proved its importance. Most studies on evolution in DLs have focused on model-
based approaches to evolution semantics and in particular on Winslett’s semantics
(WS). It was understood that evolution under WS even in tractable DLs, such
as DL-Lite, suffers from inexpressibility, i.e., the result of evolution cannot be
expressed in the same logics. In this work we show which combination of DL-
Lite logical constructs is responsible for the inexpressibility and explain reasons
for such a behaviour. We present novel techniques, based on what we called
prototypes, to capture Winslett’s evolution in FO[2] for DL-LiteR. We also discuss
which fragments of DL-LiteR are closed under evolution.

1 Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured
knowledge by means of Knowledge Bases (KBs) K that are composed of two compo-
nents: TBox (describes intensional or general knowledge about an application domain)
and ABox (describes facts about individual objects). DLs constitute the foundations for
various dialects of OWL, the Semantic Web ontology language.

Traditionally DLs have been used for modeling static and structural aspects of
application domains [1]. Recently, the scope of KBs has broadened, and they are now
used also for providing support in the maintenance and evolution phase of information
systems. This makes it necessary to study evolution of Knowledge Bases [2], where
the goal is to incorporate a new knowledge N into an existing KB K so as to take
into account changes that occur in the underlying application domain. In general, N
is represented by a set of formulas denoting those properties that should be true after
K has evolved, and the result of evolution, denoted K � N , is also intended to be a
set of formulas. In the case where N interacts with K in an undesirable way, e.g., by
causing the KB or relevant parts of it to become unsatisfiable, N cannot simply be
added to the KB. Instead, suitable changes need to be made in K so as to avoid this
undesirable interaction, e.g., by deleting parts of K conflicting withN . Different choices
for changes are possible, corresponding to different approaches to semantics for KB
evolution [3,4,5].

One approach to evolution semantics that proved its importance is Winslett’s seman-
tics (WS) [6], which is an update semantics in terms of Katsumo and Mendelzon [4],
and was originally proposed for propositional theories. Under this semantics the result of
evolution K � N is a set of models of N that are minimally distanced from models of K,
where the distance is based on symmetric difference between models (see Section 3 for
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details). Since the result of evolutionK�N is a set of models, whileK andN are logical
theories, it is desirable to represent K � N as a logical theory using the same language
as for K and N . Thus, looking for representations of K � N is the main challenge in a
study of evolution under WS. When K andN are propositional theories, representing
K � N is well understood [5], while it becomes dramatically more complicated as soon
as K and N are first-order, e.g., DL KBs [7].

In this work we study how WS can be applied to evolution of KBs under the following
two assumptions. First, we assume that both K and N are written in a language of the
DL-Lite family [8]. The focus on DL-Lite is not surprising since DL-Lite is tightly
connected with conceptual data models and it is the basis of OWL 2 QL, a tractable
OWL 2 profile.Second, we assume that N is a new ABox and the TBox of K should
remain the same after the evolution. That is, we study a so-called ABox evolution. ABox
evolution is important for areas, e.g., bioinformatics, where the structural knowledge
TBox is well crafted and stable, while ABox facts about specific individuals may get
changed, or/and new facts can be inserted in the ABox. These ABox changes should be
reflected in KBs in a way that the TBox is not affected.

There are several works on WS for both DL-Lite and more expressive DLs. Liu,
Lutz, Milicic, and Wolter studied Winslett’s evolution in expressive DLs [7], for KBs
with empty TBoxes. Most of DLs they considered are not closed under WS and in order
to close these logics they used “@” operator. Poggi, Lembo, De Giacomo, Lenzerini,
and Rosati applied WS to DL-Lite [9] and proposed an algorithm to compute the result
of evolution. It turned out that their algorithm is wrong, i.e. it is neither sound, nor
complete [10]. Actually, such an algorithm cannot exist since Calvanese, Kharlamov,
Nutt, and Zheleznyakov showed that, e.g., DL-LiteFR is not closed under WS of evolu-
tion [11], that is, there are K and N such that K � N is not axiomatizable in this family.
Recently [12] we introduced prototypes, which are in a way generalization of the notion
of canonical model, and proposed a way to capture some fragments of DL-Lite in FO[2],
a fragment of first-order logic that uses two variables only.

Current work extends the preliminary results of [12]. Our goals here are
(i) to clarify our prototype-based techniques which was only sketched in [12],

(ii) to extend the techniques to wider DL-Lite fragments,
(iii) to gain a better understanding on which fragments of DL-Lite are closed under WS

and how to approximate evolution results in DL-Lite.
We would also like to promote prototypes since we believe they are an useful tool to
study evolution of ontologies and might be not only of DL-Lite ones.

In Sections 2 and 3 we define DL-LiteR and ABox evolution under WS. In Section 4
we give an intuition of our approach to capture WS of evolution for DL-LiteR KBs using
prototypes and FO[2] theories. In Sections 5 and 6 we formalize the approach. Finally,
we discuss properties and approximation of these theories.

2 DL-LiteR

We introduce some basic notions of DLs (see [1] for more details). We consider a logic
DL-LiteR of DL-Lite family of DLs [8,13]. DL-LiteR has the following constructs for
(complex) concepts and roles: (i) B ::= A | ∃R, (ii) C ::= B | ¬B, (iii) R ::= P | P−,
where A and P stand for an atomic concept and role, respectively, which are just
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names. A DL knowledge base (KB) K = (T ,A) is compound of two sets of assertions:
TBox T , and ABox A. DL-LiteR TBox assertions are concept inclusion assertions of
the form B v C and role inclusion assertions R1 v R2, while ABox assertions are
membership assertions of the form A(a), ¬A(a), and R(a, b). The active domain of K,
denoted adom(K), is the set of all constants occurring in K. The DL-Lite family has nice
computational properties, for example, KB satisfiability has polynomial-time complexity
in the size of the TBox and logarithmic-space in the size of the ABox [14,15].

The semantics of DL-Lite KBs is given in the standard way: using first order inter-
pretations I, all over the same countable domain ∆. We assume that ∆ contains the
constants and cI = c, i.e., we adopt standard names. Alternatively, we view interpreta-
tions as sets of atoms: A(a) ∈ I iff a ∈ AI and P (a, b) ∈ I iff (a, b) ∈ P I .

Definitions of I being a model of an ABox or a TBox assertion F , denoted I |= F ,
and a KB K, denoted I |= K, are standard, as well as the notion of satisfiability. We use
Mod(K) to denote the set of all models of K. We use entailment on KBs K |= K′ in the
standard sense. An ABox A T -entails an ABox A′, denoted A |=T A′, if T ∪ A |= A′,
and A is T -equivalent to A′, denoted A ≡T A′, if A |=T A′ and A′ |=T A.

The deductive closure of a TBox T , denoted cl(T ), is the set of all TBox assertions F
such that T |= F . For satisfiable KBs K = (T ,A), a full closure of A (wrt T ), fclT (A),
is the set of all membership assertions f (both positive and negative) over adom(K)
such that A |=T f . Clearly, in DL-LiteR both cl(T ) and clT (A) are computable in time
quadratic in, respectively, |T |, i.e., the number of assertions of T , and |T ∪ A|. For the
ease of exhibition and wlg we assume that all TBoxes and ABoxes are closed.

A homomorphism h from a model I to a model J is a structure-preserving mapping
from ∆ to ∆ satisfying: (i) h(a) = a for every constant a; (ii) if α ∈ AI (resp.,
(α, β) ∈ P I), then h(α) ∈ AJ (resp., (h(α), h(β)) ∈ PJ ) for every A (resp., P ). We
write I ↪→ J if there is a homomorphism from I to J . A canonical model I of K,
denoted as Ican

K or just Ican when K is clear from the context, is a model of K which
can be homomorphically embedded in every model of K [8].

3 Winslett’s Semantics for Evolution of Knowledge Bases

We start with ABox evolution of single models under Winslett’s semantics. Let K =
(T ,A) be a DL-LiteR KB, I a model of K, and N a new ABox satisfiable with T .
Evolution of a model I of K is based on the symmetric difference 	: S1 	 S2 =
(S1 \ S2) ∪ (S2 \ S1), and defined as follows. The (result of) evolution of I with N
under Winslett’s semantics (WS) [9], denoted I � N , is the set of models J such that:

(i) J ∈ Mod(T ∪ N ), and
(ii) there is no model J ′ ∈ Mod(T ∪ N ) satisfying I 	 J ′ ( I 	 J

Note that in Case (i) we have Mod of both T and N , which means that the evolution
preserves both the old TBox and the new knowledge. Case (ii) guarantees the principle
of minimal change [5]. We extend the definition to KBs:

The result of evolution of K with N under WS, denoted K � N , is the following set
of models:

K � N = ∪I∈Mod(K)I � N .
In terms of [10], WS corresponds to La

⊆ semantics, i.e., local model-based semantics
based on atoms and set inclusion.
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The input for evolution is two finite syntactic objects: a KB K = (T ,A) and a new
information N , while the output K �N is a set of models, which is an infinite object for
DL-LiteR. Indeed, K � N is in general infinite. One can easily come up with examples
where K �N has an infinite number of infinite models. These observations imply that
storing K � N is infeasible and in practice one would like to represent the evolution as
a KB K′. Moreover, one would like to stay within the same formalism and express K′
in DL-LiteR. Formally, we say that a logic L is closed under Winslett’s evolution if for
every K and N in L, the result of evolution K � N is expressible in L, that is, there is a
KB K′ = (T ,A′) in L such that Mod(K′) = K � N .

Example 1. Consider the following DL-Lite KB K1 = (T1,A1) and N1 = {C(b)}:
T1 = {A v ∃R,∃R− v ¬C}; A1 = {A(a), C(e), C(d), R(a, b)}.

Consider the following model I of K1:

I: AI = {a, x}, CI = {d, e}, RI = {(a, b), (x, b)},
where x ∈ ∆ \ adom. The following models belong to I � N1:

J0: AI = ∅, CI = {d, e, b}, RI = ∅,
J1: AI = {x}, CI = {e, b}, RI = {(x, d)},
J2: AI = {x}, CI = {d, b}, RI = {(x, e)}.

Indeed, all the models satisfy N1 and T1. To see that they are in I � N1 observe that
every model J (I) ∈ (I � N1) can be obtained from I by making modifications that
guarantee that J (I) |= (N1 ∪ T1) and that the distance between I and J (I) is minimal.
What are these modifications? Since in every J (I) the new assertion C(b) holds and
(C v ¬∃R−) ∈ T1, there should be no R-atoms with b-fillers at the second coordinate
in J (I). Hence, the necessary modifications of I are either to drop (some of) the R-
atoms R(a, b) and R(x, b), or to modify (some of) them, by substituting the b-fillers
with another ones, while keeping the elements a and x on the first position. The model
J0 corresponds to the case when both R-atoms are dropped, while in J1 and J2 only
R(a, b) is dropped and R(x, b) is modified to R(x, d) and R(x, e), respectively. Note
that the modification in R(x, b) leads to a further change in the interpretation of C in
both J1 and J2, namely, C(d) and C(e) should be dropped, respectively.

4 Prototypes for Winslett’s Semantics

We first present a general discussion on issues with capturing WS in DL-Lite, then give
an intuition of our approach for capturing it in FO[2], and finally give an example of how
the approach works. In the next section we formalize the approach.

ABox Evolution of a DL-Lite KB K with an ABox N is the set of models K � N
that may not have a canonical one [12]. This immediately yields that K � N cannot be
described (aka axiomatized) in any language of the DL-Lite family.

Example 2. We now illustrate the lack of canonical models in K1 � N1 from Example 1.
One can verify that any model Jcan that can be homomorphically embedded into J0, J1,
and J2 is such that AJcan = RJcan = ∅, and e, d /∈ CJcan . It is easy to check that such a
model does not belong to K1 � N1. Hence, there is no canonical model in K � N and it
is inexpressible in DL-Lite.
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K �N S0 S1 S3S2

J0
J1 J2

J3

Mod(K(J0)) Mod(K(J1)) Mod(K(J2))

Mod(K(J3))

Fig. 1. Graphical representation of our approach to capture the result of evolution under WS.

A closer look at sets K � N for different K and N gave a surprising outcome: all of
them satisfy the following property.

Theorem 3. K � N can be divided (but in general not partitioned) into finitely many
subsets S0, . . . ,Sn of models, where each Si has a canonical model Ji. Each of these
canonical models is a minimal element in K � N wrt homomorphisms.

We called these Jis prototypes [12]. Thus, capturing K � N in some logics boils
down to (i) capturing each Si with some theory KSi and (ii) taking the disjunction across
all KSi . This will give the desired theory K′ = KS1 ∨ · · · ∨ KSn that captures K � N .
Unfortunately, some of KSi

are not DL-Lite theories (while they are FO[2] theories, see
Section 5 for details).

We construct K′ in two steps. First, we construct DL-LiteR KBs K(Ji) for each Ji

such that K(Ji) is a sound approximations of Sis, that is, Si ⊆ Mod(K(Ji)). Second,
based on K and N , we construct an FO[2] formula Ψ , which cancels out all the models
in Mod(K(Ji)) \ Si, that is, KS0 ∨ · · · ∨ KSn

= Ψ ∧ (K(J0) ∨ · · · ∨ K(Jn)).
To get a better intuition on our approach, consider Figure 1, where the result of

evolution K �N is depicted as the figure with solid-line borders (each point within the
figure is a model inK�N ). Assume thatK�N can be divided in four subsets S0, . . . ,S3.
To emphasize this fact, K � N looks similar to a hand with four fingers, where each
finger represents an Si. Consider the left part of Figure 1. Each of Sis has a canonical
model depicted as a star. Using DL-LiteR , we can provide KBs K(J0), . . . ,K(J3) that
are sound approximation of corresponding Sis. We depict the models Mod(K(Ji)) as
ovals with dashed-line boarders. Consider the right part of Figure 1. In this figure we
depict in grey the models Mod(K(Ji)) \ Si that are cut off by Ψ .

Before proceeding to the next section where we formalize our approach, we introduce
prototypes formally.

Definition 4. Let K be a DL-LiteR KB and N be an ABox. A prototypal set for K � N
is a minimal subset J = {J0, . . . ,Jn} of K � N satisfying the property:

for every J ∈ K � N there is Ji ∈ J such that Ji ↪→ J .
We call every Ji ∈ J a prototype for K � N . Note that prototypes generalize canonical
models in the sense that every set of models with a canonical one, say Mod(K) for a
DL-LiteR KB K, has a prototype, which is exactly the canonical model.

5 Computing Winslett’s Semantics When No Roles Interact

We first discuss some of the reasons of WS inexpressibility in our examples and DL-LiteR.
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BZP (K,N )

1. J0 := Align(Ican,N ) ∪N , where Ican is the canonical model of K.
2. For each R(a, b) ∈ AA(K,N ), do J0 := J0 \ {R(a, b)},

if there is no R(a, β) ∈ A \AA(K,N ) do J0 := J0 \ rootat
T (∃R(a)).

3. Return J0.

Fig. 2. The procedure of building zero-prototype

Dual-Affection of Roles. As we discussed in the previous section and illustrated in
Example 1, sets of models K � N that result from Winslett’s evolution do not have
canonical models. We now give an intuition why in K �N canonical models are missing.
Observe that in Example 1 the role R is affected by the old TBox T1 as follows:

(i) T1 places (i.e., enforces the existence of) R-atoms in the evolution result, and on
one of coordinates of these R-atoms, there are constants from specific sets, e.g.,
A v ∃R of T1 enforces R-atoms with constants from A on the first coordinate, and

(ii) T1 forbids R-atoms in K1 � N1 with specific constants on the other coordinate,
e.g., ∃R− v ¬C forbids R-atoms with C-constants on the second coordinate.

Due to this dual-affection (both positive and negative) of the role R in T1, we were
able to provide an ABox A1 and N1, which together triggered the case analyses of
modifications on the model I, that is, A1 and N1 were triggers for R. Existence of
such an affected R and triggers A1 and N1 made K1 � N1 inexpressible in DL-LiteR.
Therefore, we now learn how to detect dually-affected roles in TBoxes and how to
understand whether these roles are triggered by an ABox and a new (ABox) information.

Formally, let T be a TBox, a role R is dually-affected in T if for some concepts A
and B it holds that T |= A v ∃R and T |= ∃R− v ¬B. Let N be an ABox satisfiable
with T , then a dually-affected role R is triggered by N if there is a concept B such that
T |= ∃R− v ¬B and N |=T B(b) for some constant b. The set TR(T ,N ) (or simply
TR) is the set of all roles (dually-affected in T ) that are triggered by N .
Description Logics DL-Lite I

R. We now show a restriction of DL-LiteR for which we
later present an algorithm to capture WS using prototypal set. DL-Lite I

R (where I stands
for (mutual) independence of roles) is a restriction of DL-LiteR in which TBoxes T
satisfy: for any two roles R and R′, T 6|= ∃R v ∃R′ and T 6|= ∃R v ¬∃R′. That is, we
forbid direct role interaction (subsumption and disjointness) between role projections.
Some interaction is still possible: role projections may contain the same concept. This
restriction allows us to analyze evolution affecting roles independently for every role.
Components for Computation. We now introduce several notions and notations that
we further use in the description of our algorithm. An alignment of a model I with N ,
denoted Align(I,N ), is the interpretation:

Align(I,N ) = {f | f ∈ I and f is satisfiable with N}.
An auxiliary set of atoms AA (Auxiliary Atoms) that, due to evolution, should be deleted
from the original KB and have some extra condition on the first coordinate is:

AA(T ,A,N ) = {R(a, b) ∈ fclT (A) | T |= A v ∃R,A |=T A(a),N |=T ¬∃R−(b)}.
For the set TR we define the set of forbidden atoms FA[T ,A,N ](Ri) of the original
ABox as:

{D(c) ∈ fclT (A) | ∃R−i (c) ∧D(c) |=T ⊥,N 6|=T D(c), and N 6|=T ¬D(c)}.
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BP (K,N ,J0)

1. J := {J0}.
2. For each subset D = {D1(c1), . . . , Dk(ck)} ⊆ FA do

for eachR = (Ri1 , . . . , Rik ) such that Dj(cj) ∈ FA(Rij ) for j = 1, . . . , k do
for each B = (Ai1 , . . . , Aik ) such that Aj ∈ SC(Rj) do

J [D,R,B] :=
h
J0 \

Sk
i=1 rootT (Di(ci))

i
∪
Sk

i=1

h
fclT (R′i(xi, ci)) ∪ {AR′

i
(xi)}

i
,

where all xi’s are different constants from ∆ \ adom(K), fresh for Ican.
J := J ∪ {J [D,R,B]}.

3. Return J.

Fig. 3. The procedure of building prototypes in DL-Lite I
R based on the zero prototype J0

Consequently, the set of forbidden atoms for the entire KB (T ,A) and N is

FA(T ,A,N ) = ∪Ri∈TRFA(T ,A,N )(Ri).

In the following we omit the arguments (T ,A,N ) whenever they are clear from the
context. For a role R, the set SC(R), where SC stands for sub-concepts, is a set of those
concepts which are immediately under ∃R in the concept hierarchy generated by T :

SC(R) = {A | T |= A v ∃R and there is no A′ s.t. T |= A v A′ and T |= A′ v ∃R}.

If f is an ABox assertion, then rootat
T (f) is a set of all the atoms that T -entail f . For

example, A(x) ∈ rootat
T (∃R(x)) if T |= A v ∃R.

We are ready to proceed to construction of prototypes.

Constructing Zero-Prototype. The procedure BZP (K,N ) (Build Zero Prototype) in
Figure 2 constructs the main prototype J0 for K and N from DL-Lite I

R, which we call
zero-prototype. Based on J0 we will construct all the other prototypes. To build J0 one
has to align the canonical model of K with N , and then delete from the resulting set of
atoms all the auxiliary atoms R(a, b) (from AA(K,N )). In the case when no R(a, β) for
some constant β such thatR(a, β) ∈ AA(K,N ) is in the canonical model, we also delete
atoms rootat

T (∃R(a)), since their presence in the model and the absence of R-atoms with
a at the first coordinate would contradict the TBox.

Constructing Other Prototypes. The procedure BP (K,N ,J0) (Build Prototypes) of
constructing J for the case of DL-Lite I

R, takes J0 and manipulates with it by first
dropping atoms from FA and then adding atoms in order to compensate the dropped
ones so that the result is an evolved model under WS. It can be found in Figure 3

We conclude the discussion on the algorithms with a theorem:

Theorem 5. Let K = (T ,A) be a DL-Lite I
R KB, and N a DL-LiteR ABox consistent

with T . Then the set BP (K,N , BZP (K,N )) is a prototypal set for K � N .

Continuing with Example 1, it is easy to check that the prototypal set for K1 and N1

is {J0,J1,J2,J3}, where J0, J1, and J2 are described in the example and

J3: AI = {x, y}, CI = {b}, RI = {(x, d), (y, e)}.
We proceed to correctness of BP in capturing evolution in DL-Lite I

R, where we use
the following set FC[T ,A,N ](Ri) = {c | D(c) ∈ FA[T ,A,N ](Ri)}, that collects all
the constants that participate in the forbidden atoms.



8 Evgeny Kharlamov, and Dmitriy Zheleznyakov

Theorem 6. LetK = (T ,A) be a DL-Lite I
R KB,N a DL-LiteR ABox consistent with T ,

and BP (K,N , BZP (K,N )) = {J0, . . . ,Jn} is a prototypal set for K � N . Then

K � N = Mod(T ) ∩Mod(A0 ∨ . . . ∨ An) ∩Mod(Φ ∧ Ψ),

where Ai is a DL-LiteR ABox such that Ji is a canonical model for (T ,Ai), and

Φ =
^

Ri∈TR

^
cj∈FC[Ri]

∀x.
ˆ`
Ri(x, cj)→ (rootat

T (∃Ri(x)) 6= ∅)
´
∧

∀y. (Ri(x, cj) ∧Ri(x, y)→ y = cj)] ,

Ψ =
^

R(a,b)∈Sat

∃R(a)→ rootat
T (∃R(a)) ∩ fclT (A).

The Ai mentioned in Theorem 6, can be constructed in the similar way that the
corresponding prototypes Ji, taking the original ABox A instead of Ican. Note that an
ABox may include a negative literals, like ¬B(c). Those should be treated in the same
way that the positive literal (atoms) are. We will denote such an ABox as A[Ji].

Theorem 7. A prototype Ji is a canonical model of the KB (T ,A[Ji]).
Continuing with Example 1, the ABoxes A[J0] and A[J1] are as follows:

A[J0] = {C(d), C(e), C(b)}; A[J1] = {A(x), C(e), C(b), R(x, d)}.
A[J2] and A[J3] can be built in the similar way. Note that only A[J0] is in DL-LiteR,
while writing A[J1], . . . ,A[J3] requires variables in ABoxes. Variables, also known
as soft constants, are not allowed in DL-LiteR ABoxes, while present in DL-LiteRS
ABoxes. Soft constants x are constants not constrained by the Unique Name Assumption:
it is not necessary that xI = x. Since DL-LiteRS is tractable and FO rewritable [13],
expressing A[J1] in DL-LiteRS instead of DL-LiteR does not affect tractability.

6 Computing Winslett’s Semantics with Roles Interaction

The algorithm BP for constructing prototypal set works only when roles do not interact.
The following example illustrates that it does not work in a general case.

Example 8. Consider a KB K2 = (T2,A2) and a new ABox N2 = {C(b)}:
TBox T2: ∃R− v ¬∃P−, ∃R− v ¬C, A v ∃R, B v ∃P ;
ABox A2: R(a, b), A(a), R(f, g), A(f), P (c, d), B(c), C(e).

One can check that the following model J ′ is in K2 � N2:

AJ
′
= {y}, BJ

′
= {z}, CJ

′
= {b, e}, RJ

′
= {(y, d)}, PJ

′
= {(z, g)}.

At the same time, BP over K2 and N2 returns the following four prototypes only:
AJi BJi CJi RJi PJi

i = 0 {f} {c} {b, e} {(f, g)} {(c, d)}
i = 1 {f, x} {c} {b} {(f, g), (x, e)} {(c, d)}
i = 2 {f, y} ∅ {b, e} {(f, g), (y, d)} ∅
i = 3 {f, x, y} ∅ {b} {(f, g), (x, e), (y, d)} ∅

where x and y are fresh constants. It is easy to see that none of Jis is homomorphically
embeddable in J ′. Thus, BP does not capture J ′ and it is incomplete.
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BPrec(K,N )

1. Compute J := BP (K,N , BZP (K,N )).
2. Repeat

J
′
:= J;

for each J ∈ J′ do J := J ∪BP (K,N ∪ S,J ),
where S = {f ∈ J | a fresh constant from ∆ \ adom(K) appears in f};

until J = J
′.

3. Return J.

Fig. 4. The procedure of building prototypes in DL-LiteR

6.1 Recursive BP Algorithm.

For general DL-LiteR KBs, BP algorithm does return prototypes but not all of them.
The reason is: when, while constructing prototypes with BP, we delete a forbidden
atom (an atom from FA), it may trigger another dually-affected role and such triggering
may require further modifications, which are not accounted by BP. In order to compute
all prototypes we should run BP recursively: considering the prototypes obtained at
the previous step as zero ones. We present a recursive algorithm BPrec for building
prototypes for general DL-LiteR KBs in Figure 4. The following theorem shows the
correctness of the algorithm.

Theorem 9. Let K = (T ,A) be a DL-LiteR KB and N a DL-LiteR ABox consistent
with T . Then the algorithm BPrec(K,N ) terminates and returns the finite set which is a
prototypal set for K � N .

We illustrate BPrec on the following example.

Example 10. Consider KB K2 = (T2,A2) and a new ABoxN2 from Example 8. Let us
compute BPrec(K2,N2). First we run BP (K,N ,J0) and it returns four prototypes: J0,
J1, J2, and J3 (see Example 8). Now we apply the BP procedure to J1, J2, and J3.
It is easy to see that BP (K,N ∪ {A(x), R(x, e)},J1) = ∅, since no role atom except
for R(a, b) was affected. Consider BP (K,N ∪ {A(y), R(y, d)},J2): it consists of the
only prototype J4:

AJ4 = {y}, BJ4 = {z}, CJ4 = {b, e}, RJ4 = {(y, d)}, PJ4 = {(z, g)}.

The uniqueness of the prototype follows from the fact that the role atom that was
affected in J2 is P (c, d) and FA[T ,A,N ∪ {A(y), R(y, d)}](P ) = {∃R−(g)}. Finally,
running BP (T ,N ∪ {A(y), R(y, d), B(z), P (z, g)},J4) we obtain a prototype J5:

AJ5 = {y, v}, BJ5 = {z}, CJ5 = {b}, RJ5 = {(y, d), (v, e)}, PJ5 = {(z, g)}.

Note thatBP (T ,N∪{A(y), R(y, d), B(z), P (z, g), A(v), R(v, e)},J5) = ∅. Anal-
ogously,J6 can be obtained by runningBP (K,N∪{A(x), A(y), R(x, e), R(y, d)},J3):

AJ6 = {x, y}, BJ6 = {z}, CJ6 = {b}, RJ6 = {(x, e), (y, d)}, PJ6 = {(z, g)}.

Thus, the prototypal set J for K � N is {Ji}6i=0.

We conclude with the theorem that BPrec gives a sound approximation for WS.
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Theorem 11. Let K = (T ,A) be a DL-LiteR KB, N a DL-LiteR ABox consistent with
T , and BPrec(K,N ) = {J0, . . . ,Jn} is a prototypal set for K � N . Then

K � N ⊆ Mod(T ) ∩Mod(A0 ∨ . . . ∨ An) ∩Mod(Φ ∧ Ψ),

where Ai is a DL-LiteR ABox such that Ji is a canonical model for (T ,Ai) and Φ and
Ψ are as they defined in Theorem 6.

6.2 Closure Under Evolution and Approximation

Next theorem allows us to approximate results of evolution under WS, since FO[2] is
decidable.

Theorem 12. K � N under WS for KBs in DL-LiteR can be captured in FO[2].

As a future work we are going to study ways to approximate the resulted FO[2]
theories in DL-Lite.

Finally, we discuss cases when the result of Winslett’s evolution is expressible
in DL-LiteR. The following formulas appearing in Theorem 6 are not expressible in
DL-LiteR: (i) the disjunction of the ABoxes A0 ∨ . . . ∨ An and (ii) formula Φ ∧ Ψ .
The disjunction of ABoxes becomes expressible when it is of the length one, i.e., there
is the only prototype: J0. The last statement yields that FC = ∅ and therefore Φ is
always true. The formula Ψ becomes trivially true when AA = ∅, i.e., for every atom
R(a, b) ∈ fclT (A) either N 6|=T ¬∃R−(b) or rootat

T (∃Ri(ai)) ∩ fclT (A) = ∅. As one
can see, the condition of expressibility of the result in DL-LiteR (emptiness of FA and
AA), depends on a TBox, an ABox, and a new information. Hence, if we do a chain
of evolution, at some step the result may be not expressible in DL-LiteR. Since TBox
stays unchangeable, to guarantee the expressibility we need to find TBoxes T such that
(T ,A) � N is expressible in DL-LiteR for every A and N . A condition that guarantees
the emptiness of FA and AA is: for every roleR ∈ Σ(K∪N ) at least one of the following
items holds: (1) there is no concept C such that T |= ∃R− v ¬C, or (2) there is no
concept A such that T |= A v ∃R. The former conditions gives that TR = ∅ since
N 6|=T ¬∃R−(b), which leads to FA = AA = ∅. The latter one yields that SC(R) = ∅,
therefore TR again is empty.

As a practical summary of this section, given a KB K and a new ABox N , one can
check (in polynomial time) whether any dually-affected role is “triggered” by N . If it
is not the case, one can compute (in polynomial time) an evolved KB K′ that exactly
captures K � N . Otherwise, it is the case that K � N is inexpressible in DL-LiteR.
Thus, one can compute an FO[2] theory that captures K �N and then approximate it in
DL-LiteR, by, for example, dropping all the not DL-LiteR formulas. We will not focus
on approximation in this paper.

7 Conclusion

We studied how to capture ABox evolution for DL-LiteR under WS. In general the
result of evolution requires constructs that are not present in DL-LiteR, and even not
in DL-Lite, such as disjunction. Moreover, in general the result of evolution, which is
a set of models, does not even have a canonical model, which should always exist for
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any DL-Lite theory. It turned out that the inexpressibility is caused by a condition on the
TBox level, which we called dual-interaction: by pairs of assertions of the form A v ∃R
and ∃R− v ¬B. In order to capture evolution results in the presence of dual-interactions,
we introduced prototypes. Our approach is based on the observation that evolution results
can be divided into a finite number of subsets and each of them has a canonical model,
i.e., a prototype. These subsets can be captured by theories guided by prototypes and the
disjunction of these theories, compensated with two formulas, captures evolution results
and is in FO[2]. We proved that this technique works for DL-LiteR. We are currently
working on efficient approximation of the obtained FO[2] theory in DL-Lite and on
extending results to capture evolution for other DL-Lite languages.
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