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Abstract. In this paper, we introduce a paraconsistent extension of Rough Des-
cription Logics which allows the representation of incomplete and contradictory
concepts, as well as the lower and upper approximations of these kinds of con-
cepts. Furthermore, we use the notions of approximations, which can be applied
successively, to make restrictions or relaxations in the concept queries with the
objective of decreasing or increasing the number of results of the queries, respec-
tively.

1 Introduction
In many applications of Artificial Intelligence not rarely query tasks result in empty
answers. Similarly, it may happen that a query has too many answers as a result, and it
is not always that all these answers are important. Some approaches, known as query
refinement used to deal with uncertain knowledge, develop methods to settle these pro-
blems. One of these approaches is the Rough Set theory introduced by Z. Pawlak [13].
Rough Set theory may be applied for query refinement by resorting to query restriction
or query relaxation. A query can be restricted in order to obtain only the necessary
results, or it can be relaxed, aiming at increasing the number of its results. In this paper,
we will focus on the definition of a rough set framework in Description Logics (DLs)
fine-tuned to deal with query refinement and incomplete and contradictory information.

Rough Description Logics (RDLs) [5,9,10,14] have introduced a mechanism that
allows modeling uncertain reasoning by means of approximations of concepts. RDLs
extend classical DLs with two operations, the lower and the upper approximation. Both
approximations are based on capturing uncertainty as an indiscernibility relation R, an
equivalence relation (i.e., reflexive, symmetric and transitive). We can formally define
the upper approximation of a concept as the set of individuals that are indiscernible
from at least one that is known to belong to the concept:

C = {a | ∃b (a, b) ∈ R ∧ b ∈ C}.

Similarly, one can define the lower approximation of a concept as the set of indivi-
duals which for all ones that are indiscernible from, it is known that these ones belong
to the concept:

C = {a | ∀b (a, b) ∈ R→ b ∈ C}.
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Extending the ideas of rough set theory, in order to represent incomplete and contra-
dictory information, the work presented in [16] introduced the notion of paraconsistent
rough sets. Instead of employing approximations to classical sets, it was taken into
consideration four-valued sets, which are intended to represent incomplete and contra-
dictory information. Furthermore, a similarity relation (i.e., a sort of “indiscernibility”
relation that is at least reflexive) is used instead of an equivalence relation, with the aim
of modeling different levels of uncertainty.

In this work, we will adapt the notions of paraconsistent rough sets to DL, introdu-
cing a paraconsistent RDL, called PRALC . This paraconsistent RDL is slightly different
from the well-known paraconsistent DL presented in [11]. Furthermore, we introduce
two similarity relations to deal with approximation of concepts and apply the notion of
contextual approximation [5] in our approach as an alternative form of approximation of
concepts. Finally, we present some reasoning tasks, related to query refinement, which
can be applied with these introduced operations.

The paper is structured as follows. In Section 2, we present the notions of the four-
valued calculus, sets and approximations defined in [16]. In Section 3, we introduce
PRALC , and we apply the contextual approximation to PRALC together with the simi-
larity relations. In Section 4, we present some query tasks that can be used in PRALC ;
in particular, the tight and loose approximations. Finally, in Section 5 we conclude the
paper.

2 Paraconsistent Rough Sets

In order to represent incomplete and contradictory information, it was introduced a
rough set framework taking into account four-valued sets, instead of elementary sets
[16]. In these four-valued sets, an element may belong to a given set, or it may not be-
long to the set, or its membership in the set may be unknown due to incomplete informa-
tion, or even inconsistent due to a contradictory evidence. Under this view, membership
functions, set containment and set operations are also four-valued, where logical values
are t (true), f (false), i (inconsistent) and u (unknown). Moreover, since the knowledge at
hand is incomplete, instead of indiscernibility relations, the authors resort to similarity
relations to group together elements that are close to each other. Consequently, the no-
tions of upper and lower approximations extend the usual definitions of approximations
in the rough set theory.

2.1 Four-valued Semantics

In [16], the language for the four truth values was adapted from Belnap’s Logic [1],
which is grounded on bilattices [6]. As it is known, in bilattices, two orderings of truth
values are considered: truth ordering (≤t) and knowledge ordering (≤k). However,
in [16], the construction of the language is slightly different from that employed by
Belnap. The change is motivated by some results accounted in [12] as counterintuitive
in Belnap’s truth ordering. In order to give more details, let us regard the following
example involving test of cars:



Example 1 Suppose that we have two cars a and b, belonging to the same man, where
Safe(a) = u and Safe(b) = i. We want to know if all of his cars are safe, i.e., Safe(a) ∧
Safe(b), where ∧ stands for the meet operation with respect to ≤t in Belnap’s Logic.
We have that (u ∧ i) = f. However, in this case we do not know whether both cars are
safe because we do not have any information about the safety of car a. In contrast to the
answer obtained in Belnap’s logic, u seems to be a more intuitive answer to this case.
Similarly, if we want to check if the man has a safe car, i.e., Safe(a)∨ Safe(b), Belnap’s
Logic results in the value t. This differs from our intuition because we know that the
safety of car b is unclear, since the results of the tests are contradictory, and we know
nothing about the safety of car a. In such a case, i seems to be a more intuitive answer.

In [16], in order to overcome these unexpected results, they redefined ≤t as the
smallest reflexive and transitive relation satisfying f ≤t u ≤t i ≤t t. Consequently, the
operations of meet (∧) and join (∨) in the truth ordering are defined as the greatest lower
bound and as the least upper bound in this new ordering, respectively, i.e., (x ∧ y) =
GLBt{x, y} and (x∨y) = LUBt{x, y}. The truth table for the meet and join operations
in ≤t as well as to the negation and implication can be seen in Table 1.

∧ f u i t
f f f f f
u f u u u
i f u i i
t f u i t

∨ f u i t
f f u i t
u u u i t
i i i i t
t t t t t

↪→ f u i t
f t t t t
u u u i t
i i i i t
t f u i t

¬
f t
u u
i i
t f

Table 1. Truth tables for ∧,∨, ↪→ and ¬

The implication ↪→ naturally extends the usual two-valued implication, which can
be defined as (¬x∨y). Consequently, the implication has the following property: (x ↪→
y) ≡ (¬y ↪→ ¬x), but it does not satisfy the Modus Ponens if we assume that {t, i}
is the set of designated values. For instance, (i ↪→ f) ∧ i does not result in f. A more
detailed explanation of the definition of ↪→ can be found in [16]. Finally, the semantics
of ∀ and ∃ is given by

∀xP (x) = GLBt
x∈U
{P (x)} and ∃xP (x) = LUBt

x∈U
{P (x)},

where U is the universe set and P (x) denotes that x has the property P , which is
evaluated to one of the four truth values.

2.2 Four-valued Sets

Now, we present the notion of a four-valued set. Given the disjoint sets U and ¬U ,
where ¬U = {¬x | x ∈ U}, a four-valued set A on U is defined as any subset of
U ∪ ¬U . Intuitively, x ∈ A represents that there is an evidence that x is in A, and
(¬x) ∈ A represents that there is an evidence that x is not in A. We assume that ¬(¬x)
is equal to x. In this framework, set membership is four-valued and it extends the usual
two-valued membership.

Set membership, denoted as ∈̄ : U × 2U∪¬U → {t, f, i,u}, is defined by



x∈̄A =


t, if x ∈ A, (¬x) /∈ A,
f, if x /∈ A, (¬x) ∈ A,
i, if x ∈ A, (¬x) ∈ A,

u, if x /∈ A, (¬x) /∈ A.

The complement ¬A of a four-valued set A is defined by ¬A = {¬x | x ∈ A}, and
the four-valued set inclusion is defined by X b Y = ∀x ∈ U(x∈̄X ↪→ x∈̄Y ). The
four-valued intersection and union are defined as x∈̄(X e Y ) = (x∈̄X) ∧ (x∈̄Y ) and
x∈̄(X d Y ) = (x∈̄X) ∨ (x∈̄Y ), respectively.

A four-valued extension of rough sets is, then, defined in [16] by four-valued set
approximations as follows. First, the equivalence relation is replaced by a similarity
relation, which is also four-valued. A similarity relation extends the indiscernibility
relation by gathering in the same class objects which are not necessarily indiscernible,
but sufficiently close or similar. In other words, a similarity relation is constructed from
the indiscernibility relation by relaxing the original conditions for indiscernibility. This
relaxation can be performed in many ways, thus giving many possible definitions for
similarity.

Definition 1 (Four-valued Similarity Relation) [16] By a four-valued similarity re-
lation σ we mean any four-valued binary relation on a universe set U satisfying at least
the reflexivity condition, i.e., for any element x of the universe (x, x)∈̄σ = t. By the
neighbourhood of an element x ∈ U w.r.t. σ, we understand the four-valued set σ(x)
such that y∈̄σ(x) = (x, y)∈̄σ.

The membership of an element x in the lower approximation of a four-valued set
A is determined by verifying the set inclusion of its neighbourhood σ(x) in A. The
membership of an element x in the upper approximation is determined by computing the
greatest membership value that an element of the universe may have in the intersection
of σ(x) and A.

Definition 2 (Lower/Upper Approximation) [16] Let A be a four-valued set. Then,
the lower and upper approximations of A w.r.t. the similarity relation σ, denoted by A+

σ

and A⊕σ , respectively, are defined by

x∈̄A+
σ = σ(x) b A and x∈̄A⊕σ = ∃y ∈ U [y∈̄(σ(x) eA)].

3 Paraconsistent Rough Description Logic

Rough Description Logics (RDLs) [5,9,10,14] have introduced a complementary me-
chanism that allows modelling uncertain knowledge by means of approximations of
concepts. RDLs extend classical DLs with two modal-like operations, the lower and
the upper approximation. In the spirit of rough set theory, two concepts approximate an
underspecified (uncertain) concept C as particular sub- and super-concepts, describing
which elements are definitely and possibly, respectively, elements of C.

In this section, taking into consideration the approach presented in [16], we extend
the RDLs formalisms to paraconsistent rough sets by introducing a four-valued DL
general enough to encompass two kinds of similarity relations: those explicitly defined



and those defined in terms of a context. One distinctive aspect of our formalism is that
it permits successive refinements of a query (see Section 4). In the sequel, we introduce
the syntax, the semantics and reasoning tasks for this DL.

3.1 Paraconsistent Rough Description Logic ALC

We introduce a paraconsistent rough extension of the description logic ALC, called
PRALC .

Definition 3 (Alphabet) The PRALC alphabet is composed of the symbols ¬,u,t,∃,
∀,>,⊥, · , · and three disjoint sets: the set of individualsNI , the set of concept names
NC , the set of role names NR and the set of similarity relations NS .

Definition 4 (Concepts) Concepts in PRALC are defined by the syntax rules below,
where C and D are concepts, A is an atomic concept, R is an atomic role and S is a
similarity relation:

C,D −→ A | > | ⊥ | ¬C | C uD | C tD | ∃R.C | ∀R.C | CS | CS

Definition 5 (Semantics) The semantics of PRALC individuals, atomic concepts, ato-
mic roles and similarity relations is given by an interpretation I = (∆I , ·I ), where
the domain ∆I is a nonempty set of elements and ·I is a mapping function defined as
follows: each individual a ∈ NI is mapped to aI ∈ ∆I ; each atomic concept name
A ∈ NC is mapped to AI : ∆I → {t, f, i,u}; each atomic role name R ∈ NR is
mapped to RI : ∆I ×∆I → {t, f, i,u}; each similarity relation S ∈ NS is mapped to
SI : ∆I×∆I → {t, f, i,u} satisfying at least the reflexivity condition, i.e., SI(x, x) = t
for any x ∈ ∆I .

Concepts can be interpreted inductively as follows where, for all x ∈ ∆I ,

Syntax Semantics
> >I(x) = t
⊥ ⊥I(x) = f
¬C (¬C)I(x) = ¬(CI(x))
C uD (C uD)I(x) = (CI(x) ∧DI(x))
C tD (C tD)I(x) = (CI(x) ∨DI(x))

∃R.C (∃R.C)I(x) = LUBt
y∈∆I

(RI(x, y) ∧ CI(y))

∀R.C (∀R.C)I(x) = GLBt
y∈∆I

(RI(x, y) ↪→ CI(y))

C
S

(C
S

)I(x) = LUBt
y∈∆I

(SI(x, y) ∧ CI(y))

CS (CS)I(x) = GLBt
y∈∆I

(SI(x, y) ↪→ CI(y))

The semantics of concepts is based on semantics of Fuzzy DLs [2], as well as the
lower/upper approximations of a concept, which are related with fuzzy rough sets [4].
The main difference from our approach to others based on fuzzy sets is that we consider
t-norms, t-conorms, implication functions, and negation functions as the operations of



conjunction (∧), disjunction (∨), implication (↪→) and negation (¬), respectively, de-
scribed for the four-valued calculus in [16] (see Table 1). Now, we define the notions of
Terminological Box (TBox), Assertional Box (ABox) and ontology in PRALC .

Definition 6 (TBox) A TBox is a finite set of expressions of the form C v D, the so-
called general concept inclusion, where C and D are concepts in PRALC .

Definition 7 (ABox) An ABox consists of a finite set of assertion axioms of the form
C(a) and R(a, b), where C is a concept, R is a role, and a and b are individuals in
PRALC .

When we want to refer to inclusion and assertion axioms indistinctly, we will just
call them axioms. The semantics of inclusion and assertion axioms is given by the
following table:

Syntax Semantics
C v D i ≤t GLBt

x∈∆I
(CI(x) ↪→ DI(x))

C(a) i ≤t CI(aI)
R(a, b) i ≤t RI(aI , bI)

Note that the semantics of concept inclusion C v D is derived from the four-valued
calculus presented in [16], i.e., it is described w.r.t. implication ↪→, which is defined as
(a ↪→ b) = ¬a ∨ b. We assume that {i, t} is the set of designated values, therefore
C v D holds iff the result of the implication is i or t. For assertion axioms the idea
is similar: C(a) (resp. R(a, b)) holds iff C(a) (resp. R(a, b)) is evaluated to one of the
designated values.

Definition 8 (Ontology) An ontology or knowledge base is a set composed by a TBox
and an ABox.

Definition 9 (Satisfiability) The notion of satisfaction of a set of axioms ε by an inter-
pretation I = (∆I , ·I), denoted I |= ε, is defined as follows: I |= ε iff I satisfies each
element in ε. For an axiom α, if I |= α we say that I is a model of α. I satisfies an
ontology O, denoted by I |= O, iff I is a model of each axiom of ontology O.

Definition 10 (Logical Consequence) An axiom α is a logical consequence of an on-
tology O, denoted by O |= α, iff every model of O satisfies α.

3.2 Contextual Approximation

In [5], it was introduced the notion of contextual indiscernibility relations in RDLs as a
way of defining an equivalence relation based on the indiscernibility criteria. In particu-
lar, the notion of context is introduced, allowing the definition of specific equivalence
relationships to be used for approximations. The main advantage of this approach is
that the reasoning with equivalence classes becomes optimized, since the equivalence
relations are discovered in the process of reasoning, differently from the traditional
RDLs, where the equivalence relation must be explicitly defined.



In this subsection, we apply the notions of contextual approximation to PRALC , ex-
tending the definitions of lower and upper approximations of a concept. We first present
the notion of a context via a collection of PRALC concepts. We, then, introduce two spe-
cific similarity relations based on such contexts, and finally we define upper and lower
approximations of concepts using these new similarities.

Definition 11 (Context) A context is a finite nonempty set of DL concepts C = {C1,
. . . , Cn}.

Two individuals a and b are indiscernible with respect to the context C = {C1, . . . ,
Cn} iff for all Ci, where i ∈ {1, . . . , n}, CIi (a) = CIi (b). This easily induces an equi-
valence relation:

Definition 12 (Indiscernibility Relation) Let C = {C1, . . . , Cn} be a context. The
indiscernibility relation RC induced by C is defined as follows:

RC = {(a, b) ∈ ∆I ×∆I | for all Ci where i ∈ {1, . . . , n}, CIi (a) = CIi (b)}.

Since we are dealing with incomplete information, a similarity relation should be
more adequate to model relationships between individuals, because it allows to group
together individuals that are close to each other, but not necessarily indiscernible. Now,
we introduce a specific similarity relation, which is based on the work presented in [8]:

Definition 13 (Similarity Relation - unknown concepts) Let C = {C1, . . . , Cn} be a
context. The similarity relation SC induced by C is defined as follows:

SC = {(a, b) ∈ ∆I ×∆I | for all Ci where i ∈ {1, . . . , n}, CIi (a) =
CIi (b) or CIi (a) = u or CIi (b) = u}.

The purpose of the similarity relation SC is to approximate incomplete information
by considering the truth value u as similar to t, f or i and vice versa. In SC (the do
not care relation), the relevant information is the only one which is asserted, i.e., to
assure an individual has been evaluated to u in a concept is regarded as non-relevant.
Therefore, an individual a is similar to b in a context C if for all concepts in C, the
interpretation of a and b are equal, or the interpretation of a or b is equal to u.

In order to approximate both contradictory and incomplete information, we intro-
duce a second similarity relation, dubbed PC . In this new similarity relation, the truth
values t and f are similar to i.

Definition 14 (Similarity Relation - unknown and inconsistent concepts) Let C =
{C1, . . . , Cn} be a context. The similarity relation PC induced by C is defined as fo-
llows:

PC = {(a, b) ∈ ∆I ×∆I | for all Ci where i ∈ {1, . . . , n}, CIi (a) =
CIi (b) or CIi (a) = u or CIi (b) = u or if CIi (a) = t then CIi (b) = i or if CIi (a) =

f then CIi (b) = i}.



In PC , whose definition was borrowed from [8], it is assumed that the information
may be partially described because of our incomplete or contradictory knowledge. From
this point of view, an individual a can be considered similar to b if the information
obtained in a is also obtained in b. Hence, for a concept C, where CI(a) = t and
CI(b) = i, the individual a is similar to b since the truth value t is contained in i. Note
the converse is not true: b is not similar to a according to PC .

The contextual lower and upper approximation of a DL concept C w.r.t the con-
text C is denoted by CRC

and C
RC , respectively, where R is one of those similarity

relations presented above. It is important to emphasize that, for approximations with
indiscernibility and similarity relations, we have the following result:

Proposition 1 [15] Given the concept C and the context C, it holds that:

CPC
v CSC

v CRC
v C v CRC v CSC v CPC .

This holds because PC is more general than SC , whilst, SC is more general thanRC .

4 Query Refinement

Rough set theory is an interesting candidate as a framework to be employed in query
refinement. By definition, the upper approximation will add an individual to the result
of the query as soon as it is related to one of the concepts already in the query, while
the lower approximation will only retain an individual in the result if all related con-
cepts are in the query. We can imagine a situation in which a query results in an empty
answer; in this case, its upper approximation could be applied to possibly produce at
least individuals related to the query. On the other hand, a query may result in many in-
dividuals, thus a lower approximation could be applied to possibly restrict the number
of individuals in order to obtain those most related to the query.

However, the lower approximation may result in the empty query, being in this case
too strict for query refinement. As for the upper approximation, it corresponds to a well
known approach to query expansion. Nevertheless, it can be too flexible as a query
expansion technique, resulting not only in an explosion of the query, but possibly even
worse, in the addition of non-relevant individuals due to the ambiguous nature of some
of the query concepts.

In this section, we combine the flexibility of the upper approximation with the strict-
ness of the lower approximation by applying them alternately [3,4]. For instance, first
we can expand the query by adding all the individuals that are known to be related to at
least one of the query concepts. Next, we can reduce the expanded query by taking its
lower approximation, thereby pruning away all previously added individuals suspected
to be irrelevant for the query. The pruning strategy targets those individuals that are
strongly related to the query concepts, but that do not belong to the expanded query. All
these strategies of approximations are defined in PRALC in the sequel:

Definition 15 (Tight and Loose Upper/Lower Approximations) Tight and loose up-

per/lower approximations are denoted by C
S

S , C
S
S

, CSS , and CS
S

, and are defined
as



Syntax Semantics
C
S

S (C
S

S)I(x) = GLBt
y∈∆I

(SI(x, y) ↪→ LUBt
z∈∆I

(SI(y, z) ∧ CI(z)))

C
S
S

(C
S
S

)I(x) = LUBt
y∈∆I

(SI(x, y) ∧ LUBt
z∈∆I

(SI(y, z) ∧ CI(z)))

CSS (CSS)I(x) = GLBt
y∈∆I

(SI(x, y) ↪→ GLBt
z∈∆I

(SI(y, z) ↪→ CI(z)))

CS
S

(CS
S

)I(x) = LUBt
y∈∆I

(SI(x, y) ∧ GLBt
z∈∆I

(SI(y, z) ↪→ CI(z)))

Proposition 2 [4] Given the conceptC, a similarity relation S, and the indiscernibility
relation RC , it holds that:

– CSS v CS v C v C
S v CS

S

– CS v CS
S v CS and CS v C

S

S v C
S

– CRCRC
≡ CRC

v C v CRC ≡ CRC
RC

– CRC
≡ CRC

RC v CRC and CRC
v CRC

RC
≡ CRC

Note that the application of tight and loose approximations w.r.t. an indiscernibility
relation does not result in new answers to a query. Otherwise Proposition 2 suggests that
if we resort to similarity relations, successive applications of approximations may result
in different answers, making a similarity relation an interesting alternative to query re-
finement. For an application of PRALC to query refinement, let us consider an example
considering similarity relations for incomplete and contradictory information.

Example 2 (Query Relaxation/Restriction) Let x1, x2, x3, x4, x5, x6 and x7 be a set
of individuals representing houses; GoodLocation, Basement, Fireplace, Expensive,
Cheap and Medium be DL concepts; C = {GoodLocation,Basement,Fireplace} be
a context and I = (∆I , ·I) be an interpretation such that

∆I = {x1, x2, x3, x4, x5, x6, x7}, GoodLocationI = {x1,¬x2, x3,¬x4, x6,¬x7},
BasementI = {x1, x2,¬x2,¬x3, x4, x6,¬x6, x7},
FireplaceI = {x1,¬x2,¬x4, x5, x6, x7},
MediumI = {¬x1,¬x2, x3, x4, x5,¬x6, x7},
ExpensiveI = {x1,¬x2,¬x3,¬x4,¬x5, x6,¬x7},
CheapI = {¬x1, x2,¬x3,¬x4,¬x5,¬x6,¬x7}.

Now, let us show our first example using query relaxation: suppose that we want to
know what houses are expensive. Making a query with each house, we have that

I |= Expensive(x1), I 6|= Expensive(x2), I 6|= Expensive(x3), I 6|= Expensive(x4) and
I 6|= Expensive(x5).

That is, x1 is the only expensive house. But suppose that we want to know which
houses are possibly expensive. Using query relaxation we will have that

I |= Expensive
SC

(x1) and I |= Expensive
SC

(x5).



Thus, x1 and x5 are possibly expensive. We can conclude that x5 is similar to x1,
because x1 is the only object which is expensive. If we use query relaxation again (loose
upper approximation) we conclude that

I |= Expensive
SC
SC

(x1), I |= Expensive
SC
SC

(x3) and I |= Expensive
SC
SC

(x5).

We have now that x3 is loosely possibly an expensive object: because x3 is similar
to x5, an object possibly expensive. Another example related to query refinement, but
using query restriction: suppose that we want to know what houses are neither expensive
nor cheap, i.e., medium value. Making a query with each house, we have that

I 6|= Medium(x1), I 6|= Medium(x2), I |= Medium(x3), I |= Medium(x4) and
I |= Medium(x5).

Using query restriction, we can conclude that
I |= MediumSC

(x3), but I 6|= MediumSC
(x4) and I 6|= MediumSC

(x5).

That is, x4 and x5 do not have necessarily medium value. If we use query restriction
again (tight lower approximation) we can conclude that

I 6|= MediumSCSC
(x3).

Thus x3 surely does not necessarily have medium value (i.e., it is similar to an object
that necessarily does not have medium value). Instead of using tight lower approxima-
tion, if we want to know what houses possibly have necessarily medium value, we may
use loose lower approximation and conclude that

I |= MediumSC

SC
(x3) and I |= MediumSC

SC
(x5).

With this example, we obtain that x5 necessarily does not have medium value, but
possibly necessarily it has medium value (because x5 is similar to x3, which has neces-
sarily medium value).

Focusing on the similarity relation for inconsistent information, we have that I 6|=
Cheap(x4) and I 6|= Cheap

SC
(x4), but I |= Cheap

PC
(x4). This means that PC can

be used to discover individuals related to contradictions within the context. Know-
ing I 6|= Cheap

SC
(x4) and I |= Cheap

PC
(x4), we infer that there is contradictory

information in C, and x4 could be related to it. A similar intuition may be used for
lower approximation to discover those individuals which certainly are not related to
contradictions. For instance, as I |= MediumPC

(x7), the individual x7 is certainly
medium and not related to contradictions. On the other hand, as I |= MediumSC

(x3)
and I 6|= MediumPC

(x3), although x3 is certainly medium, it is related to contradic-
tions. As we can see, in PRALC , we can represent very elaborated query refinements.

5 Conclusion
In this paper, we introduced the paraconsistent rough description logic PRALC , suita-
ble to represent and approximate incomplete and contradictory concepts. Besides in-
cluding in its language indiscernibility relations, our proposal permits to reason with
more relaxed notions of similarity relations in order to characterise the upper/lower ap-
proximations of a concept/query. As consequence, many sophisticated kinds of query



refinements can be represented in PRALC . Owing to the similarity relations, one of its
distinctive aspects is that successive applications of approximations may result in suc-
cessive refinements of a query.

As a future work, we will extend the PRALC to represent and approximate more
sorts of incomplete knowledge, as in [8], where the incomplete information can be di-
vided into several kinds of missing information. Consequently, new similarity relations
can be introduced to model each kind of missing information. Another track to be ex-
plored is to introduce dominance relations [7], which are commonly employed to model
preference between information and individuals.
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