
Analysing Multiple Versions of an Ontology:
A Study of the NCI Thesaurus

Rafael S. Gonçalves, Bijan Parsia, and Uli Sattler

School of Computer Science, University of Manchester, UK
{goncalvj,bparsia,sattler}@cs.man.ac.uk

Abstract. The detection of changes between OWL ontologies is an important
service for ontology engineering. There are several approaches to this problem,
both syntactic and semantic. A purely syntactic analysis of changes is insufficient
to detect changes with logical effect, while the current state of the art in semantic
diffing ignores logically ineffectual changes, which might be of great interest to
the user. We develop an exhaustive categorisation of ineffectual changes, based
on their justifications. In order to verify the applicability of our approach, we col-
lected 88 OWL versions of the National Cancer Institute (NCI) Thesaurus (NCIt),
and extracted all pairwise, consecutive diffs. We discovered a substantial number
of ineffectual changes and, as a result, argue that the devised categorisation of
changes is beneficial for ontology engineers. We devised and applied a method
for performance impact analysis (culprit finding) based on the diff between on-
tologies, and identified a number of culprits between two NCIt versions.

1 Motivation

The comparison of ontologies is a valuable service whether for purely analytic pur-
poses, versioning systems [3], or collaboration. When comparing two ontologies it is
desirable to detect both syntactic and logical changes. OWL defines a high level notion
of syntactic equivalence, so-called “structural equivalence”, which abstracts from such
concrete details as the order of axioms. Associated with structural equivalence is struc-
tural difference. A different syntactic approach is that of an edit-based diff, wherein
change records are produced within the ontology editor being used thereby capturing
the history of change, as implemented in Swoop [8]. The diffs mentioned so far, as well
as PROMPTDIFF [12], do not recognize the logical impact of changes. When analysing
the impact of changes, it is sensible to inspect not only logically effectual changes, but
also ineffectual ones since these might have been intended to have logical impact, and
thus may be of interest to users. Semantic diffs, such as CEX [10, 4], OWLDiff [11]
or ContentCVS [7] detect only effectual changes. So on the one hand, syntactic diffs
detect without distinction both effectual and ineffectual changes, and on the other hand
semantic diffs do not analyse ineffectual changes.

In this paper we propose a diff notion that builds on structural diff with a logical im-
pact analysis, which we refer to as intentional difference, incorporating a categorisation
of ineffectual axioms based on their justifications. The goal of this categorisation is to
suggest on the intent behind such changes. For the purpose of verifying the suitability
of our approach, we collected all 88 versions of the National Cancer Institute (NCI)



Thesaurus (NCIt) available in OWL format, freely downloadable1 from the web, and
conducted a diachronic study of the corpus. This study consisted of the extraction of
all pairwise, consecutive diffs between NCIt versions. Our diff revealed a fairly high
number of ineffectual changes across the corpus, averaging at 13% and even reaching
values above 90%. In addition to this we carried out a reasoner performance test to in-
spect the performance impact of both effectual and ineffectual changes throughout the
NCIt. While ineffectual changes carry no logical impact, it is still the case that they have
a performance impact.2 The test revealed an unusual performance increase between 2
versions, the latter of which was 89% faster and also slightly bigger in number of ax-
ioms. This motivated a more in-depth performance impact analysis, wherein we attempt
to find subsets of the slow ontology without which the ontology performs considerably
faster (referred to as culprits). We devise a culprit finding method based on the diff
between ontologies, and demonstrate its applicability with a number of culprits for the
NCIt case.

2 Preliminaries

We assume the reader to be reasonably familiar with OWL [13], as well as the under-
lying description logics (DLs) [5], though detailed knowledge is not required. We do
use the notion of entailment [2], which is identical to the standard first order logic en-
tailment (albeit restricted to certain syntactic forms for consequences, typically atomic
subsumption). When comparing two versions of an ontology we refer to the earlier
version as O1, and the more recent as O2. A justification J of a consequence α is a
minimal subset of an ontology O that is sufficient for α to hold [9]. The signature of an
ontologyO is denoted Õ. An axiom α ∈ O1 is logically ineffectual for an ontologyO2

iff α /∈ O2 and O2 |= α, and we often describe it as having no impact.

3 Ontology Difference

The problem of computing the difference between pairs of ontologies has been ap-
proached both syntactically and semantically. We distinguish two major aspects of on-
tology diffing: (i) the detection of changes, and (ii) the presentation of changes to the
end-user. As we analyse existing diff approaches, we point out that most effort has been
largely dedicated to (i). It is often the case that the output of diff operations is the set of
axioms or terms in the diff. While this may reflect the desired identification of change, it
does not convey sufficient information to the user w.r.t. the intent of changes, or whether
these are effectual or not.

3.1 Diff Desiderata

Table 1 summarises useful features of an ontology diff, and whether existing approaches
exhibit such desiderata.

1 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
2 A trivial example is adding all inferred subsumptions, therefore speeding up reasoning tasks.



Table 1. Desiderata of ontology diffing approaches.

Properties ContentCVS CEX OWLDiff [11] PROMPTDIFF Swoop Diff
Difference Detection

Syntactic analysis X 7 X X X
Semantic analysis X X X 7 7

Effectively computable X 7 X X X
OWL 2 adequacy X 7 X 7 X

Difference Output
Axiom-based X X X 7 X
Term-based 7 X 7 X X
Effectual change analysis X X X N/A N/A
Ineffectual change analysis 7 7 7 N/A N/A

Among the stated properties, an ideal logical diff should combine effective com-
putability for OWL 2 ontologies while providing some analysis of the impact of
changes, whether these be effectual or ineffectual. Although this is a complex task
in itself, from Table 1 we see that some diffs analyse effectual changes, but none of
them inspects ineffectual changes. This desideratum leads to the categorisation method
proposed in this paper for the latter type of changes.

3.2 Intentional Diff

Given the limitations of diff approaches described in Table 1 w.r.t. (ii) (as described
at the beginning of Section 3), we build on the notion of structural difference with a
categorisation mechanism for ineffectual axioms. This requires checking if axioms in
the first ontology are entailed by the second (and vice-versa), if that is not the case then
those axioms are regarded as effectual changes.

Consider the following ontologies O1 and O2, which are referred to in examples
throughout this section:

O1 = {α1 : A v C, O2 = {β1 : A v B t C,
α2 : B v C, β2 : A v B,
α3 : E ≡ D, β3 : B v C,
α4 : D v F, β4 : E v D,
α5 : F v G, β5 : D v E,
α6 : G v H u ∃s.H, β6 : E v B t ∃r.C,
α7 : F v I, β7 : D v E tG,
α8 : F v G u I u J} β8 : G v ∃s.H uH,

β9 : F v G u I}

The notion of structural difference is based on OWL’s notion of structural equiva-
lence (denoted ≡s) [13]. The latter deems the order of axioms in an ontology as irrele-

2 For DLs up to SROIQ.



vant, as well as the order of disjunctions or conjunctions between concepts. Therefore
one can rule out differences that an otherwise syntactic equality based diff would detect.

Definition 1 (Structural Difference [6]) The structural difference betweenO1 andO2

are the following sets:

• Additions(O1,O2) = {β ∈ O2 | there is no α ∈ O1 s.t. α ≡s β}
• Removals(O1,O2) = {α ∈ O1 | there is no β ∈ O2 s.t. α ≡s β}

So if there is an axiom β s.t. β ∈ Additions, this implies that β ∈ O2 \ O1, and
similarly for Removals. Examine the following example:

Example 1 From the defined ontologies O1 and O2 we have that:

� Additions(O1,O2) = {β1, β2, β4, β5, β6, β7, β9}
� Removals(O1,O2) = {α1, α3, α4, α5, α7, α8}

Note that the axiom α2 is syntactically equal to β3; α2 = β3. We also have that
α6 ≡s β8. Therefore these axioms are not reported as changes.

Based on these two sets, the logical difference pinpoints which axioms in Additions
(or Removals) affect the set of entailments of O1 (or O2). In other words, it distin-
guishes between those axioms in the structural difference which are entailed by O1 (or
O2), as follows:

Definition 2 (Logical Difference) The logical difference between O1 and O2 are the
following sets:

• EffectualAdditions(O1,O2) = {β ∈ Additions(O1,O2) | O1 2 β}
• EffectualRemovals(O1,O2) = {α ∈ Removals(O1,O2) | O2 2 α}
• IneffectualAdditions(O1,O2) = Additions \EffectualAdditions
• IneffectualRemovals(O1,O2) = Removals \EffectualRemovals

The resulting sets IneffectualAdditions and IneffectualRemovals are composed of
those axioms which do not change the set of entailments ofO1 andO2, respectively. An
axiom β is in IneffectualAdditions iffO1 |= β, and similarly for IneffectualRemovals
(Example 2).

Example 2 Given the sets Additions and Removals (from Example 1) we have that:

� EffectualAdditions(O1,O2) = {β2, β6}
� EffectualRemovals(O1,O2) = {α4, α8}
� IneffectualAdditions(O1,O2) = {β1, β4, β5, β7, β9}
� IneffectualRemovals(O1,O2) = {α1, α3, α5, α7}

In order to characterise ineffectual changes, we devise a categorisation of axioms
based on their justifications as follows:

Definition 3 (Intentional difference) An axiom α ∈ IneffectualRemovals is:



• Strengthened, if there is a J for α with J ∩ EffectualAdditions 6= ∅.
• Rewritten, if there is a justification J for α with J ∩Additions 6= ∅, and α |= J .

If J ⊆ Additions then α is a complete rewrite, otherwise a partial rewrite.
• Redundant, if there is a J for α with J ⊆ (O1 ∩ O2). If J ⊆ (O1 ∩ O2) ∪

IneffectualAdditions then α is an avoided redundancy.

To obtain the corresponding categories for added axioms β ∈ IneffectualAdditions, re-
place α, Additions, EffectualAdditions and IneffectualAdditions with β, Removals,
EffectualRemovals and IneffectualRemovals respectively. In IneffectualAdditions
the label for the criteria of Strengthened axioms changes to Weakened axioms.

The intentional difference gives possibly overlapping sets of axioms, as demon-
strated in Example 3. Also we note that these categories are exhaustive, in the sense
that there is no axiom such that the justifications of which do not imply one of the
defined categories. Consider an axiom α and ontologies O1 and O2, with α ∈ O1

but α /∈ O2, and O2 |= α. Then there must be a justification J ⊆ O2 for
α. If J ⊆ (O1 ∩ O2) ∪ IneffectualAdditions then α is redundant, otherwise if
J ∩ EffectualAdditions 6= ∅, then α is strengthened.

Example 3 Given the sets IneffectualAdditions and IneffectualRemovals (from Ex-
ample 2) we have that:

O1 −→ O2 O2 −→ O1

� Rewritten = {α3} � Rewritten = {β9}
� Strengthened = {α1} � Weakened = {β7, β9}
� Redundant = {α1, α3, α5, α7} � Redundant = {β1, β4, β5, β7, β9}

Note that the existence of a rewritten axiom from O1 to O2 does not imply that the
same holds in the opposite direction. This is applicable to all categories. Also we can
have that an axiom is in more than one categorical set, exemplified as follows:

Rewritten and redundant The axiom α3 has been rewritten fromO1 toO2. The justi-
fication for α3 is J1 = {β4, β5}, which is categorised as a rewrite since α3 |= J1.
However, since {β4, β5} ∈ IneffectualAdditions, J1 also indicates a redundancy.
So the axiom α3 is part rewritten part redundant.

Strengthened and redundant Consider axiom α1; we can see that O2 |= α1. A jus-
tification J1 for α1 is J1 = {β2, β3}, which indicates a strengthening (since
β2 ∈ EffectualAdditions), as well as a redundancy (β3 ∈ O1∩O2). Another justi-
fication J2 = {β1, β3} indicates a strict redundancy; β1 ∈ IneffectualAdditions.

Rewritten, weakened and redundant Axiom β9 is categorised as rewritten, weak-
ened and redundant. A justification for β9 is J1 = {α5, α7}, where β9 |= J1,
pointing to a rewrite. We also have that {α5, α7} ∈ IneffectualRemovals, there-
fore being categorised as redundant as well. A second justification is J2 = {α8},
and since α8 ∈ EffectualRemovals, β9 is categorised as weakened.

While the logical diff identifies those logically ineffectual axioms in the difference,
it does not suggest on the intent of change or present appropriate reasons for it, i.e.
justifications. With the categorisation method described, users have, at the very least, an



indicator as to why such axioms have no impact. Note that these categories are merely
suggestive of the developers’ intent. In order to ensure the real intent one would require
either a detailed edit-based diff or contact with the ontology developers.

4 Empirical results

In order to substantiate our approach to ontology diffing, we carried out a diachronic
study of the NCIt using the methods described. The NCIt archive3 contains 88 ver-
sions of the ontology in OWL format, two of which were unparsable (releases 05.03F
and 05.04d) with the OWL API,4 and consequently Protégé.5 The experiment ma-
chine is an Intel Xeon Quad-Core 3.20GHz, with 12Gb DDR3 RAM dedicated to
the Java Virtual Machine (JVM v1.5). The system runs Mac OS X 10.6.7, and all
tests were run using the OWL API (v3.1). All gathered test data is available from
http://owl.cs.manchester.ac.uk/ncit, a part of it is published on Google
Public Data Explorer,6 and can be visualised at http://bit.ly/jFKU3R.

4.1 Axioms Difference

The logical difference throughout the NCIt time-line consists mostly of subclass axioms
(see Figure 1, and for complete results the mentioned website), with an average of 75%
(excluding O14 and O16). The average proportion of logical changes is 15%, and the
remaining are annotation changes. It should be noted that, despite the large number of
annotations, NCIt developers devoted considerable effort towards the logical part of the
ontology. Version O6 is a curious case, where a large number of classes (5170) were
renamed,7 and around 220,000 annotations and 14,418 subclass axioms were deleted.
This indicates a possible re-modelling, or mass-renaming of classes in the NCIt at this
point. More evidence to support this includes the addition of 30,859 subclass axioms,
9,070 classes and 23 object properties (and roughly 240,000 entity annotations). Simi-
larly in O25 a series of changes were carried out to the subsumption hierarchy, with the
removal of 8,231 subclass axioms and 2,899 equivalent class axioms compared to the
previous version, and also the addition of 10,591 subclass axioms and 3,011 equivalent
class axioms.

There is a fair amount of ineffectual removals in the corpus, reaching values of 93%
in O29 or 97% in O16, and with an average of 35% of all logical removals (see Figure
1). Out of these ineffectual removals 92% turned out to be strengthened axioms (e.g.
O27 has 3,104 strengthened axioms out of 3,843 removals), while 42% were removed
redundancies. On average 5% of logical additions are ineffectual, yet there are some
high values such as 61% in O24. Among these 73% are added redundancies, and 82%
are weakened axioms. We also identified a number of rewrites in the corpus. Particularly

3 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
4 http://owlapi.sourceforge.net/
5 http://protege.stanford.edu/
6 http://www.google.com/publicdata/home
7 Since throughout the NCIt evolution no classes are removed.



from O32 to O33 there are 227 rewritten axioms, typically taking a form as shown in
Example 4.

Example 4 A ≡ B u (∃r.D) u (∃s.F ) u (∀t.G) rewritten into:
A ≡ B u ((∃r.D) u (∃s.F )) u (∀t.G)

This kind of change is not only syntactic but also trivial and easily detected. While
ideally the underlying structural diff would not include these, at least with our categori-
sation and alignment with source axioms, it is easy to spot and recognize the triviality.
One can also argue that certain ineffectual changes are in fact refactorings of one version
into another, albeit in the case of strengthened and weakened axioms one could say that
the intention was exactly that but turned out not to have the desired effect. The distinc-
tion here should be made that the strengthening of an axiom does not necessarily mean
strengthening of the ontology. Consider an ontologyO1 = {α1 : A v B,α2 : A v C},
and a change of α1 into A v B uC. The axiom α1 was strengthened, but the resulting
ontology O2 = {α1 : A v B u C,α2 : A v C} was not. However, if we change
α2 ∈ O2 into A v C uD, then we can say both the axiom α2 and the ontology O2 are
strengthened.

We noted a recurring trend throughout the NCIt corpus, which is the addition of
redundancies. This trend has more incidence up until O8, but there are high values in
the rest of the corpus as well, such asO35 with 174 added redundant axioms (see Figure
1). The highest value found is in O17, where 482 redundant axioms were added. Upon
investigating this phenomenon, we found that such added redundancies are, in most or
all cases, entailments from previous versions. These entailments are those derived from
the transitivity of the subclass relationship, e.g. O1 = {α1 : A v ∃r.B, α2 : C v A},
O2 = {α1, α2, α3 : C v ∃r.B}. From the example we see that α3 is redundant;C v A
suffices for C v ∃r.B to hold.

Overall the average of ineffectual changes is 13%, while the remaining are
effectual. However there are cases where the number of ineffectual changes is quite
high, such as O24 where 52% of logical changes are ineffectual, as well as O27, O29

and O30 with 48% each. In retrospect this is a high amount of changes that would go
unexplained by existing diffs, and while structural diff captures this it does not analyse
the logical impact of such changes.

4.2 Reasoner Performance

It is often the case that, for reasoner testing, only a few or even one ontology version
is tested against. There is no reported reasoner benchmark using a corpus of the same
kind as the one here described. So, in the process of analysing the NCIt, we evaluated
how modern reasoners handle all published OWL versions of the NCIt. Three major DL
reasoners were put to the test; FaCT++ (v1.5.1), Pellet (v2.2.2) and HermiT (v1.3.3).
Since we also possess the axioms in the difference between NCIt versions, this allows
us to test incremental reasoning as well.8 In Figure 2 we plot the reasoning times in a

8 As implemented within Pellet.



Fig. 1. Logical diff across selected versions of the NCIt (number of axioms).

logarithmic scale of each reasoner, comprising consistency checking, classification and
concept satisfiability (denoted RT(O)). Out of the three reasoners put to test, FaCT++
behaves consistently faster than Pellet and HermiT (O14 and O16 aside).

This performance test also shows that, to some degree, incremental reasoning pro-
vides a big advantage when handling the NCIt (or other large ontologies) in terms of
reasoning time. However it did not terminate upon classifying O14 and, like HermiT,9

O16. This is due to the abundance of individuals: incremental reasoning is based on
locality-based modules [1], and these behave poorly in the presence of individuals.
Aside from these two cases, the timings gathered using the incremental classifier were
consistently below 5 seconds per version, across the corpus.

5 Culprit Finding

Upon completing the reasoner performance test we noted that, from O79 to O80

(in Figure 2), there is a significant performance improvement in HermiT. While our
initial premise was to categorise logical diff-based impact between ontologies, now
we encounter another problem: identifying and dissecting performance impact. We
ascertained that the source of the bad performance is in the diff removals between
those versions (R = Removals(O79,O80)), as with the additions of O80 the rea-
soning time was substantially lower. In order to investigate this phenomenon, we
started with a brute-force culprit finding approach: for each axiom α ∈ R check if
RT(O80 ∪ {α}) � RT(O80). The size of R is 4,583 axioms, making this an expen-
sive approach. It is also naive in the sense that culprits are not necessarily singleton
sets. Nevertheless we examined RT(O80 ∪ {α ∈ R}) and found 13 (effectual) axioms
which yield reasoning times ranging from 76 to 8,490 seconds. Surprisingly adding all

9 HermiT returns a “StackOverflowError” when classifyingO16, both in Protégé and OWL API.



Fig. 2. Reasoner performance across NCIt (in seconds).

13 axioms to O80 results in a reasoning time of little over 9 hours. Thus some of the
non-culprit additions exhibit a protective effect.

However, this approach is not only computationally expensive, but also relies on
the existence of a diff which is not always available. We might want, given an “un-
manageable” ontology, to find a subset thereof with which one can work with. As such
we carried out a test partly based on the method described in [14], wherein we test the
satisfiability checking time of each concept in the ontology. Such a test may be sugges-
tive of the amount of time the reasoner spends on those concepts during classification
(our culprit finding method is described in Algorithm 1). In order to extract a logically
coherent subset of the ontology, which would be useful for repairing the culprit, we use
the notion of a locality-based module [1]. We found a total of 12 concepts which have
satisfiability checking times far greater than the average (see Table 2). The locality-
based modules for the signature of the usage closure of each concept are significantly
smaller than O79, the largest of which has 4,305 axioms (out of 116,587 logical ax-
ioms in O79). We found 9 modulesMi for which RT(O79 \Mi) is nearly an order of
magnitude faster than RT(O79) (RT(O79) = 430 seconds).

6 Discussion and Outlook

We have demonstrated with the diachronic study of the NCIt that merely syntactic diffs
do not provide nearly enough insight into the impact of changes carried out, since log-
ical differences are not identified. We found that ineffectual changes exist and account
for a significant amount of logical changes throughout the NCIt. Such changes are dis-
carded by semantic diffs, yet we show that they may provide helpful modelling insights.
The axiom categorisation we devised allows ontology engineers to understand the lack



Algorithm 1 Identify subsets of an ontology O for which reasoning times are consid-
erably better than the original ontology.

Input: Ontology O
Output: Set of modules S, wherein for eachMi ∈ S: RT(O \Mi)� RT(O)

S ← ∅; BadConcepts← ∅
for all concepts C ∈ Õ do
T imes← T imes ∪ 〈C, SATtime(C)〉

end for
for all C ∈ Õ do

if SATtime(C) ≥ average(SATtimes ∈ T imes)× 50 then
BadConcepts← BadConcepts ∪ C

end if
end for
for all C ∈ BadConcepts do
Σ = {terms t ∈ Usage(C)}
M = >⊥*-mod(Σ)
if RT(O \M)� RT(O) then
S ← S ∪M

end if
end for
return S

Concept #Mi HermiT-RT(O \Mi) Pellet-RT(O \Mi)

Cerebral Glioblastoma 3029 56.7 38.1
TP53 Gene 3933 50.4 61.5
TP53 wt Allele 3871 51.8 44.3
Erlotinib Paclitaxel Trastuzumab 4021 53.9 94.6
Tumor Protein-p53 3894 51.4 102.2
Platelet-Derived Growth Factor

3201 54.8 60.6
Receptor-Like Protein
HRAS wt Allele 3302 63.1 44.2
p21 H-Ras Protein 3329 62.9 89.7
AC-T-T Regimen 4305 50.7 97.2

Table 2. Extracted culprits and corresponding concepts found in O (time in seconds).

of impact of their changes, and possibly refine these before publishing newer versions,
particularly if redundancies are present.

From our structural analysis, we were able to gain considerable insight into the NCIt
and its evolution. By looking at the entire history, it became relatively straightforward
to identify tool artefacts and significant events and thus to disentangle accidental and
essential features of the ontology. We are currently confirming our interpretation of var-
ious events with the EVS and thus far it conforms to their understanding of the history.
Such an analysis is proving useful to the EVS as they find instances of the OWL version
that do not correspond with their intent, and thus allowing them to publish corrections.



In the future we plan to apply a similar categorization to logically effectual changes. We
also intend to examine the stability of entailments, i.e., whether an entailment persists
throughout some or all NCIt versions. Finally, more elaborate forms of structural anal-
ysis, such as examining the justificatory structure [9], hold great promise for exposing
the axiomatic richness of the modelling.

The reasoner performance results identify areas of performance weakness that
would not have been evident using standard “grab a version” methods. Furthermore,
we demonstrate the advantage (in terms of time) of using incremental reasoning for on-
tology engineering tasks, especially when large and complex ontologies are involved.
We found in the NCIt corpus a realistic case for performance impact analysis, based on
which we identified a number of meaningful culprits. The preliminary culprit finding
methods and results described indicate that this approach works reasonably well. How-
ever the question of how to present these culprits to, and validate our approach with
users still remains.

References

1. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. of Artificial Intelligence Research 31 (2008)

2. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2:
The next step for OWL. J. of Web Semantics (2008)

3. Franconi, E., Meyer, T., Varzinczak, I.: Semantic diff as the basis for knowledge base ver-
sioning. In: Proc. of NMR-10 (2010)

4. Gatens, W., Konev, B., Ludwig, M., Wolter, F.: Versioning based on logical difference for
lightweight description logic terminologies. In: Proc. of ARCOE-11 (2011)

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. of KR-06
(2006)

6. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga Llavori, R.: Building ontolo-
gies collaboratively using ContentCVS. In: Proc. of DL 2009. CEUR (http://ceur-ws.
org/), vol. 477 (2009)

7. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga Llavori, R.: Supporting concur-
rent ontology development: Framework, algorithms and tool. Data and Knowledge Engineer-
ing 70(1) (2011)

8. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca Grau, B., Hendler, J.: Swoop: A Web ontology
editing browser. J. of Web Semantics 4(2) (2006)

9. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: Proc. of ISWC/ASWC (2007)

10. Konev, B., Lutz, C., Walther, D., Wolter, F.: Logical difference and module extraction with
CEX and MEX. In: Proc. of DL 2008. CEUR (http://ceur-ws.org/), vol. 353 (2008)

11. Křemen, P., Abrahamčı́k, J., Pufler, J., Šmı́d, M.: OWLDiff (2008), http://krizik.
felk.cvut.cz/km/owldiff/

12. Noy, N.F., Musen, M.A.: PROMPTDIFF: A fixed-point algorithm for comparing ontology
versions. In: Proc. of AAAI-02 (2002)

13. W3C OWL Working Group: OWL 2 Web Ontology Language: Document overview. W3C
Recommendation (27 Oct 2009), http://www.w3.org/TR/owl2-syntax/

14. Wang, T.D., Parsia, B.: Ontology performance profiling and model examination: First steps.
In: Proc. of ISWC/ASWC-07. LNCS, vol. 4825. Springer-Verlag (2007)


