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Abstract. We consider the problem of characterising relational con-
straints under which TBox reasoning in EL is tractable. We obtain P
vs. coNP-hardness dichotomies for tabular constraints and constraints
imposed on a single reflexive role.

1 Introduction

In recent years, the problem of describing role boxes (aka relational constraints)
under which reasoning is within a given complexity class has become an impor-
tant research topic in description logic (DL). For example, the development of
SROIQ from SHIQ has mainly been driven by the desire to allow for more ex-
pressive relational constraints for which reasoning is still decidable and tableau
decision procedures can be developed. As a result, in SROIQ one can express,
among others, role inclusions of the form r ◦ s v r and s ◦ r v r, reflexivity,
transitivity and symmetry of roles [6, 7].

For EL, underlying the OWL2EL profile of the OWL2 Web Ontology Lan-
guage, the complexity of reasoning under relational constraints was investigated
in [1, 2, 9]. For example, the subsumption problem for general TBoxes in EL is
tractable for any finite set of constraints of the form

r1(x1, x2) ∧ · · · ∧ rn(xn, xn+1)→ rn+1(x1, xn+1) (1)

(the order of the variables is essential). On the other hand, subsumption becomes
ExpTime-complete in the presence of symmetry or functionality constraints [2].

The aim of this paper is to take a fresh look at how relational constraints
influence the complexity of DL reasoning: rather than putting forward a new
class of role boxes for which reasoning is decidable or within a certain complexity
class, we attempt to classify relational constraints according to whether they lead
to decidable or undecidable reasoning problems, or to reasoning within a given



complexity bound. The ultimate aim of this approach is to obtain a complete
map of how relational constraints determine the complexity of reasoning for most
important DLs. Apart from its theoretical interest, such a map can also be used
for the selection of role boxes with acceptable computational properties in future
standardisation efforts.

In this paper, which extends [8], we take first steps in this program by starting
to map out the border between tractability and intractability of TBox reasoning
in EL under arbitrary relational constraints. One of the fundamental questions
(left unanswered in this paper) is the following

Dichotomy Question: Is it the case that for any relational constraint, TBox
reasoning in EL is either in P or coNP-hard?

By Ladner’s Theorem, unless P = coNP, there exist problems that are coNP-
intermediate (neither in P nor coNP-hard). The existence of relational con-
straints for which TBox reasoning in EL is coNP-intermediate would indicate
that a general and complete map of the boundary between tractable and in-
tractable is extremely hard to obtain. In contrast, a positive answer would prob-
ably come with an informative description of the tractable constraints.

Our initial findings indicate that informative dichotomy results on P versus
coNP-hardness can indeed be obtained. For example, we show that

(d1) there are only four universal constraints on a single reflexive role r under
which EL TBox reasoning is in P: (1) r is arbitrary, (2) the domain of r
is a singleton, (3) r is transitive, (4) r is an equivalence relation. All other
universal constraints are either invisible to EL TBox reasoning or lead to
coNP-hard EL subsumption.

Here, by ‘invisibility’ we understand the following. It is well known that many
relational constraints do not influence—or are invisible to—TBox reasoning:
for example, for EL (and even ALC), TBox reasoning over irreflexive relations
coincides with TBox reasoning over arbitrary relations, and similarly for the class
of finite and tree-like relational structures. In fact, one can use dichotomy (d1)
to show that there are uncountably many ‘visible’ universal relational constraints
on a single reflexive role for which EL subsumption is coNP-hard, but only four
‘visible’ universal constraints for which EL subsumption is in P.

Another dichotomy we prove in this paper is as follows:

(d2) Consider an arbitrary relational constraint (over a finite number of roles)
such that the size of the domain of all interpretations satisfying this con-
straint is bounded by some natural number n > 0. Then EL subsumption
over the interpretations satisfying the constraint is in P if all roles in those in-
terpretations are functional. Otherwise EL subsumption is coNP-complete.

Currently, not much is known about dichotomies for more expressive languages.
We note, however, recent work on an NP vs. PSpace dichotomy for satisfiability
of classical modal formulas over frame classes definable by Horn sentences [5].



The paper is structured as follows. In Section 2, we define the extension
EL⊥ of EL with the concept ⊥ and all the model-theoretic notions we need.
We prove our results for EL⊥ rather than EL and show, by a straightforward
reduction in Section 6, that they hold for EL as well. In Section 3, we consider
the relation between tractability and convexity (the disjunction property) and
prove two general sufficient conditions for non-tractability. Then, in Sections 4
and 5, we prove the dichotomies (d1) and (d2) mentioned above.

2 Preliminaries

Fix two disjoint countably infinite sets NC of concept names and NR of role
names. We use arbitrary concept names in NC for constructing concepts, but
may restrict the set of available role names to some R ⊆ NR. Throughout this
paper, we work with EL extended with the concept ⊥, denoting the empty set.
Thus, for R ⊆ NR, the EL⊥-concepts C over R are defined inductively as follows:

C ::= > | ⊥ | A | C1 u C2 | ∃r.C,

where A ∈ NC, r ∈ R and C,C1, C2 range over EL⊥-concepts over R. An R-
TBox is a finite set of concept inclusions (CIs) C v D, where C and D are
EL⊥-concepts over R. An R-interpretation is of the form I = (∆I , ·I), where
∆I 6= ∅ and ·I is an interpretation function for concept names and role names
in R. Complex concepts over R are interpreted in I as usual. If CI ⊆ DI , we
say that I satisfies C v D and write I |= C v D. I is a model of an R-TBox
T , I |= T in symbols, if it satisfies all the CIs in T .

We now define what we understand by relational constraints on interpre-
tations. An R-frame is a structure F = (∆F, ·F) where ∆F 6= ∅ and ·F is a
map associating with each r ∈ R a relation rF ⊆ ∆F ×∆F. We say that an R-
interpretation I is based on an R-frame F if ∆I = ∆F and rI = rF for all r ∈ R.
An R-constraint is any class K of R-frames closed under isomorphic copies. For
example, a constraint for R = {r1, r2, r3} can consist of all R-frames F = (∆F, ·F)
with arbitrary rF1 , transitive rF2 and functional rF3 . An interpretation I satisfies
an R-constraint K if I is based on some F ∈ K.

The subsumption problem for an R-constraint K is to decide, given an R-
TBox T and two concepts C, D over R, whether I |= C v D for every model
I of T based on an R-frame in K, in which case we write T |=K C v D. For
singleton K = {F}, we sometimes write T |=F C v D.

Example 1. In the extension EL+
⊥ of EL⊥ [1], along with a TBox one can define

an RBox containing inclusions of the form r1◦· · ·◦rn v rn+1, where r1, . . . , rn+1

are role names. Reasoning with RBoxes R is clearly captured by the frame
condition KR containing all NR-frames F such that

F |= ∀x1 . . . ∀xn+1

(
r1(x1, x2) ∧ · · · ∧ rn(xn, xn+1)→ rn+1(x1, xn+1)

)
for all r1 ◦ · · · ◦ rn v rn+1 in R. According to [1, 9], the subsumption problem
for any such KR is decidable in P. On the other hand, the subsumption problem
for the class of symmetric frames is ExpTime-complete [2].



We say that R-constraints K1 and K2 are TBox-equivalent (in EL⊥) if we have
T |=K1

C v D iff T |=K2
C v D, for all R-TBoxes T and EL⊥-concepts C, D

over R. For example, as is well-known, the class of all frames is TBox equivalent
to the class of all irreflexive frames, and to the class of all finite frames. For an
R-constraint K, we denote by FrThK the union of all those R-constraints that
are TBox equivalent in EL⊥ to K. FrThK and K are TBox equivalent in EL⊥,
and FrThK is the largest class that is TBox equivalent in EL⊥ to K.

An R-constraint K is TBox-definable (in EL⊥) if there exists a set Γ of pairs
(T , C v D), where T is an R-TBox and C,D are EL⊥-concepts over R, such that
K = {F | T |=F C v D, for all (T , C v D) ∈ Γ}. Thus, K is TBox-definable iff
K = FrThK, and any class of TBox-equivalent constraints contains exactly one
TBox-definable class. In a similar way we can define TBox-definable classes of
R-constraints for EL and more expressive DLs, say ALC.

A universal R-constraint is a class of R-frames definable by universal first-
order sentences in the signature R. Equivalently, by [10], a universal constraint
is a first-order definable class of frames closed under taking subframes. The vast
majority of frame constraints considered in modal and description logics are
universal: transitivity, reflexivity, symmetry, weak linearity, just to mention a
few. Typical examples of non-universal (first-order) constraints are the Church-
Rosser property and density. As far as universal R-constraints are concerned,
EL⊥ defines the same R-constraints as ALC (the proof is given in [8]):

Theorem 1. Let K be a universal class of R-frames, for some R ⊆ NR. Then
K is TBox-definable in EL⊥ iff it is TBox-definable in ALC.

We conjecture that Theorem 1 can be generalised to arbitrary (not necessarily
first-order definable) classes of R-frames closed under subframes. Note that, with-
out the subframe condition, there are classes of frames that are TBox-definable
in ALC but not in EL⊥. One example is the Church-Rosser property

∀x, y1, y2
(
r(x, y1) ∧ r(x, y2)→ ∃z(r(y1, z) ∧ r(y2, z))

)
.

3 Tractability and Convexity

In this section, we investigate the relationship between convexity (sometimes also
called the disjunction property) and tractability. To this end, we need (formally
not allowed in EL⊥) concepts of the form C t D, where C and D are EL⊥-
concepts, which are interpreted in the obvious way by the union of the extensions
of the disjuncts C and D. An R-constraint K is said to be convex if, for any R-
TBox T and EL⊥-concepts F , C, D over R,

(conv) if T |=K F v C tD then T |=K F v C or T |=K F v D.

Although convexity is closely related to tractability, they do not imply each
other. It is readily checked that every relational constraint K defined by Horn
sentences is convex. Thus, symmetry and functionality are examples of relational
constraints that are convex but non-tractable [2]. The following example shows
that tractability of EL⊥ subsumption over K does not imply that K is convex:



Example 2. Consider the smallest class K of R-frames, for R = {s, r, r′}, which
is closed under subframes and contains all two-element irreflexive s-chains such
that if s(x, y) then either r(x, y) or r′(x, y). Thus, K is a universal constraint
and ∅ |=K ∃s.> v ∃r.>t ∃r′.>. As, ∅ 6|=K ∃s.> v ∃r.> and ∅ 6|=K ∃s.> v ∃r′.>,
K is not convex. On the other hand, as will be shown in the next section (see
Theorem 4), EL⊥ subsumption over K is in P.

We now prove two general conditions, based on non-convexity, that imply non-
tractability. The proofs of coNP-hardness are by reduction of the following set
splitting problem, which is known to be NP-complete [4]:

– given a family I of subsets of a finite set S, decide whether there exists a
splitting of (S, I), i.e., a partition S1, S2 of S such that each set G ∈ I is split
by S1 and S2 in the sense that it is not the case that G ⊆ Si for i ∈ {1, 2}.

We say that a class K of R-frames is concept non-convex if, for some R-TBox
T and concepts F , C, D over R, we have T |=K F v C t D, and there exist
an R-frame F ∈ FrThK, a point x ∈ ∆F and two models I1 and I2 of T based
on F such that x ∈ F I1 \ DI1 and x ∈ F I2 \ CI2 . Our main tool for proving
non-tractability results is the following:

Theorem 2. If a class K of R-frames is concept non-convex, then EL⊥ sub-
sumption over K is coNP-hard.

Proof. Consider T , F , C and D over R for which T |=K F v C tD, and there
exist an R-frame F ∈ K with x ∈ ∆F and two models I1 and I2 of T based on F
such that x ∈ F I1 \DI1 and x ∈ F I2 \CI2 . Suppose (S, I) is an instance of the
set splitting problem. Denote by Ti, Fi, Ci and Di, for i ∈ S, the copies of T ,
F , C and D obtained by replacing every concept name A in them with Ai. Let

TS,I =
⋃
i∈S
Ti ∪ {

l

i∈G
(B u Ci) v ⊥ | G ∈ I} ∪ {

l

i∈G
(B uDi) v ⊥ | G ∈ I},

where B is a fresh concept name. We show now that there exists a splitting
of (S, I) iff TS,I 6|=K

d
i∈S(B u Fi) v ⊥. (⇒) Let S1, S2 be a splitting of (S, I).

Define an interpretation I on F by taking AIi = AI1 if i ∈ S1, AIi = AI2 if i ∈ S2,
for all concept names A different from B, and BI = {x}. One can readily check
that I |= TS,I and I 6|=

d
i∈S(BuFi) v ⊥. (⇐) Suppose that I |= TS,I and there

is y ∈
⋂
i∈S(BI ∩F Ii ). We then set S1 = {i ∈ S | y ∈ CIi } and S2 = S \ S1. It is

readily checked that S1, S2 is a splitting of (S, I).

An R-constraint K is closed under disjoint unions if, for any F1,F2 ∈ K
with ∆F1 ∩∆F2 = ∅, we have F1 ∪F2 ∈ FrThK, where ∆F1∪F2 = ∆F1 ∪∆F2 and
rF1∪F2 = rF1 ∪rF2 . We also say that K has a free role r if, for any F ∈ K and any
x, y ∈ ∆F, the frame obtained by extending rF in F with the pair (x, y) belongs
to FrThK. Note that all RBoxes, currently used in DL, correspond to constraints
that are closed under disjoint unions and have infinitely many free roles (since
typically DLs admit infinitely many role names and have finite RBoxes). The
following condition is proved similarly to Theorem 2:



Theorem 3. Suppose that an R-constraint K is closed under disjoint unions
and has infinitely many free roles. If K is not convex then EL⊥ subsumption
over K is coNP-hard.

4 P/coNP Dichotomy for Tabular Constraints

A class K of R-frames is called tabular if there is n > 0 such that |∆F| ≤ n for all
F ∈ K. The aim of this section is to characterise the tabular constraints K over
which EL⊥ subsumption is tractable, that is, there is an algorithm which, given
a TBox T and concepts C, D over R, can decide, in polynomial time, whether
T |=K C v D. Clearly, EL⊥ subsumption over any tabular K belongs to coNP.

The characterisation of tabular constraints we are about to prove dichotomises
them into functional and non-functional. A class K of R-frames is R-functional
if, for any F ∈ K, r ∈ R and w ∈ ∆F, we have |{v ∈ ∆F | (w, v) ∈ rF}| ≤ 1. For
R-interpretations I1 and I2 based on a functional frame F, we write I1 ≤ I2 if
AI1 ⊆ AI2 for all A ∈ NC. Clearly, ≤ is a partial order.

Lemma 1. Suppose that I is an interpretation based on a finite R-functional
frame F and w ∈ ∆I . Given any R-concept C, one can decide in polynomial time
in |C| whether there exists an R-interpretation J such that I ≤ J and w ∈ CJ .
If such an interpretation exists, then there is a unique minimal (with respect
to ≤) R-interpretation I(w,C) ≥ I with w ∈ CI(w,C); moreover, this minimal
interpretation can be constructed in polynomial time in |C|.

We are now in a position to prove the main result of this section.

Theorem 4. Let K be a tabular class of R-frames for a finite R ⊆ NR. If K is
functional then EL⊥ subsumption over K is in P. Otherwise, EL⊥ subsumption
over K is coNP-complete.

Proof. Assume first that K is functional and we are given a TBox T and a CI
C ′ v D′ over R. Our polynomial time algorithm checking whether T |=K C ′ v D′
runs as follows. Let F1, . . . ,Fn be a list of all frames in K (up to isomorphism).
For each Fi and each w ∈ Fi, we do the following:

1. Let I be the R-interpretation based on Fi with AI = ∅ for all A ∈ NC.
2. Compute I := I(w,C ′) if it exists (cf. Lemma 1). If it does not exist, return

‘yes’ and stop.
3. Apply the following rule exhaustively: for C v D ∈ T and v ∈ ∆I , if v ∈ CI

and I(v,D) does not exist, return ‘yes’ and stop; otherwise, if I(v,D) 6= I,
set I = I(v,D).

4. If w ∈ (D′)I , return ‘yes.’ Otherwise, return ‘no.’

It is easy to see that T |=K C ′ v D′ iff the output is ‘yes’ for all Fi and w ∈ ∆Fi .
Suppose K is not R-functional. Then there exists F ∈ K with w ∈ ∆F such

that |{v | (w, v) ∈ rF}| ≥ 2. Let m be the maximal number for which there exist
r ∈ R, F ∈ K and w ∈ ∆F with |{v | (w, v) ∈ rF}| = m. Fix such r, F and w. We
prove coNP-hardness of EL⊥ subsumption over K using Theorem 2. To show
that K is concept non-convex, consider the {r}-TBox T with the following CIs:



– A v ∃r.Bi, for 1 ≤ i ≤ m;
– Bi uBj v ⊥, for 1 ≤ i < j ≤ m;
– A v ∃r.B
– Bi v E, for 2 ≤ i ≤ m.

Clearly, T |=K A v ∃r.(B uB1) t ∃r.(B uE). Consider next the interpretations
I1 and I2 over F where w1, . . . , wm are the rF-successors of w in F and

– AIi = {w} and BIi = {wi}, for i = 1, 2;
– BIii = {wj}, for i = 1, 2 and 1 ≤ j ≤ m;
– EIi = {w2, . . . , wm}, for i = 1, 2.

Then we have Ii |= T , w ∈ AI1 \(∃r.(BuE))I1 and w ∈ AI2 \(∃r.(BuB1))I2 . By
Theorem 2, EL⊥ subsumption over K is coNP-hard. And as we have mentioned
above, EL⊥ subsumption for tabular constraints is in coNP.

The above proof of coNP-hardness goes through for many other constraints:

Theorem 5. Let K be a class of R-frames such that there are r ∈ R and n ≥ 2
for which (i) no point in frames from K has > n r-successors, and (ii) at least
one point in a frame from K has ≥ 2 r-successors. Then EL⊥ subsumption over
K is coNP-hard.

5 P/coNP-hardness Dichotomy for Universal Reflexive
Constraints

In this section, we assume that R = {r} and consider universal classes of R-
frames F with reflexive rF.

Theorem 6. Let K be a universal constraint for a single reflexive relation. If K
is not TBox equivalent to any of the following classes:

(sin) the class of all singleton frames,
(tra) the class of all transitive frames,
(equ) the class of all equivalence relations,
(all) the class of all frames,
(sym) the class of all symmetric frames,

then K is concept non-convex, and so EL⊥ subsumption over K is coNP-hard.
EL⊥ subsumption over K is also coNP-hard if K is TBox equivalent to (sym).
However, if K is TBox equivalent to one of (sin), (tra), (equ) or (all), then
EL⊥ subsumption over K is in P.

Note that there are uncountably many distinct universal TBox definable classes
of frames with a single reflexive relation (see [8], where this is proved for quasi-
orders). Thus, only four out of uncountably many possible constraints lead to
tractable TBox reasoning; for all the rest, EL⊥ subsumption is coNP-hard.

Here we only give a brief sketch of the proof of Theorem 6. Note first that the
polynomial upper bound follows from [1, 8]; non-tractability for (sym) is shown
similarly to Theorem 7 below. To prove the remaining claim, we require



Lemma 2. Let K be a universal class of reflexive frames.

– If K is not TBox equivalent to (all), then there exists a finite reflexive tree
F such that F 6∈ FrThK.

– If K consists of symmetric frames and is not TBox equivalent to (sym), then
there exists a finite reflexive and symmetric tree F such that F 6∈ FrThK.

– If K consists of transitive frames and is not TBox equivalent to (tra), then
there exists a finite reflexive and transitive tree F such that F 6∈ FrThK.

Proof sketch. We prove the first claim; the remaining ones are treated similarly.
As K is not TBox equivalent to (all), there are T , C, D such that T |=K C v D
and T 6|=K′ C v D, where K′ is the class of all frames. By applying standard
unravelling to a witness interpretation for T 6|=K′ C v D, we obtain a (possibly
infinite) reflexive tree F 6∈ FrThK. If F is finite, we are done. Otherwise, using
the fact that K is universal and employing Tarski’s finite embedding property
[10], we can show that there is a finite subtree F′ of F such that F′ /∈ FrThTK.

Having Lemma 2 at hand, we can now proceed with a case distinction. Sup-
pose K is a non-empty universal class of reflexive frames that is not TBox equiv-
alent to any of the classes mentioned in Theorem 6. Then, by Lemma 2, there
exists a reflexive tree F such that F 6∈ FrThK, F′ ∈ FrThK, for any proper
subframe F′ of F, and one of the following conditions holds:

1. F is the singleton frame;
2. F is the two-element r-chain;
3. F contains a point w with least two r-successors, and all r-successors of w

are leaves in F;
4. F contains distinct points w,w1, w2 such that (w,w1) ∈ rF, (w1, w2) ∈ rF

and w2 is a leaf, which is the only r-successor of w1.

Case 1. This case is actually impossible because it implies that K is empty
(remember that K is universal, and so closed under subframes).

Case 2. In this case, K is a class of symmetric frames. Since we assume that K
is not TBox equivalent to (sym), one can apply the second claim of Lemma 2
to obtain a finite reflexive and symmetric tree F such that F /∈ FrThK. A case
distinction (similar to the one we are currently doing) shows that, since K is not
TBox equivalent to (sin), K is concept non-convex.

Case 3. Let us remove a proper r-successor of w from F and denote by H the
resulting frame, which belongs to FrThK. Let w1 be one of the remaining suc-
cessors of w in H. Denote by H′ the frame obtained from H by adding a fresh
r-successor w2 to w1, and by w0 the root of H′. Two cases are possible now.

Case 3.1: either H′ ∈ FrThK or the expansion of H′ by adding (w,w2) to rH
′

is
in FrThK. Take additional concept names A and Ā. To show that K is concept
non-convex, we will use C1 = ∃r2.(A′u∃r2.Ā′) and C2 = ∃r2.(Ā′u∃r2.A′), where
A′ = Aw1

u A, Ā′ = Aw1
u Ā and ∃rm.C is an abbreviation defined inductively

by taking ∃r0.C = C and ∃rm+1.C = ∃r.∃rm.C.
In addition, we require a generic way of describing frames using TBoxes.

Given an R-frame R, let Au be a fresh concept name for every u ∈ ∆R. Let
TS(R) be the (possibly infinite) TBox with the following CIs:



– Au v ∃r.Av, for (u, v) ∈ rR;
– Au uAv v ⊥, for u 6= v;
– Au u ∃r.Av v ⊥, for (u, v) /∈ rR.

One can show that, for any R-frame R with root w (from which all other points
are reachable via roles) and any R-frame F, we have TS(R) 6|=F Aw v ⊥ iff R is
a p-morphic image of a subframe of F.

Returning to Case 3.1., define T to be the TBox with the following CIs:

TS(H), Aw v ∃r2.A′, Aw v ∃r2.Ā′.

Then T |=K Aw0
v ∃rm.(Aw u C1) t ∃rm.(Aw u C2), where m is the distance

between w0, w, but T 6|=K Aw0 v ∃rm.(Aw uC1), T 6|=K Aw0 v ∃rm.(Aw uC2).

Case 3.2: suppose that Case 3.1 does not hold. Denote by w0 the root of H. Take
a fresh concept name A and consider the TBox T with the following CIs:

– TS(H),
– A u ∃r.Av v ⊥, for all v with (w, v) 6∈ rH,
– Av u ∃r.A v ⊥, for all v with both (v, w) 6∈ rH and (v, w1) 6∈ rH,
– A u ∃r.Aw′ v ∃r.Aw, for (w,w′) ∈ rH, w′ 6= w1,
– Aw v ∃r.(A u ∃r.Aw1),
– if w has an r-predecessor wp, then Awp

u ∃r.A v ∃r.(Aw u ∃r.(A u ∃r.Aw)).

Then T |=K Aw0 v ∃rm.(Aw u ∃r.(A u ∃r.Aw)) t ∃rm.(Aw u ∃r.(Aw1 u ∃r.A)),
but T 6|=K Aw0 v B for either of the disjuncts B in the right-hand side.

Case 4. A case distinction similar to, but much more tedious than the previous
ones shows that K is concept non-convex if the constraint K is not transitive.
The case where K is a class of transitive frames has been considered in [8], and
one can easily modify the proofs given there to show that all universal classes of
transitive and reflexive frames, which are not TBox equivalent to (sin), (equ)
or the class of all transitive and reflexive frames, are concept non-convex.

Typically, in DL applications one role is not enough. Therefore, the question
is whether the four universal constraints guaranteeing tractability for a single
reflexive relation still ensure tractability if more than one role is considered. This
is well known to be the case for transitivity and reflexivity, and this is trivially
the case for the singleton frame. Equivalence relations behave not so well:

Theorem 7. If K is a constraint consisting of two (or more) equivalence rela-
tions, then EL⊥ subsumption over K is NP-hard. In particular, tractability of
EL⊥ subsumption is not preserved under fusions in the sense of [3].

Proof sketch.4 The proof is by reduction of SAT. Let ϕ be a formula in NNF with
the variables p1, . . . , p2n, and let r1, r2 be equivalence relations. We use Tk, Fk
for the truth-values of the variable pk, and Lj as a marker for the level j in a
‘tree.’ We generate a full binary tree of depth 2n+ 1, using the CIs

L2i v ∃r1.(T2i+1 u L2i+1) u ∃r1.(F2i+1 u L2i+1), (2)

L2i+1 v ∃r2.(T2i+2 u L2i+2) u ∃r2.(F2i+2 u L2i+2), (3)

4 Based on an idea suggested by Carsten Lutz.



for i < n. Then we propagate the truth-values Tk and Fk to the leaves using

L2j u ∃r2.(L2j−1 uQk) v Qk, for 1 ≤ j ≤ n, 1 ≤ k ≤ 2j − 1, (4)

L2j+1 u ∃r1.(L2j uQk) v Qk, for 1 ≤ j < n, 1 ≤ k ≤ 2j, (5)

for Qk = Tk, Fk. Take a fresh Xψ, for every subformula ψ of ϕ, and the CIs

Xpk ≡ Tk, X¬pk ≡ Fk, Xψ1∧ψ2
≡ Xψ1

uXψ2
, (6)

Xψ1
v Xψ1∨ψ2

, Xψ2
v Xψ1∨ψ2

. (7)

Let T be the TBox containing all the CIs (2)–(7), and L2n uXϕ v ⊥. One can
show that T |=K L0 v ⊥ iff ϕ is satisfiable.

6 EL and EL⊥

So far, we have considered EL⊥ rather than EL. The main reason is that ⊥
makes proofs more transparent. We now show that Theorems 4–7 above hold for
EL.

An R-frame F′ is called a generated subframe of an R-frame F if it is a
subframe of F and, for all u, v ∈ ∆F and r ∈ R, if (u, v) ∈ rF and u ∈ ∆F′

then v ∈ ∆F′
. Given v ∈ ∆F, the subframe of F generated by v is the smallest

generated subframe of F containing v.

Theorem 8. Let K be an R-constraint closed under generated subframes, for
a finite R. Then EL⊥ subsumption over K is polynomially reducible to EL sub-
sumption over K, and, for any R-constraint K′ closed under generated subframes,
K′ is TBox-equivalent to K in EL⊥ iff K′ is TBox-equivalent to K in EL.

Proof. Let T and C v D in EL⊥ be given. We may assume that ⊥ occurs
in them only in the form E v ⊥, with E being an EL-concept. Let B be a
fresh concept name, and let T ′ and D′ result from T and D, respectively, by
replacing all ⊥ with B. Set T ′′ = T ′ ∪ {∃r.B v B | r ∈ R} ∪ {B v D′}. We
claim that T |=K C v D iff T ′′ |=K C v D′. Clearly, if T 6|=K C v D, then
T ′′ 6|=K C v D′: for if we have a witness model for T 6|=K C v D, then we
can interpret B by the empty set to obtain a model of T ′′ refuting C v D′.
Conversely, if T ′′ 6|=K C v D′, take an interpretation I based on a frame in
K and v ∈ ∆I such that I |= T ′′ but v ∈ CI \ (D′)I . Let F be the subframe
generated by v in the underlying frame of I. Then F ∈ K and BI ∩ ∆F = ∅.
Hence T 6|=F C v D, as required.

It follows from Theorem 8 that Theorems 6 and 7 hold for EL in place of
EL⊥. Theorem 4 can be proved for EL as follows. Let K be a non-functional
tabular constraint. Then the class K′ of subframes of frames from K is still
a non-functional tabular constraint and |=K′ is polynomially reducible to |=K,
both for EL and EL⊥ (using relativisation). Thus, by Theorem 4 for EL⊥ and
Theorem 8, the EL subsumption problem for K′ is coNP-hard. Hence it is
coNP-hard for K. Theorem 5 can be proved similarly.



7 Open Problems and Conjectures

The main open problem in the area is the dichotomy question formulated in
the introduction. If the answer to this question is positive, then the proof will
probably require some new techniques and a great number of case distinctions.

We conjecture that a transparent dichotomy, possibly more involved than
Theorem 6, can be obtained for arbitrary relational constraints on a single re-
flexive relation. Of course, an additional problem in this case is how to deal
with non first-order constraints. A possible approach can be illustrated by the
following result from [8]. Call a constraint subframe if it is closed under the
formation of subframes. A Noetherian partial order is a reflexive and transitive
relation without infinite ascending chains. Let N be the (non-elementary) class
of all Noetherian partial orders. It is proved in [8] that EL⊥ subsumption over
a subframe constraint K ⊆ N is tractable iff K is TBox equivalent either to the
single element frame or to N .

When moving beyond the ‘bounded’ constraints of Theorems 4 and 5, it
seems to be much harder to obtain general results for relations that can be non-
reflexive than for the reflexive ones. For example, in contrast to the reflexive
case, EL⊥ subsumption is now also in P for the constraints Kn consisting of
(irreflexive) trees of depth ≤ n. Thus, there are infinitely many transitive classes
with a single relation for which EL⊥ subsumption is tractable.
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