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Abstract. Sensor data classi�cation is very dependent on which fea-
tures represent primitives. We consider line segments extracted from laser
points as primitives, and focus on their collective classi�cation into door
or wall objects, so as to build semantic maps. Because features may have
non-trivial characteristics, and sensor primitives may be inter-related in
complex ways, we represent features of spatial relationships using a prob-
abilistic description logic.

1 Introduction

Recent successes have raised expectations concerning the behavior of mobile
robots in dynamic environments [21]. State-of-the-art applications construct pre-
cise spatial maps of static environments; however, autonomous robots need more
than accurate spatial information when dealing with people or objects that dis-
play dynamic change. �Semantic mapping� focuses on the representation of an
hierarchy of general objects in the environment, with their individual proper-
ties and inter-relationships. Broadly speaking, semantic maps must compactly
encode rich information in a scalable manner.

Although there is no unique or precise de�nition for semantic maping in
robotics, in the last �ve years many researchers have turned to spatial represen-
tations tagged with information like: "This segment of laser data is a door" or
"This area of the occupancy grid is a room". As such, a semantic map typically
means a labeled spatial map, and not really a map interwoved with deep semantic
information. Few proposals really include semantic information in their robotic
architecture by means of an ontology that relates objects in the environment.
Clearly a more detailed look at semantic mapping is worth the study, because
through semantic information we may expect to create more natural ways for
robots to interact with humans and its environments.

Semantic mapping could deal with di�erent sensor data inputs and output
several di�erent representations. Cameras could be employed to construct a
map representation based in clusters of images representing di�erent rooms [24].
Other proposals use 3D laser sensors to produce point cloud representations,
that allows for object recognition [22], environment segmentation in �oor and



walls [1], and even the construction of a real map [15]. One interesting appli-
cation relies in laser sensors that obtains horizontal slices at a �xed height of
the environment to create bidimensional spatial maps. Semantic mapping in this
context envolves the classi�cation of line segments from already constructed 2D
maps of indoor environments. This scenario was �rstly proposed by Limketkai et
al. [12] and latter was also approached by Wang and Domingos [19]. It is a sce-
nario where one can explore di�erent kinds of dependencies between the data,
including spatial relationships and appearance. Both previous cited work em-
ployed models that combines �rst-order or relational logic with probabilities to
produce line segments classi�cation. The use of probabilities is justi�ed because
there is considerable uncertainty in associating dependencies with the possible
classes of line segments, both due to the uncertain process of creating line seg-
ments from laser points and to changes in sensed objects [20]. And �rst-order
logic is an expressive language that allows for a rich representation of complex
relationships between di�erent object in a compact way.

In this paper we focus exactly on the problem of laser data classi�cation, using
a combination of logic and probability to represent information extracted from
sensor data. At the moment, we provide only probabilistic reasoning in our model
while logic elements are used to describe the scenario and to obtain an ontology
that could be explored in future applications. We chose to model this problem in a
probabilistic description logic called crALC, as it seems to provide a reasonable
balance between �exibility and computational cost, to be explored in further
developments. The next section brie�y describes the probabilistic description
logic crALC. In Section 3, semantic mapping is discussed. Experiments are
detailed in Section 4, followed by our conclusions.

2 Credal ALC

A probabilistic description logic, called Credal ALC (crALC), has been pro-
posed recently [4,5,16], in a wave of related e�orts [14]. In fact, the literature
brings a variety of probabilistic description logics [7,9,10,11,13,3,18]; crALC is
based on the popular ALC logic, adopts an interpretation-based semantics and
resorts to the theory of Bayesian networks to allow for judgements of stochastic
independence and to obtain inference algorithms.

The vocabulary of crALC contains individuals, concepts, and roles. Con-
cepts and roles are combined to form new concepts using a set of constructors
from ALC [17]: conjunction (C u D), disjunction (C t D), negation (¬C), ex-
istential restriction (∃r.C) and value restriction (∀r.C). A concept inclusion is
denoted by C v D and a concept de�nition is denoted by C ≡ D, where C
and D are concepts; we assume in both cases that C is a concept name. We
then say that C directly uses D; the relation uses is the transitive closure of
directly uses. Also, the concept > denotes C t (¬C) for some concept C. As in
ALC, the semantics is given by a domain D, a set of elements, and an inter-
pretation mapping I that assigns an element to an individual, a set of elements
to a concept, and a binary relation to a role. An interpretation mapping must



also comply with constructs of the language; for instance, the interpretation
of concept C u D is I(C) ∩ I(D), while the interpretation of concept ∀r.C is
{x ∈ D | ∀y : (x, y) ∈ I(r)→ y ∈ I(C)}. Additionally, crALC accepts proba-
bilistic inclusions as follows. A probability inclusion reads

P (C|D) ∈ [α1, α2],

where D is a concept and C is a concept name. The semantics of such a proba-
bilistic inclusion is, informally:

∀x : P (C(x)|D(x)) ∈ [α1, α2], (1)

where it is understood that probabilities are over the set of all interpretation
mappings I for a domain D. If D is the concept > then we write P (C) ∈
[α1, α2]. Probabilistic inclusions are required to only have concept names in their
conditioned concept (that is, inclusions such as P (∀r.C|D) are not allowed). Yet
another type of probabilistic assessement is possible in crALC: for a role r, we
can have P (r) ∈ [β1, β2] to be made for roles, with semantics:

∀x, y : P (r(x, y)) ∈ [β1, β2], (2)

where again the probabilities are over the set of all interpretation mappings for
a given domain.

Every ontology is assumed acyclic; that is, a concept does not use itself. If
we write down an ontology as a directed graph where each node is a concept or
role, and arcs go from concepts that are directly used to concepts that directly
use them, we obtain that this graph must be acyclic. We refer to such a graph
as an ontology graph. For instance, consider concepts A, B, C and the role r.
C is a concept inclusion de�ned by C ≡ A u ∃r.B. In Figure 1.a we have the
ontology graph for this example. Note that exists a node for general role r (x, y)
and another for the instantiation with concept B (x), ∃r.B (x). Concept inclusion
C (x) is composed by A (x) and ∃r.B (x).

a) b)

Fig. 1. Ontology graph

In short, the sentences written in the underlying description logic (with added
probabilistic features) induce directed dependencies between instantiations of



concepts. Under some additional restrictions (unique-names assumption, known
and �nite domain), any ontology expressed in crALC can be grounded into a
Bayesian network, possibly with attached probability intervals [4,5,16]. That is,
grounding an ontology with a �nite and known domain leads to a credal network
[6]. In Figure 1.b we have the grounded network for the ontology described in the
previous paragraph, for a domain with only 2 individuals. Note that the entire
ontology graph is repeated for each individual of the domain, with each concept
instantiated for each individual and each role is instantiated with each pair of
individuals. The probabilities of each sentence composes the CPT (Conditional
Probability Table) of a particular node in the Bayesian network.

3 Semantic mapping with crALC

We have used crALC previously to model some aspects of robotic semantic
mapping. In [2] we proposed to segment robotic sensor data (odometry, gyro
and distance measures) obtained from navigation through an indoor environ-
ment, based on the objects found in each di�erent area. Rooms and Corridors
are examples of possible areas to be found in an indoor environment. Such seg-
mentation of the sensor data provides a scalable way to map larger environments,
as each area could be mapped independently: as a result, several smaller areas
are mapped and then merged together to construct the map.

The main limitation of that approach was that crALC models areas of the
environment with relation to full objects detected by a image processing algo-
rithm - inference does not start from sensor data itself. In our previous work,
sensor data consisted of images that were processed by SIFT algorithm to detect
objects whose signatures were trained previously.

But real robotic tasks must deal directly with uncertain sensor data. To do
so, we wish to explore the �exibility and relatively low cost of crALC; however,
we do face some challenges to do so. In crALC we face a di�culty because the
language models concepts (set of individuals) and a hierarchy over them, and not
relations between individuals. There is no direct way to include a probabilistic
dependency between two arbitrary constants or individuals. Some description
logic languages that accepts nominals, allow us to specify individuals, like 'Brazil'
and 'France'. But in semantic mapping domain it is impossible to consider in
advance all the constants in the environment (all points, lines or planes that may
exist).

The solution to this problem came from ideas presented in [19]. The trick
is to include in the model, individuals or constants that are created from the
combination of two segments; for example, there are two distinct segment lines,
a and b. Then, if one is near the other, the constant ab is created (ba could
also be created, but is identical to the �rst one). One way to specify in the
model the conditional independences using the description logic language, is to
create those kind of constants only when there is some dependency between the
constants. Thus, it is not necessary to instatiate all possible combinations of
segments. With that modi�cation, it is necessary to di�erentiate concepts with



Table 1. Impact of features on the performance of classi�er (extracted from [12]).

Environment Lengths Lengths+Neighbours All

1 62.6% 88.5% 90.7%

2 58.7% 63.0% 93.5%

3 59.0% 79.2% 89.7%

4 51.8% 96.5% 97.7%

5 60.0% 68.5% 77.9%

primitive constant and concepts with composed constants. We now consider our
application in more detail.

The scenario of interest is to take a bidimensional metric map, constructed
using a SLAM algorithm, based on distances from a laser sensor, and to classi�-
cate each segment of the map in door or wall segments. Segments are extracted
from laser data points following [8]. We do not propose to classify laser segments
in real time as the robot constructs the map and localizes itself. Inferences are
done o�ine, after the map has been obtained.

The trivial way to do that is to consider the length of each segment: doors
tend to be of the same size, and walls have very variable lengths. But to make
a robust classi�cation, we need to consider further features of the segments. For
instance, we should include dependences related to spatial relationships: points
or line segments produced by laser sensor that are near one from another likely
has the same classi�cation.

To illustrate the importance of some features in the classi�cation results, Ta-
ble 1 lists the percentage of correct classi�cation in �ve di�erent environments,
using only Length, Length+Neighbours, and all features together. As representa-
tive features are added (for instance spatial relationships), results are improved.

Some of the spatial features used by [23] are considered in our model and
listed in Table 2.

Figure 2 depicts a Bayesian network constructed around two segments near
each other and aligned along a line. Dashed line separates variables belonging
to each of the segments. White nodes represents hidden variables; gray and
black nodes represent observable variables; black nodes are continuous observable
variables that must be discretized and gray nodes are discrete. Each segment is
represented by SegType variable. Each has the Length, Depth, SingleAligned and
SharpTurn properties. The relationships Neighbours, Consecutive and Aligned
appears between each possible pair of segments. Beyond these properties and
relationships, each segment could be attached to a line composed of aligned
segments of the same type. In the scenario, only Wall objects could align to form
a corridor. Each segment or aggregate of segments are represented by a discrete
variable that contains its type (in the case of �gure is LineType). StarLine,
EndLine, PreviousAligned, NextAligned and PartOf characterize the properties
of a segment inside a line.

This model, once implemented in crALC, generates a large Bayesian network
including all line segments extracted from the laser sensor, and considering all



Table 2. Spatial features.

SegType : the segment is of the type, Door, Wall, or Other

LineType : the line is of the type, Door, Wall or Other

PartOf : the segment is part of the line

StartLine : the segment is the start of a line

EndLine : the segment is the end of a line

PreviousAligned : there are segments aligned to this segment (preceding it)

NextAligned : there are segments aligned to this segment (following it)

Aligned : the angle between two segments is below some threshold,

and so is the perpendicular distance between them

Neighbors : the distance between the nearest end points of two

segments is below some threshold

Consecutive : there is no other segment's initial point between

the initial points of the two segments

SingleAligned : the angle between the segment and the average line

it belongs to is below some threshold

SharpTurn : the distance between the segment and its neighbor is

below some threshold, and it is almost perpendicular to

the average line

Length : the length of the segment

Depth : the depth of the segment, i.e., the signed perpendicular

distance of the segment's midpoint to the nearest line

possible relationships between each two segments whose proximity is below some
threshold. Classi�cation is done through probabilistic inference in the graph
using a MAP-based algorithm to promote collective classi�cation. Recall that in
collective classi�cation, the class of each segment is decided based on the class
of its neighbours.

An inherent problem in spatial mapping is the size of indoor environments.
As each wall could be formed by a dozen line segments, the number of constants
to be considered, and consequently the number of spatial relations to put in
the model, are prohibitive. In our experiments, we have decided to partition the
dataset in smaller sets, so we could handle the problem with the tools available.
Figure 3 shows a corridor extracted from a map. The corridor is formed by a set
of segments that must be classi�cated in doors, walls and others.



Fig. 2. A sample diagram.

Fig. 3. Example of the scenario of classi�cation of line segmentes.

4 Experiments

The experiments consist of teleoperation of a robot with a laser sensor through
an indoor environment. As the robot navigates, laser readings and odometry are
collected to be processed later, so as to produce a metric map. Any standard
algorithm could be used to produce a consistent map. Basically, it is necessary
to transform relative measures, obtained as the robot traverses the environment,
into a global coordinate system, by dealing with uncertainty measures of the



laser and the robot position. It is important to have line segments formed by
laser points adequately positioned in the world, because crALC does not deal
with uncertainty regarding spatial coordinates.

Although we collect some data with our own robot (Figure 4), and tested our
model with it to determine the parameters, we have decided to report results for a
dataset available online in the Radish repository, as other works that approached
that same problem, using instead RMN and MLN models, used that dataset.

Fig. 4. Robot Pioneer 3-AT used in the experiments.

A restriction found in probabilistic models that incorporates logic elements
is the type of random variables that are allowed. Often a continuous random
variable for the length of the segment constructed from laser points must be
discretized in a �nite set of possible lengths. In our model, it was necessary
to turn some numerical quantities into discrete values, as with variable Length.
We considered six di�erent values of lengths for doors and walls, based on our
observed data.

The values for our conditional probability tables (the parameters of our
model), were determined experimentally using our own experience in this kind
of problem. These values are listed in Table 3.

Inferences were performed using the package SamIam (available at the ad-
dress http://reasoning.cs.ucla.edu/samiam/ ). We selected MAP-based explana-
tions generated by an approximate algorithm. Through MAP, we produced col-
lective classi�cation, and decided on each line segment label considering the
labels of its neighbours.

Table 4 shows results obtained by MAP inference in a scenario with 70 line
segments. In each column represents a range (i.e., 1-10 or 11-20) in the line seg-
ments considered. Rows indicate an exact line segment inside the range of the
respective column. Observing the results, we have around of 75% accuracy, con-
sidering only Length, and Neighboor and Aligned features. It is hard to make a
quantitative comparison between our results with Limketkai's RMN and Wang's
MLN, because the features used in their experiments are not clearly given; nev-
ertheless, qualitatively, results with crALC are similar to the ones obtained with
their probabilistic logic models.



Table 3. CPTs used in the model.

door wall other

length_1 0.0 0.2 0.25

length_2 0.1 0.15 0.15

length_3 0.8 0.15 0.2

length_4 0.1 0.15 0.15

length_5 0.0 0.15 0.25

length_6 0.0 0.2 0.0

door 0.3

wall 0.4

other 0.3

Roles

Neighbour

s_1 door wall other

s_2 door wall other door wall other door wall other

true 0.6 0.8 0.6 0.6 0.6 0.6 0.7 0.8 0.5

false 0.4 0.2 0.4 0.4 0.4 0.4 0.3 0.2 0.5

Aligned

s_1 door wall other

s_2 door wall other door wall other door wall other

true 0.5 0.3 0.3 0.3 0.5 0.3 0.3 0.3 0.5

false 0.5 0.7 0.7 0.7 0.5 0.7 0.7 0.7 0.5

Table 4. Inference results.

Calculated/Correct 1-10 11-20 21-30 31-40 41-50 51-60 61-70

1 wall/wall wall/wall wall/door other/other door/wall door/door door/door

2 other/wall door/wall wall/wall wall/door door/door wall/wall wall/other

3 door/door wall/other wall/wall wall/wall wall/wall wall/wall door/door

4 wall/wall wall/wall wall/wall wall/other door/door wall/other wall/wall

5 wall/wall wall/wall wall/wall door/door wall/wall wall/wall wall/wall

6 wall/other door/door door/door door/wall door/door door/door wall/wall

7 wall/other door/door door/wall other/wall wall/wall wall/wall wall/wall

8 door/door other/wall door/door wall/other wall/wall wall/wall wall/wall

9 wall/wall door/door other/other wall/wall wall/wall wall/wall door/door

10 wall/wall wall/other wall/wall door/door door/door wall/wall wall/other

5 Conclusion

This article proposes semantic mapping techniques based on the classi�cation
of line segments from a metric map into Doors, Walls, or Others elements,
using crALC as a representation language. Metric maps are constructed by
a standard SLAM algorithm, so as to obtain a precise spatial positioning of
each line segment and then to determine features. To do so, we used constants
formed by the combination of two simple constants. With these new constants,
we included features of neighborhoods and properties of alignments.



We chose a probabilistic description logic due to its compact encoding of
the needed knowledge; as a result less parameters must be speci�ed. Collective
classi�cation proceeds as inference over an instantiated probabilistic graph using
approximate reasoning; all labels are decided together in a single run.

Preliminary results obtained with crALC show that it can handle classi�ca-
tion of robotic sensor data. The next step is to further extend this labeling to
create an automatic topological map starting for the labels of the metric map,
and also to use the same technique to create 3d maps. Besides that, we are try-
ing to introduce DL reasoning in the model through extension of ALC to some
description logic that accepts spatial reasoning.
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