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Abstract. This paper introduces relaxed abduction, a novel non-standard
reasoning task for description logics. Although abductive reasoning over
description logic knowledge bases has been applied successfully to various
information interpretation tasks, it typically fails to provide adequate (or
even any) results when confronted with spurious information or incom-
plete models. Relaxed abduction addresses this flaw by ignoring such
pieces of information automatically based on a joint optimization of the
sets of explained observations and required assumptions. We present a
method to solve relaxed abduction over EL+ TBoxes based on the notion
of multi-criterion shortest hyperpaths.
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1 Introduction

Abduction was introduced in the late 19th century by Charles Sanders Pierce
as an inference scheme aimed at deriving potential explanations for some obser-
vation [7]. It is conveniently expressed by the derivation rule

φ ⊃ ω ω

φ

which can be understood as an inversion of the modus ponens rule that permits
to derive φ as a hypothetical explanation for the occurrence of ω, given that the
presence of φ in some sense justifies ω. Note that this general formulation does
not presuppose any causality between φ and ω; various notions of how φ sanctions
the presence of ω give rise to different notions of abductive inference such as
the set-cover-based approach, logic-based approaches, and the knowledge-level
approach (see [12] for a survey). This paper focuses on logic-based abduction
over EL+ TBoxes, however all results except the algorithm presented in Sect. 3
carry over to other logic-based representation schemes straightforwardly.

Due to its hypothetical nature, an abduction problem typically does not have
a single solution but a collection of alternative answers A1, A2, . . . , Ak among
which optimal solutions are selected by means of a preference order �. We denote
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Ai being not worse than Aj by Ai � Aj , indifference (Ai � Aj ∧ Aj � Ai) is
abbreviated by Ai ' Aj , and strict preference (Ai � Aj ∧Ai 6' Aj ) by Ai ≺ Aj .
Then a (normal) preferential abduction problem can be defined as follows:

Definition 1 (Preferential abduction problem PAP = (T ,A,O,�A)).
Given a set of axioms T called the theory, a set of abducible axioms A, a set
O of axioms representing observations such that T 6|= O, and a (not necessarily
total) order relation �A ⊆ P(A)×P(A), determine all �A-minimal sets A ⊆ A
such that T ∪A is consistent and T ∪A |= O.

Typical preference orders over sets include subset-minimality (Ai�sAj ↔
Ai ⊆ Aj ), minimum cardinality (Ai�cAj ↔ |Ai | ≤ |Aj |), and weighting-based
orders defined by a function w that assigns numerical weights to subsets of A
(Ai�wAj ↔ w(Ai) ≤ w(Aj )). The first two orders prefer a set A over any of its
supersets, this monotonicity property is formalized in Def. 2.

Definition 2 (Monotone and anti-monotone order). An order � (≺) over
sets is monotone (strictly monotone) for set inclusion if and only if S′ ⊆ S
implies S′ � S (S′ ⊂ S implies S′ ≺ S). Conversely, � (≺) is anti-monotone
(strictly anti-monotone) for set inclusion if and only if S′ ⊇ S implies S′ � S
(S′ ⊃ S implies S′ ≺ S).

Applications of abductive information interpretation using a formal domain
model include media interpretation [4] and diagnostics for complex technical
systems such as production machinery [9]. These domains are characterized by
an abundance of low-level observations due to a large number of sensors whereas
the model is often unelaborate or incomplete. The next example illustrates how
the classical definition of abduction may fail to handle such situations adequately.

Example 1 (Sensitivity to spurious information). Consider the diagnostic unit
of a production system whose model states that a fluctuating power supply man-
ifests by intermittent outages of the main control unit while the communication
links remain functional and the mechanical gripper of the production system is
unaffected (the observations entailed by the diagnosis). Assume a new vibration
sensor additionally observes low-frequency vibrations of the system. If the diag-
nostic model has not been extended yet to encompass these observations, the
additional data will in fact distract the diagnostic process and invalidate the di-
agnosis concerning the power supply, although it might be completely unrelated.

This flaw rests on the requirement that every single observation oi ∈ O be
entailed by an admissible solution. It severely restricts the practical applicability
of logic-based abduction to real-world industrial applications where an ever-
growing amount of sensor data almost inevitably generates pieces of information
that the model cannot account for. We therefore extend logic-based abduction
in Sect. 2 to handle such cases in a more flexible yet formally sound way, and
propose a method to solve such extended abduction problems expressed in the
description logic EL+ in Sect. 3. Section 4 contrasts our proposal with relevant
related work on logics and abduction, and we conclude in Sect. 5.
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2 Relaxed Abduction

While for very simple models it is possible to identify and remove spurious in-
formation in a preprocessing step, this is not feasible for reasonably complex
models since the (ir-)relevance of a piece of information depends on the inter-
pretation and is thusly not known beforehand. We therefore propose a general
approach based on the intuition that spurious and missing information are two
complementary facets of information imperfection and should thus be treated
similarly: In addition to assuming information as needed based on the set of
abducibles A, relaxed abduction ignores observations from O during hypotheses
generation if required. This intuition is formalized in the next definition.

Definition 3 (Relaxed abduction problem RAP = (T ,A,O,�A,�O)).
Given a set of axioms T called the theory, a set of abducible axioms A, a set O
of axioms representing observations such that T 6|= O, and two (not necessarily
total) order relations �A ⊆ P(A) × P(A) and �O ⊆ P(O) × P(O), determine
all �-minimal tuples (A,O) ∈ P(A) × P(O) such that T ∪ A is consistent and
T ∪A |= O. The order � is defined based on �A and �O as follows:

– (A,O) ' (A′, O′)↔ A'AA′ ∧O'O O′
– (A,O) ≺ (A′, O′)↔ (A�AA′ ∧O≺O O′) ∨ (A≺AA′ ∧O�O O′)
– (A,O) � (A′, O′)↔ ((A,O) ≺ (A′, O′)) ∨ ((A,O) ' (A′, O′))

Intuitively, a good solution will have high expressive power regarding the ob-
servations while being as non-assumptive as possible, which suggests to chose �A
monotone and �O anti-monotone for set inclusion, respectively. The following
example uses one such combination to solve the problem presented in Ex. 1.

Example 2 (Sensitivity to irrelevant data (cont.)). Using inclusion as order cri-
terion over sets, we let A �A A′ ↔ A ⊆ A′ and O �O O′ ↔ O ⊇ O′. As
intended, the resulting order � gives rise to the minimal solution which explains
all observations but the vibrations and only requires to assume the diagnosis,
namely a fluctuating power supply.

Proposition 1 (Conservativeness). A ⊆ A is a solution to the preferential
abduction problem PAP = (T ,A,O,�A) if and only if (A,O) is a solution to
the relaxed abduction problem RAP = (T ,A,O,�A,�O) for an arbitrary order
�O that is anti-monotone for set inclusion.

Proof. Assume A solves PAP. Then T ∪ A is consistent, T ∪ A |= O, and A
is �A-minimal. As �O is anti-monotone for set inclusion O is naturally �O-
minimal; (A,O) is therefore �-minimal and thus solves RAP.
Conversely if (A,O) solves RAP then T ∪A is consistent, T ∪A |= O, and (A,O)
is �-minimal. Assume A′ ≺A A s. t. A′ ⊆ A, T ∪ A′ is consistent, T ∪ A′ |= O.
Then (A′,O) ≺ (A,O), contradicting �-minimality of (A,O). ut
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Conservativeness states that, under natural conditions, relaxed abduction
is guaranteed to reproduce all (if any) solutions of the corresponding standard
abduction problem. Since �A and �O will typically represent competing opti-
mization objectives, it is convenient to treat relaxed abduction as a bi-criterion
optimization problem. �-minimal solutions then correspond to Pareto-optimal
points in the space of all combinations (A,O) meeting the logical requirements
of a solution (consistency and entailment) as shown next.

Proposition 2 (Pareto-optimality of RAP). Let RAP = (T ,A,O,�A,�O)
be a relaxed abduction problem. (A∗, O∗) is a solution to RAP if and only if it
is a Pareto-optimal element (subject to �A and �O) of the candidate space
{(A,O) ∈ P(A)× P(O) | T ∪A |= O ∧ T ∪A 6|= ⊥}.

Proof. If (A∗, O∗) solves RAP, then T ∪ A∗ is consistent and T ∪ A∗ |= O∗

holds. (A∗, O∗) is thus an element of the explanation space (ES), furthermore
(A∗, O∗) must be �-minimal. Now assume (A∗, O∗) is not Pareto-optimal for
ES, and let (A′, O′) ∈ ES such that (w. l. o. g.) A′ ≺A A∗ and O′ �O O∗. Then
(A′, O′) ≺ (A∗, O∗), contradicting �-minimality of (A∗,O∗). Thus, (A∗, O∗) is a
Pareto-optimal element of the explanation space.
Analogously, let (A′, O′) be a Pareto-optimal element of ES. To show that the
tuple is �-minimal, let (A∗, O∗) be a solution to RAP such that (A∗, O∗) ≺
(A′, O′). Then w. l. o. g. A∗≺AA′ and O∗�O O′, contradicting Pareto-optimality
of (A′, O′). Conclusively, (A′, O′) must be �-minimal and therefore solves RAP.

ut

The next section presents an approach to solving relaxed abduction for EL+

that explicitly addresses the bi-criterial nature of the problem.

3 Solving Relaxed Abduction for EL+

The description logic EL+ is a member of the EL family of lightweight DLs for
which subsumption can be tested in PTime [1]. EL+ concept descriptions are
defined by C ::= > | A | C u C | ∃r.C (for A ∈ NC, r ∈ NR a basic concept /
role name); EL+ axioms are either concept inclusion axioms C uD or role inclu-
sion axioms r1◦· · ·◦rk v r (C,D concept descriptions, r, r1, . . . , rk ∈ NR, k ≥ 1).
Since any EL+ TBox can be normalized with only a linear increase in size, we can
assume w. l. o. g. that all axioms are of one of the following forms (NF1)A1 v B,
(NF2)A1 u A2 v B, (NF3)A1 v ∃r.B, (NF4) ∃r.A2 v B, (NF5) r1 v s, and
(NF6) r1 ◦ r2 v s (for A1, A2, B ∈ N>C = NC ∪ {>} and r1, r2, s ∈ NR). In ad-
dition to standard refutation-based tableau reasoning, the EL family allows for
a completion-based reasoning scheme that explicitly derives valid subsumptions
using a set of rules in the style of Gentzen’s sequent calculus. The rules are
depicted in Fig. 1, the graph-structure created by applying them to derive sub-
sumptions provides the basis for our approach as shown in the next subsection.

In contrast to other work such as [3, 5] where observations and abducibles
are represented by means of named concepts, we assume that both A and O are
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A v A1(CR1) [A1 v B ∈ T ]
A v B

A v A1 A v A2(CR2) [A1 uA2 v B ∈ T ]
A v B

A v A1(CR3) [A1 v ∃r.B ∈ T ]
A v ∃r.B

A v ∃r.A1 A1 v A2(CR4) [∃r.A2 v B ∈ T ]
A v B

A v ∃r1.B(CR5) [r1 v s ∈ T ]
A v ∃s.B

A v ∃r1.A1 A1 v ∃r2.B(CR6) [r1 ◦ r2 v s ∈ T ]
A v ∃s.B

(IR1)
A v A

(IR2)
A v >

Fig. 1. Completion rules for EL+

sets of DL axioms just like T . In our experience the axiom-oriented represen-
tation provides greater flexibility and information reuse as well as being easier
to understand for non-expert users; we furthermore conjecture without formal
proof that the concept-based definition is subsumed by the axiom-based one.3

3.1 From Completion Rules to Hypergraphs

Since the rules shown in Fig. 1 constitute a sound and complete proof system
for EL+, any normalized axiom set can be represented equivalently as a hy-
pergraph whose vertices are all axioms of type (NF1) and (NF3) over the con-
cept and role names used in the axiom set (corresponding to all statements
admissible as premise or conclusion in a derivation step). The hyperedges are in-
duced by instantiations of the rules (CR1)-(CR6); for example an instantiation of
(CR4) that derives C v F from C v ∃r.D and D v E using the axiom ∃r.E v F
induces a hyperedge e = (T (e), h(e), w(e)) with T (e) = {C v ∃r.D,D v E},
h(e) = C v F , and w(e) = ∃r.E v F .

This correspondence can be extended to relaxed abduction problems as fol-
lows: Both T and A contain arbitrary EL+ normal form axioms that can justify
3 First observe that T |= A1u· · ·uAn v O as required in [3] straightforwardly implies
{> v A1, . . . ,> v Ak} ∪ T |= > v O, i. e. a special case of our definition. Concept
abduction and contraction introduced in [5] can conceptually be seen as abduction
problems in the line of [3] with additional limitations on the solution A (namely
A = {C, H} in the former and A = {K, D} in the latter case).
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single derivation steps represented by a hyperedge (to simplify presentation we
assume w. l. o. g. that A∩O = ∅). Elements from O on the other hand represent
information to be justified (i. e. derived), they therefore correspond to vertices of
the hypergraph. This leads to the requirement that axioms in O may be of type
(NF1) and (NF3) only – this restriction is however negligible in practice since
(NF2)- and (NF4)-axioms can be translated into a (NF1)-axiom by introducing
a new concept name, and role inclusion axioms are not required for expressing
observations about domain objects. To keep track of required assumptions and
explained observations, the hyperedges are labelled according to these criteria.
This intuition is formalized in the next definition.

Definition 4 (Induced hypergraph HRAP). Let RAP = (T ,A,O,�A,�O)
be a relaxed abduction problem. The weighted hypergraph HRAP = (V,E) induced
by RAP is defined by V = {(A v B), (A v ∃r.B) | A,B ∈ N>C , r ∈ NR} where
V> = {(A,A), (A,>) | A ∈ N>C } ⊆ V denotes the set of terminal states, and E
the set of all hyperedges e = (T (e), h(e), w(e)) s. t. there is an axiom ax ∈ T ∪A
justifying the derivation of h(e) ∈ V from T (e) ⊆ V due to one of (CR1)-(CR6).
The edge weight w(e) = (A,O) is defined by

A =

{
{ax} if ax ∈ A,
∅ otherwise

, O =

{
{h(e)} if h(e) ∈ O,
∅ otherwise

.

Note that the size ofHRAP is bounded polynomially in |NC| and |NR|. Check-
ing whether a concept inclusion D v E (C v ∃r.D) is derivable corresponds to
checking if in the graph there exists a hyperpath from V> to the vertex D v E
(C v ∃r.D). Intuitively, there is a hyperpath from X to t if there is a hyperedge
connecting some set of nodes Y to t, and each yi ∈ Y is reachable from X via a
hyperpath; Def. 5 formalizes this intuitive picture.

Definition 5 (Hyperpath). pX ,t = (VX ,t , EX ,t) is a hyperpath in H = (V,E)
from X to t if and only if (i) t ∈ X and pX ,t = ({t}, ∅), or (ii) there is an edge
e ∈ E such that h(e) = t, T (e) = {y1, . . . , yk}, pX ,yi

are hyperpaths from X to
yi , V ⊇ VX ,t = {t} ∪

⋃
yi∈T (e) VX ,yi

, and E ⊇ EX ,t = {e} ∪
⋃

yi∈T (e)EX ,yi
.

3.2 Hyperpath Search for Relaxed Abduction

This section presents an algorithm for solving a relaxed abduction problemRAP
by determining bi-criterion shortest hyperpaths. The graph algorithm extends
a label-correcting algorithm for finding bi-criterion shortest paths in graphs,
which is one of the most efficient algorithms known for this problem [14]. It
compactly represents the graph using two lists S and R as proposed in [1], the
entries are however extended with labels encoding the Pareto-optimal paths to
the vertex found so far, and changes are propagated along the weighted edges
using two operators called meet (⊗) and join (⊕). When saturation has ter-
minated, the labels of all �-minimal paths in HRAP are collected in the set
MP (HRAP) :=

⋃
v∈V label(v). Algorithm 1 depicts the label propagation algo-

rithm restricted to rule (CR4) only due to space limitations. Note that while
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the order of propagations is irrelevant for correctness, it may have a significant
effect on the number of candidates generated: Finding near-optimal solutions
early leads to many suboptimal solutions being dominated and therefore not
propagated further. As a heuristic to improve performance, we therefore suggest
to exhaustively apply T -propagations first, and introduce assumptions only if
no other propagation is possible.

Algorithm 1: Label correcting construction of HRAP
Data : RAP = (T ,A,O,�A,�O), a relaxed abduction problem over N>C and

NR.
Result : HRAP , the induced hypergraph.

// initialization

1 foreach r ∈ NR do
2 R (r) ← ∅;
3 foreach C ∈ N>C do
4 S (C) ← {> : {(∅, ∅)}, C : {(∅, ∅)}};

// propagation

5 repeat
6 changed ← false;
7 foreach ax ∈ T ∪ A do
8 else if ax = ∃r.A2 v B then // CR4

9 foreach A1 ∈ N>C s. t. S(A1) 3 A2 : LA1,A2
do

10 foreach A ∈ N>C s. t. R(r) 3 (A, A1) : LA,r,A1
do

11 L ← ∅;
12 if S(A) 3 B : LA,B then L ← LA,B;
13 L∗ ← join(L, meet(LA1,A2

, LA,r,A1
, ax, A v B));

14 if L∗ 6= L then
15 S(A) ← (S(A) \ {B : LA,B}) ∪ {B : L∗};
16 changed ← true;

17 until changed = false;

Proposition 3 (Correctness). The set of all solutions to a relaxed abduc-
tion problem RAP = (T ,A,O,�A,�O) is given by the �-minimal closure of
MP(HRAP) under component-wise union (A,O)] (A′, O′) := (A∪A′, O ∪O′).

Proof. Due to space limitations we can only present an outline of the proof here.
Following the argumentation in [13, 8], it is clear that hyperpaths in HRAP
starting in V> do indeed represent derivations, and that labels constructed from
the hyperpaths can be used to encode relevant pieces of information used during
that derivation. By Prop. 2, it then suffices to show that the proposed algorithm
correctly determines the labels of all Pareto-optimal paths in HRAP starting in



8 Relaxed Abduction for Incomplete Models

Function meet(L1, L2, just, concl)
Input : L1, L2, two label sets; just, concl, two normal form axioms.
Output : The label set produced by the meet-operator ⊗.

1 result ← {(A1 ∪A2, O1 ∪O2) | (A1, O1) ∈ L1, (A2, O2) ∈ L2};
2 if just ∈ A then result ← {(A ∪ {just}, O) | (A, O) ∈ result};
3 if concl ∈ O then result ← {(A, O ∪ {concl}) | (A, O) ∈ result};
4 return result;

Function join(L1, L2)
Input : L1, L2, two label sets.
Output : The label set produced by the join-operator ⊕.

1 result ← L1 ∪ L2;
2 result ← remove-dominated(result, �A, �O);
3 return result;

V>. This can be proven inductively based on the correctness of the operators ⊕
and ⊗, which can easily be established in a case-by-case analysis. The terminal
closure of

⋃
v∈V label(v) under component-wise union is based on the intuition

that, having proved two statements a and b, we can obviously prove a ∧ b by
joining the two proofs (corresponding to the ⊗ operator). Graphically, this can
be seen as adding a dedicated vertex > such that any other v ∈ V is connected
to > by a hyperedge ({v},>, {∅, ∅}), and determining the label of this node that
intuitively represents anything that can be derived at all. ut

Since the node labels may grow exponentially in the size of A and O for
general preference orders such as set inclusion, it is worthwhile investigating
the benefit of our method as compared to the following simple brute-force ap-
proach: Iterating over all pairs (A,O) ∈ P(A) × P(O), collect all (A,O) such
that T ∪ A |= O holds and finally drop all �-dominated tuples among them.
This approach obviously requires 2|A|+|O| entailment tests, each set passing this
test is consequently tested for �-minimality. We argue that the our approach is
superior to the brute-force method due to three aspects:

1. In contrast to the uninformed search outlined above, the approach proposed
in this paper realizes an informed search as it does not generate all possible
(A,O)-pairs haphazardly but only those for which the property T ∪A |= O
actually holds, without requiring any additional entailment tests. The net
effect of this property depends on the model T as well as on A and O;
problems having only few solutions at all will obviously benefit most.

2. Dropping �-dominated labels for �O and �A being (anti-)monotone for set
inclusion reduces the worst-case size of node labels from by at least a factor of
O(
√
|A| · |O|). This can be justified as follows: Fixing a set A∗ ⊆ A, the sets

Oi ⊆ O that constitute the (non-dominated) label entries (A∗, Oi) must form
an antichain w. r. t. set inclusion. The maximum size of such an antichain is
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given by
( |O|
b|O|/2c

)
according to Sperner’s theorem [15], and can be bounded

by 2|O|/
√
π/2 · |O| using Stirling’s approximation.4 An analogous argument

holds for fixed O∗; the size of the cross product can therefore be bounded
by O((2|A|/

√
|A|) · (2|O|/

√
|O|)), resulting in the factor stated above.

3. In addition to the strict upper bound to the size of labels provided by
the preceding line of argumentation, we can also determine the expected
number of non-dominated paths to a state as follows: We assume two ar-
bitrary orders over the elements of A and O such that any subset can be
encoded straightforwardly as a binary vector of length |A| (resp. |O|). Fix-
ing A∗ ⊆ A, an estimate of the expected number of label entries (A∗, Oi)
is given by the expected number A(n, l) of maximal (0, 1)-vectors of length
l = |O| among a set of k distinct such vectors chosen uniformly at random.
For our estimation, we let k := 2|O| to get an upper bound though the
actual number is expected to be less (c. f. aspect 1). Adapting the tech-
nique used in [2], A(n, l) can be expressed by the recurrence A(n, l) ≤
dn

2 e ·
A(n,l−1)

n + dn
2 e ·

A(dn/2e,l−1)
dn/2e ≈ 1

2 · A(n, l − 1) + A(n/2, l − 1).5 As-
suming n ≥ 2l−1 , the recursion is limited only by l and terminates with the
terms A(n, 1) = A(n1/(l−1), 1) = 1 at depth l − 1. An upper bound is thus
given by A(n, l) ≤ A′(l) = A′(l − 1) + 1

2 · A(l − 1) = 3
2 · A(l − 1) = ( 3

2 )l−1 ;
the expected label size is thus O(1.5|A|+|O|).

Other choices for �A and �O can lead to more substantial savings; since
the preference orders are used as a pruning criterion during solution generation
this may however turn the approach into an approximate one. For instance if
the assumption and observation sets are not compared by set inclusion but by
cardinality, the maximum label size is reduced to |A| · |O| – dependent on the
order of rule application the algorithm may however fail to find the optimal
solutions. In a more complex setting, assigning numerical weights to observations
and abducibles allows to drop only solutions that are significantly worse than
others, or to compute bounds on the maximum score a partial solution may still
achieve, and use this value as a pruning criterion.

4 For m → ∞ it holds that
`
2m
m

´
∼ 4m

√
π·m . Letting m := bn

2
c, this yields the estimate`

n
bn2 c

´
∼ 4

b n
2
c

√
π·bn2 c

≈ 4
n
2√
π·n2

=
2n

√
π
2 ·n

.

5 This recurrence can be understood as follows: Assume the vectors are arranged in
a (n× l)-matrix, sorted by the first component. A randomly chosen vector v starts
with 1 or 0 with probability 0.5 each. In the former case, v cannot be dominated by
any vector starting with a 0, i. e. the ”lower half” of the table is ruled out instantly,
and its probability of being dominated by another vector starting with 1 is given
by the expected number of maxima among the remaining dn/2e vectors divided by
their number, taken together v is maximal with probability A(dn/2e, l − 1)/dn/2e.
If v starts with 0, we can similarly determine its probability of being maximal to be
A(n, l−1)/n. Summing up these probabilities and and multiplying the result by the
number n of original vectors yields the expected number of maxima given above.
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4 Related Work

While abductive reasoning naturally addresses the problem of missing observa-
tions, there are to the authors’ best knowledge no other approaches providing a
formally sound solution to logic-based abduction with incomplete models.

The idea of considering abduction as a multi-criteria optimization problem
is also central to [10], where multi-criteria decision making techniques are em-
ployed to red-cell antibody identification in blood samples. The task is solved
using domain-specific operators for combining entries in tables representing the
hypotheses. Being an instance of the set-cover approach to abduction, the pro-
posed method does however not address the problem of hypotheses generation,
and requires a simple tabular mapping from hypotheses to effects. In the context
of abductive (or diagnostic) inference in Bayesian networks, [11] distinguishes be-
tween most informative and most simple explanations which correspond to the
�O-minimal and the �A-minimal solution in our approach, respectively. How-
ever, intermediary Pareto-optimal combinations are not considered in their ap-
proach which is furthermore limited to propositional Bayes nets. The algorithm
presented in [4] for ABox abduction resembles our approach as it determines
alternative explanation sets with varying expressive power, keeping track of the
assumptions required for each of them. Unlike the approach presented in this pa-
per, the work by Castano et al. requires special handcrafted models combining
forward- and backward-chaining rules, and uses an iterative approach to handle
models expressed in the more expressive description logic ALCQ.

[13, 8] use an automaton which is structurally similar to the hypergraph
HRAP introduced in Def. 4 to generate a formula encoding all solutions to a
pinpointing respectively a (standard) abduction problem. In contrast to our ap-
proach these works guarantee polynomial runtime for solution generation, they
do however impose strong restrictions on the combination function, and are
inherently limited to uni-criterion problems. Assumption-based Truth Mainte-
nance Systems (ATMSs) [6] impose fewer restrictions on edge weights as com-
pared to the previously mentioned approaches, and similarly to our approach
labels containing information on required assumptions are propagated between
vertices in a hypergraph structure. We are however not aware of any extension
to ATMSs allowing for a tradeoff between assumptions and explanatory power,
nor do ATMSs consider any order over labels other than implication.

5 Conclusions and Outlook

We have introduced relaxed abduction, a novel non-standard reasoning task for
description logics. Relaxed abduction extends logic-based abduction to a gen-
eral and formally sound framework for interpreting spurious information w. r. t.
incomplete models. We have presented an algorithm for relaxed abduction over
EL+ knowledge bases based on the notion of Pareto-optimal hyperpaths in the
derivation graph, and motivated its superiority to a straightforward enumeration
approach despite the inherent exponential growth of node labels. The proposed
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algorithm is straightforwardly extensible to other DLs for which subsumption
can be decided by completion such as EL++ which supports nominals and thus
ABox abduction. The very general notion of relaxed abduction allows for sev-
eral interesting specializations resulting from different choices for �A and �O:
Approximate solutions can for example be generated very efficiently (i. e. with
linear label size) if we use set cardinality as a dominance criterion. More elabo-
rate schemes based on weights assigned to the axioms allow for early and even
lossless pruning of suboptimal partial solutions while also reducing label sizes.
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