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Abstract. In order to meet usability requirements, most logic-based applications
provide explanation facilities for reasoning services. This holds also for DLs,
where research focused on the explanation of both TBox reasoning and, more
recently, query answering. Besides explaining the presence of a tuple in a query
answer, it is important to explain also why a given tuple is missing. We address
this latter problem for (conjunctive) query answering over DL-Lite ontologies,
by adopting abductive reasoning, that is, we look for additions to the ABox that
force a given tuple to be in the result. As reasoning tasks, we consider existence
and recognition of an explanation, and relevance and necessity of a certain asser-
tion for an explanation. We characterize the computational complexity of these
problems for subset minimal and cardinality minimal solutions.

1 Introduction

Query answering over ontologies formulated in Description Logics (DLs) has received
considerable attention both in research and industry. Given an ontology, users typically
pose queries over the conceptual schema and get answers that take into account the con-
straints specified at the conceptual level. Many efforts have concentrated on lightweight
description logics. For instance, DL-LiteA has been tailored for query answering over
large data sets [7]. For this reason, expressive power is traded in favor of a better com-
putational behavior in terms of data-complexity. In fact, conjunctive query answering in
DL-LiteA enjoys FOL-rewritability, i.e., it can be reduced to the problem of evaluating
a suitably constructed FOL query over a database instance.

In order to meet usability requirements set by domain users, most logic-based ap-
plications provide explanation algorithms for reasoning services. This holds also for
DLs, where research focused on the explanation of both TBox reasoning [12,6,14,3]
and, more recently, query answering [5]. In addition, the latter paper advocates the
importance of tackling the problem of explaining the absence of a tuple in the an-
swers to a query over an ontology. This problem stems from the database community,
where it has been solved in the context of databases extended with provenance infor-
mation [9]. We address this problem by considering explanations for the absence of a
? This work was partially supported by the Austrian Science Fund (FWF) grant P20840.
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tuple in the context of query answering over DL-LiteA ontologies. We adopt abductive
reasoning [10,11], that is, we consider which additions need to be made to the ABox to
force the given tuple to be in the result. More precisely, given a TBox T , an ABox A,
and a query q, an explanation for a given tuple t is a new ABox U such that the answer
to q over 〈T ,A ∪ U〉 contains t. An important aspect in explanations is to provide the
user with solutions that are simple to understand and free of redundancy, hence as small
as possible. To address this requirement, we study various restrictions on solutions, in
particular, we focus on subset minimal and cardinality minimal ones. We consider stan-
dard decision problems associated to logic-based abduction: (i) existence of an expla-
nation, (ii) recognition of a given ABox as being an explanation, and (iii) relevance and
(iv) necessity of an ABox assertion, i.e., whether it occurs in some or all explanations.
After motivating such problems and formalizing them, we provide algorithms to solve
them and a precise characterization of their computational complexity for DL-LiteA.
The complexity results for the various reasoning tasks are summarized in Table 1.

2 Preliminaries

DL-LiteA. DL-LiteA is a member of the DL-Lite family of DLs [7], which have been
designed for dealing efficiently with large amounts of extensional information. In DL-
LiteA, concept expressionsC, denoting sets of objects, and role expressionsR, denoting
binary relations between objects, are formed as follows:

C −→ A | ∃R, R −→ P | P−.

where A denotes an atomic concept and P an atomic role3. In a DL-LiteA ontology
O = 〈T ,A〉, the TBox T consists of axioms of the form

C1 v C2,
C1 v ¬C2,

R1 v R2,
R1 v ¬R2,

(funct R),

and the ABox A consists of assertions of the form A(c) and R(c, c′), where c, c′ are
constants (or, individuals) from a countably infinite set C. An interpretation is a pair
I = 〈∆I , ·I〉, where ∆I is a non-empty domain, and the interpretation function ·I is
defined as usual. We adopt here the unique name assumption (UNA), i.e., cI1 6= cI2 for
all c1, c2 ∈ C with c1 6= c2. We refer to [7] for more details.

Conjunctive Queries. Let V be a countably infinite set of variables. Expressions A(t)
and P (t, t′) are called atoms, where t, t′ ∈ V ∪ C. A conjunctive query (CQ) q is
an expression q(x1, . . . , xn) ← a1, . . . , am, where each ai, 1 ≤ i ≤ m, is an atom.
Let V(q) denote the set of variables occurring in q, C(q) the set of constants in q,
and let at(q) =

⋃
1≤i≤m{ai}. A match for q in an interpretation I is a mapping π :

V(q) ∪ C(q) → ∆I such that π is the identity on constants, π(t) ∈ AI for each

3 We ignore here the distinction between data values and objects, since it is immaterial for our
results. As a consequence, we do not consider value domains and attributes, which are present
in DL-LiteA.
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A(t) ∈ at(q), and 〈π(t), π(t′)〉 ∈ P I for each P (t, t′) ∈ at(q). The tuple 〈x1, . . . , xn〉
is the tuple of answer variables of q. The answer to q over I, denoted ans(q, I), is the
set of all n-tuples 〈d1, . . . , dn〉 ∈ Cn such that 〈dI1 , . . . , dIn〉 = 〈π(x1), . . . , π(xn)〉 for
some match π for q in I. A union of conjunctive queries (UCQ) is a set of CQs with
the same answer variable tuple. For a UCQ q, we let ans(q, I) =

⋃
q′∈q ans(q

′, I). The
certain answer to a CQ or a UCQ q over O is defined as cert(q,O) = {c ∈ Cn | c ∈
ans(q, I) for each model I of O}.

3 Explaining Negative Query Answers

We now define the problem considered in this paper:

Definition 1. LetO = 〈T ,A〉 be an ontology, q a UCQ, and c a tuple of constants. We
call P = 〈O, q, c〉 a query abduction problem (QAP). A solution to P (or an explana-
tion for P) is any ABox U such that the ontology O′ = 〈T ,A ∪ U〉 is consistent and
c ∈ cert(q,O′). The set of all explanations for P is denoted expl(P).

If c /∈ cert(q,O), then we call c a negative answer to q over O. Note that a query
over the ontology can have a negative answer only if the ontology is satisfiable. Dif-
ferently, if the ontology is unsatisfiable then the QAP P does not have any solution.
In the following, we will examine various restrictions to expl(P) to reduce redundancy
in explanations. This is achieved by the introduction of a preference relation among
explanations. This relation is reflexive and transitive, i.e., we have a pre-order among
solutions.

Definition 2. Assume a QAP P . Let � denote a pre-order on the set expl(P) of solu-
tions. We write U ≺ U ′ if U � U ′ and U ′ � U . The preferred explanations expl�(P) of
a QAP P under the pre-order � are defined as follows: expl�(P) = {U ∈ expl(P) |
there is no U ′ ∈ expl(P) s.t. U ′ ≺ U }, i.e., expl�(P) contains all the �-explanations
that are minimal under �.

Two preference orders are considered here: the subset-minimality order, denoted by
⊆, and the minimum explanation size order, denoted by ≤. The latter order is defined
by U ≤ U ′ iff |U| ≤ |U ′|. Observe that expl≤(P) ⊆ expl⊆(P).

We define now four decision problems related to (minimal) explanations, which are
parametric w.r.t. the chosen preference order �. Given a QAP P:

– �-EXISTENCE: Does there exist a �-explanation for P?
– �-RECOGNITION: Is a set U of ABox assertions a �-explanation for P?
– �-RELEVANCE: Does an assertion α occur in some �-explanation for P?
– �-NECESSITY: Does an assertion α occur in all �-explanations for P?

In the following, whenever no preference is applied (i.e., when � is the identity) we
omit to write � in front of the problem’s names. We provide an example, in which we
highlight the consequences of choosing among the various orderings.
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Table 1: Summary of main complexity results (completeness)
� �-EXISTENCE �-RECOGNITION �-RELEVANCE �-NECESSITY

none PTIME (4.1) NP PTIME (4.3) PTIME (4.2)

≤ PTIME DP PNP
‖ PNP

‖ (4.2)

⊆ PTIME DP ΣP
2 (4.3) PTIME (4.2)

Example 1. Let O = 〈T ,A〉 be an ontology describing a university domain, where T
is

PostGrad v Student ,
UnderGrad v Student ,
UnderGrad v ¬PostGrad ,
PartTime v UnderGrad .

Tutor v Professor ,
∃hasTutor v PartTime,
∃hasTutor− v Tutor ,

Advanced v Course,
∃teaches v Professor ,
∃teaches− v Course,

That is, there are two different kinds of students, PostGrad and UnderGrad . More-
over, PartTime students are tutored by Tutors, who are particular professors. Addi-
tionally, the university offers some Advanced courses. Let the ABox A consist of the
assertions teaches(rob,SWT ), hasTutor(peter , rob). Now, assume that a user is in-
terested in finding all those who both teach an advanced course and tutor a student.
Then, she would write the query

q(x)← teaches(x, y),Advanced(y), hasTutor(z, x).

Moreover, she may expect rob to be part of the result, i.e., rob ∈ cert(q,O),
but this is not the case. Intuitively, rob satisfies all the constraints imposed by the
query, except that the SWT course is not known to be Advanced . One can easily
see that {teaches(rob,TOC ),Advanced(TOC ), hasTutor(john, rob)} is an expla-
nation, {teaches(rob,ALG),Advanced(ALG)} is a ⊆-minimal explanation, while
{Advanced(SWT )} is a ≤-minimal explanation.

In the next section, the complexity of the four main problems is studied in the light
of the different preference relations.

4 Complexity of Explanations

Table 1 provides an overview of our complexity results. Recall that the class ΣP
2 is

a member of the Polynomial Hierarchy [13]; it is the class of all decision problems
solvable in non-deterministic polynomial time using an NP oracle. Moreover, the class
PNP
‖ contains all the decision problems that can be solved in polynomial time with an

NP oracle, where all oracle calls must be first prepared and then issued in parallel. The
class DP contains all problems that, considered as languages, can be characterized as
the intersection of a language in NP and a language in CONP [13]. Note that: PTIME ⊆
NP ⊆ DP ⊆ PNP

‖ ⊆ ΣP
2 is believed to be a strict hierarchy of inclusions and here we

make such an assumption.
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Our results can be explained as follows. We show in the next section that EX-
ISTENCE can be reduced to the PTIME-complete satisfiability problem for DL-LiteA
without the UNA [1], which justifies our PTIME upper bound. This result can then be
used to characterize the complexity of RELEVANCE, NECESSITY, and ⊆-NECESSITY.
≤-RELEVANCE and ≤-NECESSITY are harder. The reason being that in order to solve
these problems one has to compute first the minimal size of a solution and, then, inspect
all the solutions of that size. Additionally, there is another increase in complexity when
dealing with ⊆-RELEVANCE. The intuition is that there is an exponential number of
candidate solutions to examine and for each of them one has to check that none of its
subsets is itself a solution, which requires a CONP computation. Due to space limita-
tions, the results on �-RECOGNITION are not detailed in this paper (see [8] for more
details). The intuition for the NP bound for RECOGNITION is that one needs simply to
check consistency and perform query evaluation to solve the problem. In case a prefer-
ence order is in place, one has to check minimality as well, which is a CONP check for
⊆- and ≤-minimal explanations that leads to completeness for DP.

4.1 Complexity of �-EXISTENCE

For �-EXISTENCE note first that the existence of an explanation for P implies the
existence of an explanation under the ⊆ and ≤ orderings. Thus, we only consider EX-
ISTENCE. Our first task is to show that we can restrict ourselves to explanations built
from the original signature of the input QAP plus a small number of fresh constants.

Proposition 1. If P = 〈O, q, c〉 has a solution, then P has a solution U ′ with con-
cepts, roles, and attributes only from O and at most m = maxqi∈q|at(qi)| fresh ABox
individuals.

Proof. Assume an arbitrary solution U toP . Given the consistency ofO′ = 〈T ,A ∪ U〉,
it follows that there exists a model I of O′ under the UNA. W.l.o.g. we assume that
∆I = C with cI = c for each c ∈ C. Additionally, the interpretation I admits a match
π for some qi(x) ∈ q, such that π(x) = c. Let U ′ = {A(o) | A(t) ∈ at(qi) and π(t) =
o} ∪ {R(o, o′) | R(t, t′) ∈ at(qi) and π(t) = o and π(t′) = o′}. Observe that U ′
has no more individuals than qi has variables. It remains to see that U ′ is a solution.
Clearly the original match π witnesses also c ∈ ans(qi,A ∪ U ′). It remains to see that
O′′ = 〈T ,A ∪ U ′〉 is consistent. But this follows from the fact that I is a model of O′
and that the atoms in U ′ hold in I ut

The above restriction allows us to consider canonical explanations, i.e., explana-
tions resulting from suitable instantiations of the bodies of CQs qi ∈ q. Keeping in
mind that CQs, seen as FOL formulae, are always satisfiable, an explanation does not
exist only if the structure of the query is not compliant with the constraints expressed in
the ontology. That is, for all the interpretations J of q with ans(q,J ) 6= ∅, there is no
model I of O, such that I ∪ J |= O. To check whether a UCQ is compliant with the
ontological constraints, a naïve method is to iteratively go through all the CQs in q and
instantiate them in the ABox. If for none of the CQs we obtain a consistent ontology,
then the query violates some of the constraints imposed at the conceptual level.
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Proposition 2. For DL-LiteA ontologies, EXISTENCE is PTIME-complete.

Proof. (MEMBERSHIP) Note that P = 〈O, q, c〉, with q a UCQ, has a solution iff Pq′ =
〈O, q′, c〉 has a solution for some q′ ∈ q. Hence, it suffices to show the upper bound
for CQs. To this end, we provide a logspace reduction from EXISTENCE to consistency
in DL-LiteA without UNA, which in turn is PTIME-complete [1]. Assume a QAP P =
〈O, q, c〉, where q is a CQ and O = 〈T ,A〉. We argue that P has a solution iff O′ =
〈T ∪ T ′,A ∪ Uq ∪ A′〉 is consistent, where O′ is an ontology obtained from O and
q(c) as follows. The ABox Uq is obtained from at(q(c)) by replacing each variable
x with a fresh individual name ax. The ABox A′ consists of assertions Ao(o) for all
constants o occurring in T , A and Uq , where each Ao is a fresh concept name. The
TBox T ′ consists of axioms Aov¬Ao′ for all pairs o 6= o′ of constants occurring inA
and q(c). We now show that P has a solution iff O′ is consistent.

Assume that P has a solution U . Then, due to consistency of O′′ = (T ,A ∪ U),
there is a model I ofO′′ under the UNA. Additionally, I admits a match π for q(c). Let
I ′ be the extension of I that additionally interprets (i) constants in Uq as aI

′

x = π(x)

for all variables x in q, and (ii) AI
′

o = {oI} for all freshly introduced Ao. It remains
to show that I ′ is a model of O′. Observe that since I is under the UNA, we have that
AI

′

o ∩AI
′

o′ = ∅ for all constant pairs o 6= o′. Thus I ′ satisfies all the disjointness axioms
Ao v ¬Ao′ in T ′. The assertions in A′ are satisfied due to (ii), while the assertions in
Uq due to (i) above.

The other direction of the proof is obvious and we omit it here.
(HARDNESS) Let us reduce consistency in DL-LiteA without UNA to EXISTENCE.

Given O = 〈T ,A〉, we create QAP P = 〈O′, q(), 〈〉〉 simply by encoding the ABox A
in the CQ q by replacing each constant a ∈ A by a distinct variable name xa in q, while
the ontology O′ consists only of the TBox T . ut

4.2 Complexity of (�-)NECESSITY

The existence of an explanation is most of the times not very informative to the user.
In fact, given a negative answer to a query, it is important to delineate the fundamental
reasons leading to the absence of the expected tuple. That is, users would like to know
which assertions occur in all the solutions to a QAP P .

Proposition 3. For DL-LiteA ontologies, the NECESSITY and⊆-NECESSITY problems
are PTIME-complete.

Proof. (MEMBERSHIP) We assume a QAP P = 〈O, q, c〉 with O = 〈T ,A〉, an asser-
tionϕ(t) and consider NECESSITY first. This problem can be reduced to non-EXISTENCE,
which was shown to be in PTIME in the previous section. We buildO′ = 〈T ′,A′〉 such
that ϕ(t) occurs in all explanations for P iff P ′ = 〈O′, q, c〉 has no explanation. We
define O′ by setting A′ = A ∪ {ϕ̄(t)} and T ′ = T ∪ {ϕ̄ v ¬ϕ}, where ϕ̄ is a fresh
predicate name. It is easy to see that if P ′ has no explanation, then either P has no ex-
planation as well, or, all the explanations for P must contain ϕ(t). For ⊆-NECESSITY,
observe that ϕ(t) occurs in all explanation for P iff ϕ(t) occurs in all ⊆-minimal ex-
planations for P . Thus ⊆-NECESSITY can be decided in polynomial time using our
algorithm for NECESSITY.
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(HARDNESS) The lower-bound can be proved through a logspace reduction from
EXISTENCE to non-NECESSITY, that is, deciding whether there exists a solution to a
QAP that does not contain the given assertion. Let P = 〈O, q, c〉 be a QAP with q
a CQ, we build 〈P, α〉 such that P has a solution iff 〈P, α〉 is a negative instance to
NECESSITY. Let α = A(o), for some fresh concept A and constant o not occurring
in P . Now, assume P has a solution U . By Proposition 1, we know that there exists a
solution U ′ to P containing only concept and role names from O. Hence, A(o) 6∈ U ′,
since concept name A is not in the ontology. Therefore, one can conclude that A(o) is
not a necessary assertion to P .

The other direction is straightforward. ut

Let us now show the complexity of necessity under the ≤ preference order.

Theorem 1. For DL-LiteA ontologies, ≤-NECESSITY is PNP
‖ -complete.

Proof. (MEMBERSHIP only, HARDNESS in [8]) Let’s assume a QAP P = 〈O, q, c〉 and
an assertion α. By the use of canonical explanations, we know that the size m of the
largest solution to P corresponds to the size of the largest CQ in q. Observe that (P, α)
is a negative instance of ≤-NECESSITY iff there is an 0 ≤ i ≤ m such that (a) P has
an explanation U with |U| = i and α 6∈ U , and (b) U is ≤-minimal. Thus, we use an
auxiliary problem SIZE-OUT, which is to decide given a tuple 〈P ′, α′, n′〉, where P ′ is
a QAP, α′ is an assertion, and n′ is an integer, whether there exists an explanation U ′
for P ′ such that |U ′| = n′ and α′ 6∈ U ′. Furthermore, the problem NO-SMALLER is to
decide given a tuple 〈P ′, n′〉 of a QAP and an integer whether there is no explanation
U ′ for P ′ such that |U ′| < n′. Observe that SIZE-OUT is in NP, while NO-SMALLER
is in CONP. Take the tuple S = 〈A0, B0, . . . , Am, Bm〉, where (a) Ai = (P, α, i),
for all 0 ≤ i ≤ m, and (b) Bi = (P, i), for all 0 ≤ i ≤ m. Due to the above
observation, α occurs in all ≤-minimal explanations U for P iff for all 0 ≤ i ≤ m, one
of the following holds: (i) Ai is a negative instance of SIZE-OUT, or (ii) Bi is a negative
instance of NO-SMALLER. Note that S can be built in polynomial time in the size of the
input, while the positivity of the instances in S can be decided by making 2m parallel
calls to an NP oracle. Thus we obtain membership in PNP

‖ . ut

4.3 Complexity of �-RELEVANCE

A domain user faced with a negative answer to a query may ask herself whether, the
absence of a certain ABox assertion α in the ontology is related with the lack of the tuple
in the results. That is, she would like to know whether α occurs in some explanation to
QAP P .

Proposition 4. For DL-LiteA ontologies, RELEVANCE is PTIME-complete.

Proof. (MEMBERSHIP) We assume a QAP P = 〈O, q, c〉 with O = 〈T ,A〉 and an
assertion φ(t). We now provide a reduction from RELEVANCE to EXISTENCE. We con-
structO′ = 〈T ,A′〉, whereA′ = A∪φ(t). Then,P has an explanation U with φ(t) ∈ U
iff there exists an explanation to P ′ = (O′, q, c). This is because, any explanation to
P ′ can be extended by adding φ(t). It is simple to see that any such explanation is an
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explanation to P , as well. Finally, if P ′ does not admit explanations, then φ(t) is a
source of inconsistency in P .

(HARDNESS) Hardness can again be proved with a reduction from EXISTENCE in a
similar way as done in Section 4.2. ut

Let us now tackle the problem of ⊆-RELEVANCE, for which we recall the FOL-
rewritability of query answering in DL-LiteA. Given an ABoxA, letDB(A) be the fol-
lowing interpretation: (i) ∆DB(A) is the set of constants occurring inA, (ii) ADB(A) =
{o ∈ ∆DB(A) | A(o) ∈ A}, for each atomic concept A, and (iii) PDB(A) = {〈o, o′〉 ∈
∆DB(A) | P (o, o′) ∈ A}, for each atomic role P .

Proposition 5 ([7]). Let PerfectRef(q, T ) be the perfect reformulation of q w.r.t. T ,
which is a UCQ obtained by applying the rewrite rules given in [7]. Then, cert(q,O) =⋃

r∈PerfectRef (q,T ) ans(r,DB(A)).

In other words, the certain answers to a UCQ can be computed by rewriting the query
into a FOL query to be evaluated over the ABox.

Theorem 2. For DL-LiteA ontologies, ⊆-RELEVANCE is ΣP
2 -complete.

Proof. (MEMBERSHIP) The membership inΣP
2 is clear from Algorithm 1, which works

as follows. An explanation U containing φ(t) is non-deterministically computed by
guessing an instantiation of a subquery in PerfectRef(q(c), T ), where Anon is a set of
fresh ABox individuals (see Proposition 1). Let HAS-SUBEXPL solve the problem of
deciding whether a solution U has a subset which is itself an explanation. The prob-
lem can be easily proved to be in NP. Then, the algorithm checks the complement
of HAS-SUBEXPL in order to assure that none of the subsets of U is itself an expla-
nation, from which it follows that φ(t) is ⊆-relevant. Checking the complement of
HAS-SUBEXPL requires the power of a CONP machine. For this reason, the algorithm
is solvable in non-deterministic polynomial time by a TM with an NP oracle.

(HARDNESS) We prove it by a reduction from theΣP
2 -complete problem co-CERT3COL

[15] (see also [4]). An instance of co-CERT3COL is given by a graph G = (V,E) with
vertices V = {0, . . . , n − 1} such that every edge is labeled with a disjunction of
two literals over the Boolean variables {p(i,j) | i, j < n}. G is a positive instance if
there is a truth value assignment t to the Boolean variables such that the graph t(G)

Algorithm 1
INPUT: QAP P = 〈q,O, c〉 and ABox assertion φ(t)
OUTPUT: yes iff φ(t) is relevant to P
1: Guess qi ∈ {q1, . . . , qn} = q
2: Guess the derivation of one rewriting r(c) in PerfectRef(qi(c), T )
3: Guess a set of atoms U ⊆ at(r)
4: Guess a mapping π from V(q) to constants in DB(A) and Anon
5: Check that (T ,A ∪ U) 6|= ⊥, where U is the instantiation of U through π.
6: Check that φ(t) ∈ U and π is a match for r(c) over DB(A ∪ U)
7: Check that HAS-SUBEXPL (P,U) = no.
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obtained from G by including only those edges whose label evaluates to true under t
is not 3-colorable. Assume an instance G of co-CERT3COL. We show how to build in
polynomial time a QAP PG = 〈(TG,AG), qG, cG〉 and an ABox assertion αG such
that: G is a positive instance of co-CERT3COL iff αG is ⊆-relevant for PG. We use
an empty TBox and a Boolean query, thus TG = ∅ and cG = 〈〉. The query qG is
a UCQ qG = qe1 ∪ · · · ∪ qek ∪ q′, where {e1, . . . , ek} = E, each qei is an atomic
query qei() ← Wei(x, y), and q′ is defined as follows. Assume B = {t, f} to be the
set of truth values. The query q′ has the following atoms for each edge e = (i, j) in E:
(a) B(xi), Re(xi, ye), Re(ye, xj), B(xj), and (b) P (ye, zpi

), Api
(zpi

), Wpi
(zpi

, z′pi
),

where pi ∈ {p1, p2} and p1, p2 are the first and the second proposition in the labeling
of e, respectively. The query q′ simply incorporates G together with the disjunctions on
the edges. Observe that if two edges have the same proposition in their label, then this
will be reflected in q′ by some shared variables zpi

.

To build AG we use individuals cp and c¬p for the truth value of proposition p.
Intuitively, the truth value of p will be determined by either Ap(cp) or Ap(c¬p) being
in the update. Assume a tuple t = 〈e, v1, v2, a, b〉, where e ∈ E, {v1, v2} ⊆ B, and a, b
are individuals. Let p1, p2 be the first and the second propositions of e. For i ∈ {1, 2}
and vi = t , let li = pi if pi is positive and li = ¬pi otherwise. Similarly, for i ∈ {1, 2}
and vi = f , let li = ¬pi if pi is positive and li = pi otherwise. Then, the ABox A(t)
consists of the assertions Re(a, dT ), Re(dT , b), P (dT , cl1) and P (dT , cl2) depending
on the boolean values in input.

The ABox AG is the union of the following ABoxes:

(A1) A(〈e, v, v′, ai, aj〉) for all e ∈ E, v, v′ ∈ B, 0 ≤ i, j ≤ 2, and i 6= j;
(A2) A(〈e, f, f, ai, ai〉) for all e ∈ E, and 0 ≤ i ≤ 2;
(A3) A(〈e, v, v′, b, b〉) for all e ∈ E, v, v′ ∈ B;
(A4) The ABox {B(a0), B(a1), B(a2)};
(A5) The assertions Wp(cp, c¬p) and Wp(c¬p, cp) for all propositions.

Let αG = B(b). It is not too difficult to see that G is a positive instance of co-
CERT3COL iff there exists an ⊆-explanation U to P such that αG ∈ U . Basically,
definitions (A1)-(A3) encode a triangular structure T in which edges in G that evaluate
to false according to a given truth assignment can be mapped on any edge of T , reflexive
edges included. If an edge of G evaluates to true, then it must be mapped to one of the
non-reflexive edges. This ensures that if G can be mapped to T under truth assignment
t, then t(G) is 3-colorable. Instead, definitions (A4)-(A5) define a cyclic structure C
into which any graph G can be embedded. It has to be noted that the node b is not
asserted to be a member of B, hence qG cannot be mapped there directly with any truth
assignment. We see this more formally next:

“⇒” Suppose there is a truth assignment t such that t(G) is not 3-colorable. Let
U = {B(b)}∪U1, where U1 = {Ap(cp) | t(p) = t}∪{Ap(c¬p) | t(p) = f}. It remains
to argue that U is a ⊆-explanation to P . It is not hard to see that U is an explanation.
Indeed qG matches already in the ABox obtained by point (A3) (hint: since B(b) ∈ U ,
we match qG by mapping all variables of qG to (interpretation of) b). Suppose there is
a smaller update U ′ ⊂ U . Observe that U1 ⊆ U ′. This is because for all propositions p,
the symbolAp does not occur inAG but does occur in qG. Then, U \{B(b)}must be an
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update. If this is the case, then qG can be matched in AG without the ABox from (A3),
i.e. in the triangle part. Then t(G) is 3-colorable, which contradicts the assumption.

“⇐” Let U be a ⊆-minimal explanation containing B(b). Due to the presence of
qe1 ∪ . . . ∪ qek in qG and the assumption, the role Wp cannot occur in U for any
proposition p. Since U is an explanation, by the definition of q′ and (A5) we have
that Ap(cp) ∈ U or Ap(c¬p) ∈ U for all propositions p. Since for any proposition p
we have that Ap occurs in qG with one and only variable zp, we know that exactly one
of Ap(cp) ∈ U and Ap(c¬p) ∈ U holds. Due to the atoms Wp(zp, z

′
p) in qG, we also

have that individuals of the form cp and c¬p are the only ones that can get an Ap label.
Consider the assignment t defined as follows: t(e) = t if Ap(cp) ∈ U , and t(e) = f
if Ap(c¬p) ∈ U . It is not difficult to argue that t(G) is not 3-colorable and thus G is a
positive instance of co-CERT3COL. Indeed, if t(G) was 3-colorable, Q should be map-
pable into the triangle part obtained in (A1)-(A3). Then U \ {B(b)} would be a smaller
update, which would mean a contradiction. ut

Note that the above lower bound holds already for empty TBoxes.

Proposition 6. For DL-LiteA ontologies, ≤-RELEVANCE is PNP
‖ -complete.

Proof. (MEMBERSHIP only, HARDNESS in [8])≤-RELEVANCE can be tackled in a way
similar to ≤-NECESSITY. In fact, the algorithm described in Theorem 1 can be modi-
fied in order to solve this problem. Let SIZE-IN solve the following problem: given a
tuple 〈P, α, n〉, where P is a QAP, α an assertion, and n an integer, decide whether
there exists an explanation U , with |U| = n and α ∈ U . Then, we change the positivity
condition of the ≤-NECESSITY algorithm as follows: α occurs in some ≤-minimal ex-
planations U for P iff for some i, 0 ≤ i ≤ m, it holds that: (i) Ai is a positive instance
of SIZE-IN, and (ii) Bi is a positive instance of NO-SMALLER. It is easy to see that
SIZE-IN is solvable in NP, hence the whole problem is again in PNP

‖ . ut

5 Conclusions

In this paper we have provided the formalization of a new problem, namely the explana-
tion of negative answers to user queries over ontologies. A tuple is said to be a negative
answer, if the user expects it to be part of cert(q,O) but the tuple is actually not. In
our framework, an explanation consists of an ABox that when added to the ontology
leads the negative answer to be returned in the results of the query. We define various
problems that help us in characterizing the complexity of finding explanations, such
as the existence of explanations and relevance/necessity of assertions. We further con-
sider a minimality criterion to be applied over explanations, such as subset-minimal and
minimum-size preference orders. Within this framework, we provide a characterization
of the computational complexity of the various problems for the DL DL-LiteA.

Future work includes studying the application of this framework to other lightweight
description logics, starting with the EL-family. We would also like to investigate the
problem in the case where the ontology signature and the explanation signature may be
different. That is, the signature over which explanations can be constructed is restricted
only to a subset of the ontology signature [2].
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