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Abstract. We study possibilities of combining (fragments) of the light-
weight description logics FL0 and EL, and identify classes of subsump-
tion problems in a combination of EL and Horn-FL0, which can be
checked in PSPACE resp. PTIME. Since FL0 allows universal role re-
strictions and EL allows existential role restrictions, we thus have a
framework where subsumption between expressions including both types
of role restrictions (but for disjoint sets of roles) can be checked in poly-
nomial space or time.

1 Introduction

Description logics [5] are a family of knowledge representation formalisms that
can model the terminological knowledge of a given domain; they are, for instance,
the logical foundation of the W3C language for the Semantic Web. Their most
interesting feature is that they aim at maximizing expressive power while re-
taining decidability. However, with the size of the ontologies appearing in many
applications, decidability alone is not enough because the complexity of the rea-
soning procedures combined with the size of the ontologies makes reasoning too
costly. This consideration triggered the development of lightweight sub-families
of description logics. Among them, we mention EL (which only allows the use of
conjunction and existential role restrictions) [1] and some of its extensions such
as EL+ and EL++ [2, 4, 3]. These logics can model some very interesting domains
sufficiently well to be used widely, for example in the SNOMED ontology [16].
Another lightweight description logic is FL0 (which only allows the use of con-
junction and universal role restrictions). While subsumption without TBoxes in
FL0 is decidable in PTIME, its subsumption problem is in PSPACE for stan-
dard terminologies and EXPTIME for general terminologies [8, 4]. Since some
very interesting forms of knowledge require universal restrictions in order to be
modeled adequately, recent research has identified tractable fragments of FL0,
such as the Horn-FL0 fragment (defined by syntactic restrictions) for which the
subsumption problem is in PTIME [9].

A combination of EL and (fragments of) FL0 is clearly interesting because
of the added expressivity it offers. At the same time, if we allow an unrestricted
combination we lose the lower complexity of the components. In this paper we



Table 1. Constructors and their semantics

Constructor name Syntax Semantics

negation ¬C DI\CI

conjunction C1 ⊓ C2 CI
1 ∩ CI

2

disjunction C1 ⊔ C2 CI
1 ∪ CI

2

existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}
universal restriction ∀r.C {x | ∀y((x, y) ∈ rI → y ∈ CI)}

present a way to combine these description logics such that we can verify sub-
sumption between two mixed concept expressions w.r.t. TBoxes efficiently, and
identify situations in which this can be done in PSPACE, resp. PTIME.

Structure of the Paper. In Sect. 2 we give general definitions and introduce
the description logics ALC, EL and FL0 and their combination. Sect. 3 presents
the algebraic semantics for each logic and their combination. Sect. 4 presents
generalities on local theory extensions and hierarchical reasoning (which we use
in our approach). These methods are used in Sect. 5, where we present pos-
sibilities of hierarchical reasoning in a combination of EL and (fragments of)
FL0.

2 Description Logics

The central notions in description logics are concepts and roles. In any descrip-
tion logic a set NC of concept names and a set NR of roles is assumed to be given.
Complex concepts are defined starting with the concept names in NC , with the
help of a set of concept constructors. The semantics of description logics is de-
fined in terms of interpretations I = (∆I , ·I), where ∆I is a non-empty set, and
the function ·I maps each concept name C ∈ NC to a set CI ⊆ ∆I and each
role name r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . Table 1 shows the con-
structor names used in ALC and their semantics. The extension of ·I to concept
descriptions is inductively defined using the semantics of the constructors.

Terminology. A terminology (TBox, for short) is a finite set of primitive con-
cept definitions of the form C ≡ D, where C is a concept name and D a concept
description; and general concept inclusions (GCI) of the form C ⊑ D, where C

and D are concept descriptions. A TBox which only contains primitive concept
definitions and every concept name is defined at most once is called standard.
(As definitions can be expressed as double inclusions, by TBox (or general TBox)
we will refer to a TBox consisting of general concept inclusions only.) An inter-
pretation I is a model of a TBox T if it satisfies:

– all concept definitions in T , i.e. CI=DI for all definitions C≡D ∈ T ;

– all general concept inclusions in T , i.e. CI⊆DI for every C⊑D ∈ T .



Constraint Box. A constraint box (CBox, for short) consists of a TBox T and
a set RI of role inclusions of the form r1 ◦ · · · ◦ rn ⊑ s. (We will view CBoxes as
unions GCI ∪RI of general concept inclusions (GCI) and role inclusions (RI).)
An interpretation I is a model of the CBox C = GCI∪RI if it is a model of GCI

and satisfies all role inclusions in C, i.e. rI1 ◦ . . . ◦rIn ⊆ sI for all r1◦ . . . ◦rn⊆s∈RI.

Definition 1. Let C1, C2 be two concept descriptions.

– If T is a TBox, we say that C1 is subsumed by C2 w.r.t. T (denoted C1 ⊑T

C2) iff CI
1 ⊆ CI

2 for every model I of T .
– If C is a CBox, then C1 ⊑C C2 iff CI

1 ⊆ CI
2 for every model I of C.

The simplest propositionally closed description logic is ALC which allows for
conjunction, disjunction, negation and existential and universal role restrictions.
For description logics that allow full negation, subsumption tests w.r.t. TBoxes
or CBoxes are reducible to satisfiability testing for concepts (i.e. checking if
there exists a model of the TBox resp. CBox for which the interpretation of
the concept is non-empty). It is well-known that for ALC subsumption checking
(w.r.t. TBoxes and CBoxes) is in EXPTIME (cf. [5]). For lightweight description
logics which do not allow negation, things are different: The main reasoning task
is subsumption testing, which is the problem we consider in this paper.

We now define the fragments of the description logics FL0 used in this paper
as well as the description logic EL. 3

The Description Logic FL0. FL0 is a lightweight description logic that only
allows as concept constructors conjunction, universal role restrictions, and top
concept. The subsumption problem w.r.t. general TBoxes is known to be in
EXPTIME [4]. Fragments of FL0 resp. specific classes of subsumption for which
the complexity is known to be lower include:

– Subsumption w.r.t. standard TBoxes has PSPACE complexity [8].
– Subsumption w.r.t. acyclic TBoxes is co-NP complete (where an acyclic

TBox is a standard TBox that does not contain concept definitions A1 ≡
C1, . . . , Ak ≡ Ck such that A

i+1 mod k
is used in Ci for all i < k [10]).

– Horn-FL+
0 [9] is a variant of FL0 that both extends and restricts its expres-

sivity in such a way that the subsumption problem remains in PTIME. It
restricts FL0 axioms to the form shown in Table 2. The form of the axioms is
limited in such a way that they can be rewritten into 3-variable function-free
Horn-logic. It follows from this correspondence that verifying consistency of
a Horn-FL+

0 knowledge base can be done in polynomial time. A Horn-FL0

TBox (CBox) consists only of inclusions of the form indicated in the first
two lines of Table 2.

The Description Logic EL+. The description logic EL [1] allows as concept
constructors only conjunction, existential role restrictions, and the bottom con-
cept. EL+ [2, 4, 3] additionally allows for nominals and role composition. For
EL+, checking CBox subsumption can be done in PTIME [4, 2].

3 For the sake of simplicity, everywhere in what follows we consider fragments of these
logics without nominals and without ABoxes.



A ⊑ C ⊤ ⊑ C R ⊑ T A ⊑ ∀R.C

A ⊓ B ⊑ C A ⊑ ⊥ R ◦ S ⊑ T

R(i, j) A(i) i ≈ j

Table 2. Normal form for Horn FL+
0 . A, B, C are names of atomic concepts;

R, S, T are (possibly inverse) role names.

2.1 Combining FL0 and EL

Let NC be a set of concept names, and NR, NR′ be disjoint sets of role names.
We propose a combination of EL (with roles in NR) and FL0 (with roles in NR′).
The problem we study for such combinations is subsumption between concept
expressions using constructs from both logics (such that existential restriction is
used only for roles in NR and universal restriction only for roles in NR′) w.r.t.
mixed TBoxes, consisting of an EL part and an FL0 part. We allow these TBoxes
to share concept names (but the role names used in each type of axioms have to
be disjoint). We have to impose the restriction that NR ∩NR′ = ∅ in order to be
sure that fine-grained complexity results can be obtained for TBox subsumption
in such combinations, since the description logic combining these features freely,
ALEU , has an EXPTIME complexity for the subsumption problem w.r.t. TBox4.

Definition 2. A mixed TBox is a TBox T = TE ∪ TF which consists of two
distinct parts: A set TE of EL GCI (with role names NR), and a set TF of FL0

GCI (with role names NR′), each respecting the syntactic restrictions imposed
by their logic. In a mixed TBox with acyclic FL0 part, TF is a standard acyclic
TBox; in a mixed TBox with standard FL0 part, TF is a standard TBox.

We will use the names EL-TBox and FL-TBox to denote the set of EL (resp.
Horn-FL0) inclusion axioms in a mixed TBox.

3 Algebraic Semantics

We assume known notions such as partially-ordered set, semilattice, lattice and
Boolean algebra. For further information cf. [11]. We define a translation of
concept descriptions into terms in a signature naturally associated with the set
of constructors. For every role name r, we introduce unary function symbols,
f∃r, f∀r. The renaming is inductively defined by:

– C = C for every concept name C;
– ¬C = ¬C; C1 ⊓ C2 = C1 ∧ C2, C1 ⊔ C2 = C1 ∨ C2;
– ∃r.C = f∃r(C), ∀r.C = f∀r(C).

There exists a one-to-one correspondence between interpretations I = (D, ·I)
and Boolean algebras of sets (P(D),∪,∩,¬, ∅, D, {f∃r, f∀r}r∈NR

), together with

4 This follows from the fact that ALEU can simulate ALC [7].



valuations v : NC → P(D), where f∃r, f∀r are defined, for every U ⊆ D, by:

f∃r(U) = {x | ∃y((x, y) ∈ rI and y ∈ U)}

f∀r(U) = {x | ∀y((x, y) ∈ rI ⇒ y ∈ U)}.

Consider the following classes of algebras:

– BAONR
, the class of all Boolean algebras with operators

(B,∨,∧,¬, 0, 1, {f∃r, f∀r}r∈NR
), where

• f∃r is a join-hemimorphism, i.e. f∃r(x∨y) = f∃r(x)∨f∃r(y), f∃r(0) = 0;
• f∀r is a meet-hemimorphism, i.e. f∀r(x ∧ y)=f∀r(x) ∧ f∀r(y), f∀r(1)=1;
• f∀r(x) = ¬f∃r(¬x) for every x ∈ B.

– BAO
∃
NR

the class of boolean algebras with operators
(B,∨,∧,¬, 0, 1, {f∃r}r∈NR

), such that f∃r is a join-hemimorphism.
– BAO

∀
N

R′
the class of boolean algebras with operators

(B,∨,∧,¬, 0, 1, {f∀r}r∈N
R′

), such that f∀r is a meet-hemimorphism.

– SLO
∃
NR

the class of all ∧-semilattices with operators
(S,∧, 0, 1, {f∃r}r∈NR

), such that f∃r is monotone and f∃r(0) = 0.
– SLO

∀
N

R′
the class of all ∧-semilattices with operators

(S,∧, 0, 1, {f∀r}r∈N
R′

), such that f∀r is a meet-hemimorphism and f∀r(1)=1.

– SLO
∃∀
NR,N

R′
the class of all ∧-semilattices with operators

(S,∧, 0, 1, {f∃r}r∈NR
, {f∀r}r∈N

R′
), such that f∃r is monotone and f∃r(0) = 0,

and f∀r is a meet-hemimorphism and f∀r(1)=1.

It is known that the TBox subsumption problem for ALC can be expressed as a
uniform word problem for Boolean algebras with suitable operators (cf. e.g. [6]).

Let RI, RI ′ be sets of axioms of the form r⊑s and r1◦r2⊑r, with r, s, r1, r2∈NR

(resp. r, s, r1, r2∈NR′). We associate with RI, RI ′ the following set of axioms:

RIa = {∀x (f∃r2
◦ f∃r1

)(x) ≤ f∃r(x) | r1 ◦ r2 ⊑ r ∈ RI} ∪

{∀x f∃r(x) ≤ f∃s(x) | r ⊑ s ∈ RI}

RI
′

a = {∀x (f∀r2
◦ f∀r1

)(x) ≥ f∀r(x) | r1 ◦ r2 ⊑ r ∈ RI ′} ∪

{∀x f∀r(x) ≥ f∀s(x) | r ⊑ s ∈ RI ′}

where f ◦g denotes the composition of the functions f, g. Let BAO
∃
NR

(RI) (resp.

SLO
∃
NR

(RI)) be the subclass of BAO
∃
NR

(SLO
∃
NR

) consisting of those algebras

which satisfy RIa, and BAO
∀
N

R′
(RI ′) (resp. SLO

∀
N

R′
(RI ′)) be the subclass of

BAO
∀
N

R′
(SLO

∀
N

R′
) consisting of the algebras satisfying RI

′

a.
In [13] we studied the link between TBox subsumption in EL and uniform

word problems in the corresponding classes of semilattices with monotone func-
tions, and in [14] we studied an extension to EL+. We will present these results
here, together with an algebraic semantics for FL0.

Theorem 1 ([13]) Assume that the only concept constructors are intersection
and existential restriction. Then for all concept descriptions D1, D2 and every
EL+ CBox C=GCI∪RI, with concept names NC = {C1, . . . , Cn}:

D1⊑CD2 iff SLO
∃
NR

(RI) |= ∀C1 . . . Cn((
∧

C⊑D∈GCI C≤D) → D1≤D2).



We give a similar result for FL+
0 .

Theorem 2 Assume that the only concept constructors are intersection and
universal restriction. Then for all concept descriptions D1, D2 and every FL+

0

CBox C=GCI∪RI, with concept names NC = {C1, . . . , Cn}:

D1⊑CD2 iff SLO
∀
N

R′
(RI) |= ∀C1 . . . Cn((

∧
C⊑D∈GCI C≤D) → D1≤D2).

3.1 Algebraic Semantics for a Combination of EL and FL0

Theorem 3 Assume the only concept constructors are intersection, existential
restriction over roles in NR and universal restriction over roles in NR′ . Let T
be a mixed TBox consisting of an EL-TBox TE (with roles in NR) and an FL0-
TBox TF (with roles in NR′), where NR∩NR′ = ∅. Then for all concept descrip-
tions D1, D2 in the combined language, with concept names NC = {C1, . . . , Cn}:

D1⊑T D2 iff SLO
∃∀
NR,N

R′
|= ∀C1 . . . Cn((

∧
C⊑D∈T C≤D) → D1≤D2).

Note: The results can be extended in a natural way to EL+, FL+
0 and CBoxes

(we will then take the combination of the role inclusions RI, RI ′, and the corre-
sponding subclass SLO

∃∀
NR,N

R′
(RI, RI ′) satisfying the axioms RIa ∪ RI ′a).

In what follows we show that we can reduce, in polynomial time and with a poly-
nomial increase in the length of the formulae, the validity tasks w.r.t. SLO

∃∀
NR,N

R′

to satisfiability tasks w.r.t. SLO
∀
N

R′
which can in general be solved in EXPTIME.

We obtain the following finer grained results:

– If TF is a standard TBox, the subsumption tasks are in PSPACE;
– If TF is in the Horn-FL0 fragment, the reduction generates formulae whose

satisfiability can be checked in PTIME.

For obtaining these results, we use the notion of local theory extensions, which
is briefly introduced in what follows.

4 Local Theories and Local Theory Extensions

We here consider theories specified by their sets of axioms, and extensions of
theories, in which the signature is extended by new function symbols. Let T0 be
a theory with signature Π0 = (Σ0, Pred), where Σ0 a set of function symbols, and
Pred a set of predicate symbols. We consider extensions T1 of T0 with signature
Π = (Σ, Pred), where Σ = Σ0 ∪ Σ1 (i.e. the signature is extended by new
function symbols). We assume that T1 is obtained from T0 by adding a set K of
(universally quantified) clauses in the signature Π , each of them containing at
least a function symbol in Σ1 and denote this by writing T1 = T0 ∪K.

Locality. Let K be a set of (universally quantified) clauses in the signature Π .
In what follows, when referring to sets G of ground clauses we assume they are
in the signature Πc = (Σ ∪ Σc, Pred) where Σc is a set of new constants. An



extension T0 ⊆ T0 ∪ K is local if satisfiability of a set G of clauses w.r.t. T0 ∪ K
only depends on T0 and those instances K[G] of K in which the terms starting
with extension functions are in the set st(K, G) of ground terms which already
occur in G or K, i.e. if condition (Loc) is satisfied:

(Loc) For every finite set G of ground clauses T1∪G |=⊥ iff T0∪K[G]∪G |=⊥

where K[G] = {Cσ | C ∈ K, for each subterm f(t) of C, with f ∈ Σ1,
f(t)σ ∈ st(K, G), and for each variable x which does not
occur below a function symbol in Σ1, σ(x) = x}.

Hierarchical Reasoning. In local theory extensions hierarchical reasoning is
possible. All clauses in K[G]∪G have the property that the function symbols in
Σ1 have as arguments only ground terms. Therefore, K[G] ∪ G can be purified
(i.e. the function symbols in Σ1 are separated from the other symbols) by intro-
ducing, in a bottom-up manner, new constants ct for subterms t = f(g1, . . . , gn)
with f ∈ Σ1, gi ground Σ0∪Σc-terms (where Σc is a set of constants which con-
tains the constants introduced by flattening, resp. purification), together with
corresponding definitions ct ≈ t. The set of clauses thus obtained has the form
K0∪G0∪D, where D is a set of ground unit clauses of the form f(g1, . . . , gn) ≈ c,
where f ∈ Σ1, c is a constant, g1, . . . , gn are ground terms without function sym-
bols in Σ1, and K0 and G0 are clauses without function symbols in Σ1.

For the sake of simplicity in what follows we will always first flatten and then
purify K[G] ∪ G. Thus we ensure that D consists of ground unit clauses of the
form f(c1, . . . , cn) ≈ c, where f ∈ Σ1, and c1, . . . , cn, c are constants.

Theorem 4 ([12]) Let K be a set of clauses. Assume that T0 ⊆ T0 ∪ K is a
local theory extension. For any set G of ground clauses, let K0 ∪ G0 ∪ D be
obtained from K[G] ∪G by flattening and purification, as explained above. Then
the following are equivalent:

(1) T0∪K∪G |=⊥.
(2) T0∪K[G]∪G |=⊥.
(3) T0 ∪ K0 ∪ G0 ∪ N0 |=⊥, where

N0 = {
n∧

i=1

ci ≈ di → c ≈ d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

Theorem 5 ([15]) The extension of any semilattice-ordered theory with mono-
tone functions is local. In particular, the extension SLO

∀
N

R′
⊆ SLO

∃∀
NR,N

R′
of the

theory of semilattices with meet-hemimorphisms in a set {f∀R | R ∈ NR′} with
monotone functions in a set {f∃R | R ∈ NR}, where NR ∩ NR′ = ∅, is local.

Thus, the method for hierarchical reasoning described in Theorem 4 can be used
in this context to reduce the proof tasks in SLO

∃∀
NR,N

R′
to proof tasks in SLO

∀
N

R′
.

We describe the approach in the next section. For the sake of simplicity, in what
follows we use the notation ∃R.C for f∃R(C) and ∀S.D for f∀S(D). 5

5 In [14] we proved generalized locality results also for extensions with monotone
functions satisfying axioms of the form RIa, so the results can be further extended to
give a reduction of proof tasks in SLO

∃∀

NR,N
R′

(RI,RI ′) to proof tasks in SLO
∀

N
R′

(RI ′).



5 The Combination of EL and FL0

We consider the subsumption problem for the combination of EL and FL0 intro-
duced in Section 3.1 and illustrate the way hierarchical reasoning can be used for
reasoning in this combination, and for identifying fragments of this combination
and subsumption tasks which can be checked in PSPACE/PTIME. 6

We first have to purify the expressions for which we want to verify subsump-
tion. Consider for instance the subsumption C ⊑ ∃R.D, where C and D are
resp. an FL0 and an EL concept description. To purify it, we add the axiom
D′ ≡ ∃R.D to the EL-TBox (where D′ is a new concept name) and rewrite the
subsumption as C ⊑ D′. We apply this process in an ”inside-out” fashion such
that the final result is checking subsumption between concept names w.r.t. to
an augmented TBox. This procedure does not affect complexity when we use
new names for EL concept descriptions (EL allows for equalities and inequalities
TBoxes). In what follows, C[∃R.C′] is a notation indicating that C is a concept
description in the combination of EL and FL0 containing a subterm of the form
∃R.C′, R ∈ NR; the notation C[C′′] indicates the concept description obtained
by replacing ∃R.C′ with C′′ in C.

Theorem 6 Consider the subsumption problem C[∃R.C′] ⊑T D (where C′ is an
EL concept description) w.r.t. a mixed TBox T = TE ∪ TF and the subsumption
problem C[C′′] ⊑T ′ D w.r.t. the extension T ′ of T with a new concept name C′′

together with its definition C′′ ≡ ∃R.C′. Then the following are equivalent:

(1) SLO
∃∀
NR,N

R′
|= (

∧
C1⊑C2∈TE∪TF

C1 ≤ C2) → C[∃R.C′] ≤ D

(2) SLO
∃∀
NR,N

R′
|= (

∧
C1⊑C2∈TE∪TF

C1 ≤ C2 ∧ C′′ ≈ ∃R.C′) → C[C′′] ≤ D

This also holds for subsumption problems of the form C ⊑ D[∃R.D′].

Theorem 7 Consider the subsumption problem C[∀S.C′] ⊑T D (where C′ is an
FL0 concept description) w.r.t. a mixed TBox T = TE∪TF and the subsumption
problem C[C′′] ⊑T ′ D w.r.t. the extension T ′ of T with a new concept name C′′

and a definition for it (C′′ ≡ ∀S.C′). Then the following are equivalent:

(1) SLO
∃∀
NR,N

R′
|= (

∧
C1⊑C2∈TE∪TF

C1 ≤ C2) → C[∀S.C′] ≤ D

(2) SLO
∃∀
NR,N

R′
|= (

∧
C1⊑C2∈TE∪TF

C1 ≤ C2 ∧ C′′ ≈ ∀S.C′) → C[C′′] ≤ D.

This also holds for subsumption problems of the form C ⊑ D[∀S.D′].

FL0 with Standard TBoxes. Assume that we consider a combination of EL
with the fragment of FL0 with standard TBoxes. Then TF is a standard FL0-
TBox, hence also TF ∪ {C′′ ≡ ∀S.C′} is a standard TBox.

FL0 with Acyclic TBoxes. Assume that we consider a combination of EL
with the fragment of FL0 with acyclic standard TBoxes, i.e. TF is a standard

6 The results can be extended to combinations of EL+ and FL+

0 and to subsumption
tasks w.r.t. CBoxes. Due to space constraints this extension is not presented here.



acyclic TBox {Ai ≡ Ci | i = 1, ..., k}. Assume that C′ does not contain any of
the atomic concept names Ai. Since C′′ is a new concept name, the FL0-TBox
TF ∪ {C′′ ≡ ∀S.C′} is an acyclic TBox. After the elimination of ∃R.C concepts
and introduction of new concept names and definitions, the resulting TBox is a
standard FL0-TBox (which is acyclic only if additional acyclicity assumptions
are made on TE).

Horn-FL0. The restriction imposed on the form of the TBox axioms in Horn-
FL0 prevents purification by adding definitions of the form C′′ ≡ ∀S.C′ (we
cannot allow universal restriction on the left-hand side of an axiom). For the
case where we have to purify the left-hand side that causes no problem since if
∀S.C′ occurs on the left-hand side we only need to add C′′ ⊑ ∀S.C′ to the TBox:

Theorem 8 Consider the subsumption problem C[∀S.C′] ⊑T D (where C′ is an
FL0 concept description) w.r.t. a mixed TBox T = TE∪TF , and the subsumption
problem C[C′′] ⊑T ′ D w.r.t. the extension T ′ of T with a new concept name C′′

and an inclusion of the form (C′′ ⊑ ∀S.C′). Then the following are equivalent:

(1) SLO
∃∀
NR,N

R′
|= (

∧
C1⊑C2∈TE∪TF

C1 ≤ C2) → C[∀S.C′] ≤ D.

(2) SLO
∃∀
NR,N

R′
|= (

∧
C1⊑C2∈TE∪TF

C1 ≤ C2 ∧ C′′ ≤ ∀S.C′) → C[C′′] ≤ D.

However, we cannot replace universal restriction on the right-hand side with a
name in general which prevents us to purify arbitrary expressions.

Hierarchical Reasoning. Consider the purified form of the problem. We re-
place all terms of the form ∃R.C in TE with a new constant, say C∃R.C . Let Def

be the set of all definitions for these new constants, of the form C∃R.C ≡ ∃R.C.
Let M0 be the set of corresponding instances of monotonicity axioms:

M0 = {C1 ≤ C2 → C∃R.C1
≤ C∃R.C2

| C∃R.Ci
= ∃R.Ci ∈ Def}.

Let (TE)0 be the purified form of TE . By Theorem 4, the following are equivalent:

(i) SLO
∀∃
NR,N

R′
|=

∧
(D⊑D′)∈T D ≤ D′ → C1 ≤ C2.

(ii) G0∧M0 is unsatisfiable in SLO
∀
N

R′
, where G0 = (TE)0∧TF ∧(¬(C1 ≤ C2))0.

Note that in the presence of the monotonicity axioms, the instances of the con-
gruence axioms in N0 (cf. notation in Theorem 4) are redundant.

Theorem 9 Assume that the only concept constructors are intersection and
existential restrictions over roles in NR and universal restrictions over roles
in NR′ . Assume that we have a mixed TBox, consisting of an EL-TBox TE

(with roles in a set NR) and an FL0-TBox TF (with roles in a set NR′), where
NR ∩ NR′ = ∅. Then for all concept descriptions D1, D2 with concept names
NC = {C1, . . . , Cn} over this signature, the following hold:

(1) If TF is a standard TBox, then:
(a) For any subsumption problem purification yields a new mixed TBox T ′ =

T ′
E ∪ T ′

F = TE ∧ Def ∧ TF with a standard FL0 part, and after the
elimination of ∃R.C concepts, (T ′

E)0 ∪ T ′
F is a standard FL0 TBox.



(b) Checking whether D1⊑TE∪TF
D2 can be done in PSPACE.

(2) If TF is a Horn-FL0 TBox and C is an arbitrary concept description in the
combined language and D does not contain terms of the form ∃R.D1, where
R ∈ NR with subterms of the form ∀S.D2, S ∈ NR′ , then:

(a) Purification yields a new mixed TBox with a Horn-FL0 part; after the
elimination of ∃R.C concepts, (T ′

E)0 ∪ T ′
F is a Horn-FL0 TBox. Since

(i) C ⊑T D1 ⊓ D2 iff (C ⊑T D1 and C ⊑T D2), and
(ii) ∀S commutes with intersections,
we can consider, w.l.o.g. only subsumption problems D1 ⊑T ∀S1. . . . ∀Sn.D,
n ≥ 0, where D2, D are concept names.

(b) Checking whether D1⊑TE∪TF
D2 where D2 = ∀S1. . . .∀Sn.D (where n ≥

0 and C, D are concept names) can be done in PTIME.

Proof. (1)(a) and (2)(a) are simple consequences of the purification procedure.
Consider the purified form of the problem By Theorems 3 and 4, D1⊑TE∪TF

D2

iff SLO
∀∃
NR,N

R′
|=

∧
D⊑D′∈T (D ≤ D′ → D1 ≤ D2 iff G0 ∧ M0 is unsatisfiable

in SLO
∀
N

R′
, where G0 = (TE)0 ∧ TF ∧ (¬(C1 ≤ C2))0. In order to test the

unsatisfiability of the latter problem we proceed as follows. We first note that,
due to the convexity of SLO

∀
N

R′
, if G0 ∧ M0 |=⊥, then there exists a clause C =

(c1 ≤ d1 → c ≤ d) ∈ M0 such that G0 |= c1 ≤ d1 and G0∧{c ≤ d}∧M0\{C} |=⊥.
By iterating the argument above we can always successively entail sufficiently
many premises of monotonicity axioms in order to ensure that there exists a set
{C1, . . . , Cn} of clauses in M0 with Cj = (cj

1 ≤ d
j
1 → cj ≤ dj), such that for all

k ∈ {0, . . . , n − 1}, G0 ∧
∧k

j=1(c
j ≤ dj) |=

∧
ck+1
i ≤ dk+1

i and G0 ∧
∧n

j=1(c
j ≤

dj) |=⊥ . Conversely, if the last condition holds, then G0 ∧ M0 |=⊥. This means
that in order to test satisfiability of G0 ∧ M0 we need to: (i) test entailment
of the premises of M0 from G0; when all premises of some clause are provably
true we delete the clause and add its conclusion to G0, and (ii) in the end check
whether G0 ∧

∧n

j=1(c
j ≤ dj) |=⊥ .

Under the assumptions in (1), every entailment task in (i) and the test in
(ii) are in PSPACE. Since space can be reused, the process terminates and is in
PSPACE. Under the assumptions in (2), T0 = (TE)0 ∪ TF and G0 are in Horn
FL0. Therefore, every entailent task in (i) above can be done in PTIME. The
task (ii) - for the case that G0 is derived from a subsumption problem of the
form C ⊑T ∀S1. . . . ∀Sn.D, where n ≥ 0, and C, D are concept names, can be
translated to a satisfiability test in Horn-FL0, so it can be done in PTIME. 2

6 Conclusion

We identified a class of subsumption problems in a combination of EL and Horn-
FL0, which can be checked in PTIME. Since FL0 allows universal role restriction
and EL allows existential role restrictions, we thus have a framework where
subsumption between expressions including both types of role restrictions (but
for disjoint sets of roles) can be checked in polynomial space or time.
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