
Practical ABox cleaning in DL-Lite
(progress report)

Giulia Masotti, Riccardo Rosati, Marco Ruzzi

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Sapienza Università di Roma

Via Ariosto 25, I-00185 Roma, Italy

1 Introduction

One of the most important current issues in Description Logic (DL) ontology man-
agement is dealing with inconsistency, that is, the presence of contradictory informa-
tion in the ontology [7]. It is well-known that the classical semantics of DLs is not
inconsistency-tolerant, i.e., it does not allow for using in a meaningful way any piece
of information in an inconsistent ontology. On the other hand, the size of ontologies
used by real applications is scaling up, and ontologies are increasingly merged and
integrated into larger ontologies: the probability of creating inconsistent ontologies is
consequently getting higher and higher.

In this paper we focus on ABox inconsistency, i.e., the case of inconsistent KBs
where the TBox is consistent while the ABox is inconsistent with the TBox, i.e., a
subset of the assertions in the ABox contradicts a TBox assertion (or a subset of the
TBox). In particular, we are interested in defining a form of automaticABox cleaning,
i.e., givenK = 〈T ,A〉, we want to identify an ABoxA′ such that〈T ,A′〉 is consistent
andA′ is “as close as possible” toA.

The kind of ABox cleaning we adopt is formally based on inconsistency-tolerant se-
mantics, which overcome the limitations of the classical DL semantics in inconsistency
management. In particular, we consider inconsistency-tolerant semantics for general
DLs recently proposed in [4], calledIAR semanticsand ICAR semantics, for which
reasoning has been studied in the context of the Description Logics of theDL-Lite fam-
ily. The notion of ABox repair in theIAR semantics is very simple: the ABox repair of
a DL ontology is the intersection of all the maximal subsets of the ABox that are con-
sistent with the TBox. The notion of ABox repair in theICAR semantics is a variant
of the IAR semantics that is based on a notion of “equivalence under consistency” of
ABoxes inconsistent with respect to a given TBox. In [4] it was proved that computing
the ABox repair of aDL-LiteA ontology is tractable both underIAR semantics and
ICAR semantics.

We argue that the results of [4] are very important from the practical viewpoint,
for the following reasons: (i) they provide (to the best of our knowledge) the first
formally grounded notion of ABox cleaning. In other words,IAR andICAR are the
first inconsistency-tolerant semantics that allow for expressing ABox repairs in terms
of a single ABox; (ii) they identify (to the best of our knowledge) the first tractable
inconsistency-tolerant semantics in DLs. This paper starts from the above results, and
tries to provide an experimental validation that ABox cleaning based on the above se-
mantics is actually feasible. More precisely, we provide the following contributions:

(1) We present effective techniques for ABox cleaning inDL-LiteA underIAR and
ICAR semantics. To this aim, we present the Quonto ABox Cleaner (QuAC), which
implements, within the Quonto system,1 techniques for the computation of the ABox
repair of aDL-LiteA knowledge base under the above semantics.QuAC constitutes
(to the best of our knowledge) the first implementation of a tractable ABox cleaning
algorithm for DL ontologies. Moreover, since Quonto delegates the management of
the ABox to a relational database system (DBMS), all modifications of the ABox are
delegated to the DBMS through SQL queries and updates. This potentially allows for
handling and cleaning very large ABoxes.
(2) We report on the experimental analysis that we are actually conducting usingQuAC.
Our first results are allowing us to understand the actual impact, w.r.t. the efficiency of
ABox cleaning, of the different aspects involved in the computation of the ABox repair,
and the limits and possibilities of the approach implemented inQuAC.

The paper that is closer to our work is [3], which also presents a technique for ABox
cleaning in DL ontologies. However, there are two main differences with our approach:
(i) [3] considers the very expressive DLSHIN , in which all the semantics considered
by our approach are intractable ([6]); (ii) the two approaches are based on different se-
mantics: in particular, the ABox cleaning algorithm of [3] computes a consistent subset
of the ABox which in general is uncomparable with the ABox repair defined by the
IAR semantics (and theICAR semantics).

The rest of the paper is organized as follows. In Section 2, we give some prelimi-
naries, and in particular we introduceDL-LiteA and the definition of theIAR and the
ICAR semantics. In Section 3, we present detailed algorithms for ABox cleaning in
DL-LiteA. In Section 4 we present theQuAC system and report on the experiments we
are currently conducting withQuAC. Finally, in Section 5 we conclude the paper.

2 Preliminaries

2.1 The DL DL-LiteA

In this paper we consider DL ontologies (knowledge bases) specified inDL-LiteA, a
member of theDL-Lite family of tractable Description Logics [2, 1], which is at the
basis of OWL 2 QL, one of the profile of OWL 2, the official knowledge base speci-
fication language of the World-Wide-Web Consortium (W3C).DL-LiteA distinguishes
concepts fromvalue-domains, which denote sets of (data) values, and roles fromat-
tributes, which denote binary relations between objects and values. Concepts, roles,
attributes, and value-domains in this DL are formed according to the following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→>D | T1 | · · · | Tn

Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules,A, P , andU respectively denote an atomic concept (i.e., a concept name),
an atomic role (i.e., a role name), and an attribute name,P− denotes the inverse of an
atomic role, whereasB andQ are called basic concept and basic role, respectively.

1 http://www.dis.uniroma.it/˜quonto

Furthermore,δ(U) denotes thedomainof U , i.e., the set of objects thatU relates to
values;ρ(U) denotes therangeof U , i.e., the set of values thatU relates to objects;
>D is the universal value-domain;T1, . . . , Tn aren pairwise disjoint unbounded value-
domains.

A DL-LiteA knowledge base (KB) is a pairK = 〈T ,A〉, whereT is the TBox and
A the ABox. The TBoxT is a finite set of assertions of the form

B v C Q v R E v F U v V (funct Q) (funct U)

From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact, inDL-LiteA TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). LetB1 andB2 be basic concepts, and
let Q1 andQ2 be basic roles. We callpositive inclusions (PIs)assertions of the form
B1 v B2, and of the formQ1 v Q2, whereas we callnegative inclusions (NIs)asser-
tions of the formB1 v ¬B2 andQ1 v ¬Q2.

A DL-LiteA ABox A is a finite set of membership assertions (ABox assertions) of
the formsA(a), P (a, b), andU(a, v), whereA, P , andU are as above,a andb belong
to ΓO, the subset ofΓC containing object constants, andv belongs toΓV , the subset of
ΓC containing value constants, where{ΓO, ΓV } is a partition ofΓC .

The semantics of aDL-LiteA knowledge base is given in terms of first-order logic
(FOL) interpretations in the usual way. An interpretationI satisfying a knowledge base
K a called amodelfor K. In the followingMod(〈T ,A〉) will indicate the set of models
of the KBK = 〈T ,A〉. A knowledge baseK is satisfiable if it has at least a model,
otherwise it is called unsatisfiable. Given an assertionα (which is either a TBox or
ABox assertion), we writeK |= α if α is satisfied in every model forK.

Given a TBoxT and an ABoxA′,A′ is called aminimal conflict set forT if the KB
〈T ,A′〉 is unsatisfiable and, for every ABoxA′′ such thatA′′ ⊂ A′, the KB 〈T ,A′′〉
is satisfiable. A minimal conflict set forT is calledunary if its cardinality (that is, the
number of assertions it contains) is 1 and is calledbinary if its cardinality is 2.

2.2 Inconsistency-tolerant semantics for DLs

In this section we recall the inconsistency-tolerant semantics for general DL knowledge
bases defined in [4].2 We assume that, for a knowledge baseK = 〈T ,A〉, T is sat-
isfiable, whereasA may be inconsistent withT , i.e., the set of models ofK may be
empty.

AR-semanticsThe first notion of repair that we consider, calledAR-repair, is a very
natural one: a repair is a maximal subset of the ABox that is consistent with the TBox.
Thus, anAR-repair is obtained by throwing away fromA a minimal set of assertions
to make it consistent withT .

Definition 1. LetK = 〈T ,A〉 be a DL KB. AnAR-repairofK is a setA′ of member-
ship assertions such that: (i)A′ ⊆ A; (ii) Mod(〈T ,A′〉) 6= ∅; (iii) there does not exist

2 Due to space limitations, we refer the reader to [4] for introductory examples illustrating these
semantics.

A′′ such thatA′ ⊂ A′′ ⊆ A and Mod(〈T ,A′′〉) 6= ∅. The set ofAR-repairs forK is
denoted by AR-Rep(K). Moreover, we say that a first-order sentenceφ is AR-entailed
byK, writtenK |=AR φ, if 〈T ,A′〉 |= φ for everyA′ ∈ AR-Rep(K).

CAR-semanticsWe start by formally introducing a notion of “equivalence under con-
sistency” for inconsistent KBs.

Given a KBK, let SK denote the signature ofK, i.e., the set of concept, role,
and individual names occurring inK. Given a signatureS, we denote withHB(S) the
Herbrand Base ofS, i.e. the set of ABox assertions (ground atoms) that can be built
over the signatureS. Then, given a KBK = 〈T ,A〉, we define theconsistent logical
consequences ofK as the setclc(K) = {α | α ∈ HB(SK) and there existsA′ ⊆
A such thatMod(〈T ,A′〉) 6= ∅ and〈T ,A′〉 |= α}. Finally, we say that two KBs
〈T ,A〉 and 〈T ,A′〉 are consistently equivalent (C-equivalent) if clc(〈T ,A〉) =
clc(〈T ,A′〉).

We argue that the notion ofC-equivalence is very reasonable in settings in which
the ABox (or at least a part of it) has been “closed” (in a complete or partial way) with
respect to the TBox, e.g., when (some or all) the ABox assertions that are entailed by
the ABox and the TBox have been added to the original ABox. This may happen, for
example, when the ABox is obtained by integrating different (and locally consistent)
sources, since some of these sources might have been locally closed with respect to
some TBox axioms: this is very likely, for instance, if a source is an RDF graph with
RDFS predicates, since many RDF systems materialize in the RDF graph the implicit
triples due to the RDFS predicates.

In settings whereC-equivalence makes sense, theAR-semantics is not
suited to handle inconsistency. In fact, we would expect twoC-equivalent
KBs to produce the same logical consequences under inconsistency-
tolerant semantics. Unfortunately, theAR-semantics does not have this
property. A simple example is the following: letT = {student v
young , student v ¬worker} and let A = {student(mary),worker(mary)},
A′ = {student(mary),worker(mary), young(mary)}. It is immediate to verify
that if K′ = 〈T ,A′〉, thenclc(K) = clc(K′) = A′, thusK andK′ areC-equivalent,
howeverK′ |=AR young(mary) whileK 6|=AR young(mary).

To overcome the above problem, theCAR-semantics has been defined in [4],
through a modification of theAR-semantics.3

Definition 2. LetK = 〈T ,A〉 be a DL KB. ACAR-repairfor K is a setA′ of member-
ship assertions such thatA′ is anAR-repair of 〈T , clc(K)〉. The set ofCAR-repairs
for K is denoted by CAR-Rep(T ,A). Moreover, we say that a first-order sentenceφ is
CAR-entailedbyK, writtenK |=CAR φ, if 〈T ,A′〉 |= φ for everyA′ ∈ CAR-Rep(K).

Going back to the previous example, it is immediate to see that, sinceK andK′
areC-equivalent, the set ofCAR-repairs (and hence the set ofCAR-models) ofK and
K′ coincide. As the above example shows, there are sentences entailed by a KB under
CAR-semantics that are not entailed underAR-semantics. Conversely, it is shown in

3 The definition provided here of theCAR-semantics is a slight simplification of the one ap-
pearing in [4]: this modification, however, does not affect any of the computational results
presented in [4].

[4] that theAR-semantics is a sound approximation of theCAR-semantics, i.e., for
every KBK and every FOL sentenceφ,K |=AR φ impliesK |=CAR φ.

IAR-semantics and ICAR-semanticsWe then recall theIAR-semantics andICAR-
semantics, which are sound approximations of theAR-semantics and theCAR-
semantics, respectively [4].

Definition 3. LetK = 〈T ,A〉 be a DL KB. Then: (i) TheIAR-repairfor K, denoted
by IAR-Rep(K) is defined as IAR-Rep(K) =

⋂
A′∈AR-Rep(K)A′. (ii) The ICAR-repair

for K, denoted by ICAR-Rep(K) is defined as ICAR-Rep(K) =
⋂
A′∈CAR-Rep(K)A′. (iii)

We say that a first-order sentenceφ is IAR-entailed(respectively,ICAR-entailed) by
K, and we writeK |=IAR φ (respectively,K |=ICAR φ), if 〈T , IAR-Rep(K)〉 |= φ
(respectively,〈T , ICAR-Rep(K)〉 |= φ).

Example 1.Let us consider the KBK = 〈T ,A〉 where the TBoxT is the following:

T = {A v C,B v C,∃R v B,∃R− v D, A v ¬B, (funct R)}

and the ABoxA isA = {A(a), B(a), C(a), R(a, b)}. Such a KB is unsatisfiable, due
to the presence of the assertionsA(a) andB(a) which violate the disjointness assertion
in T . The following are the standard AR-repairs ofA:

AAR
1 = {B(a), C(a), R(a, b)}, AAR

2 = {A(a), C(a)}

Then, we haveclc(A) = {A(a), B(a), C(a), R(a, b), D(a)}. Therefore, the CAR-
repair ofA are as follows:

ACAR
1 = {B(a), C(a), R(a, b), D(b)}, ACAR

2 = {A(a), C(a), D(b)}

Consequently, the IAR-repair and ICAR-repair are the following:

AIAR = AAR
1 ∩ AAR

2 = {C(a)}, AICAR = ACAR
1 ∩ ACAR

2 = {C(a), D(a)}

Example 2.One might conjecture that theIAR semantics collapses into a simple ABox
cleaning technique which deletes from the ABox all the assertions that participate in
conflicts with the TBox. This is actually not the case, because, as explained in [4], the
IAR-repair actually deletes only the assertions that participate inminimalconflict sets.
Here is an example: given the KBK = 〈T ,A〉 with T = {A v ¬∃R, R v ¬R−},
A = {A(a), R(a, a)}, the IAR-repair ofK is {A(a)}. That is, the assertionA(a)
belongs to theIAR-repair even if it participates in the conflict set{A(a), R(a, a)}
caused by the concept disjointnessA v ¬∃R: the reason is that such a conflict set is
not minimal because of the unary conflict set{R(a, a)} caused by the role disjointness
R v ¬R−.

3 Algorithms for ABox cleaning

The technique for computing the ICAR-repair of aDL-LiteA ontology〈T ,A〉 is based
on the idea of deleting fromA all the membership assertions participating inminimal
conflict sets forT . As shown in [4], this task is relatively easy (in particular, tractable)

in DL-LiteA because the following property holds: for everyDL-LiteA TBox T , all the
minimal conflict sets forT are either unary conflict sets or binary conflict sets.

This property is actually crucial for tractability of reasoning underIAR andICAR
semantics. As shown in [6] this property is not shared by other tractable DLs (e.g.EL⊥),
in which the size of minimal conflict sets is not bound by a constant but depends on the
size of the ABox.

We now present detailed algorithms for computing theIAR-repair and theICAR-
repair of aDL-LiteA ontology. These algorithms exploits the techniques presented in
[4], whose aim was only to provide PTIME upper bounds for the problem of computing
such repairs. In particular, the present algorithms specify efficient ways of detecting
minimal conflict sets and computing consistent logical consequences. Instead, the pre-
vious techniques check all unary and binary subsets of the ABox for these purposes.

In the following, we callannotated ABox assertionan expressionξ of the form
〈α, γ〉 whereα is an ABox assertion andγ is a value in the set{cons, ucs, bcs}. Fur-
thermore, we callannotated ABoxa set of annotated ABox assertions. The intuition
behind an annotated ABox assertionξ is that its annotationγ expresses whether the
associated ABox expressionα does not participate in any minimal conflict set (cons) or
participates in a unary conflict set (ucs) or to a binary conflict set (bcs).

The following algorithmQuAC-ICARcomputes theICAR-repair of aDL-LiteA

KB. For ease of exposition, the algorithm does not report details on the treatment of
attributes, which are actually handled in a way analogous to roles.

Algorithm QuAC-ICAR(K)
input : DL-LiteA KB K = 〈T ,A〉, output: ICAR-repair ofK
begin
// STEP 1: create annotated ABoxAann

Aann = ∅;
for eachα ∈ A doAann = Aann ∪ 〈α, cons〉;

// STEP 2: detect unary conflict sets inAann

for eachconcept nameA s.t.T |= A v ¬A do
for each ξ = 〈A(a), cons〉 ∈ Aann doAann = Aann − {ξ} ∪ {〈A(a), ucs〉};

for each role nameR s.t.T |= R v ¬R do
for each ξ = 〈R(a, b), cons〉 ∈ Aann doAann = Aann − {ξ} ∪ {〈R(a, b), ucs〉};

for each role nameR s.t.T |= R v ¬R− or T |= ∃R v ¬∃R− do
for each ξ = 〈R(a, a), cons〉 ∈ Aann doAann = Aann − {ξ} ∪ {〈R(a, a), ucs〉};

// STEP 3: compute consistent logical consequences inAann

for each inclusionA v B with A, B atomic concepts such thatT |= A v B do
for each 〈A(a), γ〉 ∈ Aann such thatγ 6= ucsdoAann = Aann ∪ {〈B(a), cons〉};

for each inclusion∃R v A with A atomic concept such thatT |= ∃R v A do
for each 〈R(a, b), γ〉 ∈ Aann such thatγ 6= ucsdoAann = Aann ∪ {〈A(a), cons〉};

for each inclusion∃R− v A with A atomic concept such thatT |= ∃R− v A do
for each 〈R(a, b), γ〉 ∈ Aann andγ 6= ucsdoAann = Aann ∪ {〈A(b), cons〉};

for each inclusionR v S with R, S atomic roles such thatT |= R v S do
for each 〈R(a, b), γ〉 ∈ Aann andγ 6= ucsdoAann = Aann ∪ {〈S(a, b), cons〉};

for each inclusionR− v S with R, S atomic roles such thatT |= R− v S do
for each 〈R(b, a), γ〉 ∈ Aann andγ 6= ucsdoAann = Aann ∪ {〈S(a, b), cons〉};

// STEP 4: detect binary conflict sets inAann

for eachdisjointnessA v ¬B with A, B atomic concepts
such thatT |= A v ¬B do
for eachpair ξ1 = 〈A(a), γ1〉, ξ2 = 〈B(a), γ2〉 ∈ A′

ann

such thatγ1, γ2 6= ucsdo
Aann = Aann − {ξ1, ξ2} ∪ {〈A(a), bcs〉, 〈B(a), bcs〉};

for eachdisjointnessA v ¬∃R with A atomic concept
such thatT |= A v ¬∃R do
for eachpair ξ1 = 〈A(a), γ1〉, ξ2 = 〈R(a, b), γ2〉 ∈ A′

ann

such thatγ1, γ2 6= ucsdo
Aann = Aann − {ξ1, ξ2} ∪ {〈A(a), bcs〉, 〈R(a, b), bcs〉};

for eachdisjointnessA v ¬∃R− with A atomic concept
such thatT |= A v ¬∃R do
for eachpair ξ1 = 〈A(a), γ1〉, ξ2 = 〈R(b, a), γ2〉 ∈ A′

ann

such thatγ1, γ2 6= ucsdo
Aann = Aann − {ξ1, ξ2} ∪ {〈A(a), bcs〉, 〈R(b, a), bcs〉};

for eachdisjointnessR v ¬S with R, S atomic roles
such thatT |= R v ¬S do
for eachpair ξ1 = 〈R(a, b), γ1〉, ξ2 = 〈S(a, b), γ2〉 ∈ A′

ann

such thatγ1, γ2 6= ucsdo
Aann = Aann − {ξ1, ξ2} ∪ {〈R(a, b), bcs〉, 〈S(a, b), bcs〉};

for eachdisjointnessR v ¬S− with R, S atomic roles
such thatT |= R v ¬S− do
for eachpair ξ1 = 〈R(a, b), γ1〉, ξ2 = 〈S(b, a), γ2〉 ∈ A′

ann

such thatγ1, γ2 6= ucs
doAann = Aann − {ξ1, ξ2} ∪ {〈R(a, b), bcs〉, 〈S(b, a), bcs〉};

for each functionality assertion(funct R) ∈ T with R atomic roledo
for eachpair ξ1 = 〈R(a, b), γ1〉, ξ2 = 〈R(a, c), γ2〉 ∈ A′

ann

such thatb 6= c andγ1, γ2 6= ucsdo
Aann = Aann − {ξ1, ξ2} ∪ {〈R(a, b), bcs〉, 〈R(a, c), bcs〉};

for each functionality assertion(funct R−) ∈ T with R atomic roledo
for eachpair ξ1 = 〈R(b, a), γ1〉, ξ2 = 〈R(c, a), γ2〉 ∈ A′

ann

such thatb 6= c andγ1, γ2 6= ucsdo
Aann = Aann − {ξ1, ξ2} ∪ {〈R(b, a), bcs〉, 〈R(c, a), bcs〉};

// STEP 5: extract the ICAR repair fromAann

A′ = ∅;
for each 〈α, cons〉 ∈ Aann doA′ = A′ ∪ {α};
return A′

end

The algorithmQuAC-ICARconsists of five steps which can be informally described
as follows.

step 1 copy ofA into an annotated ABoxAann . In this step, the value of the annotation
is initialized toconsfor all ABox assertions.

step 2 detection of the unary conflict sets inAann . For every assertion of the form
ξ = 〈α, cons〉, such that{α} is a unary conflict set forT , Aann = Aann − {ξ} ∪
{〈α, ucs〉}, i.e., the annotation relative toα is changed toucs. Unary conflict sets
are actually detected through TBox reasoning, by looking at empty concepts and
roles inT , as well as asymmetric roles, i.e., roles disjoint with their inverse.

step 3 computation of the consistent logical consequences inAann . Here, the task is to
compute all ABox assertions that are entailed byT together with anyT -consistent
subset ofA. In DL-LiteA, this actually corresponds to computing the ABox asser-
tions that are entailed byT together with the ABox obtained fromA by deleting all

unary conflict sets forT . Hence, what the algorithms does is computing the ABox
assertions that are logical consequence ofT and of the assertions ofAann which
have not been annotated as unary conflict sets in the previous step.

step 4 detection of the binary conflict sets inAann . For every pair of assertions of the
form ξ1 = 〈α1, γ1〉, ξ2 = 〈α2, γ2〉 such thatγ1 6= ucsandγ2 6= ucsand{α, β} is a
binary conflict set forT , Aann = Aann − {ξ1, ξ2} ∪ {〈α, bcs〉, 〈β, bcs〉}, i.e., the
annotation relative toα andβ is changed tobcs. As in the case of unary conflict
sets, to find binary conflict sets the algorithm looks for disjoint concepts and roles
in T , as well as functional roles.

step 5 extraction of the ICAR-repair fromAann . TheICAR-repair can be now simply
extracted from the annotated ABoxAann , by eliminating both unary conflict sets
and binary conflict sets. Therefore, for every assertion of the form〈α, cons〉 in
Aann , α is copied into the (non-annotated) ABoxA′ which is finally returned by
the algorithm.

The algorithmQuAC-IARis very similar toQuAC-ICAR: the only difference is that
it does not execute step 3, i.e., computation of consistent logical consequences. Cor-
rectness of the above algorithms can be proved starting from the results in [4].

Theorem 1. Let K be a DL-LiteA KB and let A′ be the ABox returned by
QuAC-ICAR(K). Then,A′ = ICAR-Rep(K). Moreover, letA′′ be the ABox returned
by QuAC-IAR(K). Then,A′′ = IAR-Rep(K).

4 Implementation and experiments

We have implemented the above algorithmsQuAC-ICARand QuAC-IARwithin the
Quonto system, in a module calledQuAC (the Quonto ABox Cleaner). Essentially,
QuAC is a Java implementation of the above algorithms where operations on the in-
volved ABoxes are delegated to a relational database system (DBMS). In fact, in the
Quonto architecture, the management of the ABox is delegated to a DBMS: therefore,
all the operations on ABox assertions of the algorithms for computing repairs are exe-
cuted inQuAC by the DBMS used by Quonto, through appropriate SQL scripts.

We are currently experimentingQuAC in order to answer several open questions,
among which:

– the computational cost of the various steps of the algorithmQuAC-IAR and
QuAC-ICAR;

– the scalability of such algorithms;
– measuring the difference in terms of computational costs of theIAR semantics and

theICAR semantics;
– the impact of the “degree of inconsistency” of the ABox on the computational cost

of the algorithms.

The tables reported in Figure 1 and Figure 2 present some of the experimental results
that we have obtained so far. The TBox used in the experiments has 30 concept names,
20 role names, 10 attribute names, and about 200 TBox assertions. The various ABoxes
used have been automatically generated.

The first table presents the experimental results for a version of Quonto that uses a
main memory database (H2) to handle the ABox, while the second table presents the
same results when Quonto uses a standard (disk-resident) database (PostgreSQL). The
results have been conducted on a Pentium i7 (2.67 GHz) CPU with 6GB RAM under
Windows 7 (64 bit) operating system. We have also executed the same tests using the
MySQL DBMS, with results analogous to those obtained with PostgreSQL.

In the tables, the first column reports the number of assertions in the ABox, while
the second column reports the percentage of ABox assertions that participate in minimal
conflict sets for the considered TBox. Moreover:

– ∆1 denotes the time to create the annotated ABox;
– ∆IAR

2 denotes the time to detect unary and binary conflict sets;
– ∆IAR

3 denotes the time to extract theIAR-repair from the annotated ABox;
– ∆ICAR

2 denotes the time to detect unary conflict sets, compute consistent logical
consequences and detect binary conflict sets;

– ∆ICAR
3 denotes the time to extract theICAR-repair from the annotated ABox;

– ∆IAR is the total time to compute theIAR-repair, i.e.,∆1 + ∆IAR
2 + ∆IAR

3 ;
– ∆ICAR is the total time to compute theICAR-repair, i.e.,∆1 + ∆ICAR

2 + ∆ICAR
3 ;

– all times are expressed in milliseconds.

ABox size% incons. ∆1 ∆IAR
2 ∆IAR

3 ∆IAR ∆ICAR
2 ∆ICAR

3 ∆ICAR

1, 000 1% 188 296 109 593 749 250 1,187
1, 000 5% 188 358 78 624 749 250 1,187
1, 000 10% 188 296 94 578 749 266 1,203

3, 000 1% 359 670 251 1,280 1,997 266 2,622
3, 000 5% 359 795 234 1,388 1,997 251 2,607
3, 000 10% 359 717 126 1,202 1,997 282 2,638

10, 000 1% 515 874 141 1,530 3,495 1,424 5,434
10, 000 5% 515 781 171 1,467 3,495 1,376 5,386
10, 000 10% 515 982 172 1,669 3,495 1,156 5,166

30, 000 1% 812 3,075 422 4,309 22,635 3,559 27,006
30, 000 5% 812 3,355 418 4,585 22,635 2,498 25,945
30, 000 10% 812 3,417 344 4,573 22,635 2,748 26,195

Fig. 1.Results for main memory database (H2)

The above experimental results show that:

(i) with both the main memory DB and the disk-resident DB, the computation of the
IAR-repair (∆IAR column) seems really scalable, while the computation of the
ICAR-repair suffers from the additional step of computing logical consequences,
which is computationally very expensive: its cost actually dominates the cost of all
the other steps;

(ii) the percentage of inconsistency, i.e., the fraction of ABox assertions that participate
in minimal conflict sets, does not have a significant impact on the execution time of
both algorithms;

ABox size% incons. ∆1 ∆IAR
2 ∆IAR

3 ∆IAR ∆ICAR
2 ∆ICAR

3 ∆ICAR

1, 000 1% 718 516 5,117 6,351 1,358 6,314 7,672
1, 000 5% 718 515 5,258 6,491 1,358 6,070 7,428
1, 000 10% 718 531 4,680 5,929 1,358 5,929 7,287

3, 000 1% 1,840 688 5,444 7,972 4,011 8,747 12,758
3, 000 5% 1,840 750 5,366 7,956 4,011 7,317 11,328
3, 000 10% 1,840 797 5,304 7,941 4,011 8,284 12,295

10, 000 1% 5,850 1,17110,23517,256 16,990 19,115 36,105
10, 000 5% 5,850 1,49910,29717,646 16,990 19,424 36,414
10, 000 10% 5,850 1,561 9,923 17,334 16,990 17,926 34,916

30, 000 1% 16,2553,82320,70240,780134,28665,959200,245
30, 000 5% 16,2554,79020,99942,044134,28661,170195,456
30, 000 10% 16,2555,53920,28142,075134,28663,736198,022

Fig. 2.Results for PostgreSQL

(iii) using the main memory DB, most of the computation time for theIAR-repair is
devoted to the detection of minimal conflict sets (i.e.,∆IAR

2); conversely, using the
disk-resident DB, a very large percentage of the execution time (always more than
80%) is devoted to the generation of the annotated ABox and to the extraction of
the IAR-repair. This is of course due to the fact that such steps require to create
and write a large number of records on the disk. On the other hand, RAM size is
a bottleneck for the main memory DB (we were not able to process ABoxes with
100,000 assertions).

5 Ongoing and future work

As above observed, most of the execution time of the algorithmQuAC-IARusing a disk-
resident DB is due to the creation of the annotated ABox (step 1) and to the creation
of theIAR-repair (step 5). Thus, avoiding these steps would dramatically improve the
efficiency of this algorithm.

To this aim, we observe that both the above steps could be completely skipped if the
database schema used for representing the ABox would present an additional attribute
for storing annotations in every relation (the usual DB representation of an ABox uses a
unary relation for every concept and a binary relation for every role). This corresponds
to the idea of directly using an annotated ABox instead of a standard ABox in the
system. In this case, the computation of theIAR-repair could only consist of the steps
2, 3 and 4 of the algorithmQuAC-IAR. However, the choice of using an annotated ABox
instead of an ABox affects query answering, since the queries evaluated on an annotated
ABox should be able to filter out the assertions whose annotation is equal tocons.

We are currently experimenting whether this choice is actually feasible. Below we
present a table showing the evaluation time of four queries of increasing complexity
on the ABoxes considered in the previous section (in particular, the ABoxes with 5%
inconsistent assertions). We show the cost of both evaluating the query on theIAR-
repair (represented as a standard ABox) and directly on the annotated ABox (with the
further selection condition on the annotations).

query ans. on query ans. on differencedifference
ABox size query IAR-repair annotated ABox (msec) (%)

(nsec) (nsec)

1, 000 q1 123,577 105,868 -17 -17%
1, 000 q2 216,740 226,750 10 4%
1, 000 q3 1,179,561 295,275 -884 -299%
1, 000 q4 421,161 600,174 179 30%

3, 000 q1 138,591 229,060 90 39%
3, 000 q2 210,581 355,716 145 41%
3, 000 q3 1,348,179 490,842 -857 -175%
3, 000 q4 507,396 653,685 146 22%

10, 000 q1 164,384 339,932 175 52%
10, 000 q2 267,172 499,696 232 47%
10, 000 q3 1,347,024 592,475 -754 -127%
10, 000 q4 491,612 664,465 172 26%

30, 000 q1 199,417 724,521 525 72%
30, 000 q2 398,448 905,074 506 56%
30, 000 q3 1,519,493 944,726 -574 -61%
30, 000 q4 485,067 1,096,021 610 56%

These first experimental results show that, in Quonto, evaluating queries on the
annotated ABox often seems computationally not much harder (and sometimes even
easier) than evaluating them on the standard ABox. Therefore, a more detailed experi-
mental analysis is needed in order to understand the conditions under which it could be
convenient to only work with an annotated representation of the ABox.

Finally, it would be very interesting to compare the performance ofQuAC with
a query rewriting approach. Indeed, techniques for the perfect rewriting of unions of
conjunctive queries overDL-LiteA KBs under bothIAR and ICAR semantics have
been recently defined [5]. Such techniques are able to reduce query answering over a
KB K = 〈T ,A〉 to answering a FOL query over the ABoxA. So, the ABox is not
repaired at all by this approach: rather, the ABox repair is virtually considered during
query answering through a suitable reformulation of the query. We plan to implement
such query rewriting techniques, with the aim of comparing such an approach with the
approach ofQuAC.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. TheDL-Lite family and
relations.J. of Artificial Intelligence Research, 36:1–69, 2009.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: TheDL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

3. J. Dolby, J. Fan, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma, J. W. Murdock, K. Srini-
vas, and C. A. Welty. Scalable cleanup of information extraction data using ontologies. In
ISWC/ASWC, pages 100–113, 2007.

4. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-
tics for description logics. InProc. of RR 2010, 2010.

5. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Query rewriting for inconsistent
DL-Lite ontologies. InProc. of RR 2011, 2011. To appear.

6. R. Rosati. On the complexity of dealing with inconsistency in description logic ontologies. In
Proc. of IJCAI 2011, 2011. To appear.

7. Z. Wang, K. Wang, and R. W. Topor. A new approach to knowledge base revision inDL-Lite.
In Proc. of AAAI 2010. AAAI Press, 2010.

