
The Modular Structure of an Ontology:
Atomic Decomposition towards Applications

Chiara Del Vescovo

The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
delvescc@cs.man.ac.uk

1 Introduction

Modularity in ontologies Modern ontologies can get quite large as well as complex,
which poses challenges to tools and users when it comes to processing, editing, analyz-
ing them, or reusing their parts. This suggests that exploiting modularity of ontologies
might be fruitful, and research into this topic has been an active area for ontology en-
gineering. Much recent effort has gone into developing logically sensible modules, that
is, parts of an ontology which offer strong logical guarantees for intuitive modular prop-
erties. One such guarantee is called coverage. It means that a module captures all the
ontology’s knowledge about a given set of terms (signature). A module in this sense is a
subset of an ontology’s axioms that provides coverage for a signature, and each possible
signature determines such a module. The minimal modules to provide coverage for a
signature are those based on Conservative Extensions (CEs) [2], that are however not
feasible to be computed for many expressive languages. Modules based on syntactic lo-
cality [5] also provide coverage because they are efficiently computable approximations
of CEs; however, such modules are not in general minimal.

The extraction of such a module given a set of terms (signature) is well understood
and starting to be deployed in standard ontology development environments, such as
Protégé 4,1 and online.2 Locality-based modules have already been effectively used for
ontology reuse [14] and as a subservice for incremental reasoning [3]. However, we
think that by investigating the family FO of all locality-based modules we can obtain
information about topicality, connectedness, structure, superfluous parts of an ontology,
or agreement between actual and intended modeling.

Previous work In [6] we investigated the number of (locality-based) modules that an
ontology can have. There are examples of artificial ontologies with exponentially many
w.r.t. their size: for example, the ontology O = {Ai v B | i = 1, . . . , n}, where each
subset of the ontology is a module. However, we tried to understand if real ontologies
generate an exponential family FO of modules. To this aim, we selected some ontolo-
gies from the TONES ontology repository3 and tried to extract all of their modules. The
results we obtained made us tend towards rejecting the hypothesis, but they were not
strong enough for a clear rejection.

1 http://www.co-ode.org/downloads/protege-x
2 http://owl.cs.manchester.ac.uk/modularity
3 http://owl.cs.manchester.ac.uk/repository/browser



In [7] we introduced a different approach to look at modules: we noticed that an on-
tology can be partitioned into building blocks, called atoms, that do not split over two
modules. Atoms are interesting because they are in 1-1 correspondence with genuine
modules, i.e., modules that are not the union of two uncomparable (w.r.t. set inclu-
sion) modules. Moreover, they are computable in polynomial time (provided that the
extraction of a locality-based module is polynomial). The set of atoms is called Atomic
Decomposition (AD). The AD of an ontology is stable, in the sense that is well-defined
given any (suitable) notion of locality-based module. This suggests us that we could use
it for performing several tasks of interest for users of ontologies, as the estimation of
the number of modules of an ontology. We started exploiting this matter in [8].

Following [7], in this paper we describe more extensively the AD of an ontology:
its definition, its properties, its generation. We then introduce some tasks of interest for
ontology engineers that could be performed by means of the ADs. For each such task,
we discuss with the help of several examples some issues about the suitability of the sole
AD to perform it. Hence, we introduce a family of refinements of AD, called Labelled
Atomic Decomposition (LAD), useful to solve the issues raised. In particular, these
issues are deeply discussed w.r.t. one such specific task: the Fast Module Extraction
(FEM), t.i., the extraction of a single module without loading the ontology.

2 Preliminaries

We assume the reader to be familiar with Description Logics [1], and only briefly sketch
here some of the central notions around locality-based modularity. We use L for a De-
scription Logic, e.g., SHIQ, and O,M, etc., for a knowledge base, i.e., a finite set of
axioms. Moreover, we respectively use α̃ or Õ for the signature of an axiom α or of an
ontology O, i.e., the set of concept, role, and individual names used in α or in O.

Conservative extensions (CEs) capture the above described encapsulation of knowl-
edge. They are defined as follows.

Definition 1. Let L be a DL,M⊆ O be L-ontologies, and Σ be a signature.

1. O is a deductive Σ-conservative extension (Σ-dCE) ofM w.r.t. L if for all axioms
α over L with α̃ ⊆ Σ, it holds thatM |= α if and only if O |= α.

2. M is a dCE-based module for Σ of O if O is a Σ-dCE ofM w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide for many DLs [11,15,17].
Therefore, approximations have been devised. We focus on syntactic locality (here for
short: locality). Given an ontologyO, and a set of terms, called seed signature, Σ ⊆ Õ,
we say that an axiom α ∈ O is ⊥-local w.r.t. Σ if we can clearly identify it as a
tautology when all the terms not in Σ are substituted by ⊥ (the formal definition can
be found in [5]). An analogous definition can be made for >-locality. Then, a locality-
based module is recursively computed as follows: starting from an empty setM, each
axiom α ∈ O is tested whether it is local w.r.t. Σ; if not, α is added toM, the signature
Σ is extended with all terms in α̃, and the test is re-run against the extended signature.
Then,M⊆ O and all axioms inO\M being local w.r.t.Σ∪M̃ is sufficient forO to be
a Σ-dCE ofM. By alternating the extraction of ⊥- and >-module over the previously



extracted module, we obtain various notion of modules. When the fixpoint is reached,
the resulting notion is called >⊥∗-locality. Locality-based modules can be efficiently
computed and provide coverage; that is, they capture all the relevant entailments, but
not necessarily only those [5,13]. A module extractor is implemented in the OWL API.4

Given a module notion x ∈ {>,⊥,>⊥∗}, we denote by x-mod(Σ,O) the x-module
ofO w.r.t. Σ. The following properties of locality-based modules will be of interest for
our modularization [5,17].

Proposition 2. Let O be an ontology, Σ a signature and x ∈ {>,⊥,>⊥∗}. Then the
following properties hold:
(a) for any Σ′, x-mod(Σ,O) ⊆ x-mod(Σ ∪Σ′,O) (monotonicity)
(b) forΣ′ withΣ ⊆ Σ′ ⊆ Σ∪M̃, x-mod(Σ′,O) = x-mod(Σ,O) (self-containedness)
(c) each axiom α entailed by O \ x-mod(Σ,O) and such that α̃ ⊆ Σ is a tautology
(depletingness).

Proposition 3. Any notion of locality-based modules satisfying the properties in Prop. 2
is such that any given signature generates a unique module.

From now on, we focus on the >⊥∗ notion of locality-based modules. However, we
want to underline that what we discuss in the rest of the paper can be carried out for
each notion of module satisfying monotonicity, self-containedness, and depletingness.

3 Atomic Decomposition

In [7] we introduced a new approach to represent the whole family FO of locality-
based modules of an ontology O. The key point is observing that some axioms appear
in a module only if other axioms do. In this spirit, we defined a notion of “logical
dependence” between axioms: the idea is that an axiom α depends on another axiom β
if whenever α occurs in a moduleM then β also belongs toM.

To keep the formalization clean, we remove from the ontology syntactic tautologies,
i.e. always-local axioms, and global axioms, i.e. axioms that belong to all modules. We
can always remove these unwanted axioms and consider them separately. Then, for each
axiom α is well-defined the smallest module containing it.

Proposition 4. The module >⊥∗-mod(α̃,O) is the smallest containing α.

Proof. We recall that >⊥∗-mod satisfies the properties as in Prop. 2. Then:

1. α is non-local w.r.t. α̃ (because is not a syntactic tautology), henceMα is not empty
2. Mα is the unique and thus smallest module for the seed signature α̃
3. by monotonicity, enlarging the seed signature α̃ results in a superset ofMα

4. M′ = >⊥∗-mod(M̃′,O) = >⊥∗-mod(M̃′ ∪ α̃,O) ⊇ >⊥∗-mod(α̃,O) by self-
containedness and monotonicity, thus any module M′ that contains α needs to
contain alsoMα. ut

Definition 5. The moduleMα = >⊥∗-mod(α̃,O) as in Prop. 4 is called α-module.

4 http://owlapi.sourceforge.net/



The dependency between axioms allows us to identify clumps of highly interrelated
axioms that never split over two or more modules [7]; these clumps are called atoms.

Definition 6. An atom is a maximal disjoint subset of an ontology such that their ax-
ioms either appear always together in modules, or none of them does.

Definition 7. The family of atoms of an ontology O is denoted by A(FO) and is called
Atomic Decomposition (AD).

The AD is evidently a partition of the ontology, thus is linear w.r.t. the size of the
ontology. Moreover, atoms are the building blocks of all modules [10].

Proposition 8. Each module is the union of suitable atoms.

We summarize in the following table the ontologies’ fragments described so far.

Structure O FO A(FO)

Elements axioms α modulesM atoms a, b, . . .
Maximal size baseline exponential linear
Mathem. object set family of sets poset

Proposition 9. Let a be an atom in the AD A(FO) of an ontology O; then, for any
selection of axioms S = {α1, . . . , ακ} ⊆ a we have that >⊥∗-mod(S̃,O) = Mα. In
particular, for each αi ∈ a,Mαi

=Mα.

Proof. Let α ∈ a be an axiom, and let us consider the moduleMα. Then:

1. a ⊆Mα by the definition of atoms
2. as a consequence,Mα ⊇ >⊥∗-mod(S̃,O) for every selection S of axioms from a
3. by Prop. 4, the inverted inclusion >⊥∗-mod(α̃i,O) ⊇Mα also holds. ut

A moduleMa = >⊥∗-mod(ã,O) is called compact. From Prop. 9 it is clear that
the set of compact modules coincides with the one of α- modules. Hence, we can denote
byMa the moduleMα for each α ∈ a. Now, we are ready to extend the definition of
“logical dependency” to atoms.

Definition 10. Let a and b be two distinct atoms of an ontology O. Then:

- a is dependent on b (written a � b) ifMb ⊆Ma

- a and b are independent ifMa ∩Mb = ∅
- a and b are weakly dependent if, they are neither independent nor dependent; in

this case, there exists an atom c which both a and b are dependent on.

Thanks to Def. 10, the AD inherites the mathematical structure of partially ordered
set, thus can be represented by means of a Hasse diagram.

Proposition 11. The binary relation “ �” as in Def. 10 is a partial order over the set
A(FO) of atoms of an ontology O.

Proof. This is true because � satisfies reflexivity, antisymmetry, and transitivity. ut



Algorithm 1 Atomic decomposition
Input: An ontology O.
Output: The set G of α-modules; the poset of
atoms (A(FO),�); the set of generating ax-
ioms GenAxs; for α ∈ GenAxs, the cardinality
CardAtom(α) of its atom.

ToDoAxs←>⊥∗-mod( eO,O)\>⊥∗-mod(∅,O)
GenAxs← ∅
for each α ∈ ToDoAxs do

Module(α)← >⊥∗-mod(eα,O) { 6= ∅}
new ← true
for each β ∈ GenAxs do

if Module(α) = Module(β) then
Atom(β)← Atom(β) ∪ {α}
CardAtom(β)← CardAtom(β) + 1
new ← false

end if
end for
if new = true then

Atom(α)← {α}
CardAtom(α)← 1
GenAxs← GenAxs ∪ {α}

end if
end for
for each α ∈ GenAxs do

for each β ∈ GenAxs do
if β ∈ Module(α) then

Atom(β) � Atom(α)
end if

end for
end for
A(FO)← {Atom(α) | α ∈ GenAxs}
G← {Module(α) | α ∈ GenAxs}
return [(A(FO),�),G,GenAxs,CardAtom(·)]

Name #logical #α- #Con. #max. #max.
axioms mods comp. mod. atom

Koala 42 23 5 18 7
Mereology 44 17 2 11 4
University 52 31 11 20 11
People 108 26 1 77 77
miniTambis 173 129 85 16 8
OWL-S 277 114 1 57 38
Tambis 595 369 119 236 61
Galen 4, 528 3, 340 807 458 29

Table 1. Experiments summary
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Figure 1. The AD of Koala

Prop. 9 and Prop. 11 provide the basis for our polynomial algorithm for the compu-
tation of the AD since it allows us to construct A(FO) via α-modules only. The whole
procedure is described in Alg. 1. A proof for its correctness can be found in [10].

We ran Algorithm 1 on a selection of ontologies, including those used in [6], and
indeed managed to compute the AD in all cases, even for ontologies where a complete
modularization was previously impossible. Table 1 summarizes ontology data: size,
expressivity, number of compact modules (= number of atoms), number of connected
components in the AD poset, size of largest compact module and of largest atom. Our
tests were obtained on a 2.16 GHz Intel Core 2 Duo Macbook with 2 GB of memory



running Mac OS X 10.5.8; each AD was computed within a couple of seconds (resp. 3
minutes for Galen).

We have also generated a graphical representation using GraphViz5. Our ADs show
atom size as node size, see e.g. Fig. 1. It shows four isolated atoms, e.g., Atom 22,
consisting of the axiom DryEucalyptForest v Forest. This means that, although
other modules may use some (but not all) 22’s terms, they do not “need” 22’s axioms
for any entailment. Hence, removing (the axioms in) isolated atoms from the ontology
would not result in the loss of any entailments regarding other modules or terms. Of
course, for entailments involving both DryEucalyptForest and Forest and possibly
other terms, axioms in isolated atoms may be needed. A similar structure is observable
in all ontologies considered, see the graphs at http://bit.ly/i4olY0 .

The following results have a deep impact on the way we describe modules in ADs:
the poset structure of an AD is a 1-1 representation of compact modules.

Definition 12. The principal ideal of an atom a is the set (a] = {α ∈ b | b � a} ⊆ O.

Lemma 13. Principal ideals of atoms are modules.

Proof. Given an atom a ∈ A(FO), we want to compare its principal ideal (a] =
⋃

b�a b
with the module Mα. By the definition of atoms, Mα ⊇ (a]. We still need to prove
that the equality holds. By contraposition, letMα be a proper superset of (a]. Then it
contains at least one atom b which a is not dependent on. Let β be an axiom in b, and
let us considerMβ . By Prop. 4,Mβ is the smallest module containing b. Then,Mβ is
contained inMα, and since the latter is the smallest module containing a, this means
that a is dependent on b. This last fact contradicts the assumption. ut

Prop. 9 implies that two axioms from the same atom generate the same compact
module. The converse also holds.

Proposition 14. Let α, β be two axioms such thatMα =Mβ . Then, an atom a exists
such that α, β ∈ a.

Proof. By contraposition, let a and b be two distinct (hence, disjoint) atoms such that
α ∈ a and β ∈ b. Then, by Prop. 13 the principal ideals (a] and (b] are also distinct
modules, and this contradicts the hypothesis. ut

Another interesting property is the existence of a mapping, denoted by rO, between
the family FO of modules of the ontology O into the set of antichains of the poset
structure of the AD, such that if M = a1 ∪ . . . ∪ an, then rO(M) is the minimum
set of atoms such that M = (a1] ∪ . . . ∪ (aκ]. In particular, {a1, . . . , aκ} is a set of
uncomparable atoms. Unfortunately, this mapping is not 1-1.

Corollary 15. For each module M of an ontology O, there are uncomparable (w.r.t.
the dependency relation �) atoms a1, . . . , aκ such thatM =

⋃n
i=1(ai].

Proof. By the definition of atoms, if M contains one axiom from an atom ai, then it
contains all its axioms. By the definition of dependency, ifM contains one atom ai, then
it contains all the atoms that ai depends on. Finally, we can consider only uncomparable
atoms because in caseM contains an b such that ai � b, then b is already included in
the representation ofM as (a1] ∪ . . . ∪ (ai] ∪ . . . ∪ (aκ]. ut

5 http://www.graphviz.org/About.php



3.1 Genuine modules

Another notion of module that we want to describe consists of those that do not fall
apart into more than one piece, and hence have a strong internal coherence.

Definition 16. A module is called fake if there exist two uncomparable (w.r.t. ⊆) mod-
ulesM1,M2 withM1 ∪M2 =M; a module is called genuine if it is not fake.

Lemma 17. The notions of α- and genuine modules coincide.

Proof. Both directions are proven by contraposition.

α- ⇒ genuine : LetM be a fake module. Then there are two uncomparable modules
M1 andM2 such thatM =M1 ∪M2. In particular, there exist suitable atoms such
thatM1 = a1∪ . . .∪aκ andM2 = b1∪ . . .∪b`. Since the modules are uncomparable,
then there is at least one atom ak inM1 such that ak 6∈ {b1, . . . , b`}; similarly, there
is at least one atom bl in M2 such that bk 6∈ {a1, . . . , aκ}. Finally, there is no atom
c ∈ M = {a1, . . . , aκ, b1, . . . , b`} dependent both on ak and on bl, otherwise these
atoms would be both inM1 and inM2; hence,M is not compact.

genuine ⇒ α- : Let M be a non compact module. By Cor. 15, there exist atoms
a1, . . . , aκ such thatM = (a1] ∪ . . . ∪ (aκ], with κ ≥ 2. By Lemma 13 we have that
the principal ideal of every atom is a module. HenceM = (a1]∪ . . .∪ (aκ] is the union
of uncomparable modules, and more in specific, fake. ut

A straightforward consequence of Cor. 15 and Lemma 17 is the set of genuine
modules to be a base for all locality-based modules: more precisely, each module is
the union of a combination of genuine modules. However, the converse does not hold:
not all combinations are modules, and given an AD is non-trivial to determine which
combinations of genuine modules generate a module.

Example 18. Let us consider the ontology O = {Ai v Ai+1 | i = 0, . . . , n− 1}. Then,
the AD of this ontology consists of n atoms pairwise independent. However, for each
choice of two terms Aκ, A` with κ < `, the module for the seed signature Σ = {Aκ, A`}
is the set >⊥∗(Σ,O) = {Aκ v Aκ+1, . . . , A`−1 v A`}. In other words, the atoms
concerning the terms “between” Aκ and A` are not really independent, because they are
“pulled into” the module for Σ.

The reason for this to happen can be found in the overlapping of minimal seed
signatures for genuine modules. We have seen in Sect.2 how modules are extracted, and
how the seed signature is “enlarged” to include the signature of all non-local axioms.
Hence, if the extended signature overlaps with the minimal seed signature of a different
genuine moduleM′, thenM′ is pulled into the module extracted.

4 Towards Applications

4.1 What for?

Fast Module Extraction (FME) : Ontologies are sometimes difficult even to load, so
an interesting task to perform would be the off-line extraction of modules by using the



AD of an ontology; in practice, we want to be able to recognize which combinations of
atoms generate a module, that is, find the inverse of the representing mapping rO. As
briefly introduced in Ex. 18, this operation does not directly follow from the AD: we
need more information concerning the minimal seed signatures of genuine modules, be-
cause their overlapping can cause other atoms to fall into the module we are extracting.
Further in this section we are going to discuss some preliminary issues about FME.

Module Count (MC) : In [6] we tried to compute a full modularization for the ontolo-
gies of different size listed in Table 1 in order to test the hypothesis that the number of
modules does not grow exponentially with the size of the ontology. Unfortunately, we
managed to compute all modules for two ontologies only, namely Koala and Mereology.
For the others, we sampled subontologies and extracted all of their modules. The results
we obtained made us tend towards rejecting the hypothesis, but they were not strong
enough for a clear rejection. From Cor. 15 we derive that one plausible application of
ADs is an estimate of the number of modules of an ontology, as a first approximation by
counting the number of antichains of the AD poset. However, this approach has been
proven unsuccessful: the estimate is still too large, because not all antichains gener-
ate a module, as in Ex.18. So the problem remains open, and only preliminary though
encouraging results are reported in [8].

Topicality for Ontology Comprehension (TOC) : The AD of an ontology derives
from strong logical properties of locality-based modules, so we expect it to preserve, or
indeed reveal, these properties. The first observation that we want to point out is that,
given an ontology and a notion of module, the structure defined in its AD is uniquely
determined. The stability of this structure implies that the issues described in what
follows are well-defined. Since modules are defined as set of axioms providing coverage
to a given set of terms Σ, it is natural to investigate the relations between terms and
modules.

In [9] we have exploited different notions of topicality in ontologies (and, more in
general, for logic-based theories) for notion of modules with strong logical properties.
Clearly, a notion as AD is too loose to define topicality for ontologies, since the sole
structure does not explain what the ontology is about. A refined suitable version of AD
would also contain labels to describe the content of an atom. Preliminary results in this
sense are reported in [9].

Beside the tasks described so far that we started addressing, we identified at least
other two tasks of interest, that we briefly describe in what follows.

Suggesting axioms to Repair First (RF) : One task that ontology engineers perform
commonly is maintaining and repairing ontologies. Interesting tools for this task make
use of Justifications [12]. Justifications are minimal sets of axioms that explain why a
specific entailment holds. Ontology engineers often search justifications for classes to
be unsatisfiable. Unfortunately, justifications can be large, and numerous. The logical
dependency of axioms defined in AD could be used to suggest which axioms of a jus-
tification to repair first, and in particular, those that the other axioms depend on. The
hope is that mistakes in the modeling phase propagate within the ontology by means of
the logical dependency as defined here.



Suggesting Seed Signatures (SigSug) : The users of ontologies are often interested in
extracting a (possibly minimal) set of axioms that “know everything” about a specific
set of terms. However, locality-based modules are designed to provide coverage for a
given seed signature Σ. Even if related to what required, modules are often too small,
because users are interested also in the relation that a term has with some of its sub- or
super-classes, or sub- or super-roles. However, there is no trivial relation between the
seed signature of input and the signature of the module extracted, so these relations are
sometimes left out the module. The current solution for this problem is the extraction
of a module for an enlarged signature, but the AD could be of interest for refining this
approach.

Throughout the description of the various tasks, we mentioned that often the AD is
too loose w.r.t. the actual modular structure of the ontology, hence adding information
can be of help in real applications. One possible refinement of ADs consists of includ-
ing information about seed signatures in the AD: the result is called Labelled Atomic
Decomposition (LAD).

Definition 19. Given: an ontology O and its AD A(FO) = {a1, . . . , an}, a labelling
function Lab(.) is a function fromA(FO) to the power set of Õ, that matches each atom
with a suitable set of terms from the ontology.

The information to be added depends on the task the users want to perform. Through-
out the rest of this section we briefly discuss the suitability of a specific labelling func-
tion to perform FME directly from the LAD of an ontology.

4.2 LAD for Fast Module Extraction

Let us consider the labelling function Labssig such that to each atom a is assigned the set
of minimal seed signatures that generate the moduleM = (a]. This labelling is useful
to discover “hidden relations” between an atom and terms that do not occur in it.

Example 20. Let us consider the ontology O = {A ≡ B, B v C, B u D v C t E t (G t
¬G), D v E, E ≡ F}. Each axiom identifies an atom, and O equals the principal ideal of
the atom a3 consisting of the axiom B u D v C t E t (G t ¬G). Although the signature
of a3 contains neither A nor F, the set Σ = {A, F} is indeed a minimal seed signature of
the module (a3]. The need of this axiom for the signature Σ is not evident at first sight.

On the other hand, Labssig does not include “irrelevant” terms: since under any in-
terpretation of G the concept G t ¬G is always >, then G does not appear in any of the
minimal seed signatures of the atom a3. Although this can be seen as a good behaviour
of Labssig, we need to consider how >⊥∗-modules are extracted: whenever an axiom α
is non local, the seed signatureΣ is extended with all terms in α̃. This means that in our
example G belongs to the extended signature of the module a3, and can interfere with
other terms of the seed signature of input, even if it is logically irrelevant. We need to
keep track of this information too. We define LabFEM to be the refinement of Labssig by
adding to the label of each atom also its irrelevant terms, i.e., all terms in the module
that do not occurr in any minimal seed signature. In Fig. 2 we show such LAD for the
ontology Koala. The refinement of Labssig affects only the atom labelled {Koala}.



{MaleStudentWith3Daughters}
{Student, hasChildren}

{Student, Parent}
{isHardWorking, hasChildren, University}
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{GraduateStudent}
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{Forest, 
RainForest}

Figure 2. LAD for performing FME of the ontology Koala

A problem that arises with LabFEM consists of the possibility of labels to be of
exponential size w.r.t. the ontology size, as in the following example.

Example 21. Let us consider the the family of ontologiesOn = {Ai ≡ Ai−1tA′i−1, Bi ≡
Bi−1 t B′i−1, Ci ≡ Ci−1 t C′i−1, Di ≡ Di−1 t D′i−1, Ai t Bi v Ci u Di | i = 1, . . . , n}.
Then, #On = 5n, and each AD consists of 5n atoms with an axiom each. Now, some
minimal seed signatures for the atom ani = {AitBi v CiuDi} contain 2 terms, one from
{Ai, Bi} and one from {Ci, Di}. However, each term can be replaced by the two terms
defining it (for example, Ai can be replaced by Ai−1, A′i−1). Since this procedure can be
recursively applied, the atom ani results to have at least 4i minimal seed signatures.

Despite the discussion throughout this section, a procedure to perform FME is still
not defined, and the exploitation of this matter is in our future work.

5 Outlook

We presented the Atomic Decomposition of an ontology, and showed its definition, its
properties, and its tractable generation. The AD reveals the overall modular structure of
an ontology, thus we expect to apply such decomposition in various scenario, from the
module count, to the support to ontology engineers in the modeling phase. We have also
introduced a family of refinements of AD, called Labelled Atomic Decompositions, jus-
tifying the need for labels in the specific task consisting of extracting a module without
loading the ontology.



Future work includes the completion of the preliminary results described here. In
particular, we want to explore suitable ADs/LADs for the tasks described in this pa-
per. Then, we are open to investigate other tasks that could be of interest for users of
ontologies and where a suitable LAD would be of help.
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