
Controlling Smart Environments
using a Brain Computer Interface

Gernot Ruscher∗ Frank Krüger Sebastian Bader Thomas Kirste

Universität Rostock,
Albert-Einstein-Str. 21,

18059 Rostock, Germany
∗corresponding author: gernot.ruscher@uni-rostock.de

ABSTRACT
We describe first experiments for controlling smart environ-
ments using a brain-computer interface. The graphical user
interface is automatically synthesised from device models
that specify effects of device functions on the environment.
Thus, the number of interactions can be reduced, and a novel
way of human machine interaction is introduced: Control-
ling the environment instead of single devices.

Categories and Subject Descriptors
H.5 [User Interfaces]: Graphical User Interfaces, Input
Devices and Strategies

General Terms
Design

Keywords
BCI, smart environments, graphical user interfaces

1. INTRODUCTION & MOTIVATION
Brain Computer Interfaces (BCI) are ongoing research since
the 1970s [10], employing invasive technologies as well as
non-invasive approaches such as EEG. Key potential of BCI
is the possibility of man-machine interaction without requir-
ing motor activities: Hands free, no gestures, no speech, no
pointing and clicking. Recently, low-cost devices have be-
come available at market targeting the gaming scene, claim-
ing, at a very competitive price, to provide the capability of
cerebral control for at least a limited set of interactions.

Our experience so far shows that with those simple BCI de-
vices, interaction is kept within tight bounds due to the lim-
its of this communication channel: A merely small character
set is available at a low frequency, which leads to a severely
limited data rate. Applications based on low-cost BCIs thus

have to deal with these limitations and to adapt their graph-
ical user interfaces (GUIs). These need to optimise the num-
ber of user interactions necessary to trigger an intended ap-
plication function. Thus, highly application-specific GUIs
need to be implemented, and various approaches have been
developed that are aimed at grouping functions smartly.

With the vision of Ubiquitous Computing coming true, de-
vice become more and more invisible to the user, and hence
cause the need for novel user interfaces. One specific ap-
plication field in this context is that of smart environments
[7]. These build complex sets of heterogenous devices, partly
fixed to the environment and partly brought-in by the user.
Thus, applications in smart environments need to base on
such a dynamic ensemble of devices which are possibly un-
known in advance. Developing user interfaces which provide
control options for lots of devices with lots of different func-
tions would be a tough task by itself. In addition with the
dynamics of the underlying device ensemble it quickly seems
to be insolvable.

One approach to provide a user interface for a dynamic de-
vice ensemble would be the synthesis of a dynamic GUI from
formal device descriptions. Various approaches, for example
built upon UPnP [4] or Jini [1], make it possible to gener-
ate GUIs, even for the control of a dynamic device ensemble.
Unfortunately, users’ experience shows difficulties with these
approaches.

Our approach presented in this work relies on the following
working hypothesis: What users of a smart environment are
interested in is not the individual device, but their effect
on the environment. One simple example: When a user
switches a lamp on, he actually just wants to increase the
lightness of the room. In this way, all the lamps of this room
are able to increase the lightness and would therefore be
redundant with respect to their effects on the environment.

With this article, we describe first experiments to control a
smart environment using the neural impulse actuator (NIA),
a low-cost brain non-invasive computer interface. We use
semantic models of the environment and the devices. We
model the devices with respect to their specific influence
onto the environment. We present a principle approach for
the synthesis of graphical user interfaces in order to reduce
the number of necessary interactions.

Copyright is held by the author/owner(s) 
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA



2. PRELIMINARIES
After presenting the neural impulse actuator, we briefly dis-
cuss our lab used for the experiments. Furthermore, we give
a short introduction to STRIPS: A formalism to describe
preconditions and effects of operations.

2.1 The Neural Impulse Actuator
In 2007, OCZ Technology Group Inc. [5] introduced the
Neural Impulse Actuator (NIA): A simple BCI controller,
basically a headband, equipped with three electrodes cap-
turing electrical potentials from the forehead. Those poten-
tials include electromyogram (potentials arising from muscle
control), electroencephalogram (signals from the nerves in
the brain) and electrooculogram (signals coming up during
eye movement). A special controller is used to connect the
sensors to the computer. The NIA registers itself as a USB
human interface device, which basically permits it to act like
any other input device, e.g. a keyboard or mouse. Figure 1
shows a photo of the NIA controller.

After calibrating the NIA, it is supposed to be usable as a
virtual joystick and to switch events, which can be triggered
by different electric potentials or muscle movements. In our
experiments, we found the following actions easy and stable
to recognise:

• eye movement in general,
• heavy muscle movement on the forehead, or moving

the jaw,
• light muscle movement on the forehead,
• heavy thinking, and
• relaxing, or closing the eyes.

Here, we want to use the NIA to control our lab environ-
ment, even while working on other subjects. Hence, inputs
triggered by heavy thinking and relaxing are not suitable
signals for a smart environment controller. However, paral-
lel performance to compose more complex signals does not
seem to be helpful, as we want to provide an easy-to-use
interface. Therefore, we have at most three distinguishable
signals at hand: (i) eye movement, together with (ii) heavy
and (iii) light forehead muscle movement. To complicate
things further, users of the NIA can perform those signals
at a merely low frequency of about 10 per minute at most,
leading to a comparatively low data rate.

2.2 Our SmartLab
For our experiments we utilised our SmartLab: An instru-
mented meeting room (cf. fig. 2) equipped with a number
of remotely controllable devices. It is frequently used as a

Figure 1: The NIA

Figure 2: Our SmartLab.

room for lectures, presentations, and meetings, but also as
an experimental setup for user studies.

Our lab is equipped with a couple of sensors, needed to
observe state changes in the room. There are e.g. sen-
sors capable of detecting whether the windows are closed
or opened, measuring the current temperature, or detecting
persons that enter or leave the room, and estimating their
number and current positions [3].

On the other hand there is a number of remotely control-
lable devices required in typical meeting rooms: Dimmable
lamps as well as movable projection screens and sun shades,
controllable via EIB [2], a computer video and audio matrix
switcher to connect brought-in devices with the installed
projectors and audio equipment, just to mention the most
important. Those devices are actuators in essence, but can
also be seen as specific sensors, in each case providing access
to their respective status.

Our lab features a powerful middleware (as for instance de-
scribed in [6]) which on the one hand allows for control of
all existing hardware using simple commands. On the other,
besides triggering device actions, our middleware enables ev-
ery device to make its specific properties accessible to other
components in the system.

2.3 STRIPS
To describe the capabilities of devices and their possible ac-
tions, we suggest to use STRIPS-operators as illustrated in
[9]. Those operators formalise (i) preconditions that need to
hold to make the execution of the respective operation possi-
ble and (ii) effects that specify the world state changes pro-
voked by the execution of the respective operation. STRIPS-
operators have successfully been used in the context of smart
environments before [8].

Due to their associated declarative semantics, they are well
suited for an automatic interpretation and hence for the con-
struction of a controller. We annotate every operator with
the middleware command which needs to be executed to
perform the operation. Figure 3 shows two simple operators
describing how to switch a lamp l on and off.

Copyright is held by the author/owner(s) 
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA



3. OUR APPROACH
As depicted above our user interface needs to cope with a dy-
namic ensemble of heterogenous devices, which is the reason
we do not have the option to hard-code a certain controller
for a fixed environment. Therefore, we need to consider ways
and means of synthesising a controller from an abstract de-
scription of the environment and the devices.

According to figure 4, we consider three different modelling
tiers: Top left in the sketch is the layer of the background
model. It specifies existing parameters of the environment
and how they can be modified. To provide an example we
have formalised two specific parameters and their respective
operations in figure 5: There exists some parameter that cor-
responds to the lightness of our room, and it can be modified
by two operations named increase and decrease. The param-
eter temperature is handled likewise. This explicit kind of
formal specification of environmental parameters is needed
later on to describe the effects on the environment caused
by triggering device actions.

As illustrated in section 2.2 all of our devices are made ac-
cessible through our middleware, that way providing on the
one hand the entire set of current properties to other com-
ponents and on the other an easy-to-use interface for trig-
gering device actions. In figure 4 this device representation
layer is called device model and establishes a certain level
of abstraction from the plain hardware, where every device
can exist without requiring local knowledge on the existence
of other devices, the middleware or even the environment.
Besides properties and actions this layer holds additional in-
formation on the device such as the device type, its name,
or whether the device is currently available in the system.

The third modelling tier, the effect model, now etablishes
the relation between the raw device descriptions from the
device model and the environmental parameters from the
background model. This is done by modelling device ac-
tions with respect to their effect on the environment. Every
action is annotated with a formal description of the influence
of its execution on the specified environmental parameters.
As depicted in figure 3 for instance the execution of the
turnOn method of a lamp has an effect on the environmen-
tal parameter lightness in the form that the latter would
be increased. We suggest to use STRIPS as modelling for-
malism to describe the semantic meaning of actions to the
environment.

Action(switchOn(l,r))
Precond: Lamp(l) ∧ Room(r) ∧ In(r,l) ∧ Off(l)
Effect: ¬Off(l) ∧ On(l) ∧ Lightness.increase(r)
Command: l.turnOn()

Action(switchOff(l,r))
Precond: Lamp(l) ∧ Room(r) ∧ In(r,l) ∧ On(l)
Effect: ¬On(l) ∧ Off(l) ∧ Lightness.decrease(r)
Command: l.turnOff()

Figure 3: An annotated STRIPS-operator describ-
ing the switchOn and switchOff actions for a lamp.
Every operator contains preconditions and effects of
the action, and the command to be executed to per-
form the action.

Views

Middleware

Background Model

Effect Model

Device 
Model

Device 
Model

Device 
Model

Device 
Model

Devices

Controller

GUI GUI GUI

Semantic
Models

Actions

Figure 4: Integration outline of the proposed con-
troller within the smart environment system.

The information aggregation mechanisms of our middleware
enable applications to gather these effect models analogously
to the previously mentioned properties as well as type and
status information of devices. Therefore a GUI application
– called controller in figure 4 – is now able to provide itself
with a list of all devices together with their descriptions,
i.e. the type (lamp, sun shades, ...) of the device and all
its available actions, including their particular preconditions
and effects. After collecting the operators, it can generate
diverse GUIs views. Below we present some first experimen-
tal views that shall demonstrate the descriptive power of our
proposed approach.

As mentioned above, there are basically three different ac-
tions (keystrokes) a human can reliably perform. Based on
the formal description of our devices we implemented lab
controllers tailored for a limited communication between hu-
man and computer to evaluate our approach. We designed
them following the Mac Finder’s Column View. Two keys
are used to move the focus up and down a list, the third to
select the item.

Our very first prototype contained three columns, of which
the first contained a list of device types, the second all avail-
able devices of the type selected in the first column, and the
third all the applicable functions of the device in the second
column. This prototype does not involve any environmental
knowledge yet. Due to its three-button-based design, this
controller interface would enable users who have to rely on
a NIA to take control of a complex and dynamic set of het-
erogeneous devices once these have been seen by the system
through the middleware. But without further tweaking and
tuning – which we elaborate on in section 4 – the menus
would be very large if they contain every possible action for
every possible device.

Parameter(Room, Lightness)
Operation(Lightness, increase)
Operation(Lightness, decrease)

Parameter(Room, Temperature)
Operation(Temperature, increase)
Operation(Temperature, decrease)

Figure 5: Background knowledge: Two environmen-
tal parameters and their respective operations.

Copyright is held by the author/owner(s) 
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA



Figure 6: A user interface synthesised by our second
controller prototype.

Our second prototype now extracts advantages from our for-
malisation: As an alternative to a static arrangement based
on the device type, we can group our devices with respect
to their effects on the environment, as we did in our second
controller, which is shown in figure 6. Here, the first column
has been replaced by a column containing controllable pa-
rameters as for example the lightness, or the temperature.
Then, all those devices are listed in the second column which
can actually influence the selected parameter. Finally, the
third column would again contain performable actions.

But our formalisation of effects has further advantages: The
previously depicted controller still displays all the devices
even if they have similar influence on the environment. This
leads to a long list of devices with each of them still provid-
ing every possible action. But, with respect to their effects
they are kind of redundant and if we assume that a user is
not interested in the device and its particular action itself
but is interested in its effect, we can omit all these informa-
tion and simply provide control options of an environment.
For this purpose, we can simply use our existing model of
environmental parameters. Our third controller prototype
working this way is depicted in figure 7. In the first column
it displays the environmental parameters of the background
model, which can then be adjusted by selecting one of the
items in the second column.

Within our research project MAike, all devices send their
descriptions to a central look-up, realised as a tuple space
[6]. Furthermore, the NIA controller integrates itself as a
new modality for user interaction among other existing ones
(speech interaction, intention analysis, ...). So far, we inte-
grated four different device types, with at most eight devices
and five actions, and initial experiments showed that those
devices are easily controllable using this simple controller
together with the NIA.

Figure 7: Another user interface synthesised by our
third controller prototype.

4. CONCLUSIONS AND DISCUSSION
Our investigations leave us with mixed feelings. On the one
hand, it is indeed possible to evoke a limited set of actions
using the NIA controller. On the other hand, the concen-
tration required from the user (and, indeed, the level of self
control regarding the facial expression), in our opinion leaves
ample room for optimisation of both signal acquisition at the
sensory level and signal processing at the algorithmic level.

While developing the controller, we could reliably distin-
guish three different inputs only. Of course the NIA itself
provides a richer interface in form of analogue joysticks, but
we found that those are hard to control while concentrating
on other tasks and they cannot be distinguished as reliable
as needed to control the environment. Nonetheless, a better
recognition of crisp events would be desirable for the future.

With this work we present a mechanism that deals with the
issue of operating a complex and dynamic system through
such restricted channels. If we had to deal with an environ-
ment that would be static and consist of a fixed number of
well-known devices, we would be able to build a controller
being perfect in terms of the number of interactions. Be-
cause we need an automatically synthesised controller, our
approach uses STRIPS operators to apply semantic knowl-
edge of the system’s devices and their possible actions aim-
ing at design (and synthesis) of adequate user interfaces.

In the simple approaches presented above, the menus would
still grow very large with every new device entering the scene
if the menus still contain every possible action for every pos-
sible device. Therefore, it is desirable to show the user not
the whole menu. Instead, we should offer more abstract ac-
tions. Furthermore, we would like those abstract actions to
be context dependent and automatically generated.

The focus of this work was not to develop the perfect-working
graphical user interface for controlling tasks using the NIA
controller. Our goal was to investigate several approaches to
reduce the number of interactions a user has to perform to
have a function executed. Therefore, the synthesised GUIs
will never be the best ones one would find through manual
design. This work considers ways and means of involving
formal descriptions of environmental knowledge into auto-
matic GUI development. We have not yet evaluated which
are best suited for the present application case and different
approaches from the ones depicted in this work are imagin-
able.

As mentioned above, the menu structure used in our pro-
totype, does probably not allow to control larger environ-
ments. In the following section 5, we have discussed a num-
ber of methods to create more suitable menus and higher
level actions. Those have to be implemented and tested
with respect to their usability.

Nevertheless, our solution seems to be a principle approach
for the synthesis of graphical user interfaces in general, which
could bring a significant benefit not only for motorically
challenged users, or those who require hands-free interac-
tion in situations, where speech control is not an option.

Copyright is held by the author/owner(s) 
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA



5. A ROADMAP FOR THE FUTURE
The controller described above is applicable for small well-
defined scenarios, but certainly not to control a complex
infrastructure with hundreds of device-actions. This is due
to the realised menu-based interaction. Considering a usual
living room, it is not hard to think of many different de-
vices which should be controllable. Just think of all lamps,
shades, multi-media devices, etc. Therefore, alternatives are
currently under investigation. We try to learn user prefer-
ences online and group devices dynamically. For example,
we could group devices together as one virtual device if they
have been used in one go a couple of times. Another group-
ing approach could be a Huffman-like encoding which would
put the more important devices above others in the list.

As mentioned above lots of user evaluation needs to be done
in order to find more intuitive user interface design methods
that make use of formal descriptions of the effects caused by
device actions on the environment and of the environment it-
self. One approach could be another control metaphor which
is especially designed for brain computer interfaces: A rect-
angle that periodically rolls over a list of items on the screen
and each time marks the currently covered item. The user
now simply thinks of the particular item he wants to choose
and a signal from the brain indicates the moment when the
bar covers this item. This selection mechanism can not only
be utilised with lists of items, but also like shown in figure 8:
First a horizontal bar goes the up-down direction and stops
when the height of the selected item is reached. Second,
the vertical bar starts moving and is used to indicate the
particular device in this line.

The area of automatic intention analysis, that is the detec-
tion of the user’s goals based on his current activities, opens
further possibilities. Given the user’s current goals, we could
automatically re-arrange the menus to provide faster access
to device which are most likely to be used in the current sit-
uation. Going one step further, high-level actions could also
be added to the controller. A room detecting the start of
a lecture could offer the compound action like “put my pre-
sentation on the projector”, which consists of several smaller
actions. For this purpose some additional strategy synthesis
component would be needed.

We have not yet fully covered the possibility of the existence
of multiple environments, containing different devices, but
controllable through the same user interface. This could be
the case in a smart home consisting of several smart rooms,
where users possibly would like to have functions performed
in other rooms remotely or trigger actions in different rooms
simultanously. One straightforward approach would be an
additional column inserted before the first one, that specifies
the particular room. After this column would be the ones
depicted in the previous sections.

So far we have been relying on the feedback on an existing
computer screen. This is possible for users that can carry
a small display with them. E.g., for people depending on a
wheel chair, this monitor can be integrated into it. Alter-
natives should be investigated, e.g. sounds or small displays
right next to the devices which are controllable. This would
enable the user to move freely around in the environment
without watching a computer screen for every action.

Figure 8: The user interface of a potential controller.

Acknowledgements
Gernot Ruscher’s work in the MAike project as well as
Frank Krüger’s work in the MAxima project are both sup-
ported by Wirtschaftsministerium M-V at expense of EFRE
and ESF.

6. REFERENCES
[1] http://www.jini.org, OCT 2009.

[2] http://www.knx.org/, OCT 2009.

[3] http://www.ubisense.de, JUN 2009.

[4] http://www.upnp.org/, DEC 2010.

[5] OCZ Technology Group, Inc. Retrieved from
http://www.ocztechnology.com, November 2010.

[6] S. Bader, G. Ruscher, and T. Kirste. A middleware for
rapid prototyping smart environments. In Proceedings
of the 12th ACM international conference adjunct
papers on Ubiquitous computing, pages 355–356,
Copenhagen, Denmark, SEP 2010. ACM.

[7] D. Cook and S. Das. Smart Environments. Wiley,
2005.

[8] C. Reisse and T. Kirste. A distributed action selection
mechanism for device cooperation in smart
environments. In Proceedings of the 4th International
Conference on Intelligent Environments, Seattle, USA,
2008.

[9] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition edition,
2003.

[10] J. Vidal. Toward direct brain–computer
communication. In Annual Review of Biophysics and
Bioengineering, pages 157–180, 2 1972.

Copyright is held by the author/owner(s) 
SEMAIS'11, Feb 13 2011, Palo Alto, CA, USA




