
Automated Ontology Evolution as a Basis for Adaptive
Interactive Systems

Elmar P. Wach
STI Innsbruck, University of Innsbruck/
Elmar/P/Wach eCommerce Consulting
Technikerstraße 21a, 6020 Innsbruck,
Austria/ Hummelsbüttler Hauptstraße

43, 22339 Hamburg, Germany
+49 172 713 6928

elmar.wach@sti2.at/
wach@elmarpwach.com

ABSTRACT

The research presented in this paper aims at realising an

automated ontology evolution process based on feedback without

a human inspection. For that, a generic adaptation strategy

consisting of a feedback transformation strategy and an ontology

evolution strategy is formulated. It decides when and how to

evolve by evaluating the impact of the evolution in the precedent

feedback cycle. These strategies are implemented in a feedback

transformer component and an adaptation manager component

respectively, constituting a new adaptation layer. The adaptive

ontology is evaluated with an experiment and validated with a

real-world conversational content-based e-commerce

recommender system as use case.

Categories and Subject Descriptors

G.2.2 [Discrete Mathematics]: Graph Theory – graph

algorithms, graph labeling. H.3.3 [Information Storage and

Retrieval]: Information Search and Retrieval – relevance

feedback. H.3.5 [Information Storage and Retrieval]: Online

Information Services – commercial services, web-based services.

I.2.4 [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods – representations (procedural and rule-

based), semantic networks. I.2.6 [Artificial Intelligence]:

Learning – concept learning, knowledge acquisition. K.4.3

[Computers and Society]: Organizational Impacts – automation

General Terms

Algorithms, Management, Measurement, Design,

Experimentation, Standardization, Languages.

Keywords

Ontology Evolution, Ontology Versioning, Recommender

Systems, Self-Adapting Information Systems, Algorithms.

1. INTRODUCTION
Today, the user in the Internet gets overflowed with information

and products that she should purchase. Not only becomes it

difficult for her to take the right buying decision, but also don’t

match many search results her needs. Hence, recommender

systems in e-commerce applications have become business

relevant in filtering the vast information available in the Internet

(and e-shops) to present useful search results and product

recommendations to the user.

As the range of products and customer needs and preferences

change – and they will change even more frequently – it is

necessary to adapt the recommendation process. Doing that

manually is inefficient and usually very expensive.

Therefore, this research proposes an automated adaptation of the

recommendation process by utilising semantic technology and

processing user feedback.

The shortcomings of a manual adaptation of the recommendation

process based on user feedback are aimed to be solved with a

system based on product domain ontologies (PDO) modelling the

products offered in the e-commerce application and automatically

evolving with processing user feedback. As the PDO describes the

products formally, it offers a higher computability than

conventional product descriptions and, hence, facilitates

automated processing of information.

In order to get the system user-driven, user feedback is gathered

by unobtrusively monitoring user needs. The more information is

available from a user, the better the adaptation to her needs can

be. Hence, implicit and explicit feedbacks provided via feedback

channels are evaluated. Implicit feedback is given by the user as a

side-effect of her usage behaviour, e.g. by clicking on the product

recommended. Explicit feedback could be provided by answering

questions about her satisfaction with the application. As this effort

cannot be expected from a user, an alternative is to extract

feedback from the Web that could also deliver new information

and aspects about the products offered. In order to focus this

research on developing an automated ontology evolution, the

feedback is assumed to be given.

On a more abstract level, this research aims at realising an

automated ontology evolution process based on feedback without

a human inspection.

Topics of the SEMAIS 2011 workshop related to this research:

Copyright is held by the author.

SEMAIS’11, February 13, 2011, Palo Alto, CA, USA

• What are the major technical challenges for developing or

generating user interfaces based on semantic models?

This paper aims to answer the above question with a generic

approach.

• For which kind of systems or applications are semantic models

particularly useful?

The use case in this paper is a recommender; for which other

systems or applications can it be useful?

• Additional question: Which ontological information and its

changes (properties, etc.) are requested by adaptive interactive

systems?

2. RELATED WORK
Previous approaches to the topic of this research can be found in

concepts for ontology evolution like formulated frameworks for

ontology evolution, e.g. [6], [7], [8], [14], [16], [18]. Due to the

specific challenges of the present research like the automated

ontology evolution process, none of the identified frameworks can

be completely used as basis, e.g. all of the frameworks include a

step for the human inspection of the ontology changes before they

are executed. The closest work to the research in this paper is [16]

– in the six phase evolution process, two steps include manual

activities, namely (i) “Implementation” in which the implications

of an ontology change are presented to the user and have to be

approved by her before execution, and (ii) “Validation” in which

performed changes can get manually validated. The research in

this paper proposes an extension of [16] towards an automated

ontology evolution by developing a generic adaptation strategy

and further introducing a complete feedback cycle based on the

ontology usage that eliminates the implementation and validation

steps of above – an ontology change needs those manual steps no

longer, as an insufficient change would be alerted by a negative

feedback and get corrected automatically.

The approaches to the identified recommender systems [1], [2],

[4], [11], [12], [13] research the impact on the recommendation

result by using the different recommender types (i.e. content-

based filtering, collaborative filtering, hybrid approaches) and

mostly utilising domain and user ontologies, whereas the feedback

gets processed in the latter one. None of them combines an e-

commerce domain ontology with the processing of implicit and

explicit user feedbacks.

3. ADAPTATION STRATEGY
For realising an automated ontology evolution, a generic

adaptation strategy consisting of a feedback transformation

strategy and an ontology evolution strategy is formulated. It

decides when and how to evolve by evaluating the impact of the

evolution in the precedent feedback cycle. The first question

defines the (temporal and causal) trigger initiating the ontology

change. Basically, this is receiving and transforming the feedback

into ontology input and will be addressed with a feedback

transformation strategy (confer chapter 3.1).

The second question defines the changing of the ontology

including instance data. This is denoted by ontology evolution

referring to the activity of facilitating the modification of an

ontology by preserving its consistency [19]. This will be

addressed with an ontology evolution strategy (confer chapter 3.2)

considering also how identified conflicts can be solved, e.g. when

moving a sub-concept.

By following the principles of adaptive systems [3], the

adaptation strategy is implemented in a new adaptation layer

consisting of components in which the user feedback gets

transformed (i.e. Feedback Transformer) and the respective

actions are decided and initiated (i.e. Adaptation Manager).

3.1 Feedback Transformation Strategy
In order to automatically process feedback, i.e. transforming it

into ontology input, an adequate feedback transformation strategy

has to be formulated and implemented. It has to allow for different

feedback channels as well as different kinds of feedback. This

strategy is implemented in the feedback transformer component

depicted in figure 1. In the Feedback Transformer the ontology

affected by the feedback reported is identified, the feedback is

analysed and transformed, and eventually get related to the

precedent feedback.

Figure 1. Conceptual architecture of the feedback transformer

component

Basically, the strategy comprises the following steps:

1. Gather feedback from the different channels

2. Transform different feedback types

1. Report transformed feedback to the next component

Ad 1. Each feedback channel provides user feedback as RDF

triples at separate SPARQL endpoints. The RDF triples are

retrieved by the Feedback Transformer and captured in a semantic

feedback log as instances of the feedback ontology (confer next

paragraph).

Ad 2. The feedback ontology is a prerequisite for the meaningful

analysis of the feedback [17]. In the present research, it models

the feedback at the product level and additionally contains all

product names of the product ontologies. The structure of the

feedback ontology enables reasoning about a product and its

ratings including the historical development as well as identifying

properties and relations to be newly added to the product

ontology. Accordingly, we distinguish between the three feedback

types “KPI1 trend”, “product rating”, and “new property”. The

root concept is “Feedback”. Its hierarchy consists of the sub-

concepts “KPI trend”, “product rating”, and “new property”.

Appropriate relations like “previousRating” model the history of

the ratings.

1 Key Performance Indicator, measured in the application layer

The first two feedback types are converted by either a simple

transformation or a feedback evaluation algorithm to values in the

range [+1…-1] relating the current transformed feedback to the

one in the precedent cycle.

For the feedback type “product rating” the RDF feedback includes

the product name and rating but no new potential property. The

feedback is transformed with a feedback evaluation algorithm. In

the first step, the impact of the ontology evolution on the KPI

(e.g. conversion rate and click-out rate) is calculated for each

product and feedback channel. In the next step, all feedback

channels are aggregated at the product level. Finally, a trend

metric is calculated relating the current transformed feedback to

the one in the precedent cycle.

For the feedback type “new property” the RDF feedback includes

the product name and a new potential property to be eventually

added to the product ontology, e.g. information like aspects or

relevant features of a product. This feedback type is not covered

by the feedback evaluation algorithm. A new sub-property for the

aspect/ feature is created in the feedback ontology and its count

gets related to the count of all properties in the respective PDO.

When reaching a defined threshold, the new property is added to

the respective PDO.

The semantic feedback log captures the exact sequence of the

reported feedbacks. Each feedback is associated with the

respective product (i.e. the RDF feedback contains the

corresponding product name) and represented as instances of the

sub-concepts of “Feedback”. These instances contain the product

name, feedback channel, date and time of the feedback, rating,

and the certainty of the rating as well as the number of properties

contained in the product ontology. The log allows the analysis of

the feedback development.

Ad 3. After having transformed the different feedback types, the

calculated metrics relating the current feedback to the feedback in

the precedent cycle are reported to the next component, i.e. the

Adaptation Manager.

3.2 Ontology Evolution Strategy
The ontology evolution strategy defines how the PDO change. It

associates the transformed feedback values to evolution actions

and ensures a consistent new version of a PDO. This strategy is

implemented in the adaptation manager component depicted in

figure 2. In the Adaptation Manager the structure of the respective

ontology get dynamically analysed with SPARQL SELECT

statements and the ontology changes (e.g. switching individuals,

switching annotation property labels and comments, changing

annotation property priorities, adding new properties) are

executed with SPARQL CONSTRUCT rules according to

predefined evolution strategies.

Figure 2. Conceptual architecture of the adaptation manager

component

Basically, the strategy comprises the following steps:

4. Gather feedback trends

5. Associate ontology changes with evolution strategies

6. Ensure a consistent ontology evolution

Ad 4. In each feedback cycle the transformed feedback gets

reported to the Adaptation Manager. The feedback is based on the

product level. Each reported feedback is captured in a trend log at

the product level.

Ad 5. The central task of the ontology evolution strategy and the

Adaptation Manager is to choose the right evolution, i.e. ontology

changes, for the transformed feedback.

[9] introduced a meta-ontology for the ontology evolution

enabling representation, analysis, realisation, and sharing of

ontological changes. Each possible change is represented as a

concept in that evolution ontology having an evolution log as

instance capturing the changes. A central element in the

framework of [7] are a change log and an ontology of change

operations for OWL describing basic ontology change operations2

and complex change operations composed of multiple basic

operations. This research aims at utilising the ontology of change

operations sketched above.

Derived from user scenarios, evolution strategies are defined

reflecting different behaviours and associating ontology changes,

namely:

• Risky Evolution (“always evolve differently”): Regardless of

the feedback trend between two consecutive feedback cycles,

other complex ontology change operations are executed

• Progressive Evolution (“learn from the past”): Depending on

the leap of the trend, same or different complex ontology

change operations are executed; in case of a negative trend, it

is optional to either do a different complex ontology change

operation or a rollback; additionally, with a threshold

indicating the increase of the trend between the current and

the precedent cycle the “risk” of the evolution can be

adjusted and the strategy tuned towards the Risky Evolution

(with a higher threshold)

• Safe Evolution (“only revert negative trends”): In case of a

negative trend, a rollback is executed

2 Basic ontology change operations modify only one specific

feature of an OWL ontology

• Rollback (“undo the ontology changes”): Reverts the

ontology changes from the precedent feedback cycle and is

based on any reason or decision of the manager; it is

executed only once but can be manually chosen multiple

times

Ad 6. After having chosen the ontology change operations to be

executed, the ontology has to evolve depending on rules and by

retaining its consistency to finally provide its knowledge to the

application layer.

The existing research about ontology evolution is based on the

work about data schema evolution but focuses on the specific

needs of ontologies, e.g. [10], [15], [16].

To execute ontology changes, an ontology evolution algorithm

has to be formulated. The following prerequisites have to be

respected:

• The basic and complex ontology change operations have to

be defined formally

• It has to be defined when an ontology is inconsistent, i.e. an

ontology consistency model has to be formulated; the

preconditions and postconditions of the change operations

have to be checked before execution

• The options for a consistent ontology evolution have to be

identified and the “best” evolution path chosen; in the

present research the belief revision principle of minimal

change will be followed [8]; eventually, the ontology

evolution algorithm can be formulated

When evolving the ontology, it has to be clear how the ontology

has been evolved over time, i.e. the different ontology evolutions

have to be versioned. In the context of this research this is of

paramount importance, for (i) the ontology changes in the current

feedback cycle are derived from the changes in the precedent

cycle and (ii) an undoing of the changes in the precedent feedback

cycle, i.e. a rollback, has to be realisable.

The preferred concept of ontology versioning is change-based

versioning (i.e. each state gets its own version number and

additionally stores information about the changes made), because

it facilitates change detection, integration, conflict management

[9], and it allows the interpretation how ontology changes

influence the KPI. A change-based versioning can be best realised

by tracking the ontology changes in a semantic log [9].

The change ontology models the applicable changes and meta-

information and provides the semantics of all possible ontology

changes. The root concept is “Change”. Its hierarchy consists of

the sub-concepts “complex ontology change operations” and

“basic ontology change operations”. Appropriate relations like

“previousChange” model the history of the ontology changes and

construct the sequence of the required changes. The structure of

the change ontology enables reasoning about changes including

their historical development.

The semantic change log captures the exact sequence of the

ontology changes executed. Each change is represented as

instances of the sub-concepts of “Change”. The log allows the

analysis of the change development including realising a rollback.

The whole adaptation strategy and its implementation via the

components Feedback Transformer and Adaptation Manager

allow eliminating both manual steps in the six phase evolution

process of [16]:

• Phase “Implementation” (ontology changes are manually

approved before execution): Nobody has to do that, as the

ontology evolution is seen as a complete feedback cycle – an

insufficient ontology change is indicated by decreased KPI

and gets revised according to the evolution strategy chosen

• Phase “Validation” (performed changes can get manually

validated): As the ontology changes are predefined, only

valid changes are executed, and nobody has to validate them

4. EVALUATION AND VALIDATION
The automatically evolved ontology is going to be compared with

a manually evolved one by setting up and evaluating an

experiment with ontology experts. Those analyse the feedbacks

delivered and decide the ontology changes to be executed.

Eventually, the ontology resulted from this manual evolution is

compared with the automatically evolved one regarding the

evaluation criteria consistency, completeness, conciseness,

expandability, and sensitiveness [5].

The validation of this research is done with a use case by utilising

a real-world conversational content-based e-commerce

recommender system and two feedback channels – the Web

application and information extracted from Linked Open Data. As

the recommender is already used in live e-commerce applications,

the evaluation of the system adaptations is a real-world scenario.

The recommender is based on PDO that semantically describe the

products offered in e-commerce applications according to the

GoodRelations ontology.3

The success of such a system is usually defined by analysing KPI

like the achieved conversion rate (i.e. customers-to-recommender

users ratio) or click-out rate (i.e. clicks-to-recommendations

ratio).

The evaluation scenario is to test and evaluate the impact of the

ontology evolution by utilising the formulated evolution

strategies, i.e. Risky Evolution, Progressive Evolution, and Safe

Evolution.

The impact of the ontology evolution will be analysed and

evaluated with regard to the respective KPI at the application

level after each to be defined number of accomplished

recommendation processes and reported to the ontology.

According to the respective results and feedbacks reported, the

ontology evolves. The ontological knowledge is provided to the

application layer, and eventually adapted recommendations are

presented to the customer. The feedback circle of the automated

system concludes with re-evaluating the KPI after having again

reached the defined number of recommendation processes.

The intended results are a highly adaptive system and eventually

better recommendations given to the user leading to an increase of

the defined KPI. The expected business impacts are a higher

3 www.purl.org/goodrelations

customer satisfaction and loyalty and eventually increased

revenue for the provider of the application.

This evaluation procedure will be executed for all three evolution

strategies and evaluated analogously.

An interesting result of the evaluation scenario would be that one

of the three evolution strategies leads to a higher increase of the

KPI.

In case a predominant evolution strategy is identified, it can be

interpreted that the historic development of changing the ontology

(i.e. doing the same change again versus doing a different change)

has a significant influence on the customer satisfaction. Though,

this can in the case of same changes only be valid within a

realisable frame, e.g. it is not possible to move up a sub-concept

in the concept hierarchy infinitely times.

5. CONCLUSION
The need for automatically updating and evolving ontologies is

urging in today’s usage scenarios. The present research tackles an

automated process for the first time (to the best knowledge of the

author). The reason for that can be found in the ontology

definition “formal, explicit specification of a shared

conceptualisation”. “Shared” means the knowledge contained in

an ontology is consensual, i.e. it has been accepted by a group of

people. Entailed from that, one can argue that by processing

feedback in an ontology and evolving it, it is no longer a shared

conceptualisation but an application-specific data model. On the

other hand, it is still shared by the group of people who are using

the application. It may even be argued that the ontology has been

optimised for the usage of that group (in a specific context or

application) and, hence, is a new way of interpreting ontologies:

They can also be a specifically tailored and usage-based

knowledge representation derived from an initial ontology – an

ontology view, preserving most of the advantages like the support

of automatically processing information. Thus, this changed way

of conceiving ontologies could facilitate the adoption and spread

of using this powerful representation mechanism in the real world,

as it is easier to accomplish consensus within a smaller group of

people than a larger one.

6. ACKNOWLEDGMENTS
The research presented in this paper is funded by the Austrian

Research Promotion Agency (FFG) and the Federal Ministry of

Transport, Innovation, and Technology (BMVIT) under the FIT-

IT “Semantic Systems” program (contract number 825061).

7. REFERENCES
[1] Aktas, M. S., Pierce M., Fox, G. C., Leake D. 2004. A Web

based conversational case-based recommender system for

ontology aided metadata discovery, Proceedings 5th IEEE/

ACM International Workshop on Grid Computing, pp. 69-

75.

[2] Blanco, Y. et al. 2005. AVATAR: An approach based on

semantic reasoning to recommend personalized TV

programs, Proceedings 14th International conference on

World Wide Web, pp. 1078-1079.

[3] Broy, M. et al. 2009. Formalizing the notion of adaptive

system behavior, Proceedings of the 2009 ACM Symposium

on Applied Computing (SAC ’09), pp. 1029-1033.

[4] Drachsler, H. et al. 2008. Effects of the ISIS recommender

system for navigation support in self-organised learning

networks, Proceedings of Special Track on Technology

Support for Self-Organised Learners, pp. 106-124.

[5] Gómez-Pérez, A. 2001. Evaluation of ontologies,

International Journal of Intelligent Systems, Volume 16, pp.

391-409.

[6] Haase, P. et al. 2005. A framework for handling

inconsistency in changing ontologies, Proceedings of the

2005 International Semantic Web Conference (ISWC05), pp.

353-367.

[7] Klein, M. and Noy N. F. 2003. A component-based

framework for ontology evolution, Proceedings of the IJCAI-

03 Workshop on Ontologies and Distributed Systems.

[8] Konstantinidis, G. et al. 2007. Ontology evolution: A

framework and its application to RDF, Proceedings of the

Joint ODBIS & SWDB Workshop on Semantic Web,

Ontologies, Databases.

[9] Mädche, A. et al. 2002. Managing multiple ontologies and

ontology evolution in Ontologging, Proceedings of the IFIP

17th World Computer Congress – TC12 Stream on Intelligent

Information Processing, pp. 51-63.

[10] Mädche, A. et al. 2003. Managing multiple and distributed

Ontologies on the Semantic Web, The VLDB Journal – The

International Journal on Very Large Data Bases, Volume

12, Issue 4, pp. 286-302.

[11] Maidel, V., Shoval, P., Shapira, B., Taieb-Maimon, M. 2008.

Evaluation of an ontology-content based filtering method for

a personalized newspaper, Proceedings of the 2008 ACM

conference on Recommender systems, pp. 91-98.

[12] Middleton, S. E., De Roure, D. C., Shadbolt, N. R. 2001.

Capturing knowledge of user preferences: Ontologies in

recommender systems, Proceedings 1st international

conference on Knowledge capture, pp. 100-107.

[13] Middleton, S. E., Shadbolt, N. R., De Roure D. C. 2003.

Capturing interest through inference and visualization:

Ontological user profiling in recommender systems,

Proceedings 2nd international conference on Knowledge

capture, pp. 62-69.

[14] Noy, N. F. et al. 2006. A framework for ontology evolution

in collaborative environments, Proceedings of the 2005

International Semantic Web Conference (ISWC05), pp. 544-

558.

[15] Plessers, P. 2006. An approach to Web-based ontology

evolution, Ph.D. Thesis, Department of Computer Science,

Vrije Universiteit Brussel.

[16] Stojanovic, L. et al. 2002. User-driven ontology evolution

management, Proceedings of the 13th International

Conference on Knowledge Engineering and Knowledge

Management (EKAW ’02), pp. 285-300.

[17] Stojanovic, N. and Stojanovic, L. 2002. Usage-oriented

evolution of ontology-based knowledge management

systems, LNCS 2519, pp. 1186-1204.

[18] Stojanovic, N. et al. 2003. The OntoManager – a system for

the usage-based ontology management, LNCS 2888, pp.

858-875.

[19] Suárez-Figueroa, M. C. and Gómez-Pérez, A. 2008. Towards

a glossary of activities in the ontology engineering field,

Proceedings of the Sixth International Conference on

Language Resources and Evaluation (LREC ’08).

